
Facultad de Ciencias

Trabajo Fin de Master

European Master in Theoretical Chemistry and

Computational Modelling

HIGH DIMENSIONAL NEURAL NETWORK POTENTIALS:

SOFTWARE DEVELOPMENT AND APPLICATION TO

NITROGEN CENTERED RADICALS

Author:

Javier Domínguez Calvo

Advisors:

Victor Rayón Rico

Matti Hellström

Acknowledgements

[Marvin the Paranoid Android, an Artificial

Intelligence, said:]

“I am at a rough estimate thirty billion times

more intelligent than you. Let me give you an

example. Think of a number, any number.”

“Er, five,” said the mattress.

“Wrong,” said Marvin. “You see?”

Douglas Adams

Life, the Universe and Everything

I want to thank my family and friends for being my support during these Master Studies,

especially given the difficult situation of these years due to the pandemic. So thank you all:

Carmen, Nacho, Mario, Clara, Carlos, David, Bego and more.

Also, I want to thank the whole SCM team for their help during my internship there

and for the opportunity to work in a different environment and develop code, all of this in

a different country. In particular to Matti Hellström, my advisor during the internship who

has taught me a lot.

Finally, I have to aknowledge Victor Rayon, my advisor at the University of Valladolid,

for having the patience for allowing me to program and automatize the code in the way I

wanted to, and being very helpful every time I need it.

i

Contents

List of Figures v

List of Tables vi

Acronyms vii

I Density Functional Theory for Radical Stabilization Energies
of Nitrogen Centered Radicals: Automatization of the Process
and Comparison with Published Data 1

1 Introduction 4

1.1 Density Functional Theory . 4

1.1.1 Origins of DFT . 4

1.1.2 DFT without dispersion . 5

1.1.3 DFT with dispersion . 6

1.2 Basis set . 7

1.3 Resolution of the Identity . 8

1.4 Molecules . 8

2 Goals 10

2.1 Languages . 10

2.1.1 Python . 10

ii

2.1.2 mySQL . 11

2.1.3 Shell . 11

2.1.4 Compatibility between languages . 12

2.2 Obtaining RSE . 12

3 Results 14

4 Conclusions 19

II High Dimensional Neural Network Potentials: Description,
Development within the SCM Code and an Example of Appli-
cation 20

1 Introduction 23

1.1 Machine Learning . 23

1.1.1 Regression . 24

1.2 Neural networks . 26

1.3 Neural Networks for chemistry . 29

1.4 High Dimensional Neural Network Potentials 31

1.4.1 Output . 32

1.5 Input . 33

1.5.1 Invarational Input . 33

1.5.2 Symmetry Functions . 34

1.5.3 Forces . 37

1.6 Energy and Force Calculation . 37

2 Goals 40

3 Results 44

iii

3.1 Training of the model . 44

3.2 Testing the model . 46

4 Conclusions 49

A Molecules 50

B Python 52

C MySQL Database 59

D Bash 61

Index 65

Bibliography 68

iv

List of Figures

3.1 RSE . 16

3.2 MUE . 16

1.1 A simple neural network . 27

3.1 Training of the Networks . 46

3.2 HDNNP vs DFT . 47

C.1 The MySQL diagram . 59

v

List of Tables

3.1 DFT calculations results. All values are in Eh. 17

3.1 Number of Symmetry Functions . 45

3.2 HDNNP results . 47

A.1 Molecules used in this thesis. Only the radicals are shown, but the given

name is that of the non radical species. 50

vi

Acronyms

G Symmetry Functions. 34

OOP Object Oriented Programming. 40

AI Artificial Intelligence. 10, 23

AMS Amsterdam Modelling Suite. 40–42, 45

B3LYP Becke, 3-parameter, Lee–Yang–Parr. 5

BDE Bond Dissociation Energy. 9

DFTB Density Functional based Tight Binding. 44

DFT Density Functional Theory. 4, 30

DL Deep Learning. 26

DS Data Science. 40

GGA Generalized Gradient Approximation. 6

HDNNP High Dimensional Neural Network Potentials. 23, 30, 32, 40, 41, 44

HF Hartree-Fock. 30

M06-2X Minnesota 2006 density functional with 54% Hartree-Fock exchange. 5

M06-L Minnesota 2006 local functional. 5

vii

ML Machine Learning. 23, 24, 26, 30, 40

MP2 Møller–Plesset. 7

MUAE Mean Unsigned Average Error. 14

MUE Mean Unsigned Error. 14

NN Neural Networks. 26–28, 30, 31, 41

PES Potential Energy Surface. 30, 32, 48

RI-JCOSX chain-of-spheres exchange. 8

RI Resolution of the Identity. 8

RSE Radical Stabilization Energy. 8, 9, 14

RS Range Separated. 7

SCM Software for Chemistry and Materials. 40

SQL Structured Query Language. 11

viii

About this work

This Master Thesis was originally going to be done locally in the University of Valladolid.

However, I had the opportunity of having an internship at the SCM, in Amsterdam, the

Netherlands, developing high Dimensional Neural Network Potentials. So I spent there 3

months doing this internship. As a result, the Master Thesis is divided in two parts.

Part 1 comprises everything done in Valladolid. The goal was to compare different DFT

methods for some molecules extracted from a publication. But the main difficulty and what

took the most time was to develop different scripts and software to automatize the process:

from creating inputs to extracting the results.

Part 2 is the biggest part of the work. It tries to reflect what was done during my stay

in Amsterdam. However, the goal there was to develop HDNNP in Fortran 2003 inside the

code of the company. Due to license issues the big length of the code it would be useless to

describe the code itself. So, what is done here is to describe these potentials and some little

calculations were done to test them.

Unfortunately the biggest and hardest part of thesis, writing the code, is not well reflected

in this thesis. So, please, keep in mind while reading, that the results are just there to

illustrate the mechanics and test the code, but they are not the goal of this thesis.

This work has been drafted using Overleaf, in the LATEX language.

ix

Part I

Density Functional Theory for

Radical Stabilization Energies of

Nitrogen Centered Radicals:

Automatization of the Process

and Comparison with Published

Data

Abstract

In this part we try to study different DFT functionals and comparing with some reference

data for some selected molecules. For that purpose, we are describing DFT, and different

forms that exist of this theory and everything needed for the calculation. Then, the hardest

task of this part was to build scripts that allow to automatize the whole process, and building

a clever and relational database to store all relevant information. Finally, some calculations

were performed using those scripts and where we compare several DFT functionals with

published information.

3

1 Introduction

Due to the high number of calculations that can be done in a regular physical chemistry

research, the need for some degree of automatization in calculation arises. In this part of

the work, we tried to develop some way to automatize several DFT calculations, for several

different functionals and in many different nitrogen radical compounds. In order to achieve

that, several computaional languages were used.

1.1 Density Functional Theory

Obtaining electronic energies for molecules is one of the main focus of computational

chemistry. In order to achieve that, many different methods exist, such as Hartree-Fock

(HF), post-Hartree-Fock, One of the most extended groups of calculations to perform

these kinds of calculations is called Density Functional Theory (DFT) . In these theory the

properties of a many-electron system can be determined by using functionals , i.e. functions

of another function. There are many different types of DFT functionals, and in the following

lines we are describing some of the most modern and relevant ones.

1.1.1 Origins of DFT

In DFT, the most important variable is the electron density, which is related with the

wave function with the following relation:

n(r) = N

∫
d3r2 · · ·

∫
d3rN Ψ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN) (1.1)

4

As it can be derived, we can use this functional to obtain the effective single-particle potential

as:

Vs(r) = V (r) +
∫

n(r′)
|r − r′| d3r′ + VXC[n(r)] (1.2)

Of that equation, the most tricky component is the +VXC, this is, the Exchange-Correlation

potential , because it includes the many particle interactions, and the exact formula is not

known, as we have to introduce approximations.

1.1.2 DFT without dispersion

There are many ways of calculating this potential. We are not going to describe the

primitive and simple ways, but focusing on the important for the current work.

Hybrid Functionals

In Hybrid Functionals part of the exact exchange is given from Hartree-Fock Theory,

while the rest of the exchange- correlation energy is obtained from other ways, usually

empirical.

Of these functionals, one of the most widely known is Becke, 3-parameter, Lee–Yang–

Parr (B3LYP) [1],

Minnesota Functionals

Very related to the former are the Minnesota Functionals known as M06. These func-

tionals are constructed by empirically fitting their parameters, while being constrained to a

uniform electron gas.

Two M06 functionals [2] are used in this work: Minnesota 2006 local functional (M06-L)

and Minnesota 2006 density functional with 54% Hartree-Fock exchange (M06-2X) . The

former uses no HF exchange, so it is not really hybrid, and the latter uses a 54% of HF

5

exchange, as the name says.

1.1.3 DFT with dispersion

All of the former functionals do not include dispersion in their calculations. Dispersion

(van der Waals) interaction plays a crucial role in the formation, stability, and function of

molecules and materials. However, long-range correlation, which is the physical root of dis-

persion interaction, is absent in popular local or semi-local exchange-correlation functionals.

Thus, proper dispersion corrections are necessary for DFT calculations on realistic systems.

The actual details of how this is included is not important for the current purpose, but

many functionals can add this dispersion by adding one energy term. The most widely

known dispersion functionals include DFT-D3 and DFT-D3BJ [3], where DFT is the chosen

functional. Some functionals include by default this term and in others we have to specify

it. In all the rest of functionals, that are going to be described in the following lines, this

term was included or already appears. For instance, we also use B3LYP D3BJ, this means,

the already described one with dispersion.

Generalized Gradient Approximation

The first of the subcategories to be described is Generalized Gradient Approximation

(GGA) are a quite simple form of DFT. They are defined for using the gradient of the

electron density as part of their calculations.

Two examples of these functionals used in the current work are PBE D3BJ [4] and BLYP

D3BJ .

meta-GGA

A meta-GGA [5]functional uses the Laplacian (second derivative) of the electron den-

sity in addition to the density and the magnitude of the gradient of the density. Of all

the possibilities, we chose B97M-D3BJ [6] and SCAN-D3BJ [7] (referred in this work as

6

SCANfunc-D3BJ, since it’s the Orca input) to represent these functionals

Range Separated

Range Separated (RS) functionals vary the percentage of Hartree-Fock and DFT ex-

change for long-range and short-range interactions and are used in cases involving charge

transfer excitation[8]. We wanted to include some functionals of these types, of the family

of ωB97: wB97M-D3BJ [9] and wB97X-D3BJ [10].

Double Hybrid

Finally, the last category of functional to use are Double Hybrid. These functionals are

developed by mixing a part of second-order Møller–Plesset (MP2) correlation energy to the

exchange correlation potential[11]. Of these, we have included DSD-PBEP86 D3BJ[12] and

B2PLYP-D3 [13]. In order to make this last functional work, it needed a correlation basis for

the only case of the B2PLYP functional, so we had to include the keyword Def2-TZVPP/C

in that case.

Many different functionals have been listed, as we need many different functionals to

create an appropriate benchmark.

1.2 Basis set

Apart from choosing a functional, we must choose a proper basis set to describe the cal-

culation. Quantum chemical calculations are performed using a finite set of basis functions,

that must be chosen prior to the calculation. For simplicity we are only going to use one in

the current work, although it would be possible to change it with the developed code. This

is is def2-TZVPP[14]. It is a triple zeta basis with valence polarization. It’s a relatively

good basis, so we should expect good results with it.

7

1.3 Resolution of the Identity

Resolution of the Identity (RI) [15] .Within the RI formulation, the electron density is

approximated by a linear combination of auxiliary basis functions.

This basis should be in accordance with the basis set, so we are going to use def2. We

use a basis only for the Coulomb (J) part, pr for both the Coulomb and the Exchange (JK).

Most of the time with just the Coulomb is enough (def2/J). But we chose to use the def2/JK

in one case: when dealing with hybrid functionals in molecules with less than 20 atoms. As

we see, this require some degree of programming in order to choose the correct RI, one of

the goals we want to achieve.

We also need to choose a function for the RI itself. DFT calculations that do not require

the HF exchange to be calculated (non-hybrid DFT) can be very efficiently executed with

the RI-J approximation.

In the case of the hybrid ones, due to slower calculations different approaches need to be

done. For instance an algorithm that is called the chain-of-spheres exchange (RI-JCOSX)

[16], that includes a semi-numerical integration. That for the Coulomb, but when we have

to include the exchange as well we have to use RI-JK, as the former cannot do the former

calculation.

1.4 Molecules

In this work we have chosen to work with the molecules from the article of Zipse [17].

Here he studies many nitrogen radical molecules. He defines the Radical Stabilization

Energy (RSE) as in reaction (R 1.1).

•NH2 + HNR′R′′ 298 K−−−→ HNH2 +
•NR′R′′ (R 1.1)

Or mathematically in equation (1.3):

8

RSE(•NR′R′′
) = BDE(HNR′R′′

)− BDE(HNH2) =

(E(•NR′R′′
)− E(HNR′R′′

))− (E(•NH2)− E(HNH2)) (1.3)

Here we introduce the Bond Dissociation Energy (BDE) , this is the difference between

the full molecule and the radical and hydrogen separately; the hydrogen is going to be

canceled with itself obtaining the RSE, so we do not need to obtain it.

Of all the molecules described in the paper, we are going to focus only on the group

A, which appear in appendix A on page 50. This paper makes its calculations with other

functional: G3B3. The goal will be to obtain different results with the different functionals

and compare with the paper one

9

2 Goals

The goal of the experimental part would be easy; just to obtain the RSE of the different

described radicals and comparing between methods and discussing the results obtained.

However, the main difficulty of this part of the thesis has been to develop computational

methods to automatize the generation of input, extracting results and storing all data in an

efficient way.

2.1 Languages

In order to achieve so, three different programming languages have been used.

2.1.1 Python

Python is one of the most broadly known computer languages and it has many uses.

In particular, it has many applications in computer science, including Artificial Intelligence

and data science. It’s probably the most suited language for making short calculations

and analyzing results. To use Python for data science, one should import the following 3

packages:

• Numpy: For algebra and mathematical operations

• Pandas: For table usage

• Matplotlib: For plots and graphics

10

In the current work, Python has been used for preparing the data prior to store it, as well

as to analyze and represent the results. Some of the python files developed by the student

appear in appendix B on page 52

The main drawback of Python is that for complex operations it is very slow. But is a

very general tool that has many uses for simple problems.

2.1.2 mySQL

But Python lacks the ability to store efficiently big pieces of data, unless a csv file or

similar is created each time some data is modified. To overcome that weakness we have used

MySQL, one language for relational databases. In relational databases millions of pieces of

data can be stored in form of tables, where each row has a unique id. We can build tables

for the functionals, molecules or calculations, storing all important information in different

fields of the rows and then calling several tables at the same time to merge the contents.

MySQL is just one of the many Structured Query Language (SQL) variants that exist.

They all have in common that they are very useful for handling relational ans structured

data.

In appendix C on page 59 appears the scheme of the database used in this piece of work.

As you can see there appear many different tables related by many fields.

2.1.3 Shell

Last, we have used Shell, in particular Bash for building commands inside the cluster to

launch the calculations. It takes the data from the mySQL and builds the input files, launch

every calculation in an ordered way. Besides, when the calculations are done, we use bash

for extracting the energies and any other information if needed from the output files in an

automated way, and for storing the labeled data inside the results mySQL table.

This part could theoretically be done with python, but for file handling, folder creation

and keyword finding, Shell is the most useful tool. Unfortunately, this language is not useful

11

at all for mathematical operations, even a single real number multiplication is hard to get,

so that is why we use Python for numerical analysis.

2.1.4 Compatibility between languages

In order to be able to use those languages they have to be able to communicate with

each other.

MySQL has it’s own syntax to get results from it’s tables, for instance the following

query:

SELECT name FROM molecule WHERE atoms < 20 AND charge = 0

Would return the name of all the neutral molecules with less than 20 atoms. We can call

this from a bash script (Shell) using the command :

mysql -u USER -pPASSWORD -D DATABASE -N -B - e

”SELECT name FROM molecule WHERE atoms < \$\{MAXATOMS\} AND charge = 0”

So we can call the query including some variables.

For python we have to use the mysql-connector package, and it allows to get MySQL

tables as Pandas dataframes and then use a lot of existing code to modify the tables, add

columns or plot the results for instance.

The goal is to have everything important stored in MySQL and then access to it by

either side of it.

2.2 Obtaining RSE

Once we have such procedures created, launch and obtaining results is the easy part. In

fact the databases are ready to work with a lot more molecules and functionals and basis;

we would just have to define them with Python for instance. But in order to test it we can

just compare the results of some molecules, the set of A molecules.

12

We will obtain the RSE and compare with the paper values, and describe which func-

tionals are better in which cases.

13

3 Results

Apart from the coding itself, that can be found in the various appendix, we will discuss

in the following pages some results encountered with the calculation. There is no actual

need to describe a lot of molecules, since we are just interested to obtain differences between

calculation methods. We have chosen the subset of molecules found in A on page 50.

So, we have to launch the calculations for every functional and every molecule, either

radical or not. This way we can obtain the RSE. All calculations were made with Orca[18,

19].

In order to obtain the goodness of each calculation we have obtained the Mean Unsigned

Error (MUE) , this is, the difference (in absolute value) between our result and the paper

one using G3B3.

Finally, we get the Mean Unsigned Average Error (MUAE) obtained from the average

between all molecules. This is the value used to compare results.

We can find all results in table 3.1 on page 17 and in figures 3.1 to 3.2 on page 16.

In table 3.1a we find the functionals without dispersion, pure and hybrids. And we

include B3LYP D3BJ for comparison purposes. Indeed, dispersion seems to improve the

MUAE in about 1.7 kJ/mol for this functional approximation. Thus, taking into account

dispersion is important for the calculation of RSEs. M06-2X is clearly the best performer.

It is worth pointing out that M06-2X has been also parametrized to take into account non–

covalent interactions.

Then, in table 3.1b on page 17 we have pure functionals with dispersion. We can observe

that B97M and SCAN are the best performers but still have large MUAE, For the other

14

two, we can see that the MUAE is even higher that without dispersion, so they are not

describing well the molecules.

Finally, in table 3.1c we have hybrid and double hybrid functionals. We can observe a

much better performance. Range separated hybrids perform better than B3LYP and double

hybrids perform slightly better than range-separated.

So, in conclusion, for this set of molecules, the best performers are double hybrids (plus

dispersion) and M06-2X.

In the figures we can easily find the same results, we find the G3B3 in black in all the

figures, and it has one of the highest energy values. The double hybrid and M06-2X are the

only functionals that seem to be close to the black line; in some cases, for instance B3LYP,

the difference is pretty high.

15

Figure 3.1: RSE of all functionals. In every plot, the G3B3 is given as a full black line, and
the rest appear in light grey. The named functional in each graph is colored.

Figure 3.2: MUE between each functional and the G3B3. The horizontal line is the average
value.

16

Table 3.1: DFT calculations results. All values are in Eh.

(a) Pure and hybrid without dispersion. B3LYP D3BJ for comparison.

G3B3 M06-L M06-2X B3LYP B3LYP D3BJ
pure hybrid hybrid hybrid

RSE RSE MUE RSE MUE RSE MUE RSE MUE
A0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A1 -31.2 -38.0 6.8 -32.9 1.7 -36.7 5.5 -35.9 4.7
A2 -31.7 -34.9 3.2 -30.6 1.1 -34.5 2.9 -33.6 2.0
A3 -54.8 -65.1 10.3 -56.4 1.6 -62.6 7.8 -61.2 6.4
A4 -54.4 -65.4 11.0 -56.0 1.6 -64.0 9.6 -61.3 6.9
A5 -26.8 -33.7 6.9 -29.2 2.4 -33.8 7.0 -32.2 5.4
A6 -27.2 -33.4 6.2 -29.7 2.5 -34.2 7.0 -32.2 4.9
A7 -47.2 -53.9 6.7 -45.3 1.9 -52.9 5.6 -52.2 5.0
A8 -30.6 -38.4 7.8 -33.1 2.5 -38.5 7.9 -37.0 6.4
A9 -30.2 -36.0 5.8 -31.9 1.7 -36.5 6.3 -35.6 5.4
A10 -29.0 -35.1 6.0 -30.7 1.7 -34.7 5.7 -33.4 4.4
A11 -83.1 -99.4 16.3 -84.7 1.6 -98.1 15.0 -93.7 10.6

MUAE 7.9 1.8 7.3 5.6

(b) Pure functionals with dispersion.

G3B3 PBE D3BJ BLYP D3BJ B97M D3BJ SCAN D3BJ
pure pure pure pure

RSE RSE MUE RSE MUE RSE MUE RSE MUE
A0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A1 -31.2 -40.4 9.2 -39.1 7.9 -37.0 5.9 -36.8 5.7
A2 -31.7 -38.3 6.6 -37.2 5.5 -34.2 2.5 -34.1 2.5
A3 -54.8 -67.8 13.0 -65.7 10.9 -63.4 8.6 -62.5 7.7
A4 -54.4 -67.9 13.5 -66.0 11.5 -62.8 8.4 -62.3 7.9
A5 -26.8 -36.6 9.8 -35.7 8.9 -32.0 5.3 -32.5 5.7
A6 -27.2 -36.4 9.2 -35.6 8.4 -31.8 4.6 -32.5 5.3
A7 -47.2 -60.7 13.5 -60.9 13.7 -52.9 5.7 -54.9 7.7
A8 -30.6 -42.5 11.9 -42.0 11.4 -37.4 6.8 -37.9 7.3
A9 -30.2 -40.9 10.7 -40.7 10.5 -36.1 5.8 -36.3 6.1
A10 -29.0 -38.3 9.3 -37.7 8.6 -33.7 4.7 -34.2 5.1
A11 -83.1 -106.2 23.1 -104.5 21.4 -96.6 13.5 -97.5 14.4

MUAE 11.8 10.8 6.5 6.9

17

(c) Hybrids and double hybrids including dispersion.

G3B3 B3LYP wB97X wB97M B2PLYP-D3 DSD-PBEP86
D3BJ D3BJ D3BJ

hybrid hybrid hybrid double-hybrid double-hybrid
RSE RSE MUE RSE MUE RSE MUE RSE MUE RSE MUE

A0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
A1 -31.2 -35.9 4.7 -34.6 3.4 -34.9 3.7 -33.3 2.1 -30.7 0.4
A2 -31.7 -33.6 2.0 -32.2 0.5 -32.3 0.6 -30.5 1.2 -27.7 3.9
A3 -54.8 -61.2 6.4 -59.4 4.6 -59.4 4.7 -57.3 2.6 -53.3 1.5
A4 -54.4 -61.3 6.9 -59.3 4.9 -59.1 4.6 -57.0 2.6 -52.4 2.1
A5 -26.8 -32.2 5.4 -30.9 4.1 -30.7 4.0 -29.1 2.3 -26.2 0.6
A6 -27.2 -32.2 4.9 -30.6 3.4 -30.3 3.1 -29.2 2.0 -26.3 0.9
A7 -47.2 -52.2 5.0 -47.0 0.2 -48.0 0.8 -47.8 0.6 -41.9 5.3
A8 -30.6 -37.0 6.4 -34.5 3.9 -34.8 4.2 -33.3 2.7 -29.6 1.0
A9 -30.2 -35.6 5.4 -33.1 2.9 -33.3 3.1 -32.4 2.2 -29.0 1.2
A10 -29 -33.4 4.4 -31.3 2.3 -31.3 2.2 -30.1 1.0 -27.0 2.1
A11 -83.1 -93.7 10.6 -85.6 2.5 -86.5 3.4 -88.8 5.7 -80.4 2.7

MUAE 5.6 3.0 3.1 2.3 2.0

18

4 Conclusions

It has been achieved in this part the following:

• We have developed Python code to be able to operate numerically with computational

chemistry problems.

• We have created a MySQL database to store all relevant information, as well as com-

municate itself to be able to respond to any conditions we want it to have.

• We have also developed Shell code that is able to create and launch working calculation

inputs and to retrieve results

• We have achieved that all of those languages may communicate between them in a

smooth way, and to get the information when needed

• We also have used all of that to get some calculations where we have proven that some

functionals perform better than others

In the future, this work could be expanded by automatizing even more the process, and

making it even more general, including different basis sets or calculation types.

19

Part II

High Dimensional Neural

Network Potentials: Description,

Development within the SCM

Code and an Example of

Application

Abstract

For this part the student developed software for building High Dimensional Neural Net-

work Potentials in the language Fortran 2003 and the integration in the AMS code of the

SCM company. In this work, these type of potentials are described from scratch, and com-

pared to traditional linear regressions. Then, the goals that were fulfilled (and those that

were not) are widely described. Instead of showing the code, finally some results obtained

using the code developed by the student are shown and discussed, and compared with the

DFT results from Part 1.

22

1 Introduction

Machine Learning (ML) is a branch of Artificial Intelligence (AI) and computer science

which focuses on the use of data and algorithms to imitate the way that humans learn,

gradually improving its accuracy. ML can be used for computational chemistry in many

ways, being one of those High Dimensional Neural Network Potentials (HDNNP) [20–24].

They can be used to obtain molecular properties such as the energy, but in a complete

different fashion than that of traditional physical chemistry calculations such as DFT or Ab

Initio

1.1 Machine Learning

Machine Learning (ML) involves computers discovering how they can perform tasks

without being explicitly programmed to do so. [25] It involves computers learning from data

provided so that they carry out certain tasks.

In traditional programming we create a program, which after is feed by some input data,

will get some results. ML can use a complete different approach. Here we feed the input and

the output that results from the input, and the computer builds a program that generates

such an output from the input. When we have the program, we can feed different input

and obtain (allegedly good) output. This kind of Machine Learning is called Supervised

Machine Learning, where we have the output it should be, as opposed to Unsupervised

Machine Learning, where we don’t know the result. This supervised ML is usually divided

in two steps. First, training involves having input and the correspondent output to train the

23

program and testing where we obtain useful data of other input cases with the program. The

bigger the first phase is, the better results we will have in the latter. The way of checking

the goodness of the method is to save some of the data for the training and use it in the

testing, this way we can analyze the difference between the real result and the obtained one.

Notice also that the method can only be as good as the quality of the training data.

1.1.1 Regression

In the present case we are going to use as input the geometry of one atom, and as output

the energy of that atom. Since the result is a quantitative result, the specific type of ML

we are dealing with is called regression. If the result were categorical (such as identifying if

a mail is spam or not), we would be talking about classification.

Simple Linear Regression

Regression is actually a widely known method, in particular linear regression.

Simple Linear Regression

Simple linear regressions are widely used in a lot of scientific problems and despite it’s

simplicity they can be very useful. The equation to be solved in this case is described in

(1.1):

y = a · x + b (1.1)

In this case, we know some x and y values before hand, and with those we can obtain

a and b, which, if they are trained well, can be used to obtain the corresponding y for a

different x. As we can see there appear the two steps that defined Supervised machine

Learning, training and testing.

24

Multiple Linear Regression

There are many other types of regression. We can use more than one x value, so we

would have multiple linear regression , with an equation such as (1.2), for a total number

of i x values. This way we make the regression in not one, but multiple input values that

summed give one single output value, not forgetting b

y = a1x1 + a2x2 + · · ·+ aixi + b =

(
a1 a2 . . . ai

)


x1

x2

...

xi


+ b (1.2)

Many Simple Linear Regressions

It can also be done something inspired on the above for multiple y and a single x. In this

case we would have many simple linear regressions, a total of j, the same as y values, where

we always input the same x, and the equations can be expressed separately or in matrix

form (1.3)

y1 = a1x+ b1

y2 = a2x+ b2
...

yj = ajx+ bj


→



yi

y2
...

yj


=



ai

a2
...

aj


x+



bi

b2
...

bj


(1.3)

Matrix Linear Regressions

Finally, we can combine the two methods above. This means, make a linear regression

for any number of either input or output values, i and j respectively. The equation in this

case would be the one described in equation (1.4)

25

y1 = a11x1 + a12x2 + · · ·+ a1ixi + b1

y2 = a21x1 + a22x2 + · · ·+ a2ixi + b2

y3 = a31x1 + a32x2 + · · ·+ a3ixi + b3
...

yj = aj1x1 + aj2x2 + · · ·+ ajixi + bj


→



yi

y2
...

y3

yj


=



a11 a12 . . . a1i

a21 a22 . . . a2i

a31 a32 . . . a3i
...

aj1 aj2 . . . aji





x1

x2

...

xi


+



bi

b2

b3
...

bj


→ −→y = A−→x + b (1.4)

We have been able to obtain a very simple matrix equation, where both the inputs and

the output are expressed as a vector. Notice that i and j can have different values and if

one or both of them are equal to 1, we have the previous cases, that can be described by

this equation as well. The matrix A that contains all the slopes is going to be called in the

current work the matrix of the weights and the individual values, the weights. On the other

hand the components of b are going to be called the bias. Even if this last part is a vector,

we are going to be described in bold letters, to differentiate A and b from the input and

output values.

1.2 Neural networks

Neural Networks (NN) are a subset of Machine Learning or even called Deep Learning

(DL) , because the machine learns with it’s own data processing, and not just the input and

output values we give to train. Neural Networks are called like this, because theoretically

they behave as neurons do, by making connections between them, although this field has

expanded in a great way in the last decades, and this name is not as correct as it were in

the beginnings.

The first thing to know about a NN is that they are made of layers . There is a, input

layer and an output layer , just as in regression we had input and output values. Besides

26

Figure 1.1: A simple neural network. Image obtained from [26]

that, we have in between a certain number of hidden layers . Each layer is made of a number

of nodes . The number of nodes in each layer can be different.

Activation Function

Let’s picture a 2 layer NN, made only of input and output. The nodes of the input and

of the output have to be related by a mathematical expression, such as that of (1.4). But

this is not everything. Probably we would not want the output in just this linear way, but

we may want some sophistication. So we can apply what is called the activation function .

It is applied as in equation (1.5):

−→y ′ = f(−→y) = f(A−→x + b) (1.5)

The actual nature of function f depends a lot in the case. We might want the result to

have only two values, as in classification, so we could have f(x) = 1 if y >some value or

f(x) = 0 if not. For regression we might want some continuous and derivable function, such

as f(x) = tanh(x), the hyperbolic tangent or f(x) = 1
1+e−x , the sigmoid; respectively to get

values between -1 and 1 for the first and 0 and 1n for the latter. Or we can be not worried

about this activation function and just use the linear, which is like not applying anything:

27

f(x) = x. The choice of the activation function depends on which value are we interested,

so for energy it can be any value, so linear is fine, but for a probability we might want to

use the sigmoid one.

But, what if we wanted to have one or mode hidden layers? In this case the output in one

layer becomes the input for the next one. This way we concatenate a series of weight and

bias calculation with activation functions until we arrive to the end of the network. For the

hidden layers, the activation function should be one like the hyperbolic tangent of sigmoid;

we are not interested on the values to be very disperse since they are going to be inputted

again. Besides if we used linear activation for the hidden layers, we would have two linear

matrices, that always can be combined in only one, so the advantage on using several layers

is lost

Number of Layers

The number of hidden layers to use is arguable. If we use none the result is just a linear

regression, modified by the activation function to get the output in some way, but really the

input can only be transformed with the output in a linear way If we have, on the contrary

one hidden layer, it is stated in the Universal Approximation Theorem [27, 28] that these

NN can describe almost any continuous function. So, with one hidden layer we can get a

numerical regression of any function.

What if we add more layers? Adding layers makes the calculation more computationally

costly. But there are also great advantages on using more hidden layers [29]. Even if we

can represent any function with one hidden layer, adding a second allows to create a layer

with more complex data, in a higher level of abstraction. For instance, if the input are some

pixels of a photography, the first layer can calculate some lines and edges, the next layer

can figure out what is a nose or an eye, and the output would be if we have a face or not.

Adding more layers can make it easier to recognize complex data, splitting into different

functions, and the network can work more efficiently. Now we can talk about deep learning,

28

because the networks learns from itself; in the hidden layers all the information is created

by the network itself from previous layers without human interaction.

We have to introduce here another crucial concept of machine learning that is overfitting.

This occurs when we train too well a network, so the training data is very well explained

by the network, but when we test it with the testing data we find that it does not actually

give good regression in general, just for the data used to train. This can be a problem for

instance if we use too many hidden layers. the number of those to use can depend, but

usually one or two hidden layers are enough.

Number of nodes

Besides this, we have to look at the number of nodes. Usually the number of nodes in

the input and the output nodes is given by the problem, but we can play with the hidden

ones. There are some rules, but in practice it can only be determined by trial and error.

To few nodes leads to undefitting, the result is not good enough to fit the training and too

many can lead to overfitting again. So when building a neural network this is one of the

things to take into account.

1.3 Neural Networks for chemistry

For now we have discussed what neural networks are for, and how they are made of, but

now we can look how to apply them to chemistry. One of the oldest problems in physical

chemistry is to obtain the energy of a molecule. In chemistry, this problem is solved with

the Schrödinger equation, of shape:

ĤΨ =

(
N∑

T̂N +
e∑

T̂e +
N∑ N∑

VNN +
e∑ e∑

Vee +
N∑ e∑

VNe

)
Ψ = EΨ (1.6)

Some of those terms can be calculated easily, others require small approximations, and

29

others have not known shape and there are a lot of different methods to describe them:

Density Functional Theory (DFT) , Hartree-Fock (HF) and post-HF, and more, with many

different approaches in them.

But ML and Neural Networks method is completely different. We don’t need to know

the shape of any of those functions. We just need to know that the energy is going to

be the result of applying some function to the geometry of the molecule, and that is the

Shrödinger equation about. So we can build some neural network that does this regression,

it this elaborate linear regression fashion that we have created.

So the input is going to be the geometry, and the output the energy. We see that the

output layer is going to be made of just one node, because there is only one energy. But for

the input we will have many numbers because we cannot describe the geometry with just

one number.

Now, it’s time to take a look on our problem. If we constructed a neural network for a

molecule, it would be train for that. If we accept that we can obtain in this fashion, the

energy from the geometry, we could obtain different energy values from different energies,

and this could be useful for obtaining a Potential Energy Surface (PES) for instance, where

we aim for different conformations of the same molecule. But if we changed the molecule,

even the slightest, the network would be of no use, because the energy would be entirely

different; having a lower number of atoms for instance, the energy to expect would be smaller

in absolute value, but the training network is going to give always the same range of values.

We are tying to obtain networks that are valid for different cases. There are many differ-

ent approaches, but we are going to focus of High Dimensional Neural Network Potentials

(HDNNP)[30].

30

1.4 High Dimensional Neural Network Potentials

So instead of training the molecules as a whole, we can try to study the individual atoms.

The atoms are going to be in very similar environments. For instance, a carbon atom can

be in a small range of possibilities: single bond, a double, an aromatic environment, end

of chain, electrophile due to electronegative bond, with steric repulsion due to neighbors,

... We can picture a carbon s¡atom as described by a sum of all of this effects, and this is

exactly how NN work.

So we can build a NN for carbon, training all the weights and biases. And we can think

that it describes accurately any carbon atom similar to those trained. We can use then those

network for calculation of a carbon atom. This atom is described by certain geometry, for

instance three iodine atoms bonded to it. This geometry, distances and angles when inputed

in the network would be multiplied by the first weight matrix to obtain some values, that,

for instance, we can think that is the kind of bonds that it has. Then we have another layer

in the network that could mean the chemical structure around the atom, in this case we

would have high numbers in a node that meant steric repulsion and electrophilic. And then

a last combination of all those numbers can lead to a single value of atomic energy.

Then we would have a different carbon atom, for instance an aromatic one. This one has

thereby a different geometry, so the weights make other hidden nodes with higher numbers,

and after passing though the network, a different value for the energy is obtained. As we

see, we need good trained networks and also optimal network shape. And for hydrogen we

would build a different network, perhaps with a different number of layers or nodes; and

definitely with different weights because its environment would be very different. This way

we have many different output for each time an atom has gone through the network, so let’s

now study what we do with them.

Notice that the explanation of what happens in each layer of the network is entirely

made up, it is just to show, how it can be trained in order of growing complexity, but the

network can find patterns different that those. After all, everything that happens inside the

31

network is just mathematics; there is no actual physics or chemistry working here, no wave

function or density functional, just some numbers that happen to describe well the problem.

1.4.1 Output

In the case of HDNNP, the post network treatment of the data is very simple. We just

add all atomic energies to get the molecular total energy. No further modifications need to

be done; we train the network this way and everything will be done inside it.

Also we can notice that with the same network we can get more information: the gra-

dients of the energy. This is the derivative of the energy to a movement in any of the 3

dimensions of any of the N atoms. This way we get another physical magnitude after the

network, that can be used to avoid any bias that happen for using the energy alone. For

this to be possible every step has to be differentiable, so the activation functions have to be

carefully chosen.

Another thing to notice about the output is that it depends entirely on the trained

data. Specifically, as we need computational resources to train the network, there is no

experimental molecular energy, the results can only be as good as the trained ones. This

is crucial. We are not going to get better results than those used for training. But if

the training is good enough, we can have acceptable results, in a fraction of the original

time, and this is the key of the usage of the potentials, for instance to obtain a lot of PES

conformations in a fraction of the time that were would be used using the training method.

But of course, the more training data it has, the better the results, so we need to spend a

lot of time making the calculations for training. At the end some equilibrium needs to be

found.

32

1.5 Input

The real difficulty in this method is not the output or the network itself, but the input

data. This is due to the need of modification of the data in some ways, as we are going to

see.

1.5.1 Invarational Input

We can start thinking the easiest case. Why don’t we input the Cartesian coordinates

inside the network, and let it work it out. We can do it, and we would obtain a energy

value. And after that we can take the same molecule, and move every atom at once 1 to

the right. We know the energy should be the same, because the energy would not change

with translation. But know the Cartesian coordinates have changed, so the numbers inside

the network change as well as the result. In fact there are three things the energy should be

invariant to:

1. Translation: Moving the whole molecule.

2. Rotation: Turning the whole molecule.

3. Labelling of atoms: Changing the order in which the atoms appear.

If we use the Cartesian coordinates, all three premises are invalid. So we need to find a

different way of expressing the input, and modifying it accordingly.

Another possibility can be to subtract the Cartesian coordinate of the atom that is going

to be inputted in each case. This way the translation is solved, but not the others.

We can think about the z-matrix. Using distances, angles and dihedrals instead of

Cartesian coordinates. This way we do not have to worry any longer about translation or

rotation. But still the problem of the order of the atoms arises. Which one should we choose

first? There is no actual way we can order the atoms of a molecule, besides the element they

belong.

33

The solution to this can be adding the numbers. Adding all the distances as a single

node. But making this has its issues as well. We could have two different scenarios: one

distance between the central (inputted in the network) atom and a different one; and two

distances that happen to add the same as the former. And if we just use the sum, the

number that we are getting is the same, and we are going to obtain the same energy for two

different environments.

In order to solve this issues we use Symmetry Functions (G) .

1.5.2 Symmetry Functions

When using a symmetry function, we do two things: first, solve the problem, described

above, and second, create a more useful representation of the chemical environment.

We have said that we can use the distances. But in fact, we are more worried about

what atoms are close than those far away. If we input the distance, the values are going to

be proportional to it, when we want inversely proportional dependency. If fact we may want

to discard any interaction beyond some distance, the cutoff radius . This way, if atoms are

to far to interact we save computational resources. This cutoff can be implemented through

some function such as (1.7).

fc(R) =


1
2

[
cos
(

πR
Rc

)
+ 1
]

R ≤ Rc

0 R > Rc

(1.7)

∂fc (Rij)

∂αl

=

 −1
2

sin
(

πRij

Rc

)
π
Rc

∂Rij

∂αl
Rij ≤ Rc

0 Rij > Rc

(1.8)

This is just an example, many other functions can be used. But using these function

alone is not enough. As we said, we can introduce some order in the elements, but not for

the atoms of each element, so we have to sum them. This way we would obtain just one

symmetry function for each element. But we can multiply this cutoff function by a Gaussian,

34

obtaining something like equation (1.9):

GI:J
n (i ∈ I; η(n), Rs(n), Rc(n)) = φI:J

n

∑
j∈J
j ̸=i

e−η(Rij−Rs)
2

· fc (Rij)

 (1.9)

∂GI:J
n (i)

∂αl

=
∑
j∈J
j ̸=i

e−η(Rij−Rs)
2

(
−2η (Rij −Rs) fc (Rij)

∂Rij

∂αl

+
∂fc (Rij)

∂αl

)
(1.10)

∂Rij

∂αl

=


αi−αj

Rij
l = i

αj−αi

Rij
l = j

0 l ̸= i and l ̸= j

(1.11)

In this case some parameters appear. Rs takes into account some displacement of the

Gaussian. This way we can focus on values at different distances. If we create different

values for, let’s say Rc = 0, 2 and 4 around the central atom, each function is going to focus

on atoms more close or far away the central one.

And the other parameter is η that takes into consideration the width of the Gaussian,

some to take into account many different atoms, or others will be more selective. This way,

we make many symmetry functions for many different parameters, so the input layer will be

made of these N symmetry functions, where N can be chosen at will.

In equation (1.9), capital I and J refer to the elements and small caps i and j refer to

the atoms itself. So we can see that the sum is all over the atoms of a certain element, but

not others. This is because due to the very different chemical nature of different elemental

atoms, we probably want to have them as separate input to the network.

Also, we can take into account the angular part of the problem, as in equation (1.12).

Now, different parameters appear, but the goal is the same: obtaining symmetry functions

that take into account the symmetry, and making sure that different chemical environments

35

have different symmetry functions.

GI:JK
n (i ∈ I; η(n), ζ(n), λ(n), Rc(n))

= φI:JK
n

(
21−ζ

∑
j∈J,k∈K

j ̸=i,k ̸=ik ̸=j
(1 + λ cos θjik)ζ · e−η(R2

ij+R2
ik+R2

jk) · fc (Rij) · fc (Rik) · fc (Rjk)
)

(1.12)

∂GI:JK(i)

αl

= 21−ζ
∑
j∈J

k∈Ki ̸=j,i̸=k

e−η(R2
ij+R2

ik+R2
jk)
[

ζ (1 + λ cos θjik)ζ−1 λ
∂ cos θjik

∂αl

fc (Rij) fc (Rik) fc (Rjk)

− (1 + λ cos θjik)ζ 2η
(
Rij

∂Rij

∂αl

+Rik
∂Rik

αl

+Rjk
∂Rjk

∂αl

)
fc (Rij) fc (Rik) fc (Rjk)

+ (1 + λ cos θjik)ζ
∂fc (Rij)

∂αl

fc (Rik) fc (Rjk)

+ (1 + λ cos θjik)ζ fc (Rij)
∂fc (Rik)

∂αl

fc (Rjk)

+ (1 + λ cos θjik)ζ fc (Rij) fc (Rik)
∂fc (Rjk)

∂αl

]
(1.13)

∂ cos θjik
∂αl

=



(αj−αi)(R2
ik cos θjik−RijRik)+(αk−αi)(R2

ij cos θjik−RijRik)
R2

ijR
2
ik

l = i

(αk−αi)Rij−(αj−αi)Rik cos θjik
R2

ijRik
l = j

(αj−αi)Rik−(αk−αi)Rij cos θjik
R2

ikRij
l = k

0 other

(1.14)

One last consideration on this functions. The symbol ϕ appearing in front of the functions

is the scaling function. This function is included so the actual value of each symmetry

function ranges between the same values, so it can be more trusted, deleting outliers. The

max and min found in (1.15) are that maximum and minimum values found during the

training and can be used after that, if stored properly.

36

φn(x) =
2 (x− minG◦

n)

maxG◦
n − minG◦

n

− 1 (1.15)

Also we can see that the symmetry functions still have to be inputted in some order, but

now it’s easier to get some protocol, such as increasing parameter value in some order of the

parameters.

Notice that these are just some examples, but other functions may appear as well. The

optimization of the functions themselves and the parameters used is another part to optimize

within this method.

1.5.3 Forces

Next to those equations, the gradients appear. They are used to obtain the forces, this

is, the minus gradients of the energy. Using the equation (1.19).

Fαl
= −∂E

∂αl

= −
Nat∑
i=1

∂Ei

∂αl

= −
∑
I

∑
i∈I

Nsym(I)∑
n=1

∂Ei

∂GI
n(i)

· ∂G
I
n(i)

∂αl

(1.16)

In the preceding equations, the formulas for the gradients of the symmetry functions

have been obtained. We only need the derivative of the energy with respect to the symmetry

functions, and this can be achieved by performing the chain rule all over the layers of the

network.

1.6 Energy and Force Calculation

Now that all elements have been introduced, we can make a short test of how the calcu-

lation is done.

Let’s say that we have obtained all the symmetry functions for an atom i and we have

it as a vector −→
G(i). This atom belongs to element I. Let’s suppose we have a two hidden

layer long neural network. The equation to obtain the energy will be as follows:

37

Ei = AI
23f2

[
AI

12f1

(
AI

01

−→
G(i) + bI

01

)
+ bI

12

]
+ bI23 (1.17)

In equation (1.17) we have named the weights and the biases of each element with two

numbers: the layer we are coming from and the layer we are going to, so always the second

number is the first plus one. We start counting from zero, the input layer made of symmetry

functions is given number zero and the output layer of the energy is given number three.

Notice that the output layer does not have activation function because it is considered to

be linear. Notice that, as stated, all the time we have a relation between the geometry, that

appears makes the atom i of G(i) and the energy, but we do not need to know the actual

shape of it, we just approximate it through several matrix multiplications; neural networks

imitate the actual and unknown function.

The equation for the force comes by applying the chain rule through the entire equation:

Fαl
= −

∑
I

∑
i∈I

∂Ei

∂αl

(1.18)

∂Ei

∂αl

= AI
23f

′
2

[
AI

12f1

(
AI

01

−→
G(i) + bI

01

)
+ bI

12

]
AI

12f
′
1

(
AI

01

−→
G(i) + bI

01

)
AI

01

∂
−→
G(i)

∂αl

= AI
23f

′
2 [
−→a 2]AI

12f
′
1 (
−→a 1)AI

01

∂
−→
G(i)

∂αl

(1.19)

Where the vectors −→a n can be calculated just once in the energy calculation and then

stored for the forces, reducing the calculation effort. Remember that even if those are the

full formulas, the way the computer calculates it is just sequential, applying functions and

matrix multiplication where it needs it.

For the forces we can see that the biases disappear as they appear just in an additive

way, the weights stay and now we have to apply the derivative of the activation functions for

the original arguments. Also notice that we are going to have 3N forces, but their differences

will be only due to changes in the symmetry functions, this is, the geometry, as the neural

38

network is always the same for all atoms of a given element.

39

2 Goals

As a part of this Master thesis, the student spent 3 months at the Software for Chemistry

and Materials (SCM) ∗ in an internship that could be called Development of HDNNP in

Fortran 2003 in Amsterdam Modelling Suite (AMS) [31], under the supervision of Matti

Hellström.

AMS is the main product of SCM, that allow many different chemical calculations. It

does indeed have some implementations of HDNNP, such as the ANI-1x , ANI-1ccx and

ANI-2x. All of these are implementations of HDNNP where the weights, biases, symmetry

functions, and almost everything are known before hand, just like most calculation programs,

the user just have to input the geometry of their chemical system and run the calculation.

The parametrization, of course, has to be done taking into account some elements and

specific chemical environments, usually organic molecules. The advantage of that method is

that the user has little to worry about, but on the other hand, there possibilities of usage

are little.

Most of the code of AMS is done in Fortran 2003, in a Object Oriented Programming

(OOP) , which is the modern standard for programming. However, tools for ML in Fortran

are not too well developed. The easiest way to get Machine Learning to work is with

Python. Python has a lot of tools and packages to deal with Data Science (DS) and ML,

such as Keras and TensorFlow. But Python has a great disadvantage: the efficiency for long

∗Dr. S. J. A. van Gisbergen, CEO
Software for Chemistry Materials BV
De Boelelaan 1083
1081 HV Amsterdam
The Netherlands

40

calculations is very poor. That is why the NNs in these packages are actually programmed

in other languages, and Python only calls them.

If we take a look to everything said about HDNNP in the introduction, one can guess

that the process is divided in two areas: calculations that depend on the number of atoms,

and calculations that depend on the number of elements. Since in a typical calculation

it’s very uncommon that we are going to have more than 6 or 8 different elements in the

same calculation, the computational cost is going to be on the atomic part. And of all the

atomic calculations, the most costly part will be obtaining the distances and angles, that

depend on the number of atoms with N2 and N3 respectively. This means that the most

computational costly part is obtaining the Symmetry Functions, not the neural Network

itself. And currently the Symmetry Functions were calculated in Python.

So there was an interest in building HDNNP for Fortran 2003 for these two reasons:

accordance with the rest of the code and computer efficiency. Furthermore, we wanted to

build code that we could use to build any parametrization, instead of depending on the

already parametrized data.

Actually there is a piece of code that can do almost all of the above. RuNNer[20–24] is

a Fortran tool for the development of any HDNNP. The code is freely available under the

GPL3 license. But because of this license this code cannot be used for commercial use inside

AMS. Besides, the code is in Fortran 90 , not optimal.

The goal in this internship was to build working HDNNP code in Fortran 2003. In order

to develop it, the student followed and implemented the information found in this paper

[30].

By the end of the internship the student had written more than 3000 lines of code. The

code has all of the following features:

• Reading an input file containing the element information, neural network shape and

all of the symmetry functions parameters, among others.

• Ordering the Symmetry Functions by some internal criteria and sorting them using

41

bubble sort.

• Getting the chemical system and obtaining the distances and angles, with and without

periodic boundary conditions.

• Getting the cutoff functions, and gradients of those, with different functions available,

at will of the user.

• Getting radial and angular symmetry functions, for all the atoms in the simulation.

• Getting as well the gradients of the symmetry functions, in an efficient way.

• Scaling or not, at will of the user, and with different functions, the obtained Symmetry

Functions, as it allows better calculations, using data from an external file.

• Reading from an external file the weights and biases of a Network.

• Building a Neural Network with the geometry and activation functions as desired, and

applying those weights and biases.

• Introducing the symmetry functions in the networks and obtaining the energies.

• Introducing as well the Symmetry Functions Gradients and obtaining the forces.

• Summing over all the atoms of the system to obtain total energies and forces.

• Integrating all of the above in the AMS style, so the code is written in the same way

as the rest of it.

• Allowing my code to be run smoothly when the correct keyword (hdnnp) is used in

the AMS input.

• Building examples and documentation to use my code.

42

Those are some of all the things achieved in the internship. However, some things could

not be done, due to lack of time, such as training my own weights and optimize and paralellize

the calculation time. However, even if those things could not be achieved, a lot of work was

done and we can obtain energies if we have a pretrained model.

Even if the internship consisted in programming, due to license issues, it would be difficult

to show here the code itself. Furthermore, it would have no sense to show 3000 lines of code.

so instead of that, some calculations were done with the student’s code to show the results

obtained and to discuss this kind of potentials, and it’s applications.

43

3 Results

Now we are going to put into practice the knowledge on HDNNP that we have acquired

so far. As said, the code made by the student, doesn’t have the ability to train it’s own

Neural Network yet, So we are going to use RuNNer for that use. Keep in mind that this

section is just to put in practice the code, but the real goal was always to program the code

itself.

3.1 Training of the model

In order to build a Neural Network Potential that works with some of the molecules of

the previous part, we need to choose which structures are going to be used for the training.

Of course, the set of structures to train the network has to be smaller than the total one,

or the training would have no sense at all; we want to obtain new information. In order to

keep it simple, we are going to use only the A molecules from the other part of the work.

Furthermore, we will focus only on the neutral radicals, enough to understand how these

potentials work.

In order to train it, we chose to select just one molecule: A11. Of course, just one

molecule is not enough information to build a neural network by itself, but if we carry some

molecular dynamics simulation, we will be able to obtain several values of geometry and

energy. This is exactly what was done, and the details of the simulation came here.

The method for obtaining the energies is was Density Functional based Tight Binding

(DFTB) [32][33]. First, a simulation was done consisting in 10000 steps and a ramping was

44

Table 3.1: Number of symmetry functions used between elements, radial and angular. The
more bonds between atoms, the more symmetry functions we should use for good description.
When there are more that one symmetry function, they differ in the parameters used.

Central atom Radial Angular Total
H C N HH HC HN CC CN NN

H 4 5 1 0 6 4 3 3 0 26
C 5 5 5 6 4 0 4 4 0 33
N 2 6 0 0 4 0 4 0 0 16

done between 100 K and 4000K. However, at high temperatures, the molecule dissociated,

so another simulation consisting on 10000 steps between 100K and 1500 K was done. For

the final results we took the first half of the structures of the first experiment and all of the

second one.

What we got was a big number of different geometries of molecule A11 with slightly

different energies. So we have the input and the output for a Neural Network, and we can

train one.

In order to train the model, since the student’s code is unable yet to do so, RuNNer was

used. It builds the symmetry functions and gives all the files necessary to make calculations

with it, including weights for all the elements and the scaling file.

As a test of how good is the training, you can observe figure 3.1 on the next page. It

represents a fit between the frequencies of the normal modes between the DFTB method and

the NN (with the RuNNer program). The NN method does not give the normal nodes by

itself, but they can be calculated from the output of the program with a different program,

in this case AMS. We can see that the linearity is very good, proof that the network is good

for obtaining data for molecule A11.

45

Figure 3.1: Fitting between normal modes from the reference DFTB method and the NN
method obtained with RuNNer.

3.2 Testing the model

Now that we have a trained Network, and since the files are compatible between RuNNer

and the student’s code, we can perform the calculations on the latter, and comment some

results. The molecules chosen to get results were the neutral radicals of group A, since we

have to use similar molecules as the trained one, for better results.

The energies obtained by themselves mean nothing. We have to choose one of reference

to subtract the others. Since it is trained with A11 and the smallest error is going to be

it, we can subtract that value. the results obtained with the HDNNP method appear in a

much smaller range than the other methods, to solve this we can just divide the difference

by the reference energy, and we have all results in the same range of values. So, the formula

used in 3.2 and the table is:

EF =
Ei − EA11

−EA11

(3.1)

For every method, although for DFT it is not really needed, just the difference is good.

The results obtained appear in table 3.2 on the facing page and we can also see these

results in figure 3.2 on the next page.

We can see that the shape of the HDNNP (in full black line, appearing in every individual

46

Table 3.2: Comparison betweem a DFT method and the HDNNP one. Energy Fraction
involves the operation in equation (3.1), so we can compare the results.

Molecule B2PLYP-D3 HDNNP
Energy Energy Calc. Energy Energy Calc.
(Eh) Fraction Time (Eh) Fraction Time

A0 -55.8577 0.8068 00:00:05.98 -2.24136 0.8901 00:00:00.10
A1 -95.1457 0.6709 00:00:21.08 -6.49362 0.6816 00:00:00.15
A2 -134.4386 0.5350 00:01:06.98 -10.11698 0.5039 00:00:00.17
A3 -134.4366 0.5350 00:00:58.90 -11.27968 0.4469 00:00:00.18
A4 -213.0239 0.2633 00:03:36.21 -18.35914 0.0998 00:00:00.22
A5 -173.7334 0.3991 00:02:03.95 -14.54355 0.2869 00:00:00.19
A6 -213.0282 0.2632 00:05:53.44 -18.68491 0.0838 00:00:00.21
A7 -172.4995 0.4034 00:06:13.70 -10.58704 0.4809 00:00:00.18
A8 -211.7891 0.2675 00:08:48.75 -13.92879 0.3170 00:00:00.20
A9 -251.1087 0.1315 00:11:18.82 -18.07888 0.1136 00:00:00.22
A10 -290.4097 -0.0044 00:14:57.36 -23.64308 -0.1593 00:00:00.29
A11 -289.1411 0.0000 00:12:02.77 -20.39482 0.0000 00:00:00.24

Figure 3.2: The different DFT functionals (in different colors and line styles plotted in each
case against the HDNNP results (in black, in every subplot).

47

plot) resembles that obtained from the other methods (each in it’s own subplot, in different

colors and linestyles), with the same ups and downs. However, we can see that the difference

in energy is very big in most cases, whether is by excess or defect. In fact, at this scale we

cannot see any difference in the DFT methods, only with HDNNP. The reason is obvious:

the model is not trained for these molecules, so it fails.

Furthermore we can see that the more different is the molecule, the biggest is the dif-

ference. The molecule A11 does not have any CH3 or NH group, so it fails in this cases. In

order to improve the calculation we would need more conformations of more molecules, for

instance 80 of the molecules, and get again some results.

However, this result is worth because it shows how HDNNP emulate the functional used

to train the network, in this case DFTB, and to some extent does reproduce the trends.

Now, take a look to the calculation times. Between the DFT method and the HDNNP one

there is a huge difference in time. This becomes more impacting given that the calculations

have been done with the student code; and it needs yet much more optimization to be

commercial. And realize that this time does not depend on the goodness of the values of the

energy: for a good method we would have different weights and biases, but the time they

take for the calculation would be the same.

This is the main advantage of this method. The results can be better or worse, depending

on how good the training is, but the time will always be a lot smaller. For that reason, this

potentials are specially suited for situation when we want to obtain a lot of different energies

from very similar inputs, such as PES or simulations of liquids, for instance.

48

4 Conclusions

In this work we have made the following:

• We have studied a very uncommon kind of calculation that does not rely on physical

properties, but in mathematics and regression that uses Artificial Intelligence: High

Dimensional Neural Network Potentials.

• The student has programmed from scratch code that is able to obtain energies and

forces using these kind of calculations, including reading input information, obtaining

and shaping Symmetry Functions and building working Neural Networks.

• This code has been able to be integrated inside the rest of the AMS code, so it can be

called in a normal calculation using the appropriate keyword.

• In order to test it, we have build one parametrization of this code, using one molecule

as template and we have tested it with the set of molecules, discussing the results

obtained.

The way of expanding this work in the future includes working on the code: allowing it

to train by itself the networks and making it more efficient.

49

A Molecules

In the following table, all molecules appearing in this thesis.

Table A.1: Molecules used in this thesis. Only the radicals are shown, but the given name
is that of the non radical species.

Code Short Long 2D Rep 3D Rep Name

A0 NH2 NH2 Ammonia

A1 NCH4 NHCH3 Methylamine

A2 NC2H6 NHCH2CH3 Ethylamine

A3 NC2H6 N(CH3)2 Dimethylamine

A4 NC4H10 N(CH2CH3)2 Diethylamine

50

Code Short Long 2D Rep 3D Rep Name

A5 NC3H8 NHCH(CH3)2 Isopropylamine

A6 NC4H10 NHCHC(CH3)3 Tert-Butylamine

A7 NC3H6 NHCH(CH2)2 Cyclopropylamine

A8 NC4H8 NHCH(CH2)3 Cyclobutylamine

A9 NC5H10 NHCH(CH2)4 Ciclopentylamine

A10 NC6H12 NHCH(CH2)5 Ciclohexylamine

A11 NC6H10 N(CH(CH2)2)2 Diciclopropylamine

51

B Python

In this appendix an example of a python script developed for the thesis is shown. In

this script appears the table for the basis and those associated to it, in our case we were not

interested in it, so we can imagine as if it had only one entry:

1 import mysql . connector

2 from mysql . connector import Error

3 import pandas as pd

4

5 de f create_server_connect ion (host_name , user_name , user_password) :

6 connect ion = None

7 t ry :

8 connect ion = mysql . connector . connect (

9 host=host_name ,

10 user=user_name ,

11 passwd=user_password

12)

13 pr in t (”MySQL Database connect ion s u c c e s s f u l ”)

14 except Error as e r r :

15 pr in t (f ” Error : ’{ e r r } ’ ”)

16

17 re turn connect ion

18

19 de f create_database (connect ion , query) :

20 cur so r = connect ion . cu r so r ()

21 t ry :

22 cur so r . execute (query)

52

23 pr in t (”Database c rea ted s u c c e s s f u l l y ”)

24 except Error as e r r :

25 pr in t (f ” Error : ’{ e r r } ’ ”)

26

27 de f create_db_connection (host_name , user_name , user_password , db_name) :

28 connect ion = None

29 t ry :

30 connect ion = mysql . connector . connect (

31 host=host_name ,

32 user=user_name ,

33 passwd=user_password ,

34 database=db_name

35)

36 pr in t (”MySQL Database connect ion s u c c e s s f u l ”)

37 except Error as e r r :

38 pr in t (f ” Error : ’{ e r r } ’ ”)

39

40 re turn connect ion

41

42 de f execute_query (connect ion , query) :

43 cur so r = connect ion . cu r so r ()

44 t ry :

45 cur so r . execute (query)

46 connect ion . commit ()

47 pr in t (”Query s u c c e s s f u l ”)

48 except Error as e r r :

49 pr in t (f ” Error : ’{ e r r } ’ ”)

50

51 de f read_query (connect ion , query) :

52 cur so r = connect ion . cu r so r ()

53 r e s u l t = None

54 t ry :

55 cur so r . execute (query)

53

56 r e s u l t = cur so r . f e t c h a l l ()

57 re turn r e s u l t

58 except Error as e r r :

59 pr in t (f ” Error : ’{ e r r } ’ ”)

60

61 de f pandas_query (connect ion , query , columns) :

62 from_db = []

63 r e s u l t s = read_query (connect ion , query)

64 f o r r e s u l t in r e s u l t s :

65 r e s u l t = l i s t (r e s u l t)

66 from_db . append (r e s u l t)

67

68 df = pd . DataFrame (from_db , columns=columns)

69 re turn df

70

71 de f execute_l i s t_query (connect ion , sq l , va l) :

72 cur so r = connect ion . cu r so r ()

73 t ry :

74 cur so r . executemany (sq l , va l)

75 connect ion . commit ()

76 pr in t (”Query s u c c e s s f u l ”)

77 except Error as e r r :

78 pr in t (f ” Error : ’{ e r r } ’ ”)

79

80 #Create the connect ion with SQL

81 pw = ”PASSWORD”

82 connect ion = sq l . create_db_connection (” l o c a l h o s t ” , ”USER” , pw, ”DATABASE”)

83

84 ### MOLECULES ###

85

86 #Headers f o r molecu le s

87 column = [”molecule_id ” , ” code ” , ” total_atoms ” , ” mu l t i p l i c i t y ” , ”N” , ”H” , ”C” ,

”mass” , ”heavy”]

54

88 #Molecule (s) to input

89

90 cond i t i on = ”””

91 WHERE ””” + column [3] + ’ = ’ + s t r (1) +

92 # In t h i s example the ones that are r a d i c a l s

93

94 #Extract the molecu le s

95 query = ”””

96 SELECT * , total_atoms - H AS heavy

97 FROM molecule ””” + cond i t i on + ”””

98 ORDER BY family_code , charge ; ”””

99 #Get heavy atoms .

100

101 m = sq l . pandas_query (connect ion , query , column)

102

103

104 ### FUNCTIONALS ###

105 program=”Orca”

106

107 #Headers f o r f u n c t i o n a l s

108 column = [” func t i ona l_ id ” , ” functional_name ” , ” d i s p e r s i o n ” , ” type ” , ”

category_1 ” , ” category_2 ” , ” p lat form ”]

109 #func t i o na l (s) to input

110 cond i t i on = ”””

111 WHERE ””” + column [6] + ’ =” ’ + program +’ ” ’ + ”””

112 ”””

113 # In t h i s example : (1) Funct iona l s f o r Orca

114

115 #Extract the f u n c t i o n a l s

116 query = ”””

117 SELECT *

118 FROM func t i o na l ””” + cond i t i on + ”””

119 ORDER BY type , func t i ona l_ id ; ”””

55

120

121 f = s q l . pandas_query (connect ion , query , column)

122

123 ### BASIS ###

124

125 #Headers f o r ba s i s

126 column = [’ bas i s_id ’ , ’ basis_name ’ , ’ z e ta ’ , ’ p o l a r i z a t i o n ’ , ’ d i f f u s e ’ ,

’ light_AO ’ , ’ l i g h t ’ , ’heavy_AO ’ , ’ heavy ’ , ’ superheavy_AO ’ , ’

superheavy ’ , ’ABO’]

127 #bas i s to input

128 cond i t i on = ”””

129 WHERE ””” + column [”name”] + ’ = ’ + ”def2 -TZVPP”

130 # In t h i s example : s p e c i f i c b a s i s

131

132 #Extract the ba s i s

133 query = ”””

134 SELECT *

135 FROM bas i s ””” + cond i t i on + ”””

136 ORDER BY bas i s_id ; ”””

137

138

139 b = sq l . pandas_query (connect ion , query , column)

140

141 #Maximum number o f f unc t i on s we w i l l al low , we might want to use l e s s

142

143 maxFunctions = 999999

144

145

146

147 # Now we have the three t ab l e s imported , we can bu i ld the experiment

148

149 g r id = ’ gr id4 ’

150 s c f = ’ t i g h t s c f ’

56

151 globalQuery = ”””

152 INSERT INTO experiment (m_id , f_id , b_id , funct i ons , molecule , f unc t i ona l ,

bas i s , c a l c u l a t i on , i n t e g r a l , aux_basis , s c f , gr id , charge , mu l t i p l i c i t y)

153 VALUES (%s , %s , %s , %s , %s ,%s , %s , %s , %s , %s ,%s , %s , %s , %s)

154 ”””

155 l i s t = []

156 f o r i , molecule in m. i t e r r ows () :

157 f o r j , f u n c t i o n a l in f . i t e r r ows () :

158 f o r k , b a s i s in b . i t e r r ows () :

159 query = ”””

160 SELECT func t i on s

161 FROM NumberFunctions

162 WHERE molecule_id = ””” + s t r (molecule [’ molecule_id ’]) + ”””

163 AND bas i s_id = ””” + s t r (ba s i s [’ bas i s_id ’])+ ’ ; ’

164 f un c t i on s = sq l . read_query (connect ion , query) [0] [0]

165 i f f un c t i on s < maxFunctions :

166 c a l c u l a t i o n = ’RKS ’ i f molecule [’ mu l t i p l i c i t y ’] == 1 e l s e ’UKS

’

167 query = ”””

168 SELECT t . under20 , t . over20

169 FROM type t

170 JOIN fun c t i o n a l f

171 ON t . type_id = f . type

172 WHERE f . func t i ona l_ id = ””” + s t r (f un c t i o na l [’ f unc t i ona l_ id ’])

+ ’ ; ’

173 two_int = sq l . read_query (connect ion , query) [0]

174 n_int = two_int [0] i f molecule [’ heavy ’] <= 20 e l s e two_int [1]

175 query = ”””

176 SELECT i . name , i . f i t t i n g

177 FROM in t e g r a l s i

178 WHERE int_id = ””” + s t r (n_int) + ’ ; ’

179 i n t e g r a l = sq l . read_query (connect ion , query) [0]

180 query = ”””

57

181 SELECT a . J , a .JK

182 FROM ABO a

183 WHERE a . ab_id = ””” + s t r (ba s i s [’ABO’]) +’ ; ’

184 two_ABO = sq l . read_query (connect ion , query) [0]

185 aux i l i a r y = two_ABO[0] i f i n t e g r a l [1] == ’ J ’ e l s e two_ABO[1]

186 l i s t . append ((molecule [’ molecule_id ’] , f u n c t i o n a l [’

f unc t i ona l_ id ’] , b a s i s [’ bas i s_id ’] , func t i ons , molecule [’ code ’] ,

f u n c t i o n a l [’ functional_name ’] , b a s i s [’ basis_name ’] , c a l c u l a t i on , i n t e g r a l

[0] , aux i l i a r y , s c f , gr id , molecule [’ charge ’] , molecule [’ mu l t i p l i c i t y ’]))

187

188 s q l . execute_l i s t_query (connect ion , globalQuery , l i s t)

189

190 i f __name__ == ”__main__” :

191 pass

Listing B.1: For generating a correct Experiment table with all the conditions we want to

specify.

58

C MySQL Database

In this appendix a description of the MySQL database used is made in figure C.1.

Figure C.1: The MySQL diagram

First of all, this diagram is a shorter version of the original one. The original contained

tables for basis sets, charged molecules, many different elements, ... But since finally those

59

possibilities have not been included in the work, here appears just a description of what has

been used.

Table Molecule contains the description for molecules, and table Functional the same for

the functionals. Those values are directly inputted inside the Experiment table. But the

integral value to choose depends on the type of functional and whether the number of atoms

is under 20 or not. So we create a table Integrals with every possible value of it, and a table

Types defining for the types of functional which integral should be used in each case. Then,

as we know the type of each functional, the correct integral can be called in Experiment.

When we have the table Experiment populated, we can introduce every calculation we

want to perform in in_. Then, the bash file will be called and the calculations will be done

and the current experiment is transferred to table out_.

Finally, when the calculations are ready, we can call another script to pass the rows from

out_ to results, as well as getting and storing the energy and time fields.

As said, this dataframe as shown is just a small part of what can be done. We can intro-

duce basis sets, different kind of calculations such as geometry optimizations or vibrational

studies; we can get other results apart from the energy and the calculation time. It would

be very easy to expand this database even more if needed, and it’s a well suited tool for

storing all values.

60

D Bash

In these appendix appear the bash files for launching and retrieving calculations usign

MySQL as data storement.

1 #!/ bin /bash

2 #Launch a l l the exper iments in in tab l e

3 #Some f o l d e r s

4 BASHDIR=’ . / ’

5 XYZDIR=’ . / coords / ’

6 CURDIR=‘pwd ‘

7 #Data f o r mysql

8 SQL=’mysql -u USER -pPASSWORD -D DATABASE -N -B - e ’

9 #Get experiment

10 QUERY=”SELECT COUNT(*) FROM in_ ; ”

11 COUNT=‘ eva l ”${SQL}\”${QUERY}\”” ‘

12 echo $COUNT

13 #Star t loop

14 f o r i in $ (seq 1 ${COUNT})

15 do

16 echo ”Creat ing input and launching c a l c u l a t i o n f o r experiment : ” $ i

17 #Get experiment

18 QUERY=”SELECT i . id FROM in_ i l im i t 1 ; ”

19 exp=‘ eva l ”${SQL}\”${QUERY}\”” ‘

20 #Delete that row from in_

21 QUERY=”DELETE FROM in_ WHERE id=${exp } ; ”

22 eva l ”${SQL}\”${QUERY}\””

23 #Inc lude in out_

61

24 QUERY=”INSERT INTO out_ (id) VALUES (${exp }) ; ”

25 eva l ”${SQL}\”${QUERY}\””

26 #Launch c a l c u l a t i o n

27 QUERY=”SELECT e . exp , e . molecule , m. group_code , m. family_code , e . f unc t i ona l

, e . bas i s , e . c a l c u l a t i on , e . i n t e g r a l , e . aux_basis , e . s c f , e . gr id , e .

charge , e . mu l t i p l i c i t y FROM experiment e JOIN molecule m on m. molecule_id

= e .m_id WHERE e . exp = ${exp } ; ” ‘

28 NEW=${SQL}\”${QUERY}\”

29 #Separate input

30 FOO=‘ eva l ${SQL}\”${QUERY}\” | sed - e ’ s /\ t / ,/ g ’

31 IFS=” , ” read - r - a T <<< ”${FOO}”

32 #Create f o l d e r i f i t does not e x i s t

33 f i l ePa t h=”${CURDIR}/${T[2] } / ${T[3] } / ${T[1 1] } / ”

34 mkdir -p ${ f i l ePa t h }

35 cd ${ f i l ePa t h }

36 #Input s t r i n g s

37 f i l e i n=”e_${T[0] } ${IN}”

38 ca l cL ine=” ! ${T[6] } ${T[4] } ${T[5] } ${T[7] } ${T[8] } ${T[9] } ${T[1 0] } ”

39 commLine=”# ${T[0] } ${T[1] } ${T[4] } ${T[5] } ”

40 charLine=”*xyz ${T[1 1] } ${T[1 2] } ”

41 c o o rF i l e=”${XYZDIR}${T[1] } ${XYZ}”

42 #For keeping track o f c a l c u l a t i o n s

43 echo $commLine >> z_folder_data . txt

44 #To generate the orca input f i l e . com

45 #${ f i l e i n } name o f input f i l e

46 #${ ca l cL ine } command l i n e

47 #${commLine} comment l i n e

48 #${ charLine } charge and mult

49 #${ coo rF i l e } xyz f i l e

50 #Create f i l e

51 echo ${ ca l cL ine } > ${ f i l e i n }

52 echo ${commLine} >> ${ f i l e i n }

53 echo ${ charLine } >> ${ f i l e i n }

62

54 t a i l -n+2 ${ coo rF i l e } >> ${ f i l e i n }

55 echo ”*” >> ${ f i l e i n }

56 #Launch the c a l c u l a t i o n

57 suborca $ f i l e i n

58 cd ${CURDIR}

59 done

Listing D.1: Script for creating and launching calculations with Orca

1 #!/ bin /bash

2 #Launch a l l the exper iments in in tab l e

3 #Some f o l d e r s

4 BASHDIR=’ . / ’

5 XYZDIR=’ . / coords / ’

6 CURDIR=‘pwd ‘

7 #Data f o r mysql

8 SQL=’mysql -u USER -pPASSWORD -D DATABASE -N -B - e ’

9 #Get experiment

10 QUERY=”SELECT COUNT(*) FROM out_ ; ”

11 COUNT=‘ eva l ”${SQL}\”${QUERY}\”” ‘

12 echo $COUNT

13 #Star t loop

14 f o r i in $ (seq 1 ${COUNT})

15 do

16 QUERY=”SELECT LPAD(o . id , 6 , 0) from out_ o where o . in_order = ${ i } ; ”

17 exp=‘ eva l ”${SQL}\”${QUERY}\”” ‘

18 echo $exp

19 #Get experiment

20 QUERY=”SELECT e . exp , m. group_code , m. family_code , e . charge FROM experiment

e JOIN molecule m on m. molecule_id = e .m_id WHERE e . exp = ${exp } ; ”

21 FOO=‘ eva l ${SQL}\”${QUERY}\” | sed - e ’ s /\ t / ,/ g ’ ‘

22 #Separate input

23 IFS=” , ” read - r - a T <<< ”${FOO}”

24 #Find path

63

25 f i l e=”${CURDIR}/${T[1] } / ${T[2] } / ${T[3] } / e_${T[0] } . l og ”

26 energy=‘grep ”FINAL SINGLE POINT ENERGY” $ f i l e | awk ’ { p r i n t $5} ’ ‘

27 de c l a r e - a t imes

28 t imes=(0 0 0 0 0)

29 f o r va lue in { 0 . . 4 }

30 do

31 b=$ (($value *2+4))

32 t imes [$value]= ‘ grep ”TOTAL RUN TIME: ” $ f i l e | awk -v a=”$b” ’ { p r i n t $a

} ’ ‘

33 done

34 time=‘ echo ” s c a l e =3;${ t imes [0]}*86400+${ times [1]}*3600+${ times [2]}*60+${

times [3]}+${ times [4] } * 0 . 0 0 1 ” | bc ‘

35 r e s= $energy ” , ” $time

36 QUERY=”INSERT INTO r e s u l t s (id , energy , mp2 , d i spe r s i on , TOTAL_ENERGY,

time) va lue s ($exp , $ r e s) ; ”

37 eva l ”${SQL}\”${QUERY}\””

38 done

Listing D.2: Bash script for obtaining the results

64

Index

A
Activation Function 27

AMS 40

ANI-1ccx 40

ANI-1x 40

ANI-2x 40

Artificial Intelligence 23

B
B2PLYP-D3 7

B3LYP 5

B97M-D3BJ 6

Bash 11

Basis Set 7

Bias 26

BLYP 6

Bond Dissociation Energy 9

C
Classification 24

Cutoff Radius 34

D
D3BJ 6

Data Science 40

Deep Learning 26

def2-TZVPP 7

Density Functional Theory 4, 23, 30

DFTB 44

Dispersion 6

Double Hybrid 7

DSD-PBEP86 D3BJ 7

E
Electron Density 4

Exchange-Correlation potential 5

F
Fortran 40

90 41

2003 40

Functionals 4

65

G
G3B3 14

GGA 6

H
Hartree-Fock 4, 30

High Dimensional Neural Network Potentials

23

Hybrid Functionals 5

L
layer 26

hidden 27

input 26

output 26

M
Machine Learning 23

Supervised 23

Unsupervised 23

Meta-GGA 6

Minnesota Functionals 5

M06-2X 5

M06-L 5

MP2 7

MUAE 14

MUE 14

MySQL 11

N
Neural Netowrks 26

node 27

O
Object Oriented Programming 40

Orca 14

Overfitting 29

P
PBE 6

post-Hartree-Fock 4

Potential Energy Surface 30

Python 10, 40

python

Keras 40

TensorFlow 40

R
Radical Stabilization Energy 8

Range Separated 7

Regression 24

Linear 24

Multiple 25

Simple 24

Relational Databases 11

RI-J 8

RI-JCOSX 8

RI-JK 8

66

RuNNer 41

S
SCAN-D3BJ 6

SCM 40

Shell 11

SQL 11

Symmetry Functions 34

T
Testing 24

Training 23

U
Underfitting 29

W
wB97M-D3BJ 7

wB97X-D3BJ 7

Weights 26

67

Bibliography

(1) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. The Journal of Physical

Chemistry 1994, 98, 11623–11627.

(2) Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2007, 120, 215–241.

(3) Grimme, S.; Ehrlich, S.; Goerigk, L. Journal of Computational Chemistry 2011, 32,

1456–1465.

(4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865–3868.

(5) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Physical Review Letters

2003, 91, DOI: 10.1103/physrevlett.91.146401.

(6) Mardirossian, N.; Head-Gordon, M. The Journal of Chemical Physics 2015, 142,

074111.

(7) Sun, J.; Ruzsinszky, A.; Perdew, J. Physical Review Letters 2015, 115, DOI: 10.1103/

physrevlett.115.036402.

(8) Halsey-Moore, C.; Jena, P.; McLeskey, J. T. Computational and Theoretical Chemistry

2019, 1162, 112506.

(9) Mardirossian, N.; Head-Gordon, M. The Journal of Chemical Physics 2016, 144,

214110.

(10) Mardirossian, N.; Head-Gordon, M. Physical Chemistry Chemical Physics 2014, 16,

9904.

68

https://doi.org/10.1103/physrevlett.91.146401
https://doi.org/10.1103/physrevlett.115.036402
https://doi.org/10.1103/physrevlett.115.036402

(11) Jana, S.; Śmiga, S.; Constantin, L. A.; Samal, P. Journal of Chemical Theory and

Computation 2020, 16, 7413–7430.

(12) Kozuch, S.; Martin, J. M. L. Physical Chemistry Chemical Physics 2011, 13, 20104.

(13) Grimme, S. The Journal of Chemical Physics 2006, 124, 034108.

(14) Weigend, F.; Ahlrichs, R. Physical Chemistry Chemical Physics 2005, 7, 3297.

(15) Burow, A. M.; Sierka, M.; Mohamed, F. The Journal of Chemical Physics 2009, 131,

214101.

(16) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chemical Physics 2009, 356, 98–

109.

(17) Hioe, J.; Šakić, D.; Vrček, V.; Zipse, H. Organic & Biomolecular Chemistry 2015, 13,

157–169.

(18) Neese, F. WIREs Computational Molecular Science 2011, 2, 73–78.

(19) Neese, F. WIREs Computational Molecular Science 2017, 8, DOI: 10.1002/wcms.

1327.

(20) Behler, J.; Parrinello, M. Physical Review Letters 2007, 98, DOI: 10.1103/physrevlett.

98.146401.

(21) Behler, J. The Journal of Chemical Physics 2011, 134, 074106.

(22) Behler, J. Journal of Physics: Condensed Matter 2014, 26, 183001.

(23) Behler, J. International Journal of Quantum Chemistry 2015, 115, 1032–1050.

(24) Behler, J. Angewandte Chemie International Edition 2017, 56, 12828–12840.

(25) Mitchell, T., Machine Learning; McGraw-Hill: New York, 1997.

(26) Wikipedia, I. Neural Network https://en.wikipedia.org/wiki/Neural_network.

(27) Cybenko, G. Mathematics of Control, Signals, and Systems 1989, 2, 303–314.

(28) Hornik, K. Neural Networks 1991, 4, 251–257.

69

https://doi.org/10.1002/wcms.1327
https://doi.org/10.1002/wcms.1327
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.98.146401
https://en.wikipedia.org/wiki/Neural_network

(29) Hinton, G. E.; Osindero, S.; Teh, Y.-W. Neural Computation 2006, 18, 1527–1554.

(30) Hellström, M.; Behler, J. In ACS Symposium Series; American Chemical Society:

2019, pp 49–59.

(31) Rüger, R.; Franchini, M.; Trnka, T.; Yakovlev, A.; van Lenthe, E.; Philipsen, P.; van

Vuren, T.; Klumpers, B.; Soini, T. AMS 2021.1, SCM, Theoretical Chemistry, Vrije

Universiteit, Amsterdam, The Netherlands.

(32) Rüger, R.; Yakovlev, A.; Philipsen, P.; Borini, S.; Melix, P.; Oliveira, A.; Franchini,

M.; van Vuren, T.; Soini, T.; de Reus, M.; Asl, M. G.; Teodoro, T. Q.; McCormack, D.;

Patchkovskii, S.; Heine, T. AMS DFTB 2021.1, SCM, Theoretical Chemistry, Vrije

Universiteit, Amsterdam, The Netherlands.

(33) Porezag, D.; Frauenheim, T.; Köhler, T.; Seifert, G.; Kaschner, R. Physical Review B

1995, 51, 12947–12957.

70

	List of Figures
	List of Tables
	Acronyms
	I Density Functional Theory for Radical Stabilization Energies of Nitrogen Centered Radicals: Automatization of the Process and Comparison with Published Data
	Introduction
	Density Functional Theory
	Origins of DFT
	DFT without dispersion
	DFT with dispersion

	Basis set
	Resolution of the Identity
	Molecules

	Goals
	Languages
	Python
	mySQL
	Shell
	Compatibility between languages

	Obtaining RSE

	Results
	Conclusions

	II High Dimensional Neural Network Potentials: Description, Development within the SCM Code and an Example of Application
	Introduction
	Machine Learning
	Regression

	Neural networks
	Neural Networks for chemistry
	High Dimensional Neural Network Potentials
	Output

	Input
	Invarational Input
	Symmetry Functions
	Forces

	Energy and Force Calculation

	Goals
	Results
	Training of the model
	Testing the model

	Conclusions
	Molecules
	Python
	MySQL Database
	Bash
	Index
	Bibliography

