
Abstract

The problem of model predictive control (MPC) under parametric uncertainties for a

class of nonlinear systems is addressed. An adaptive identifier is used to estimate the pa-

rameters and the state variables simultaneously. The algorithm proposed guarantees the

convergence of parameters and the state variables to their true value. The task is posed as

an adaptive model predictive control problem in which the controller is required to steer the

system to the system setpoint that optimizes a user-specified objective function.

The technique of adaptive model predictive control is developed for two broad classes of

systems. The first class of system considered is a class of uncertain nonlinear systems with

input to state stability property. Using a generalization of the set-based adaptive estimation

technique, the estimates of the parameters and state are updated to guarantee convergence

to a neighborhood of their true value.

The second involves a method of determining appropriate excitation conditions for nonlin-

ear systems. Since the identification of the true cost surface is paramount to the success

of the integration scheme, novel parameter estimation techniques with better convergence

properties are developed. The estimation routine allows exact reconstruction of the systems

unknown parameters in finite-time. The applicability of the identifier to improve upon the

performance of existing adaptive controllers is demonstrated. Then, an adaptive nonlinear

model predictive controller strategy is integrated to this estimation algorithm in which ro-

bustness features are incorporated to account for the effect of the model uncertainty.

To study the practical applicability of the developed method, the estimation of state vari-

ables and unknown parameters in a stirred tank process has been performed. The results of

the experimental application demonstrate the ability of the proposed techniques to estimate

the state variables and parameters of an uncertain practical system.
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Chapter 1

Introduction

The problem of parameter and state estimation of a class of nonlinear systems is ad-

dressed. An adaptive identifier and optimal control problem are used to estimate the param-

eters and control system states variables simultaneously. The proposed method is derived

using a new formulation. An algorithm is developed to update these sets using the available

information. The algorithm proposed guarantees the convergence of parameters and the

state variables to their true value.

The technique of estimation is applied to two broad classes of systems. The first involves

a class of continuous time nonlinear systems subject to bounded state and input systems

with constant unknown parameters. Using the proposed set-based adaptive estimation, we

can steer system optimally to the origin. The formulation provides robustness to parameter

estimation error. The parameter uncertainty set and the uncertainty associated with an

auxiliary variable is updated such that the set is guaranteed to contain the unknown true

values. The second class of system considered is a class of nonlinear systems with ISS-CLF

stability condition. Using a generalization of the set-based adaptive estimation technique

proposed, the estimates of the parameters and state are updated to guarantee convergence

to a neighborhood of their true value. To study the practical applicability of the developed

method, the estimation of state variables and parameters in a stirred tank process has been

performed. The results demonstrate the ability of the proposed techniques to estimate the

state variables and parameters of the uncertain system.

1.1 Introduction

Effective monitoring of a process is possible only when accurate information on the state

variables and parameters of the process are available. Example of process state variables

are concentrations of the reacting species in a reactor, temperature and molecular weight

distribution in a polymerization process. These variables uniquely define the states of the

process and in many cases may directly/indirectly define the final product quality. Rate of

heat production in a reactor, overall heat coefficient in jacketed reactors and specific growth
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rate in bioreactors are the examples of process parameters. Information on the parameters

of a process provides a better understanding of the process dynamics and also allow for the

development of an accurate and representative models of process.

In practice, due to inadequacy of available sensors or operational limitations, some of the es-

sential process state variables cannot be measured frequently. In addition important process

parameters may have to be estimated from available measurements. In such cases, estimates

of the inaccessible, but essential, state variables and parameters of the process are usually

obtained by employing state and parameter estimation methods. Many techniques exist

for the estimation of states for a variety of classes of dynamical systems that can achieve

accurate state estimates in a variety of conditions. However, these techniques rely on the

knowledge of the system parameters. Uncertainty in the model parameters for instance can

generate (possibly large) bias in the estimation of the unmeasured state variables. In cases

where large uncertainties of the process parameters exist, it is imperative to use techniques

that are able to combine state observation with parameter estimation.

The motivation for this research arises from the need to develop reliable state and parame-

ter estimation methods that are capable of providing continuous and accurate estimates of

inaccessible state variables and parameters of a nonlinear process in a presence of exogenous

disturbance and running the system to the origin which is frequently encountered in practice.

1.2 Organization of the Dissertation

Chapter 2: Chapter 2 is divided into two parts. First, the technical preliminaries re-

quired to develop the parameter and state estimation methodology proposed in Chapter

3 are introduced. The topics include Persistence of Excitation (PE), Lyapunov Stability,

Projection Algorithm, Observability, State Observers and Adaptive identifiers. The second

section contains a review of the past and recent works in the field of real time optimization

and model predictive control of nonlinear systems.

Chapter 3: In this chapter, the adaptive estimation method derived to solve the problem

of ISS stable systems. Using a set-based adaptive estimation, the estimates for the parame-
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ters and the state variables are updated to guarantee convergence. A simulation example is

used to illustrate the developed procedure and ascertain the theoretical results.

Chapter 4: In this chapter, we consider the problem of parameter identification and

state estimation of a continuous-time nonlinear system subject to unknown parametric un-

certainty. The formulation is developed to provide robustness to parameter estimation error.

The uncertainty associated with an auxiliary variable defined for state estimation is updated

such that the set is guaranteed to contain the unknown true values. A simulation example

is used to illustrate the developed procedure and ascertain the theoretical results. After

convergence of the variables to the true values, a model based predictive control is defined

to run the system simultaneously to the origin.

Chapter 5: Based on the results in Chapter 4, the estimation technique is applied to a

mixing tank problem. The developed method is used to estimate state and parameters of

the experimental process. The estimation routine employed guarantees convergence of state

and parameters to their true values.

Chapter 6: A summary of the design procedure given in Chapter 3 and 4 is provided,

and conclusions are drawn based on the investigations of Chapters 3, 4 and 5. Suggestions

for directions of future work are given.
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Chapter 2

Literature Review

The design methodology for simultaneous parameter and state estimation and optimal

control of class of a nonlinear systems is largely developed from the concepts of linear sys-

tem theory, parameter identifiers, projection algorithm and adaptive predictive control. In

this chapter, these concepts are briefly introduced for the understanding of this thesis work.

The detailed discussion regarding the relationships between the concepts are discussed in

Chapter 3. This chapter also summarizes the recent and early works by researchers active in

robust adaptive predictive control techniques that are of importance in relation to this thesis.

2.1 Technical Preliminaries

2.1.1 Persistence of Excitation

The concept of persistent excitation (PE), when it arose in the 1960s in the context of system

identification. The term PE was coined to express the property of the input signal to the

plant that guarantees that all the modes of the plant are excited. In the late 1970s, it became

clear that the concept of PE also played an important role in the convergence of the controller

parameters to their desired values. Recent work on robustness of the adaptive systems in

the presence of bounded disturbance, time-varying parameters, and un-modeled dynamics of

the plant revealed that the concept of PE is also intimately related to speed of convergence

on the parameters to their final values, as well as the bounds on the magnitudes of the

parameter errors. In both linear and nonlinear adaptive systems, parameter convergence is

related to the satisfaction of persistence of excitation condition, which can be defined in the

continuous time as follows.

Definition 2.1.1: [Krstic et. al, 1995] A vector function φ : is said to be persistently exciting

if there exist positive constants α1, α2 and T0 such that

α1I ≥
∫ t+T0

t

φ(τ)φ(τ)T ≥ α2I,∀t ≥ 0 (1)

Although the matrix φ(τ)φ(τ)T may be singular at every instant τ , the PE condition re-

quires that φ span a entire nφ dimensional space as τ varies from t to t+T0, that is, integral
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of matrix φ(τ)φ(τ)T should attain full rank over any interval of some length T0 or in other

words, (1) requires that φ(t) varies such that the integral of the matrix φ(τ) is uniformly

positive definite over any time interval [t, t + T0]. The properties of PE signals as well as

various other equivalent definitions and interpretations are given in the literature. In adap-

tive linear systems, the PE condition is converted to the sufficient richness (SR) condition

on the reference input signal. Necessary and sufficient conditions for parameter convergence

are then developed in terms of the reference signal. A popular result implies that expo-

nential convergence is achieved whenever the reference signal contains enough frequencies,

i.e., whenever the spectral density of the signal is nonzero in at least nθ points, where nθ

is the number of unknown parameters in the adaptive scheme. Otherwise, convergence to a

characterizable subspace of the parameter space is achieved. Despite the fact that the theory

of parameter convergence for linear systems is well established, very few results are available

for nonlinear systems. This is mainly because the familiar tools in linear adaptive control

cannot be directly extended to nonlinear systems. In most of the available results, stability

and performance properties are proved by assuming that a vector function, which depends

on closed-loop signals is persistently exciting. However, the means of verifying this PE con-

dition a priori for a given nonlinear system remains an open problem, in general. In [Lin

and Kanellakopoulos, 1998], a procedure is provided for determining a priori whether or not

a specific reference signal is sufficiently rich for a specific output feedback nonlinear system,

and hence whether or not parameter estimates will converge. Nevertheless, the main result

in [Lin and Kanellakopoulos, 1998] is that the presence of nonlinearities in the plant usually

reduces the SR condition requirement on the reference signal and thus enhances parameter

convergence.

2.1.2 Lyapunov Stability

Lyapunov stability analysis plays an important role in the stability analysis of dynamical

systems described by ordinary differential equations. This technique is very useful and

convenient in practice because the stability of the system can be determined directly from

the differential equations describing the system. In other words, the Lyapunov method

enables one to determine the nature of stability of an equilibrium point of the system without
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explicitly integrating the ordinary differential equations. In addition, the Lyapunov analysis

is applicable to continuous-time and discrete-time systems, linear and nonlinear systems,

time-invariant and time-varying systems. From the classical theory of mechanics, a vibratory

system is stable if its total energy is continually decreasing until an equilibrium state is

reached. A physical example that illustrates this concept is a simple pendulum in which

the equations of motion described by the forces acting on the system, vanish at steady state

[Khalil, 2002]. The method of Lyapunov, is based on the following behavior. If the system

has an asymptotically stable equilibrium state, then the stored energy of the system decays

with increasing time until it finally reaches its minimum value at the equilibrium state. For a

general system, however it is not simple to describe its dynamics through an energy function.

To overcome this difficulty, the Lyapunov function which acts as a fictitious energy function,

was introduced [Ogata, 1987].

Lyapunov stability analysis plays an important role in the stability analysis of dynamical

systems described by ordinary differential equations. The Lyapunov function, denoted by

V (.), is a scalar, positive definite function. It is generally assumed to be continuous with

continuous partial derivatives. When taken along the systems trajectory, the time derivative

of the Lyapunov function is negative definite or negative semidefinite. These desired prop-

erties of the Lyapunov function can be formally stated in the stability theorem described by

[Khalil, 2002] for a non-autonomous system.

Theorem 2.1.2.1. [Khalil, 2002] Consider the non-autonomous system

ẋ(t) = f(t, x(t)) (2)

where f : [0,∞) × D → Rn is piecewise continuous in t and locally Lipschitz in x(t) on

[0,∞)×D, system (2) at t = 0 and D = {x(t) ∈ Rn| ||x(t)|| < r}. Let V : [0,∞)×D → R

be a continuously differentiable function such that,

α1(||x(t)||) ≤ V (t, x(t)) ≤ α2(||x(t)||) (3)

V̇ (t, x(t)) =
∂V

∂t
+
∂V

∂x
f(t, x(t)) ≤ 0 (4)∫ t+ε

t

V (τ, φ(τ, t, x(t)))dτ ≤ −λV (t, x(t)), 0 < λ < 1 (5)
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∀t ≥ 0,∀x(t) ∈ D, for some ε, where α1(·) and α2(·) are class K functions defined in

[0, r) and φ(τ, t, x(t)) is the solution of the system that starts at (t, x(t)). Then, the origin

is uniformly asymptotically stable.

If all the assumptions hold globally and α1(·) belongs to class k∞ then the origin is globally

uniformly asymptotically stable.

Now that the stability considerations based on Lyapunov theory are defined, the next step

consists of finding a convenient Lyapunov function to design the adaptive updating laws,

such that Theorem 2.1.2.1 is satisfied.

2.1.3 Projection Algorithm

It is important to mention that, in general, the parameters that characterize a system, have

a physical meaning and are bounded above and/or below. For this reason, it is desired

to constrain the parameter estimates to lie inside a bounded set. An effective method for

keeping the parameter estimates within some defined bounds is to use a projection algorithm.

In many practical problems where θ represents the parameters of a physical plant, we may

have some a priori knowledge as to where θ is located in Rn. This knowledge usually comes

in terms of upper or lower bounds for the elements of θ or in terms of a well defined subset of

Rn, etc. Using this a priori information, adaptive laws can be designed that are constrained

to search for estimates of θ in the set where θ is located. Intuitively such a procedure may

improve the convergence and reduce the time taken in convergence when initial values of the

parameter is chosen to be far away from the unknown θ . In [Krstic et al., 1995], a projection

operator is defined for the general convex parameter set Π.

Consider a convex set Πε = {θ̂ ∈ Rp|P (θ̂) ≤ ε}, , where the convex function P : Rp → R

is assumed to be smooth. The set Πε is the union of the set Π = {θ̂ ∈ Rp|P (θ̂) ≤ 0} and

a boundary around it. The interior of Π is denoted by Π̇, and ∇θ̂P represents an outward

normal vector at θ̂ ∈ ∂Π. The projection operator is defined as follows

proj(τ) =

 τ if θ̂ ∈ Π̇ or ∇θ̂P
T τ ≤ 0;

(I − c(θ̂)Γ∇θ̂P∇θ̂PT

θ̂PT∇θ̂P )τ if θ̂ ∈ Π\Π̇ and ∇θ̂P
T τ > 0; .

(6)

c(θ̂) = min{1, P (θ̂)

ε
}
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Here, Γ belongs to G of all positive definite symmetric p × p matrices and τ is the vector

of nominal update laws that is, in the absence of the projection algorithm the update law
˙̂
θ = τ .

The properties of the projection operator, Proj{τ, θ̂,Γ}, are given by

1. The mapping Proj : Rp × Πε ×G→ Rp is locally lipschitz in its arguments τ, θ̂,Γ.

2. Proj{τ}TΓ−1Proj{τ} ≤ τTΓ−1τ, ∀θ̂ ∈ Πε .

3. Let Γ(t)τ(t) be continuously differentiable and

θ̂ = Proj{τ}, θ̂(t)(0) ∈ Πε

Then, on its domain of the definition, the solution θ̂(t) remains in Πε.

The adaptive laws with the above projection modification retain all the properties estab-

lished in the absence of the projection and guarantee that θ̂ ∈ Πε,∀t ≥ 0 provided θ̂(0) ∈ Πε.

2.1.4 Observability

Consider a continuous time linear system of the form

ẋ = Ax+Bu (7)

y = Cx (8)

where x ∈ Rn is a state vector, u ∈ Rn is the control input, y ∈ Rn are the outputs, and

matrices, A,B and C are of appropriate dimensions. Observability is a property of dynamical

system, first introduced by [Kalman, 1960]. This property is meant to express the availability

of measurement data with respect to ones ability to reconstruct or make inferences regarding

the values of unmeasured state variables.

Definition 2.1.4.1: A linear continuous time system given by (7,8) is observable if for

any initial state x0 and some final time t, the initial state x0 can be uniquely determined by

knowledge of the inputs u and outputs y for all time t.

In other words, observability is related to the problem of determining the value of the state

vector knowing only the output y over some interval of time. This is a question of determining

when the mapping of the state into the output associates a unique state with every output
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that can occur. If a system is observable, then its initial state can be determined. If the initial

state is known, then values of the states at any time can be calculated. Hence, observability

implies that values of the state at any time are fully reconstructible as long as the inputs and

outputs are known exactly. Observability can be checked by a matrix rank test performed

on the systems observability matrix.

Theorem 2.1.4.1: The continuous time LTI system (7,8) is observable if and only if the

observability matrix is defined by

O(C,A) = [CT , (CA)T , · · · , (CA(n−1))T ]T (9)

is of rank n.

The concept of observability is central to the design of state observers and state estima-

tors, which are discussed in the next section.

2.1.5 State Observers

Many nonlinear control design and adaptive system techniques assume state feedback; this

implies that all the state variables are measured and are available for feedback. In practice,

this is not always true, either for economic or technical reasons, such as sensor failures. In

most cases,only a subset of the state variables are available for measurement. Intuitively, we

want to use the measured states or outputs of the system and extend the state-dependent

techniques to output-dependent techniques for system design. The idea is similar to what

has been widely applied in LTI systems, i.e., build an observer that yields asymptotic esti-

mates of the system state based on the output of the system, and then update the control/

adaptation law using on-line estimation of the unmeasured states. In control theory, a state

observer is a dynamical system whose outputs are the estimates of the state variables of

the system [Ioannau and Sun, 1996]. The main criterion that observers must satisfy is that

the estimation error x̃(t) = (x(t) − x̂(t)) tends to zero in the limit as t → ∞ where x̂(t) is

the estimate of the state x(t) at time t. If the dynamics of the plant give rise to a linear

time-invariant system, then there exists an estimator of the form

x̂(t) = Ax̂(t) + L(y − ŷ) +Bu (10)

ŷ(t) = Cx̂(t) +Du (11)
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which guarantees convergence of the state estimation error to zero, provided that the

plant is observable. The observer given by Eqs. (2.5a) and (2.5b) is referred to as a Lu-

enberger observer [Ioannau and Sun, 1996]. The matrix L is designed so that the matrix

(A − LC) is stable, which ensures the stability of the observers error dynamics. In fact,

the eigenvalues of (A − LC), and, therefore, the rate of convergence of x̃(t) to zero can

be arbitrarily chosen by designing L appropriately. Therefore, it follows that x̂(t) → x(t)

exponentially fast as t→∞, with a rate that depends on the matrix (A− LC). This result

is valid for any matrix A and any initial condition x(0) as long as (C,A) is an observable pair.

2.1.6 Adaptive Identifiers

The adaptive identifiers represent a class of real time parameter estimation schemes that

are used to estimates (typically) slow time-varying parameters of dynamical systems. Under

suitable conditions, these identifiers can guarantee convergence of the estimated parameters

to the unknown parameter values. The design of such scheme includes the selection of plant

input so that a certain signal vector, is PE. Adaptive identifier designs are natural extension

of observer design for linear time invariant (LTI) systems with unknown parameters. When

the parameters of the system are unknown, an adaptive identifier is designed to estimate

the parameters of the dynamical system. This was first accomplished in [Kreisselmeier,

1977; Kudva and Narendra, 1973]. Traditionally, an adaptive identifiers consists of a state

prediction subject to parameter estimations and a parameter update law. Different repre-

sentations have been discussed in detail for LTI systems [Ioannau and Sun, 1996; Narendra

and Annaswamy, 1989; Sastry and Bodson, 1989]. Basic methods used to design adaptive

laws include Lyapunov-based design, gradient methods, and recursive least squares meth-

ods. Subsequently alternative techniques have been generalized to the design of adaptive

observers for nonlinear systems, linear time-varying systems and systems with disturbances.

Adaptive laws only become parameter identifiers if the input signal u has to be chosen to be

sufficiently rich so that the regressor vector φ is PE.

2.2 Parameter Estimation in Nonlinear Systems

State Estimators are deterministic/stochastic dynamic systems that are used to reconstruct
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the inaccessible but important process state variables, from available measured variables.

The problem of state estimation in chemical processes has been studied extensively since

the mid 1970s. In particular, the extended Kalman Filter (EKF) has been used widely for

state estimation [Bastin and Dochain, 1991]. The design of an EKF is based on the linear

approximation of a nonlinear process model. It is generally recognized that, the linearization

at each time step can introduce large errors and even cause divergence of the filter [Wan and

Van Der Merwe, 2000]. These concerns are especially acute in complex industrial set-ups

[Wilson et al., 1998]. Although higher order Kalman filters exist, they are more difficult

to implement and prone to instability. Due to the complex nonlinear behavior of many

chemical and biochemical processes, reliable state estimation should be based on nonlin-

ear models that can capture the complex nonlinear behavior. Furthermore, several studies

have found that linear state estimators are inadequate for many nonlinear processes [Val-

luri and Soroush, 1996] and [Tatiraju and Soroush, 1997], motivating the use of nonlinear

observers/estimators. The Luenberger observer is well established method of estimating the

state variables of a known observable system using input-output data,that can be adjusted

to handle to estimate the state of a linear time-invariant system with unknown parameters as

well. The structure of the observer as the adaptive laws for updating its parameters has to be

chosen judiciously for this purpose. This was accomplished in [Kudva and Narendra, 1973;

Luders and Narendra, 1974; Narendra and Annaswamy, 1989]. In 1977, an alternate method

of generating the estimates of the states and the parameters of the plant was suggested

[Kreisselmeier, 1977] where the adaptive algorithms ensured faster rate of convergence of the

parameters estimates under certain conditions. When the system further depends on some

unknown parameters, the observer design has to be modified so that both state variables and

parameters can be estimated, leading to so-called adaptive observers. Various results in that

respect can be found, going back to [Luders and Narendra, 1974], and [Kreisselmeier, 1977]

for linear systems, or [Marino, 1990]) for nonlinear ones, but nonlinearities depending only

on input/output. Recently an alternative result as adaptive observer has been designed on

adaptive observation for linear time-varying systems [Zhang, 2002],which guarantees global

exponential convergence for noise-free systems. The adaptive observer proposed provides

robustness in the presence of modeling and measurement noises. In the paper [Adetola and
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Guay, 2008], the authors considered a system with exogeneous disturbances and showed

that parameter convergence can be guaranteed under certain conditions of persistency of

excitation condition. The authors proposed a novel set-based adaptive estimation with an

appropriate adaptation law for the unknown parameters. The proof of the convergence of

the estimates to their true values is achieved using Lyapunov theories.

2.3 Real-time Optimization

One of the key challenges in the process industry is how to best operate the plant under

different conditions such as feed compositions, production rates, energy availability, feed

and product prices that changes all the time. Real-time optimization (RTO), which refers

to the online economic optimization of a process plant, is a widely employed technology to

meet this challenge. RTO attempts to optimize process performance (usually measured in

terms of profit or operating cost) thereby enabling companies to push the profitability of

their processes to their true potential as operating conditions change. The popular RTO is

based on the assumption that model and disturbance transients can be neglected if the op-

timization execution time interval is long enough to allow the process to reach and maintain

steady-state. A typical RTO system includes components for steady-state detection, data

acquisition and validation, process model updating, optimization calculations and optimal

operating policies transfer to advanced controllers.

2.3.1 Model Predictive Control

Model predictive control (MPC) or receding horizon control (RHC) is a family of control

that utilizes a process model along with cost factors and optimum target operating point to

calculate process control moves that drives the plant to the most economic constraints while

ensuring stable operation. The control technique has proven to be extremely successful in

the process industry. Linear (and nonlinear) model predictive control remains the industry

standard with increasing number of reported applications and significant improvements in

technical capability [Camacho and Bordons, 1995]. Consider the time-invariant nonlinear

system of the form

ẋ = f(x(t), u(t)) (12)
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subject to the pointwise state and input constraints x(t) ∈ X ⊂ Rnx and u(t) ∈ U ⊂ Rnu ,

respectively. The vector field f : Rnx×Rnu → Rnx satisfies f(0, 0) = 0, the set U is compact,

X is connected and (0, 0) ∈ (X,U).

MPC algorithms optimize the future plant behaviour and satisfy the given constraints by

solving the following finite horizon open loop optimal control problem:

minup J =

∫ t+T

t

L(xp(τ), up(τ))dτ +W (xp(t+ T )) (13)

s.t. ẋp = f(xp(τ), up(τ)), xp(t) = xt

xp(τ) ∈ X, u(τ) ∈ U

xp(t+ T ) ∈ Xf

where (.)p denotes the predicted variables (internal to the controller). The stage cost

L(xp, up) is a semi-definite positive function. The terminal penalty W (xp(t+T )) and termi-

nal constraint xp(t+ T ) ∈ Xf are included for stability considerations.

At each time step, the solution to the optimization problem is found over a certain predic-

tion horizon, T, using the current state of the plant or its estimate as the initial state. The

optimization yields an optimal control sequence and the first control action is implemented

on the plant until the results of the next update are available.

Model predictive control is part of the multi-level hierarchy of control structure. Using a

numerical optimization scheme as an integral part of the structure allows great flexibility,

especially concerning the incorporation of constraints. Though such optimization over a

finite horizon does not guarantee stability and performance, considerable research has been

devoted to address these shortcomings. Linear MPC theory and related issues such as closed-

loop stability and online computation have been well studied and characterized [Magni, 2001,

Mayne, et. al, 2000]. Over the past few years, nonlinear model predictive control (NMPC)

schemes with some favorable properties have been developed. The theory related to stabil-

ity of state and output feedback NMPC have reached a point of relative maturity, see for

example [ Chen and Allgower 1998, Findeisen et. al. 2003] for review.

2.3.2 Closed-loop Stability of NMPC Based on Nominal Model

A general sufficient condition for closed-loop stability of MPC based on nominal models is
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given below [Findeisen et. al. 2003].

Criterion 2.1 The terminal penalty function W : Xf → R≥0 and terminal set Xf are such

that there exists a local feedback kf : Xf → U satisfying

1. 0 ∈ Xf ⊂ X,Xf is closed

2. W (x) is positive semi-definite and continuous with respect to x ∈ Rnx

3. kf (x) ∈ U,∀x ∈ Xf

4. Xf is positively invariant under kf

5. L(x, kf (x)) + ∂W
∂x
f(x, kf (x)) ≤ 0,∀x ∈ Xf

The conditions are primarily concerned with the selection of terminal region Xf and ter-

minal penalty term W (·). Condition 5 requires W (·) to be a control Lyapunov function, over

the (local) domain Xf , and dissipates energy at a rate L(x, kf (.)). This criterion, which is

able to re-cast many of the available MPC frameworks with guaranteed stability, provides

a means of checking whether a given MPC scheme guarantees stability a-priori. Stability

is proven by showing strict decrease of the optimal cost function J∗, which is a Lyapunov

function for the closed-loop system. The domain of attraction for the controller is the set

where the optimization problem is feasible.

2.3.3 NMPC for Uncertain Systems

The quality of the model used in MPC is crucial to the performance of the controller. The as-

sumption that the prediction model is identical to the actual model is unrealistic. Although,

due to the receding horizon policy, a standard implementation of MPC using a nominal

model of the system dynamics exhibits nominal robustness to sufficiently small disturbances

[Camacho and Bordons, 1995], such marginal robustness guarantee may be unacceptable in

practical applications. Present model/plant mismatch and disturbances must be accounted

for in the computation of the control law to achieve robust stability.

One way to cope with uncertainty in the system model is to employ robust MPC meth-

ods, which explicitly account for systems uncertainties. Since robust controllers (in general)

cannot learn changes in the plant, their performance is limited by the quality of the model

plus the uncertainty description initially available. On the other hand, adaptive control has
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the potential to improve system performance as it updates the model online based on mea-

surement data. However, practical applications of adaptive controllers are limited by the

conflicting objective of parameter estimation and control. This could lead to a worse tran-

sient performance than a non-adaptive controller when poor estimates are used. Moreover,

the controller may induce large transient oscillations in an effort to improve the estimation

quality.

2.3.4 Robust Model Predictive Control

Robust techniques have been employed in MPC designs to reduce the sensitivity of the

controller to uncertainty. Consider the following uncertain system

ẋ = f(x, u, ν) (14)

where ν(t) ∈ D represents any arbitrary bounded uncertainty or disturbance signal.

Many robust MPC techniques have been proposed to stabilize the uncertain system for all

possible realization of the disturbance ν(t) ∈ D. These include approaches based on nominal

prediction [Magni et al 2003] and those based on min-max or worst-case techniques [Adetola

and guay 2008].

The nominal based approach in [ Marruedo et. sl. 2002] uses global Lipschitz constants to

compute 11 worst-case upper bound on the distance between a solution of the actual uncer-

tain model and the nominal model. These bounds are then used to redefine the terminal

region and constraints in a way that guarantees robust feasibility of the closed-loop system.

The controller proposed in [Limon et. al. 2005] is based on the concept of reachable sets.

The approach uses a local procedure to approximate the sets that contain the predicted

evolution of the uncertain system for all possible uncertainties. Then, a dual mode MPC

strategy is proposed to robustly stabilize the system. The methods based on nominal pre-

diction have similar computational complexity with standard NMPC but exhibit a higher

level of conservatism.

A well embraced method for reducing conservatism in open loop min-max scheme and im-

prove performance is to introduce some form of feedback in the prediction [Lee and Yu,

1997]. This can be achieved by parameterizing the control sequence in terms of the systems

state. Unfortunately, such optimization with respect to closed-loop strategies is intractable
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(in most cases) since the problem size grows exponentially with the size of the problem data.

In general, robust MPC is designed to meet control specifications for the ” worst case” un-

certainty. This approach may not always achieve optimal performance, in particular, if the

worst case scenario rarely exists. Other approaches, such as adaptive control may yield a

better performance.

2.3.5 Adaptive Model Predictive Control

Adaptive MPC is an attractive way to handle static uncertainties that can be expressed in

the form of constant unknown model parameters. While a few results are available for linear

adaptive MPC [Mayne et. al., 2000], only a small amount of progress has been made in

developing adaptive NMPC schemes. Consider the parameter-affine nonlinear system of the

form

ẋ = f(x, u, θ), f(x, u) + g(x, u)θ, (15)

= f(x) + g1(x)u+ g2(x)θ (16)

The result in [Adetola and Guay 2004], implements a certainty equivalence nominal-model

MPC feedback to stabilize this system subject to an input constraint u ∈ U . Assuming the

availability of the state vector ẋ , the identifier guarantees parameter convergence when an

excitation condition is satisfied. It is only by assumption that the true system trajectory

remains bounded during the identification phase. Moreover, there is no mechanism to en-

hance the satisfaction of the PE condition and thereby decrease the identification period.

In general, the design of adaptive nonlinear MPC schemes is very challenging because the ”

separation principle assumption” widely employed in linear control theory is not applicable

to a general class of nonlinear systems, in particular in the presence of constraints. More-

over, it is difficult to guarantee state constraints satisfaction in the presence of an adaptive

mechanism. A true adaptive nonlinear MPC algorithm must address the issue of robustness

to model uncertainty while updating the systems parameters.

Recent work [DeHaan and Guay, 2007] has focused on the use of adaptation to improve upon

the performance of robust MPC for constrained nonlinear systems. A set-valued description

of the parametric uncertainty is directly adapted online to reduce the conservativeness of

the robust MPC solutions, especially with respect to the design of the terminal penalty and
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constraints. The parameterization of the feedback MPC policy in terms of the uncertainty

set and the underlying min-max feedback MPC used in the study make the controllers com-

putation very challenging. The result can be viewed as a conceptual result that focus on

performance improvement rather than implementation. The idea of coupling set-based iden-

tification with robust control calculations was extended in [DeHaan et. al. 2007] to a less

computationally complex robust-MPC framework.

2.4 Summary

Concepts and principles of parameter and state estimation are reviewed in this chapter. An

overview of recent developments in parameter and state estimation of systems has been pre-

sented.

Also, we have reviewed principle of model predictive control strategy and talked on robust

model predictive control and adaptive model predictive control strategies.

An interesting problem is presented when, in addition to unknown parameters, states of

the system are also unknown. The following chapters present adaptive model predictive

approaches, which are applicable to a class of nonlinear system.
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Chapter 3

Adaptive Receding Horizon Control

Of Input Constrained Nonlinear Systems

In this chapter a method for adaptive receding horizon control of nonlinear systems is

introduced. Asymptotically stability and optimality in run of the closed loop systems in the

presence of parametric uncertainty is obtained employing input to state stabilizing Lyua-

punov control functions.

3.1 Introduction

Receding Horizon Control (RHC), usually called Model Predictive Control (MPC) has long

been preferred tool for advanced control applications. The relative ease with which con-

strained can be incorporated has attracted great deal of interest both in academia and

industry. They arise in a range of classical, as well as certain emerging, engineering appli-

cations [Qin and Badgwell, 2003] . Despite significant advances in this area still there is an

obstacle that an accurate knowledge of the model is instrumental. As a result, its application

remains constrained to processes with well-established model dynamics. However, in gen-

eral, most physical systems possesses parameter uncertainties and unmeasurable parameters

[Krstic et. al., 1995] and mechanisms to upgrade the unknowns or uncertainty parameters

are highly appealing [Adetola and Guay, 2004].

The main goal of this chapter is to report an online adaptive integrated parameter estima-

tion and RHC control method for input constrained nonlinear systems. To date, very few

adaptive nonlinear RHC schemes are developed for nonlinear systems [Peter and Guay 2007,

Adetola and Guay, 2004].

In the present work, we report a stable adaptive receding horizon scheme for parametric

uncertain systems. The adaptive receding horizon control scheme developed in this report is

based on the knowledge of an ISS-control lyapunov function (ISS-CLF) for the nonlinear sys-

tem. The structure of the chapter is as follows. First, we review some technical background

and then introduce and formulate the problem, thereby an Adaptive RHC+CLF problem is

constructed in Section 3. However, the problem can not be solve until a reliable estimation
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strategy be used which is stated in Section 4. Finally we prove asymptomatically stability

of the proposed scheme.

3.2 Mathematical Background

Consider the function W : D × R+ → R. Assume 0 ∈ D and W (x, t) is continuous and has

continuous partial derivatives to all its arguments.

Definition 3.2.1: W is said to be positive definite in D if

W (0, t) = 0, ∀t ∈ R+

W (x, t) > 0, ∀x 6= 0, x ∈ D.

Definition 3.2.2: W (x, t) is said to be decrescent in D if there exist a positive definite function

V(x) such that

|W (x, t)| ≤ V (x), ∀x ∈ D

Definition 3.2.3: W (x, t) is radically unbounded if

|W (x, t)| → ∞ as |x| → ∞ uniformly in t

Definition 3.2.4: Consider the system

ẋ = f(x, t),

f : D × R+ → Rn Where f is point-wise continuous in t on D × [0,∞]. x = 0 ∈ D is an

equilibrium point if

f(0, t) = 0, ∀t ≤ t0.

Theorem 3.2.1: If in a neighborhood D of x=0 there exists function W (·, ·), D× [0,∞)→ R

such that

i ) W (·, ·) is positive definite, and,

ii) The derivation of W (·, ·) along any solution of system f(x,t) is negative semi definite in

D, then,

This equilibrium point is stable and W (·, ·) is called a lyapunov function.

Moreover, If W (·, ·) is also decrescent then the origin is uniformly stable.
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Theorem 3.2.2: If in a neighborhood D of x=0 there exists function W (·, ·), D× [0,∞)→ R

such that

i) W (·, ·) is positive definite and decrescent, and,

ii) The derivation of W (·, ·) is negative definite in D, then,

The equilibrium state is uniformly asymptotically stable.

Theorem 3.2.3 : If there exist function W (·, ·), D × [0,∞)→ R such that

i) W (·, ·) is positive definite, decrescent and radically unbounded, and,

ii) The derivation of W (·, ·) is negative definite for ∀x ∈ Rn, then

The equilibrium state is uniformly asymptotically stable.

Definition 3.2.5 : A continuous function α(r) defined over r ∈ [0, a] is said to belong to class

K if it is strictly increasing and α(0) = 0. It belongs to class K∞ if a = ∞ and α(r) → ∞
as r →∞.

Definition 3.2.6 : A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class

KL if for any fixed s, the mapping β(r, s) belong to class K respect to r, and for any fixed r,

the mapping β(r, s) is decreasing respect to s, and β(r, s)→ 0 as s→∞.
Consider the system

ẋ = f(t, x, u)

where f : [0,∞]×Rn ×Rm → Rn is piecewise continuous in t and locally litschitz in x and

u. The input u(t) is piecewise continuous function of t for all t ≥ 0.

Definition 3.2.7: The system defined above is said to be input-to-state stable if there exist a

KL function β and a class K function γ such that or any initial state x(t0) and any bounded

input u(t), the solution x(t) exists for all t ≥ t0 and satisfies

|x(t)| ≤ β(|x(t0), t− t0|) + γ(supτ∈(t0,t)(|u(τ)|))

3.3 Problem Description

We consider the nonlinear system,

ẋ = f(x) + P (x)d+ g(x)u, x ∈ Rn, u ∈ Rm (1)
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where f(x), F (x) and g(x) are smooth. For simplicity we consider f(0) = 0, F (0) = 0 so

that x = 0 is the equilibrium of the uncontrolled system.

Definition 3.1: A smooth positive definite radically unbounded function V : Rn → R+ is

called an ISS-control Lyapunov function (ISS-CLF) for eq(1) if there exist class K functions

α1, α2 and a class K∞ function ρ such that α1(‖x‖) ≤ V ≤ α2(‖x‖) and the following holds

for all x 6= 0 and all d ∈ Rr

‖x‖ ≥ ρ(‖d‖)

infu∈Rm{∂V
∂x

[f(x) + P (x)d+ g(x)u]} < 0. (2)

Note 3.1: The existence of an ISS-CLF guarantees that the nonlinear systems eq(1) is input

to state stable with respect to the disturbance input d.

In this chapter we consider nonlinear systems of the form

ẋ = f(x) + P (x)θ + g(x)u, (3)

where x ∈ Rn and u ∈ Rm are systems measurable states and control inputs respectively,

θ ∈ Rp is the vector of unknown constant parameters. f(x) : Rn → Rm is a smooth vec-

tor function, P (x) : Rn → Rm×p and g(x) : Rn → Rm×m are smooth matrix valued functions.

3.4 Adaptive MPC

Computation of optimal input control action in model predictive control greatly relies on the

knowledge of parameter estimates, however, since there is no guarantee that the parameter

estimations approach their true value, the existence of offset is inevitable. The scheme

presented here ensures the robust stability of the controller to the estimation errors; Fist, we

develop a receding horizon controller based on the known ISS-CLF function to stabilize the

nonlinear system, and then an adaptive estimation procedure is developed to estimate the

parameters. Combination of the two schemes globally asymptotically stabilizes the origin of

the closed loop system. We define the unknown parameter estimation error

θ̃ = θ − θ̂
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where θ̂ are the assumed known parameter estimates and use the substitution of P (x)θ =

P (x)θ̂ + P (x)θ̃ to rewrite the eq(3) as,

ẋ = f(x) + P (x)θ̂ + g(x)u+ P (x)θ̃, (4)

For this system it is supposed that an ISS-CLF function, say V , is known. The problem of

determining an ISS-CLF for constrained systems has become the focus of research recently

and considerable progress has been reported in [Primbs, 1999]. Based on the available ISS-

CLF V we can introduce the following pointwise min-norm problem,

min uTu (5)

subject to V̇ ≤ −σ̂(x(t)) (6)

with σ̂(x(t)) > 0.

Since the input is unbounded, the stability constraint may make the problem infeasible for an

arbitrary choice of −σ̂(x(t) therefore its value must be properly chosen to avoid infeasibility.

We propose to accomplish this by solving the following optimization problem in u and ψ:

min uTu+ λψ2 (7)

subject to V̇ ≤ −σ(x(t)) + ψ (8)

ψ ≥ 0 (9)

−σ(x(t)) + ψ ≤ 0 (10)

and set,

σ̂(x(t)) = σ(x(t))− ψ (11)

with λ > 0 a design parameter to be chosen. The other design parameter is σ which can be

chosen with lesser restrictions. We choose it based on the Sontag’s unconstrained formula,

σ =
√
a2 + q(x)‖b‖2 (12)

where a = ∂V
∂x
f + ∂V

∂x
P (x)θ̂ + ‖∂V

∂x
P‖ρ−1(‖x‖), b = ∂V

∂x
g and q(x) is some positive definite

function.

22



The new re-formulated problem can be looked at as a point-wise min-norm problem in which

the objective function contains the penalty term λψ2, which is used to soften the constraints

and avoid the infeasibility. For each arbitrarily large but finite λ, this problem is always

feasible due to the existence of the ISS-CLF function V, (see eq (2)).

Lemma 3.4.1.: Let (u∗;ψ∗) be the optimal solution of the problem (5)-(6) for any given

state x(t); then u∗ is also the optimal solution of (7)-(8) with σ̂(x(t)) = σ(x(t))− ψ∗.
Proof: The proof is similar to that of Lemma 7.3.1. in [Primbs, 1999].

The implication of Lemma 1 is that allows us to always refer to the point-wise min-norm

problem (5)-(6), even though the problem (7)-(8) is effectively solved in order to obtain

a feasible solution. By determining a feasible σ̂ for the constrained point-wise min-norm

problem, we extend formulations for an Adaptive RHC+CLF scheme, given by,

minuJ =
∫ t+T

t
q(x(τ), u(τ))dτ (13)

subject to

ẋ = f(x) + P (x)θ̄ + g(x)u (14)

θ̄ = θ̂ (15)

V (x(t+ T )) ≤ V (xiss(t+ T )) (16)

V̇ ≤ −σ̂(x(t)) (17)

where xiss(t + T ) is the state prediction for the model subject to the min-norm based con-

troller problem starting at the current state x(t) with the current parameter estimation θ̂(t).

In RHC+CLF formulation the unknown parameter θ̄ in eq (15) replaces with the last esti-

mated parameter value. The optimizer computes the required control moves over prediction

horizon T. u(k|k)is implemented on the plant form the time step k to k + 1 and then new

estimates of the unknown parameter θ̂(k) is obtained from the parameter update law. The

prediction and control horizons are shifted forward by one step and a new optimization prob-

lem is solved at time k + 1 and the procedure repeats by the end of the control horizon.

Notice that, in the formulation (13)-(17), θ̂ is supposed to be constant over the interval

[t,t+T] and therefore the error in the actual system model would appear as P (x)θ̃(t). In the
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remainder we study stability of RHC+CLF scheme to design parameter update law
˙̂
θ.

3.5 Estimation of Uncertainty

Let x∗(τ) be the state trajectory resulting from the proposed RHC+CLF scheme. Consider

the function,

W =
1

T

∫ t+T

t
V (x∗(τ))dτ (18)

This function is positive definite and radically unbounded if V be positive definite and

radically unbounded. Differentiating W respect to t we get,

Ẇ =
1

T
(V (x∗(t+ T ))− V (x(t)))

Following the constraint eq(17) and eq(18) we can write

Ẇ ≤ − 1

T

∫ t+T

t
σ̂(xiss(τ)). (19)

Note that, in the context of the RHC-CLF, over the interval [t, t+T ] the parameter estimates

are considered as constants which produce the measurable error term ∂V
∂x
P (xiss(θ))θ̃(t) along

the trajectories of the nominal system, and therefore, employing some sort of certainty

equivalence thinking, we can rewrite it as,

Ẇ ≤ − 1

T

∫ t+T

t
σ̂(xiss(τ)) +

1

T

∫ t+T

t

∂V

∂x
P (xiss(τ))dτ θ̃(t). (20)

In the following we employ this function to provide a state prediction routine and a parameter

update law. The predicted states, xp using θ̂ are generated by the dynamical system,

ẋp = f(x) + P (x)θ̂ + g(x)u+K(x− xp). (21)

Defining the prediction error by e = x− xp we can write the prediction error dynamic as,

ė = P (x)θ̃ −Ke. (22)

We augment the Lyapunov function as,

V1 = W (x) +
1

2
eT e+ θ̃TΓ−1θ̃ (23)
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whose derivative using the eq (20) is,

V̇1 ≤ −
1

T

∫ t+T

t
σ̂(xiss(τ))dτ +

1

T

∫ t+T

t

∂V

∂x
P (xiss(τ))dτ θ̃ + eT (P (x)θ̃ −Ke)− ˙̂

θ
T

Γθ̃, (24)

Let

Ψ = ΓP (x)T e− Γ(
1

T

∫ t+T

t

∂V

∂x
P (xiss(τ))dτ)T (25)

where Γ = ΓT > 0 is a tuning parameter to control the rate of the adaptation of the

parameters. To produce bounded parameter estimates we employ the parameter projection

law as defined in chapter 2 given by,

˙̂
θ = Proj{θ̂,Ψ} (26)

Using this projection algorithm we take,

V̇1 ≤ −
1

T

∫ t+T

t
σ̂(xiss(τ))dτ − 1

2
eTKe (27)

which is semi-definite with respect to e, x and θ̃.

Theorem 3.5.1: (Lasalle-Yoshizawa’s theorem)[Khalil, 2002] Let V (x) be a continuously

differentiable function of the states x such that,

i) V (x) is positive definite

ii) V (x) is radically unbounded

iii) V̇ (x) ≤ −R(x), where R(x) is positive semi-definite.

Then, all the solutions of the system satisfy

limt→∞R(x(t)) = 0

And if W(x) is positive definite, then the equilibrium x=0 is globally asymptotically stable.

Lemma 3.5.1: (Barbalat Lemma) [Khalil, 2002] Let Φ : R → R be a uniformly continuous

function on [0,∞]. Suppose that limτ→∞Φ(τ)dτ exists and is finite. Then, Φ(t)→ 0, as t→
∞
By Lasalle-Yoshizawa’s theorem, we conclude that in (27) e, θ̃ and x are bounded, and based

on Barbalat Lemma, e and x converge to the origin. The main result of the report is sum-

marized in the following Theorem 3.5.2.
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Theorem 3.5.2: The Adaptive RHC+CLF scheme (13)-(17)and the adaptive law (26)

globally asymptotically stabilize the origin of the system (3).

3.6 Simulation Examples

For illustration of the effectiveness of the proposed approach a simulation test has been

done on an modified example taken from [Primbs, 1999]. The purpose is to asymptotically

stabilize the Van der Pol system given by,

ẋ1 = x2 (28)

ẋ2 = −x1(
π

2
+ arctan(5x1))−

5(0.5 + x21)

2(1 + 25x21)
+ u (29)

where x1 and x2 are the states, u is the control input. The constructed ISS-CLF function is

V iss =
1

2
x21 +

1

2
(x1 + x2)

2 (30)

We construct the minimization function,

J =
∫ t+T

t
(x21(t) + u2(t))dt (31)

s.t.

ẋ1 = x2

ẋ2 = −x1(
π

2
+ arctan(5x1))−

5(0.5 + x21)

2(1 + 25x21)
+ u

V (x(t+ T )) ≤ V (xiss(t+ T )

T = 3, dt = 1, x0 = [3,−2]T

Results of the simulation is shown in the Figure 1. It is clear that the developed ISS-CLF

algorithm can stabilized the system easily.

In the next step we modify the system and consider stabilization of an amplifier with unknown

parameters. Consider the system defined by,

ẋ1 = x2 (32)
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Figure 1: (a) convergence of the system states to the origin

ẋ2 = −x1(
π

2
+ arctan(5x1))−

θ(0.5 + x21)

2(1 + 25x21)
+ u (33)

where x1 and x2 are the states, u is the control input, and θ is the unknown parameter. We

take the real value of θ = 5 and try to develop an estimation algorithm to converge to this

value.

J =
∫ t+T

t
(x21(t) + u2(t))dt (34)

s.t.

ẋ1 = x2

ẋ2 = −x1(
π

2
+ arctan(5 ∗ x1))−

θ̄(0.5 + x21)

2(1 + 25x21)
+ u

θ̄ = θ̂

V (x(t+ T )) ≤ V (xiss(t+ T )
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The estimation algorithm is as follows,

˙̂
θ = −Γ

(0.5 + x21)(x2 − x2p)
2 + 50x21

(35)

+
∫
T

(xiss
1 (τ) + xiss

2 (τ))
0.5 + xiss

1 (τ)2

2 + 50xiss
1 (τ)2

dτ

ẋ1 = x2 +K1(x1 − x1p)

ẋ2 = −x1(
π

2
+ arctan(5 ∗ x1))−

θ̄(0.5 + x21)

2(1 + 25x21)
+ u+K2(x2 − x2p)

where the parameters are as follows,

K1 = K2 = 2, T = 0.6, x(0) = [3,−2]T , xp(0) = [0, 0]T , (36)

θ(0) = 0, θreal = 5 (37)

Results of the simulation shown in Figure 2 and Figure 3 prove the efficiency of the method

in estimation of the parameters of the system and also in optimal running of the system to

the origin.

 

Figure 2: (a) shows convergence of the parameters estimation and (b) is the system input
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Figure 3: the system state estimations and corresponding real values

3.7 Summary

In this chapter we introduced a method for adaptive receding horizon control of nonlinear

systems . Asymptotically stability and optimality of the closed loop systems in the presence

of parametric uncertainty has been shown based on input-to-state stabilizing Lyuapunov

control functions. At the end, we used two simulation to prove the efficiency of the proposed

method.
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Chapter 4

Passivity Based Parameter Estimation in Adaptive Control

of Nonlinear Systems

In this chapter a method for adaptive parameter estimation of nonlinear systems with

imperfect state measurement is introduced. Globally uniform boundedness of all system

signals in the presence of parametric uncertainty is obtained through stability analysis.

4.1 Introduction

There are control problems whereby the reference trajectory is not known a priori but de-

pends on the unknown parameters of the system dynamics. The controller finds the operating

set-points which optimizes a performance or cost function and tries to run the system to that

point. The uncertainty associated with the function makes it necessary to use some sort of

adaptation and perturbation to search for the optimal operating condition. However, the

main challenges with adaptive control approaches lies with the ability to recover the true

unknown values of the parameters. In most approaches exact reconstruction of the unknown

parameters in finite time (FT) is obtained provided a given persistence of excitation (PE)

condition is satisfied. A common approach to ensuring a PE condition in adaptive control is

to introduce a perturbation signal as the reference input or to add it to the target set point

or trajectory, however, this constant PE in many cases deteriorates the desired tracking or

regulation performance. Recently a finite time parameter estimation method is developed

in [Adetola and Guay, 2008] which introduces such a PE signal and remove it when the

parameters are assumed to have converged. In this chapter, we remove this assumption and

consider problems where only a part of the state and just the scalar plant output is available

for measurement. For these systems, we build exponentially convergent nonlinear observers

and replace the unmeasured states by their estimates. Then, develop a model predictive

control strategy to run the system to the origin and study stabilizing property of the opti-

mization problem in the next chapter.

4.2 Mathematical Background

Before starting the main algorithm we briefly review some basic passivity results. The
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concept of passivity has been used principally in network synthesis and became a fundamental

feedback control concept in Popov [Popov 1966].

Consider the system

ẋ = P (x, u) (1)

where x ∈ Rn is the state and u ∈ Rm is the input the system.

Definition 4.2.1 :The System (1) is said to be passive if there exist a continuous nonnegative

storage function S : Rn × R+ → R+ which satisfies S(0, t) = 0,∀t ≥ 0 such that for all

u ∈ C0, x(0) ∈ Rn, t ≥ t0 ≥ 0,∫ t

t0
yT (σ)u(σ)dσ ≥ S(x(t), t)− S(x(t0), t0). (2)

Definition 4.2.2: The System (7) is said to be strictly passive if there exist a continuous

nonnegative storage function S : Rn × R+ → R+ which satisfies S(0, t) = 0,∀t ≥ 0 and a

positive definite function (dissipation rate) ψ : Rn → R+, such that for all u ∈ C0, x(0) ∈
Rn, t ≥ t0 ≥ 0 ∫ t

t0
yT (σ)u(σ)dσ ≥ S(x(t), t)− S(x(t0), t0) +

∫ t

t0
ψ(x(σ))dσ. (3)

Lemma 4.2.1: Suppose the System (7) is strictly passive. If S is positive definite, radically

unbounded, and decresecent, then for u ≡ 0 the equilibrium x = 0 of (7) is globally uniformly

asymptotically stable.

4.3 Problem Description

The considered system is the following nonlinear parametric affine system

ẋ = f(x, y) + F (x, u)T θ, (4)

y = h(x, u), (5)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rr is the output, and θ ∈ Rp is the

unknown parameter vector to be identified which lies within an initially known compact set

Ωθ. Also, it is supposed that f(x, y), F (x, u) and h(x, u) are smooth matrix valued functions
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in x as,

f(x, y) =



f1(x, y)

f2(x, y)
...

fn(x, y)

 , F (x, y) =



F1(x, y)

F2(x, y)
...

Fn(x, y)

 . (6)

Also f(0, t) = 0 and h(0, t) = 0 for all t ≥ 0.

The main goal of this note is to provide the true estimates of the plant parameters in FT while

preserving the properties of the controlled closed-loop system and therefore it is assumed

that there is a known bounded control law to, upon the control objective, (robustly) stabilize

the plant and/or to force the output to track a reference signal.

To prepare for the parameter identification procedure to be presented in the next section,

we consider simplicity in the equation (5) as h(x, u) = eT1 x and rewrite the system as,

ẋ = f(x, y) + F (x, u)T θ, (7)

y = x1 = eT1 x, (8)

however, emphasize that it implies no restriction on the whole parameter estimation proce-

dure.

4.4 Infinite Time Parameter Identification

Denoting the state predictor for (7) as x̂ we define

ˆ̇x = f(x, y) + F (x, u)T θ̂ + A(x− x̂), (9)

where θ̂ is a parameter estimate generated via the update law to be developed and the state

estimation error will be ε = x− x̂ with the dynamic governed by,

ε̇ = Aε. (10)

We introduce the filters

˙̄Ω0 = −A(Ω̄0 + y)− f(x, y), (11)

˙̄Ω = −AΩ̄ + F (x, u), (12)
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and denote the output estimation as,

ŷ = Ω̄0 + Ω̄T θ̂ (13)

which result in output estimator error,

ε = y + Ω̄0 − Ω̄T θ̂ (14)

Substituting (11) and (12) into (14) we get,

ε = Ω̄T θ̃ + ε̃ (15)

where ε̃ is governed by,

˙̃ε = −Aε̃+ ε. (16)

We define the update law for θ̃ as,

˙̂
θ = Proj{Γ Ω̄ε

1 + ν|Ω̄|2
}. (17)

Γ = ΓT ≥ 0, ν > 0,

Lemma 4.4.1: Consider the operator D defined as,

D : θ̃ → Ω̄ε (18)

˙̄Ω = −AΩ̄ + F (x, u), (19)

ε = Ω̄T θ̃ + ε̃ (20)

˙̃ε = −Aε̃+ ε. (21)

˙̂
θ = Proj{Γ Ω̄ε

1 + ν‖Ω̄‖2
},Γ = ΓT ≥ 0, ν > 0 (22)

This system is strictly passive. Hence, the equilibrium ε = 0 and θ̃ = 0 are globally uniformly

stable.

Proof: Using (15) we will have,∫ t

0
(Ω̄ε)T θ̃dτ =

∫ t

0
εT Ω̄T θ̃dτ =

∫ t

0
εT (ε− ε̃)dτ (23)
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=
∫ t

0
(‖ε− 1

2
ε̃‖ − 1

4
‖ε̃‖2)dτ ≥ −1

4

∫ t

0
‖ε̃‖2dτ

on the other hand from using (16) and (10) by letting c = λ(A) we have,

1

2

d

dt
(ε̃2 +

1

c
‖ε‖2P ) ≤ −cε̃2 + εε̃− 1

2c
‖ε‖2 (24)

≤ − c
2
ε̃2 − c

2
(ε̃− 1

c
ε)2 +

1

2c
ε2 − 1

2c
‖ε‖2

≤ − c
2
ε̃2 − 1

2c
‖ε‖2.

Using this and (10) we can deduce,

d

dt
(
1

2
‖ε̃‖2) ≤ −c0‖ε̃‖2 (25)

with suitable choice of c0. Integrating this equation we come to,

−1

4

∫ t

0
‖ε̃‖2dτ ≥ 1

2c0
‖ε̃(t)‖2 − 1

2c0
‖ε̃(0)‖2 +

3

4

∫ t

0
‖ε̃‖2dτ (26)

and substituting (26) in (23) we obtain,∫ t

0
(Ω̄ε)T θ̃dτ ≥ 1

2c0
‖ε̃(t)‖2 − 1

2c0
‖ε̃(0)‖2 +

3

4

∫ t

0
‖ε̃‖2dτ (27)

which proves that the operator (18) is strictly passive.

Remark 4.4.1: Using the globally uniformly stability of ε and θ̃, based on the defined update

law we can show that
˙̂
θ is bounded on its maximal interval of exitance.

Theorem 4.4.1: All the signals in the closed loop adaptive system consisting of the plant

(7)-(8), filters (11)-(12) and the update law (17) are globally uniformly bounded and in

particular, limt→∞ε = limt→∞
˙̂
θ = 0. and, limt→∞(θ̂ − θ) = 0.

Proof: Combining (11), (12) and (14), we get,

ε̇ = A0ε+ F (x, u)T θ̃ − Ω̄T ˙̂
θ (28)

Becuase of the boundness of all the signals, ε̇ is bounded. Since ε is asymptotically stable,

hence,

limt→∞

∫ t

0
ε̇(τ)dτ = limt→∞ε(t)− ε(0) = −ε(0) <∞.
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So, by Barbalat’s lemma we have ε̇ → 0. Now, since,
˙̂
θ is globally uniformly stable, we

conclude that F (x, u)T θ̃(t)→ 0, and if we provide the richness condition:

1

T

∫ t+T

t
F (x, u)F (x, u)T ≥ c0I, c0 > 0 (29)

then, the parameter error θ̃ will converge to zero asymptotically.

Remark 4.2.2: The benefit of using this special formulation is that in construction of the

filters we dont need just to measure the whole state x.

Remark 4.4.3: The result in Theorem 4.4.1 is independent of the control input u.

4.4 Finite Time Parameter Identification

In this section we are going to formulate a finite time parameter identification algorithm.

Lemma 4.4.1: Consider again the equation (16) and(15),

ε = Ω̄T θ̃ + ε̃

˙̃ε = −Aε̃+ ε

Define,

µ = ε− εθ̃ (30)

µ̇ = −Aµ, µ(0) = ε(0) (31)

and matrixes,

Q̇ = εT ε, Q(0) = 0 (32)

Ċ = εT (εθ̂ + ε− µ) (33)

Suppose there exists a time tc and a constant c1 > 0 such that Q(tc) is invertible i.e.

Q(tc) =
∫ t

t0
ε(τ)T ε(τ)dτ > c1I

Then,

θ = Q(t)−1C(t), ∀t ≥ t0 (34)

Proof: consider,

Q(t)θ =
∫
εT (τ)ε(τ)[θ̂(τ) + θ̃(τ)]dτ (35)

35



Using the fact that ε− µ = εθ̃, it follows that,

θ = Q(t)−1
∫
C(τ)dτ = Q(t)−1C(t).

Remark 4.4.1: The result obtained here is independent of the control u and parameter

identifier
˙̂
θ used for parameter estimation, Hence we use the nominal estimate θ0 with no

parameter adaption. So if

θc = Q(tc)
−1C(tc)

The finite time identifier is,

θ̂c =

 θ0 if t < tc

θc if t > tc

The benefit of using this algorithm is that we can predict when PE condition of - invertibility

of Q - is satisfied and to turn off the identification machine after that.

4.6 Supporting Example

In this section we consider an example of identification in a nonlinear system to show the

efficiency of the proposed algorithm.

Consider the system,

ẋ21 = x2 + x21θ (36)

ẋ2 = u (37)

with the parameters,

x0 = [0, 10]T , θ0 = 0, θreal = 5

N = 8, dt = 0.1

The results of simulation show the efficiency of the proposed method. Figure 1 shows conver-

gence of the parameters estimation and the system input. It is clear that the system states

converges to the real values. Figure 2 shows the system state estimations and corresponding

real values. Estimation of the system state can track the real states of the system very well.

4.7 Summary

In this chapter a method for adaptive parameter estimation of nonlinear systems was in-

troduced. Globally uniform boundedness of all system signals in the presence of parametric
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Figure 1: (a) shows convergence of the parameters estimation and (b) is the system input

uncertainty was obtained through stability analysis. In the next chapter results of this chap-

ter will be used to build up a model predictive control scheme to steer the system to the

origin according to the estimated values of the parameters.
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Chapter 5

Adaptive Predictive Control of

Nonlinear Systems: An Application to a CSTR system

In this chapter a method for adaptive predictive control of nonlinear systems is presented.

This method is based on finite time identification algorithm derived in the last chapter. The

efficiency of the proposed scheme is examined on an example of the CSTR system.

5.1 Introduction

There are control problems whereby the reference trajectory is not known a priori but de-

pends on the unknown parameters of the system dynamics. The controller finds the operating

set-points that optimize a performance or cost function. The uncertainty associated with the

function makes it necessary to use some sort of adaptation and perturbation to search for the

optimal operating condition. One of the main challenges with model based or adaptive con-

trol approaches is the ability to recover the true unknown values of the parameters. In most

approaches exact reconstruction of the unknown parameters in finite time (FT) is obtained

provided a given persistence of excitation (PE) condition is satisfied. A common approach

to ensuring a PE condition in adaptive control is to introduce a perturbation signal as the

reference input or to add it to the target set point or trajectory, however, this constant PE

in many cases deteriorates the desired tracking or regulation performance. In last chapter

we introduced a finite time parameter estimation method which introduces such a PE signal

and remove it when the parameters are assumed to have converged.

In the present chapter , predictive control of uncertain nonlinear systems subject to state

and input constraint is considered. We develop a new adaptive predictive control scheme

that enjoy all the desired properties without becoming computationally prohibitive. The

scheme is based on two main ideas. First, by working on a suitable estimation scheme, it

is shown how to obtain a finite time estimation algorithm. Second, by use of the predictive

control strategy, the system is running to the desired stable point. Stability of the predictive

control algorithm is enforced by constraining the terminal state to belong to the estimated

stability region.
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5.2 Problem Statement

The system considered is the following nonlinear parameter affine system

ẋ = f(x, y) + F (x, u)T θ, (1)

y = h(x, u), (2)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rr is the output, and θ ∈ Rp is

the unknown parameter vector to be identified which lies within an initially known compact

set Ωθ. Also, it is supposed that f(x, y) and F (x, y) are smooth matrix valued function.

5.3 Parameter Identification Algorithm

In the last chapter a finite time identification algorithm has been developed that we review

here.

Denoting the state predictor for (1) as x̂ we define

ˆ̇x = f(x, y) + F (x, u)T θ̂ + A(x− x̂), (3)

where θ̂ is a parameter estimate generated via the update law to be developed and the state

estimation error will be ε = x− x̂ with the dynamic governed by,

ε̇ = Aε. (4)

We introduce the filters

˙̄Ω0 = −A(Ω̄0 + y)− f(x, y), (5)

˙̄Ω = −AΩ̄ + F (x, u), (6)

and denote the output estimation as,

ŷ = Ω̄0 + Ω̄T θ̂ (7)

which result in output estimator error,

ε = y + Ω̄0 − Ω̄T θ̂ (8)

Substituting (5) and (6) into (8) we get,

ε = Ω̄T θ̃ + ε̃ (9)
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where ε̃ is governed by,

˙̃ε = −Aε̃+ ε. (10)

Now consider

µ = ε− εθ̃ (11)

µ̇ = −Aµ, µ(0) = ε(0) (12)

and matrixes,

Q̇ = εT ε, Q(0) = 0 (13)

Ċ = εT (εθ̂ + ε− µ) (14)

Suppose there exists a time tc and a constant c1 > 0 such that Q(tc) is invertible i.e.

Q(tc) =
∫ t

t0
ε(τ)T ε(τ)dτ > c1I

Then,

θ = Q(t)−1C(t),∀t ≥ t0 (15)

Remark 4.4.1: The result obtained here is independent of the control u and parameter

identifier
˙̂
θ used for parameter estimation, Hence we use the nominal estimate θ0 with no

parameter adaption. So if

θc = Q(tc)
−1C(tc)

The finite time identifier is,

The benefit of using this algorithm is that we can predict when PE condition - invert-

ibility of Q - is satisfied and to turn off the identification machine after that.

5.4 Adaptive Predictive Control Scheme

The goal in this section is to design a MPC law to be implemented using the standard

nonlinear model predictive control techniques, with takes into account constraint imposed

on the process input, output and state variables.

The model predictive feedback is defined as,

u = kmpc(x, θ̂) = u∗(·) (16)
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u∗(·) ≡ argminu[0,T ]
J(·), (17)

J(·) =
∫ T

0
L(t, x̄, u)dτ +W (x̄) (18)

˙̄x = f(x̄, y) + F (x̄, y)θc, x̄(0) = x (19)

θc = θ̂(τ) (20)

u(τ) ∈ U, x̄(τ) ∈ X, ∀τ ∈ [0, T ]

x̄(T ) ∈ Xf

5.4.1 Closed loop Robust Stability:

Robust stability is guaranteed if predicted state at terminal time belong to a robustly in-

variant set for all possible uncertainties. For computation of this invariant set, we let the

linearized dynamics of the system as

x(k + 1) = A(θc)x(k) +B(θc)u(k), x(t) = x̄, k ≥ t. (21)

Under the assumption of the stabilizablity of the pair (A,B), we consider the control law,

u = KLQ(θc)x (22)

where KLQ(θc) = (R+BT (θc)PB(θc))
−1BT (θc)PA(θc) and P is the unique positive solution

of the algebraic Reccati equation

P (θc) = AT (θc)P (θc)A(θc)+Q−AT (θc)P (θc)B(θc)(R+BT (θc)P (θc)B(θc))
−1B(θc)

TP (θc)A(θc).

(23)

Hence, the linearized system Acl(θc) := A(θc)+B(θc)K(θc) is stable. We let a positive matrix

Q̃, and γ be a real positive scalar such that γ ≤ λminQ̃. Let Π(θ̃) be the unique symmetric

positive definite solution of the Lyapunov equation,

ATcl(θc)Π(θ̃)Acl(θc)− Π(θ̃) + Q̃ = 0. (24)

Then, there exist a constant c ∈ (0,∞) satisfying a neighborhood Xf (θ̃) of the origin of the

form Xf (θ̃) = {x ∈ Rn, xTΠ(θ̃)x ≤ c}.
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Criterion 5.4.1: For any, θ1 and θ2 ∈ Θc, with ‖θ1‖ ≤ ‖θ2‖, we have Xf (θ1) ≤ Xf (θ2).

Theorem 5.4.1: Let X0(Θ) denotes the set of initial states for which proposed MPC has a

solution. Assuming criteria 1 is satisfied, then for the closed loop system state, x originating

from any x0 ∈ X0 feasibly approaches the origin as t→∞.

Proof: Proof is very similar to the proof 4.2 in [Mayne and Michalska, 1990].

5.5 CSTR Dynamics

In this section, the new estimation and also adaptive MPC algorithm is applied to the

highly nonlinear model of a continuous stirred tank reactor (CSTR). Assuming the liquid

volume, the CSTR for an exothermic, irreversible reaction, A → B, is described by the

following dynamic model, based on a component balance for reactant balance for A and a

energy balance,

ĊA =
q

V
(Caf − CA)− k0exp(−

E

RT
)CA, (25)

Ṫ =
q

V
(Tf − T ) +

(−4H)

ρCp
k0exp(−

E

RT
)CA +

UA

V ρCp
(Tc − T ) (26)

where CA is the concentration of A in the reactor, T is the reactor temperature, and Tc is

the temperature of the coolant stream. The constraints are 280K ≤ Tc ≤ 370K, 280K ≤
T ≤ 370K, 0 ≤ CA ≤ 1mol/I. The objective is to regulate CA and T by manipulating

Tc. The nominal operating conditions corresponding to the unstable equilibrium Ceq
A =

0.5mol/I, T eq = 350K,T eqc = 300 are: q = 100I/min, Tf = 350K, V = 100I, ρ = 1000g/I, Cp =

0.239J/gK,4H = −5×104J/mol, E/R = 8750K, k0 = 7.2×1010min−1, UA = 5×104J/minK.

The nonlinear discrete time model of the system can be obtained by using the state vector

x = [CA − Ceq
A , T − T eq]T and the input u = Tc − T eqc and discretzing with the sampling

time 4t = 0.01min. Let Q = diag(1/0.5, 1/350), and R = 1/300, and Q̃ = 0.05I, λ = 0.01,

yielding c = 0.0915.

In the simulation, we have considered θ1 := k0 and θ1 := k04H as uncertain parameters with

the starting values θ1(0) = 6×1010, θ2(0) = 5×6×1014. Convergence of the parameters with

finite time algorithm and un-definite time algorithms are shown in the figure (1) and (2),

respectively. Superiority of the finite time algorithm is that we can turn off the parameter

42



estimation machine after a definite time. Using the finite time algorithm we have controlled

the SCTR system employing the proposed adaptive predictive scheme. Results, shown in

figure (3) indicates the convergence of the parameters to the origin.

 

Figure 1: convergence of the parameters estimation in (a) infinite time algorithm (b) finite

time algorithm

5.6 Summary

In this chapter a method for adaptive predictive control of nonlinear systems was presented.

This method is based on finite time identification algorithm derived in the last chapter. The

efficiency of the proposed scheme was examined on an example of the CSTR systems.
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Figure 2: convergence in the parameters estimations for θ0 = [4× 1010, 5× 9× 1017]

 

Figure 3: convergence in the state estimations for x0=[0.2,13]
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Figure 4: convergence in the state estimations for θ0 = [−4× 1010, 5× 9× 1017]

 

Figure 5: convergence in the state estimations for x0=[-0.2,13]
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Concluding Remarks

Adaptive mode predictive control of a class of uncertain nonlinear systems is considered

which comprises known simultaneous parameter estimation and state estimation. The prob-

lem of estimation has been divided into three broader steps. Estimation is performed by

using adaptive law for estimating the parameters. The second step consists in develop-

ing techniques and conditions under which one can guarantee convergence of the state and

parameter estimates to their unknown true value. The techniques proposed in this the-

sis exploits a Lyapunov stability criterion to guarantee boundedness of the estimates and

a set-update algorithm to guarantee containment of the unknown parameter values in a

computable uncertainty set. The third step is model predictive control which employs the

state estimation and parameter estimation uncertainty sets. The main contributions of the

work are: 1) A set-based technique for estimating unknown state variables in the presence

of unknown bounded disturbance. 2) Estimation of unknown parameters using set-based

technique. 3) development of a model predictive approach for the unknown parametric un-

certain nonlinear system 4) Application of the proposed methodology to a practical problem

of CSTR.

A set-based adaptive estimation technique is proposed for simultaneous state estimation

and parameter identification of a class of continuous-time nonlinear systems. The set-based

adaptive identifier for parameters is used to estimate the parameters along with an uncer-

tainty set that is guaranteed to contain the true value of the parameters. Simultaneously

an auxiliary variable is used to estimate the unmeasured state variables. The method guar-

antees convergence of the parameter estimation error to zero and determines the unknown

state of the system in the presence of unknown bounded disturbances. The estimation and

identification algorithms have been implemented to a simulation example.

Removing auxiliary perturbation signals when convergence is achieved and thereby reducing

the computational burden largely is always present in RTO domain, however, The benefits of

finite-time identification procedure is the possibility of obtaining optimal systems excitation

without injecting any auxiliary perturbation signal.

The model predictive control scheme is developed in two ways. First, based on generalized

stabilizing criteria, which can be satisfied by a Lyapunov based approaches and contractive
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constraints methods which is integrated to the developed estimation algorithm. The second

method, is based on the input to state stability property of the system and uses control

Lypapunov functions according to Sontag’s Formulation.

The model predictive control of a simple mixing tank CSTR. The parameter and state

estimation scheme and the developed model predictive control approach for the unknown

parameters is applied to this practical example. It is demonstrated that the proposed method

estimates the state of the system as well as the parameters accurately and can run the system

to the origin.

Future research works should be dedicated to practical application of the proposed algo-

rithms to industrial systems. There is lots practical usage of the proposed algorithms in

fuel cell control in automotive application. Also, study of effects of unknown parameters in

optimization of power output in wind turbine is an open field.

Besides, there would be desirable to do theoretical studies on the stability properties of the

method with respect to the bounded unknown disturbances and unmodeled dynamics. An-

other interesting problem would be to find a systematic method for estimating the true value

of the time-varying parameters.
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