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Abstract

In the traditional framework, social welfare functions depend on the mean income
and on the income inequality. An alternative illfare framework has been developed to
take into account the disutility of unfavorable variables. The illfare level is assumed
to increase with the inequality of the distribution. In some social and economic
fields, such as those related to employment, health, education, or deprivation, the
characteristics of the individuals in the population are represented by bounded vari-
ables, which encode either achievements or shortfalls. Accordingly, both the social
welfare and the social illfare levels may be assessed depending on the framework we
focus on. In this paper we propose a unified dual framework in which welfare and
illfare levels can both be investigated and analyzed in a natural way. The dual frame-
work leads to the consistent measurement of achievements and shortfalls, thereby
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overcoming one important difficulty of the traditional approach, in which the focus
on achievements or shortfalls often leads to different inequality rankings.

A number of welfare functions associated with inequality indices are OWA op-
erators. Specifically this paper considers the welfare functions associated with the
classical inequality measures due to Gini, Bonferroni, and De Vergottini. These
three indices incorporate different value judgments in the measurement of inequal-
ity, leading to different behavior under income transfers between individuals in the
population. In the bounded variables representation, we examine the dual decom-
position and the orness degree of the three classical welfare/illfare functions in the
standard framework of aggregation functions on the [0, 1]n domain. The dual de-
composition of each welfare/illfare function into a self-dual central index and an
anti-self-dual inequality index leads to the consistent measurement of achievements
and shortfalls.

Keywords: Income inequality and social welfare; Classical Gini, Bonferroni, and
De Vergottini inequality indices; Welfare functions; Illfare functions; Aggregation
functions; WA and OWA operators; Dual decomposition; Orness

1 Introduction

Income inequality plays a crucial role in Economics and Social Welfare. It
has been proved that income inequality has an important impact in terms of
development, poverty, and public finance. Typical issues that arise in these
contexts are the evolution of inequality over time in some particular region,
the differences in the inequality level across different countries, and the effect
of different policies in the evolution of inequality. In order to address these
and related questions the choice of inequality measure is a central issue.

Basically, an inequality measure is a summary statistic of the income disper-
sion. Several inequality indices have been proposed in the literature, for com-
prehensive surveys on inequality measures see Silber [46] and Chakravarty [12].
One of the most widely used is the Gini index (Gini [27]), based on the abso-
lute values of all pairwise income differences. This index has a very intuitive
appeal for its geometrical interpretation in terms of the Lorenz curve and,
unlike other inequality measures, it easily accommodates negative incomes.
One drawback of the Gini index is that it is insensitive to the position of
income transfers within the ordered income profile. In order to overcome this
difficulty, a single-parameter class of inequality measures that generalizes the
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casilda.lassodelavega@ehu.es (Casilda Lasso de la Vega),
ricalb.marper@unitn.it (Ricardo Alberto Marques Pereira).

2



Gini index referred to as the S-Gini family, has been introduced and character-
ized (Donaldson and Weymark [16,17], Weymark [49] and Bossert [9]). In this
family, different value judgments can be considered by means of a weighting
function of incomes.

The Bonferroni and De Vergottini indices are two other classical inequality
indices that are recently receiving growing attention, see for instance Ny-
gard and Sandstrom [41], Giorgi [28,29], Tarsitano [48], Giorgi and Mondani
[31], Giorgi and Crescenzi [30], Chakravarty and Muliere [13], Piesch [42],
Chakravarty [11] and Bárcena and Imedio [3]. Similarly to the Gini index,
they also permit negative incomes.

The Bonferroni index ([8]) measures inequality comparing the overall income
mean with the income means of the poorest individuals in the population.
The De Vergottini index ([15]) complements the information provided by the
Bonferroni index since inequality is captured by comparing the overall income
mean with the income means of the richest individuals in the population. The
three classical inequality indices –Gini, Bonferroni, and De Vergottini– are
formally similar but introduce distinct and complementary information in the
study of income inequality. Moreover, in contrast with the Gini index, the
Bonferroni and De Vergottini indices are sensitive to the specific position of
income transfers within the ordered income profile.

An inequality index is relative if it is invariant when an additional amount
of income is proportionally distributed among the whole population. This
corresponds to the rightist viewpoint, according to Kolm’s designation [35]. In
turn, the leftist view requires that inequality remains unchanged when each
individual in the population receives the same amount of the extra income.
This invariance condition is fulfilled by the absolute inequality indices, which
are obtained by multiplying the corresponding relative indices by the mean
income.

Choosing a particular index to measure inequality involves a value judgment,
because different choices can lead to different results. One criterion is to select
ethical indices, that are indices with a normative interpretation. This means
that there is an explicit relationship between the inequality measure and a
social welfare ordering defined on incomes. In other words, for these indices
it is possible to construct a social welfare function whose contours specify the
tradeoffs between inequality and efficiency, as measured by the mean income.

More recently, the interest in unfavorable variables, such as unemployment,
illiteracy, morbidity or poverty gaps, has led to the development of an alter-
native illfare social framework (see for instance Riese and Brunner [44] and
Chakravarty [12]). Basically, the social illfare functions make use of the disu-
tility of the individuals and depend also on the mean of the variable and on
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the inequality level: the higher the inequality of the distribution is, the greater
the social illfare is.

In a bounded setting, each individual’s characteristics may be represented in
terms of achievements or shortfalls. In this paper we propose a unified frame-
work in which the illfare functions associated with the shortfall distributions
may be derived as the counter-part of the welfare achievement functions. How-
ever a problem arises when the decomposition into the mean and the inequality
terms needs to be identified. The difficulty stems from the difference between
the achievement and the shortfall inequality levels. Recent papers (among
them Clarke et al. [14], Erreygers [20], Lambert and Zheng [36], and Lasso de
la Vega and Aristondo [37]) deal with this issue in health measurement.

An interesting feature of several inequality indices is that the associated wel-
fare functions are of the OWA type. Accordingly, when bounded variables are
involved, they can be analyzed in the framework of the dual decomposition
of aggregation functions proposed by Garćıa-Lapresta and Marques Pereira
[25], where each aggregation operator is decomposed into a self-dual core and
an associated anti-self-dual remainder 1 . In this paper we show that the two
terms of the dual decomposition of the welfare function can be interpreted
as a weighted mean and an inequality term. The inequality indices generated
from the anti-self-dual remainder component are consistent in the sense that
the levels of the achievement inequality and the shortfall inequality coincide.
This fact allows us to introduce pairs of welfare and illfare functions associated
with the same inequality indices and the highlighted difficulty is overcome.

Moreover, the dual decomposition offers interesting insight on the distinct and
complementary nature of the three classical inequality indices. In the Gini in-
dex case, the dual decomposition reproduces in a natural way the construction
of the associated welfare function. As for the Bonferroni and the De Vergottini
indices, the corresponding self-dual cores and anti-self-dual remainders express
the underlying relationship between the two indices.

The paper is organized as follows. In Section 2, we introduce the basic notation
and properties of aggregation functions and we describe the general framework
of the dual decomposition of an aggregation function into a self-dual core and
an associated anti-self-dual remainder. Moreover, we briefly review the dual
decomposition of OWA operators. Section 3 is devoted to inequality indices
and the associated welfare and illfare functions, focusing on the classical Gini,
Bonferroni, and De Vergottini indices. In Section 4 we examine the dual de-
composition of the welfare and illfare functions associated to these indices
and show the possibilities of this decomposition in the unified achievement-
shortfall framework. In Section 5, an illustrative example is provided. Finally,

1 Other applications of the dual decomposition to the field of Welfare Economics
can be found in Garćıa-Lapresta et al. [23] and Aristondo et al. [1].

4



Section 6 contains some concluding remarks.

2 Aggregation functions

In this section we present notation and basic definitions regarding aggrega-
tion functions on [0, 1]n and functions on [0,∞)n, with n ∈ N and n ≥ 2
throughout the text.

Notation. Vectors in [0,∞)n are denoted as x = (x1, . . . , xn), 0 = (0, . . . , 0) ,
1 = (1, . . . , 1). Accordingly, for every x ∈ [0,∞) , we have x · 1 = (x, . . . , x).
Given x,y ∈ [0,∞)n, by x ≥ y we mean xi ≥ yi for every i ∈ {1, . . . , n},
and by x > y we mean x ≥ y and x 6= y. Given x ∈ [0,∞)n, the in-
creasing and decreasing reorderings of the coordinates of x are indicated
as x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively. In particular,
x(1) = min{x1, . . . , xn} = x[n] and x(n) = max{x1, . . . , xn} = x[1]. Clearly,
x[k] = x(n−k+1) for every k ∈ {1, . . . , n}. In general, given a permutation
σ on {1, . . . , n}, we denote xσ = (xσ(1), . . . , xσ(n)). Finally, the arithmetic
mean is denoted µ(x) = (x1 + · · ·+ xn)/n. Occasionally, we refer to x as
achievements and to y = 1− x as shortfalls.

We begin by defining standard properties of real functions on Rn. For further
details the interested reader is referred to Fodor and Roubens [22], Calvo et
al. [10], Beliakov et al. [4], Garćıa-Lapresta and Marques Pereira [25] and
Grabisch et al. [32].

Definition 1 Let A : Dn −→ R be a function with D = [0, 1] or D = [0,∞).

(1) A is idempotent if for every x ∈ D:

A(x · 1) = x.

(2) A is symmetric if for every permutation σ on {1, . . . , n} and every
x ∈ Dn:

A(xσ) = A(x).

(3) A is monotonic if for all x,y ∈ Dn:

x ≥ y ⇒ A(x) ≥ A(y).

(4) A is strictly monotonic if for all x,y ∈ Dn:

x > y ⇒ A(x) > A(y).

(5) A is compensative (or internal) if for every x ∈ Dn:

x(1) ≤ A(x) ≤ x(n).
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(6) A is self-dual 2 if D = [0, 1] and for every x ∈ [0, 1]n:

A(1− x) = 1− A(x).

(7) A is anti-self-dual if D = [0, 1] and for every x ∈ [0, 1]n:

A(1− x) = A(x).

(8) A is invariant for translations if for every x ∈ Dn:

A(x + t · 1) = A(x)

for all t ∈ R such that x + t · 1 ∈ Dn.
(9) A is stable for translations if for every x ∈ Dn:

A(x + t · 1) = A(x) + t

for all t ∈ R such that x + t · 1 ∈ Dn.
(10) A is ratio scale invariant (or positively homogeneous of degree 0) if for

every x ∈ Dn:

A(λ · x) = A(x)

for all λ > 0 such that λ · x ∈ Dn.
(11) A is positively homogeneous of degree 1 if for every x ∈ Dn:

A(λ · x) = λ · A(x)

for all λ > 0 such that λ · x ∈ Dn.

Definition 2 Let {A(k)}k∈N be a sequence of functions, with A(k) : Dk −→ R

and A(1)(x) = x for every x ∈ D, where D = [0, 1] or D = [0,∞). {A(k)}k∈N
is invariant for replications (or strongly idempotent) if for all x ∈ Dn and
any number of replications m ∈ N of x:

A(mn)(
m︷ ︸︸ ︷

x, . . . ,x) = A(n)(x).

Definition 3 Consider the binary relation < on Dn, with D = [0, 1] or
D = [0,∞), defined as

x < y ⇔
n∑
i=1

xi =
n∑
i=1

yi and
k∑
i=1

x(i) ≤
k∑
i=1

y(i),

for every k ∈ {1, . . . , n − 1}. With respect to the binary relation < , the
notions of Schur-convexity (S-convexity) and Schur-concavity (S-concavity)
of a function A are defined as follows.

2 A more general notion of self-duality is A(1− x) = A(0) + A(1)−A(x).
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(1) A : Dn −→ D is S-convex if for all x,y ∈ Dn:

x < y ⇒ A(x) ≥ A(y).

(2) A : Dn −→ D is S-concave if for all x,y ∈ Dn:

x < y ⇒ A(x) ≤ A(y).

Moreover, in each case, the S-convexity (resp. S-concavity) of a function A is
said to be strict if A(x) > A(y) (resp. A(x) < A(y)) whenever x 6= y.

Definition 4 Given x,y ∈ Dn, we say that y is obtained from x by a pro-
gressive transfer if there exist two individuals i, j ∈ {1, . . . , n} and h > 0
such that xi < xj, yi = xi + h ≤ xj − h = yj and yk = xk for every
k ∈ {1, . . . , n} \ {i, j}.

A classical result (see Marshall and Olkin [39, Ch. 4, Prop. A.1]) establishes
that x < y if and only if y can be derived from x by means of a finite sequence
of permutations and/or progressive transfers.

Definition 5 A function A : [0, 1]n −→ [0, 1] is called an n-ary aggrega-
tion function if it is monotonic and satisfies A(1) = 1 and A(0) = 0. An
aggregation function is said to be strict if it is strictly monotonic.

For the sake of simplicity, the n-arity is omitted whenever it is clear from the
context.

It is easy to see that every idempotent aggregation function is compensative,
and viceversa. Self-duality and stability for translations are important proper-
ties of aggregation functions. In turn, anti-self-duality and invariance for trans-
lations are incompatible with idempotency. Nevertheless, anti-self-duality and
invariance for translations play an important role in this paper as far as they
are properties of important functions associated with aggregation functions,
such as we shall discuss later.

2.1 Dual decomposition of aggregation functions

In this section we briefly recall the so-called dual decomposition of an aggre-
gation function into its self-dual core and associated anti-self-dual remainder,
due to Garćıa-Lapresta and Marques Pereira [25]. First we introduce the con-
cepts of self-dual core and anti-self-dual remainder of an aggregation function,
establishing which properties are inherited in each case from the original ag-
gregation function. Particular emphasis is given to the properties of stability
for translations (self-dual core) and invariance for translations (anti-self-dual
remainder).
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Definition 6 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The aggre-
gation function A∗ : [0, 1]n −→ [0, 1] defined as

A∗(x) = 1− A(1− x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A, which means that dualization is an involution. An aggre-
gation function A is self-dual if and only if A∗ = A.

The dual of an arbitrary functionA is given by A∗(x) = A(0)+A(1)−A(1−x).

Remark 1 The dual A∗ inherits from the aggregation function A the prop-
erties of continuity, idempotency (hence, compensativeness), symmetry, strict
monotonicity, self-duality, stability for translations and invariance for repli-
cations, whenever A has these properties. In addition, A∗ is S-convex (resp.
S-concave) whenever A is S-concave (resp. S-convex) (see Garćıa-Lapresta et
al. [23]). It is easy to see that A∗ is strictly S-convex (resp. strictly S-concave)
whenever A is strictly S-concave (resp. strictly S-convex)

2.1.1 The self-dual core of an aggregation function

Aggregation functions are not in general self-dual. However, a self-dual aggre-
gation function can be associated with any aggregation function in a simple
manner. The construction of the so-called self-dual core of an aggregation
function A is as follows.

Definition 7 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The func-
tion Â : [0, 1]n −→ [0, 1] defined as

Â(x) =
A(x) + A∗(x)

2
=
A(x)− A(1− x)

2
+

1

2

is called the core of the aggregation function A.

Since Â is self-dual, we say that Â is the self-dual core of the aggregation
function A. Notice that Â is clearly an aggregation function.

It is interesting to note that the self-dual core reduces to the arithmetic mean
in the simple case of n = 2, but not in higher dimensions.

The following results 3 can be found in Garćıa-Lapresta and Marques Pereira
[25].

3 Excepting that invariance for replications is inherited by the core (the proof is
immediate).
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Proposition 1 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if
and only if Â(x) = A(x) for every x ∈ [0, 1]n.

Proposition 2 The self-dual core Â inherits from the aggregation function A
the properties of continuity, idempotency (hence, compensativeness), symme-
try, strict monotonicity, stability for translations, and invariance for replica-
tions, whenever A has these properties.

2.1.2 The anti-self-dual remainder of an aggregation function

We now introduce the anti-self-dual remainder Ã, which is simply the differ-
ence between the original aggregation function A and its self-dual core Â.

Definition 8 Let A : [0, 1]n −→ [0, 1] be an aggregation function. The func-
tion Ã : [0, 1]n −→ R defined as Ã(x) = A(x)− Â(x) , that is,

Ã(x) =
A(x)− A∗(x)

2
=
A(x) + A(1− x)

2
− 1

2
,

is called the remainder of the aggregation function A.

Since Ã is anti-self-dual, we say that Ã is the anti-self-dual remainder of
the aggregation function A. Clearly, Ã is not an aggregation function. In
particular, Ã(0) = Ã(1) = 0 violates idempotency and implies that Ã is
either non monotonic or everywhere null. Moreover, −0.5 ≤ Ã(x) ≤ 0.5 for
every x ∈ [0, 1]n.

The following results 4 can be found in Garćıa-Lapresta and Marques Pereira
[25].

Proposition 3 An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if
and only if Ã(x) = 0 for every x ∈ [0, 1]n.

Proposition 4 The anti-self-dual remainder Ã inherits from the aggregation
function A the properties of continuity, symmetry, invariance for replications,
plus also strict S-convexity and S-concavity, whenever A has these properties.

Summarizing, every aggregation function A decomposes additively A = Â+Ã
in two components: the self-dual core Â and the anti-self-dual remainder Ã,
where only Â is an aggregation function. The so-called dual decomposition
A = Â+ Ã clearly shows some analogy with other algebraic decompositions,

4 Excepting that invariance for replications is inherited by the remainder (the proof
is immediate) and that strict S-convexity and S-concavity are also inherited by the
remainder.
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such as that of square matrices and bilinear tensors into their symmetric and
skew-symmetric components.

The following result concerns two more properties of the anti-self-dual re-
mainder based directly on the definition Ã = A − Â and the corresponding
properties of the self-dual core (see Garćıa-Lapresta and Marques Pereira [25]).

Proposition 5 Let A : [0, 1]n −→ [0, 1] be an aggregation function.

(1) If A is idempotent, then Ã(x · 1) = 0 for every x ∈ [0, 1].
(2) If A is stable for translations, then Ã is invariant for translations.

These properties of the anti-self-dual remainder are suggestive. The first state-
ment establishes that anti-self-dual remainders of idempotent aggregation
functions are null on the main diagonal. The second statement applies to
the subclass of stable aggregation functions. In such case, self-dual cores are
stable and therefore anti-self-dual remainders are invariant for translations.
In other words, if the aggregation function A is stable for translations, the
value Ã(x) does not depend on the average value of the x coordinates, but
only on their numerical deviations from that average value. These properties
of the anti-self-dual remainder Ã suggest that it may give some indication on
the dispersion of the x coordinates.

In Maes et al. [38], the authors propose a generalization of the dual decom-
position framework introduced in Garćıa-Lapresta and Marques Pereira [25],
based on a family of binary aggregation functions satisfying a form of twisted
self-duality condition. Each binary aggregation function in that family corre-
sponds to a particular way of combining an aggregation function A with its
dual A∗ for the construction of the self-dual core Â. As particular cases of the
general framework proposed in Maes et al. [38], one obtains Garćıa-Lapresta
and Marques Pereira’s construction, based on the arithmetic mean, and Sil-
vert’s construction, based on the symmetric sums formula (see Silvert [47]).
However, the dual decomposition framework introduced in Garćıa-Lapresta
and Marques Pereira [25] remains the only one which preserves stability un-
der translations, a crucial requirement in the present analysis of welfare and
illfare functions.

2.2 OWA operators

In 1988 Yager [52] introduced OWA operators as a tool for aggregating nu-
merical values in multi-criteria decision making. An OWA operator is similar
to a weighted mean, but with the values of the variables previously ordered in
a decreasing way. Thus, contrary to the weighted means, the weights are not
associated with concrete variables and, therefore, they are symmetric. Because
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of these properties, OWA operators have been widely used in the literature
(see, for instance, Yager and Kacprzyk [53] and Yager et al. [54]).

Definition 9 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n satisfying∑n
i=1wi = 1, the OWA operator associated with w is the aggregation function

Aw : [0, 1]n −→ [0, 1] defined as

Aw(x) =
n∑
i=1

wi x[i].

Simple examples of OWA operators are

Aw(x) =



max{x1, . . . , xn} , when w = (1, 0, . . . , 0) ,

min{x1, . . . , xn} , when w = (0, . . . , 0, 1 ) ,

x1 + · · ·+ xn
n

, when w = ( 1
n
, 1
n
, . . . , 1

n
) .

OWA operators are continuous, idempotent (hence, compensative), symmet-
ric, and stable for translations. Moreover, an OWA operator Aw is self-dual
if and only if wn−i+1 = wi for every i ∈ {1, . . . , n} (see Garćıa-Lapresta and
Llamazares [24, Proposition 5]).

In general, the dual A∗w, the self-dual core Âw and the anti-self-dual remainder
Ãw of an OWA operator Aw can be written as

A∗w(x) =
n∑
i=1

wn−i+1 x[i] =
n∑
i=1

wi x(i) (1)

Âw(x) =
n∑
i=1

wi + wn−i+1

2
x[i]

Ãw(x) =
n∑
i=1

wi − wn−i+1

2
x[i] .

As we know, the self-dual core Âw is an aggregation function. Moreover, since

n∑
i=1

wi + wn−i+1

2
= 1,

the self-dual core Âw is again an OWA operator, that is Âw = Aŵ with

ŵi =
wi + wn−i+1

2
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for every i ∈ {1, . . . , n}. Notice that Âw reduces to the arithmetic mean in
the simple case n = 2, but not in higher dimensions.

The self-dual core and the anti-self-dual remainder can be equivalently written
as follows

Âw(x) =
n∑
i=1

wi
x[i] + x[n−i+1]

2
and Ãw(x) =

n∑
i=1

wi
x[i] − x[n−i+1]

2
.

These expressions show clearly that the self-dual core is a weighted average of
pairwise averages of x coordinates (quasi-midranges), whereas the anti-self-
dual remainder is a weighted average of pairwise differences of x coordinates
(quasi-ranges). The anti-self-dual remainder is therefore independent of the
overall average of the coordinates of x and constitutes a form of dispersion
measure. Moreover, it is straightforward to prove that w1 ≥ · · · ≥ wn implies
Ãw(x) ≥ 0 and w1 ≤ · · · ≤ wn implies Ãw(x) ≤ 0.

3 Inequality indices and welfare/illfare functions

In this paper we assume the following definitions of inequality index and wel-
fare and illfare functions.

Definition 10

(1) A relative inequality index is a function I : [0,∞)n −→ [0,∞) that is
continuous in [0,∞)n \ {0}, ratio scale invariant, strictly S-convex, and
satisfies I(x · 1) = 0 for every x ∈ [0,∞).

(2) An absolute inequality index is a function I : [0,∞)n −→ [0,∞) that
is continuous, invariant for translations, strictly S-convex, and satisfies
I(x · 1) = 0 for every x ∈ [0,∞).

Certain properties which are generally considered to be inherent to the concept
of inequality have come to be accepted as basic properties for an inequality
measure. The crucial axiom in this field is the Pigou-Dalton transfer principle.
This axiom establishes that a progressive transfer, that is, a transfer from a
richer to a poorer person that does not change the relative positions of the
donor and the recipient, should decrease inequality. Marshall and Olkin [39]
show that strict S-convexity implies symmetry and inequality reduction under
progressive transfers. Conversely, symmetry and inequality reduction under
progressive transfers imply strict S-convexity.

Definition 11 A welfare function is a function W : [0,∞)n −→ [0,∞) that
is continuous, monotonic, and strictly S-concave.
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In analogy with the inequality case, strict S-concavity is equivalent to sym-
metry and the increment of the welfare level under progressive transfers. Any
welfare function allows the definition of the “equally distributed equivalent
income”, as the income level that if equally distributed among the population
would generate the same value of the W function.

An inequality index is called ethical if it implies, and is implied, by a welfare
function. If the welfare function W is positively homogeneous of degree 1,
there is a one-to-one relationship between W and a relative inequality index
(see Blackorby and Donaldson [6]). Following the Atkinson [2], Kolm [34], and
Sen [45] approaches, every relative inequality index I may be associated with
a positively homogeneous of degree 1 welfare function W : [0,∞)n −→ [0,∞)
according to the following expression

W (x) = µ(x) (1− I(x)) . (2)

Conversely, given a positively homogeneous of degree 1 welfare function, we
can recover the relative index associated using the above relation as follows

I(x) =


1− W (x)

µ(x)
, if x 6= 0 ,

0 , if x = 0.

The index I(x) gives the fraction of total income that could be saved if society
distributed the remaining amount equally without any welfare loss. In other
words, it can be interpreted as the proportion of welfare loss due to inequality.

In turn, Kolm [35] and Blackorby and Donaldson [7] approaches allow the
derivation of a translatable welfare function from an absolute inequality index
according to the following expression,

W (x) = µ(x)− IA(x). (3)

This absolute index, IA, represents the per capita income that could be saved
if society distributed incomes equally without any loss of welfare.

A class of welfare functions that will play an important role in this paper is
that of the generalized Gini welfare functions (see Mehran [40], Donaldson
and Weymark [16,17], Weymark [49], Yaari [50,51], Ebert [19], Quiggin [43],
and Ben-Porath and Gilboa [5]).

Definition 12 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with
0 < w1 < · · · < wn and

∑n
i=1wi = 1, the generalized Gini welfare function

(or rank dependent general welfare function) associated with w is the function
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Ww : [0,∞)n −→ [0,∞) defined as

Ww(x) =
n∑
i=1

wi x[i].

Positivity of wi guarantees that Ww satisfies the Pareto Principle, that is, it is
increasing in xi. Increasingness of the sequence of coefficients is necessary and
sufficient for S-concavity of Ww. On the other hand, all the functions Ww are
stable for translations and positively homogeneous of degree 1.

Sometimes the variable under consideration is unfavorable. Think for instance
of the duration of unemployment that each member in a society suffers. Then,
an alternative illfare framework has been developed (see Riese and Brunner
[44]). The illfare is assumed to be an increasing S-convex function of the (bad)
variable since an addition increment is the more severe the higher the variable
(the more severe an additional unemployment week, the longer the unemploy-
ment has already lasted).

Definition 13 An illfare function is a function L : [0,∞)n −→ [0,∞) that
is continuous, monotonic, and strictly S-convex.

The strict S-convexity is equivalent to symmetry and the decrement of the
illfare level under progressive transfers.

Remark 2 The generalized Gini welfare functions are OWA aggregation func-
tions as long as the variables are restricted to the domain [0, 1]n. However, it
could be possible to extend to [0,∞)n the definitions of the self-dual-core and
the anti-self-dual remainder associated with a generalized Gini welfare func-
tion in the following way. Consider λ > 0 an upper bound of the distribution
x ∈ [0,∞)n. Then, define

Âw(x) = λ · Âw

(
1

λ
· x
)

and Ãw(x) = λ · Ãw

(
1

λ
· x
)
.

Since Âw and Ãw are linear for every generalized Gini welfare function Aw,
the previous extension does not depend on the chosen upper bound λ.

Remark 3 From now on, we will assume that all the variables are restricted
to [0, 1]n (see Remark 2). Then, the generalized Gini welfare functions cor-
respond to OWA aggregation functions. In this setting, a welfare function
is an aggregation function W : [0, 1]n −→ [0, 1] that is continuous and
strictly S-concave. Analogously, an illfare function is an aggregation function
L : [0, 1]n −→ [0, 1] that is continuous and strictly S-convex.

We will denote by x the achievement distribution and by y the shortfall dis-
tribution. Moreover, we assume that the welfare function is applied to the

14



achievements whereas the illfare function to the shortfalls.

In the following proposition we establish that the dual of a welfare (illfare)
function is always an illfare (welfare) function. This result allows us to intro-
duce the generalized Gini, Bonferroni, and De Vergottini illfare functions as
the duals of the corresponding welfare functions.

Proposition 6 If W : [0, 1]n −→ [0, 1] is a welfare function, then L :
[0, 1]n −→ [0, 1] defined as L(y) = W ∗(y) = 1 − W (1 − y) is an illfare
function. Conversely, if L : [0, 1]n −→ [0, 1] is an illfare function, then
W : [0, 1]n −→ [0, 1] defined as W (x) = L∗(x) = 1 − L(1 − x) is a wel-
fare function.

Proof: By Definition 6 and Remark 1.

Remark 4 Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, with 0 <
w1 < · · · < wn and

∑n
i=1wi = 1, by Proposition 6 and equation (1), the

generalized Gini illfare function is defined as Lw(y) = W ∗
w(y) =

n∑
i=1

wi y(i).

3.1 The Gini index

The Gini index (Gini [27]), the most popular measure of inequality, was in-
troduced by Corrado Gini in 1912. It is based on the average of the absolute
differences between all possible pairs of observations. The Gini index is defined
as half of the ratio of that average to the mean of the distribution (hence
proposing a relative measure of variability). Specifically, for any unordered
income distribution the formula given by Gini [27] is

G(x) =
1

2n2µ(x)

n∑
i=1

n∑
j=1

|xi − xj| , with x 6= 0. (4)

This index varies between 0, which reflects complete equality, and 1. It is
relative and invariant under replications of the population, which allows in-
equality comparisons between societies with different incomes and different
populations. Moreover, inequality as measured by this index depends on the
significance of the income gaps in society.

Graphically, the Gini index can be computed as twice the area between the
line of equality and the Lorenz curve (Gastwirth [26], Kendall and Stuart
[33], Dorfman [18]). This curve plots the cumulative income share, ranked in
increasing order, on the vertical axis against the distribution of the population
on the horizontal axis.
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Mehran [40] highlights the linear structure of the index and the implicit weight-
ing scheme involved in (4), which assigns a particular weight to an individual
according to his ranking in the income distribution (Sen [45]). In particular,
it can be shown that an alternative formula for G(x) is

G(x) = 1− 1

n2µ(x)

n∑
i=1

(2i− 1)x[i] , with x 6= 0.

See Yitzhaki [55] for alternative formulations of the Gini index.

The decrease of G(x) under a progressive transfer does not depend where
the transfer takes place as long as it occurs between two persons with a fixed
rank difference. In other words, this index is insensitive to the incomes of the
individuals involved in the transfers.

When the Gini coefficient is multiplied by the mean income an absolute index
is obtained.

Definition 14 The absolute Gini inequality index is defined as

GA(x) = µ(x)− 1

n

n∑
i=1

2i− 1

n
x[i].

Remark 5 From equations (2) and (3), the Gini welfare function is equiva-
lently obtained as

WG(x) = µ(x)(1−G(x)) = µ(x)−GA(x) =
1

n

n∑
i=1

2i− 1

n
x[i].

Remark 6 By Proposition 6 and equation (1), the Gini illfare function is
defined as

LG(y) = W ∗
G(y) =

1

n

n∑
i=1

2i− 1

n
y(i).

Notice that by Proposition 6 and equation (3), we also have

LG(y) = 1−WG(1− y) = 1− (µ(1− y)−GA(1− y)) = µ(y) +GA(1− y).

Given that GA(1− y) = GA(y), see Proposition 12 below, we obtain

LG(y) = µ(y) +GA(1− y) = µ(y) +GA(y).

Thus, the Gini illfare function may be decomposed into the mean of the short-
falls and the absolute Gini inequality index either of the achievements, GA(1−
y), or the shortfalls, GA(y). Since, by Remark 5, WG(x) = µ(x) − GA(x),
the welfare and illfare Gini functions share a similar decomposition.
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3.2 The Bonferroni index

The Bonferroni index is another example of relative index that has a natural
upper bound 1. It is based on the comparison of the partial means and the
general mean of an income distribution.

Let us denote by mi(x) the mean income of the n− i+1 persons with lowest
income, that is

mi(x) =
1

n− i+ 1

n∑
j=i

x[j].

The Bonferroni index is defined by

B(x) =
1

nµ(x)

n∑
i=1

(µ(x)−mi(x)) , with x 6= 0.

and it depends on how much the mi(x)/µ(x) ratios fall short of unity.

The Bonferroni index B is not invariant for replications. However it fulfils a
stronger redistributive criterion than the Pigou-Dalton condition. The decre-
ment in the B index due to a progressive transfer is larger the poorer are
the two participants. This property is referred to as the principle of positional
transfer sensitivity (Mehran [40] and Zoli [56]).

When multiplied by the mean income it becomes an absolute index.

Definition 15 The absolute Bonferroni inequality index is defined as

BA(x) =
1

n

n∑
i=1

(µ(x)−mi(x)) = µ(x)− 1

n

n∑
i=1

mi(x).

Remark 7 From equations (2) and (3), the Bonferroni welfare function is
simultaneously obtained as

WB(x) = µ(x)(1−B(x)) = µ(x)−BA(x) =
1

n

n∑
i=1

mi(x).

Proposition 7 The Bonferroni welfare function is expressed by

WB(x) =
n∑
i=1

ui x[i],

where ui =
n∑

j=n−i+1

1

jn
, for i = 1, . . . , n.
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Proof: The derivation is as follows

n∑
i=1

mi(x) =
x[n]

1
+
x[n−1] + x[n]

2
+ · · ·+

x[1] + · · ·+ x[n]

n
=

=
(

1

1
+

1

2
+ · · ·+ 1

n

)
x[n] +

(
1

2
+ · · ·+ 1

n

)
x[n−1] + · · ·+ 1

n
x[1] =

= n
n∑
i=1

ui x[i].

Remark 8 The weights introduced in the previous proposition satisfy the
following conditions

(1) 0 < u1 < u2 < · · · < un−1 < un < 1.

(2) u1 =
1

n2
and ui+1 = ui +

1

(n− i)n
, for i = 1, . . . , n− 1.

(3)
n∑
i=1

ui = 1, since

n∑
i=1

 n∑
j=n−i+1

1

j

 =
1

n
+
(

1

n− 1
+

1

n

)
+
(

1

n− 2
+

1

n− 1
+

1

n

)
+

+ · · ·+
(

1

2
+ · · ·+ 1

n− 1
+

1

n

)
+
(

1

1
+

1

2
+ · · ·+ 1

n− 1
+

1

n

)
=

= 1
1

1
+ 2

1

2
+ · · ·+ (n− 2)

1

n− 2
+ (n− 1)

1

n− 1
+ n

1

n
= n .

Remark 9 From Propositions 6 and 7 and equation (1), the Bonferroni illfare
function is defined as

LB(y) = W ∗
B(y) =

n∑
i=1

ui y(i).

Notice that by Proposition 6 and equation (3), we also have

LB(y) = 1−WB(1− y) = 1− (µ(1− y)−BA(1− y)) = µ(y) +BA(1− y).

Nevertheless, BA(1−y) is different from BA(y) and an inconsistency in the
inequality indices appears. To show that BA(y) and BA(1−y) are often dif-
ferent, let us see the following example. Consider y = (0.65, 0.30, 0.10, 0.09)
the shortfalls of a distribution, and 1 − y = (0.35, 0.70, 0.90, 0.91) as the
corresponding achievements distribution. The Bonferroni index for shortfalls

18



and achievements are BA(y) = 0.127 and BA(1 − y) = 0.155, respectively,
obtaining different results for achievements and shortfalls. This kind on in-
consistency should be avoided by using the dual decomposition (Subsection
4.2).

3.3 The De Vergottini index

The De Vergottini index ([15]) captures another aspect of the inequality. It
compares the total mean income with the mean of the i-richest person group.
If Mi(x) denotes the mean income of the i-persons with highest incomes, that
is

Mi(x) =
1

i

i∑
j=1

x[j],

then the De Vergottini index is

V (x) =
1

nµ(x)

n∑
i=1

(Mi(x)− µ(x)) , with x 6= 0.

With respect to other redistributive criteria, the reduction in the V index due
to a progressive transfer is larger the richer are the two participants.

V is also a compromise index in the sense that if multiplied by the mean, then
the counterpart absolute index is obtained.

Definition 16 The absolute De Vergottini inequality index is defined as

VA(x) =
1

n

n∑
i=1

(Mi(x)− µ(x)) =
1

n

n∑
i=1

Mi(x)− µ(x).

In contrast with the relative Bonferroni index, whose maximum value is

Bmax =
n− 1

n

in correspondence with the income profile in which only one individual accu-
mulates all the income, the De Vergottini index does not have a unit upper
bound. The maximum inequality value corresponds to the same income profile
as for the Bonferroni index, x[1] = nµ(x), x[2] = · · · = x[n] = 0, but the value
is now

Vmax =
n∑
j=2

1

j
.
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This value only depends on the population size and may be used to normalize
the index. Our proposal is to use the normalization factor

c =
n

n− 1
Vmax,

because it ensures that the maximum value of the normalized De Vergottini
index, V (x) = V (x)/c, is the same as that of B(x), i.e. (n− 1)/n. Similarly,
we denote the absolute normalized De Vergottini index by V A = VA/c.

Remark 10 From equations (2) and (3), the normalized De Vergottini welfare
function is equivalently obtained as

WV (x) = µ(x)
(
1− V (x)

)
= µ(x)− V A(x) =

c+ 1

c
µ(x)− 1

c n

n∑
i=1

Mi(x).

Remark 11 For n = 2, the Gini, Bonferroni and normalized De Vergottini
welfare functions coincide:

WG(x1, x2) = WB(x1, x2) = WV (x1, x2) =
x[1] + 3x[2]

4
.

However, this fact is not true in higher dimensions. For instance, for n = 3
we have

WG(x1, x2, x3) =
10x[1] + 30x[2] + 50x[3]

90

WB(x1, x2, x3) =
10x[1] + 25x[2] + 55x[3]

90

WV (x1, x2, x3) =
10x[1] + 34x[2] + 46x[3]

90
.

Proposition 8 The weighting scheme implicit in the normalized De Vergot-
tini welfare function WV is expressed by

1

n

n∑
i=1

Mi(x) =
n∑
i=1

vi x[i],

where vi =
n∑
j=i

1

j n
, for i = 1, . . . , n.

Proof: The derivation is as follows
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n∑
i=1

Mi(x) =
x[1]

1
+
x[1] + x[2]

2
+ · · ·+

x[1] + · · ·+ x[n]

n
=

=
(

1

1
+

1

2
+ · · ·+ 1

n

)
x[1] +

(
1

2
+ · · ·+ 1

n

)
x[2] + · · ·+ 1

n
x[n] =

= n
n∑
i=1

vi x[i].

Remark 12 The weights introduced in the previous proposition satisfy the
following conditions

(1) 0 < vn < vn−1 < · · · < v2 < v1 < 1.

(2) vn =
1

n2
and vi−1 = vi +

1

(i− 1)n
, for i = 2, . . . , n.

(3)
n∑
i=1

vi = 1, since

n∑
i=1

 n∑
j=i

1

j

 =
n∑
i=1

 n∑
j=n−i+1

1

j

 = n .

Remark 13 The normalized De Vergottini welfare function can be written
as

WV (x) =
n∑
i=1

wVi x[i], where wVi =
c+ 1− n vi

c n
for i = 1, . . . , n.

Notice that
∑n
i=1w

B
i =

∑n
i=1w

V
i = 1 and the lowest Bonferroni and De

Vergottini weights are wB1 = wV1 = 1/n2, since wB1 = u1 = 1/n2 and

wV1 =
c+ 1− n v1

c n
=
n(n v1 − 1) + (1− n v1)(n− 1)

n(n v1 − 1)n
=

1

n2
,

where we have used that c =
n(n v1 − 1)

n− 1
.

Remark 14 By Proposition 6 and equation (1), the normalized De Vergottini
illfare function can be written as

LV (y) = W ∗
V

(y) =
n∑
i=1

wVi y(i) ,

with wVi as in Remark 12.

Notice that by Proposition 6 and equation (3), we also have

LV (y) = 1−WV (1− y) = 1− (µ(1− y)− V A(1− y)) = µ(y) + V A(1− y).
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The same example given in Remark 9 allows us to conclude that V A(y) and
V A(1 − y) are in general different. Again this kind on inconsistency should
be avoided by using the dual decomposition (Subsection 4.2).

3.4 Orness of the Gini, Bonferroni and normalized De Vergottini welfare
functions

The notion of orness (or attitudinal character) of OWA operators was intro-
duced by Yager [52] for reflecting the andlike or orlike aggregation behavior
of OWA operators.

Definition 17 Let Aw the OWA operator associated with the weighting vector
w = (w1, . . . , wn) ∈ [0, 1]n. The orness of Aw is defined as

Aow =
1

n− 1

n∑
i=1

(n− i)wi.

Remark 15 The orness of Aw coincides with the value Aw(xo), where xoi =
n− i
n− 1

, i.e.,

Aow = w1 + w2
n− 2

n− 1
+ · · ·+ wn−1

1

n− 1
.

The orness of the extreme OWA operators maximum, arithmetic mean and
minimum are 1, 0.5 and 0, respectively:

(1) Aw(x) = max{x1, . . . , xn}, where w = (1, 0, . . . , 0): Aow = 1.

(2) Aw(x) =
x1 + · · ·+ xn

n
, where w =

(
1

n
,

1

n
, . . . ,

1

n

)
: Aow =

1

2
.

(3) Aw(x) = min{x1, . . . , xn}, where w = (0, . . . , 0, 1): Aow = 0.

The orness of the OWA operator Aw can also be written in the following way
(see Filev and Yager [21]):

Aow =
1

2
+

n∑
i=1

n− 2i+ 1

2(n− 1)
wi =

1

2
+

n∑
i=1

n− 2i+ 1

4(n− 1)
(wi − wn−i+1),

which implies 0 ≤ Aow ≤ 0.5 when 0 ≤ w1 ≤ · · · ≤ wn ≤ 1, and 0.5 ≤
Aow ≤ 1 when 0 ≤ wn ≤ · · · ≤ w1 ≤ 1. In either case, Aow = 0.5 only if
w1 = · · · = wn = 1/n.

Accordingly, in the case of generalized Gini welfare functions, with 0 < w1 <
· · · < wn < 1, we always have 0 < Aow < 0.5, which reflects the greater
importance given to the poorer incomes in the population. In what follows

22



we explicitly compute the orness of the Gini, Bonferroni, and normalized De
Vergottini welfare functions.

Proposition 9 The orness of the Gini welfare function is W o
G =

1

3
− 1

6n
.

Proof: From the definition

WG(x) =
1

n

n∑
i=1

2i− 1

n
x[i]

and since W o
G = WG(xo) with xo[i] =

n− i
n− 1

, we obtain

W o
G = WG(xo) =

n∑
i=1

wGi x
o
[i] =

1

n

n∑
i=1

2i− 1

n

n− i
n− 1

=

=
1

(n− 1)n2

(
−n2 + (2n+ 1)

n∑
i=1

i − 2
n∑
i=1

i2
)

=

=
1

(n− 1)n2

(
−n2 + (2n+ 1)

n(n+ 1)

2
− 2

n(n+ 1)(2n+ 1)

6

)
=

=
2n− 1

6n
=

1

3
− 1

6n
,

where we have used
n∑
i=1

i =
n(n+ 1)

2
and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Proposition 10 The orness of the Bonferroni welfare function is W o
B =

1

4
.

Proof: From the definition

WB(x) =
1

n

n∑
i=1

mi(x) =
1

n

n∑
i=1

1

n− i+ 1

n∑
j=i

x[j]
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and since W o
B = WB(xo) with xo[i] =

n− i
n− 1

, we obtain

W o
B = WB(xo) =

1

n

n∑
i=1

1

n− i+ 1

n∑
j=i

n− j
n− 1

=

=
1

n(n− 1)

n∑
i=1

1

n− i+ 1

n(n− i+ 1)−
n∑
j=i

j

 =

=
1

n(n− 1)

n∑
i=1

1

n− i+ 1

(
n(n− i+ 1)− (n− i+ 1)(n+ i)

2

)
=

=
1

n(n− 1)

n∑
i=1

(
n

2
− i

2

)
=

1

n(n− 1)

(
n2

2
− n(n+ 1)

4

)
=

=
1

n(n− 1)

n(n− 1)

4
=

1

4
,

where we have used that
n∑
i=1

i =
n(n+ 1)

2
.

Proposition 11 The orness of the normalized De Vergottini welfare function

is W o
V

=
1

2
− 1

4 c
.

Proof: From the definition

WV (x) =
c+ 1

c
µ(x)− 1

c n

n∑
i=1

Mi(x) =
c+ 1

c
µ(x)− 1

c n

n∑
i=1

1

i

i∑
j=1

x[j]
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and since W o
V

= WV (xo) with xo[i] =
n− i
n− 1

, we obtain

W o
V

= WV (xo) =
c+ 1

c
µ(xo)− 1

c n

n∑
i=1

1

i

i∑
j=1

n− j
n− 1

 =

=
c+ 1

c

1

2
− 1

c n(n− 1)

n∑
i=1

n− 1

i

i∑
j=1

j

 =

=
c+ 1

2 c
− 1

c n(n− 1)

n∑
i=1

(
n− i+ 1

2

)
=

=
c+ 1

2 c
− 1

c n(n− 1)

n∑
i=1

(
2n− 1

2
− i

2

)
=

=
c+ 1

2 c
− 1

c n(n− 1)

(
n(2n− 1)

2
− n(n+ 1)

4

)
=

=
c+ 1

2 c
− 1

c n(n− 1)

3n(n− 1)

4
=
c+ 1

2 c
− 3

4 c
=

1

2
− 1

4 c
,

where we have used that
n∑
i=1

i =
n(n+ 1)

2
and µ(xo) =

1

2
.

Summarizing, the orness values of the welfare functions associated with the
three classical inequality indices are all in the range (0, 1/2), as expected. We
see that the focus on the poorer individuals in the population slightly de-
creases with n in the cases of Gini and normalized De Vergottini (given the
orness slightly increases), not so in the Bonferroni case. Moreover, in the large
population asymptotic limit, the orness values of the Gini (1/3), Bonferroni
(1/4), and normalized De Vergottini (1/2) welfare functions express the re-
spective emphasis on poorer incomes and establish the Gini inequality index
and welfare function as an intermediate case between the Bonferroni and the
normalized De Vergottini frameworks.

4 Dual decomposition of Gini, Bonferroni and normalized De Ver-
gottini welfare and illfare functions

This section analyzes the dual decomposition in the self-dual core and the anti-
self-dual remainder for any welfare and illfare function. Specifically, the dual
decomposition of the Gini, Bonferroni and normalized De Vergottini welfare
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and illfare functions are identified and highlighted the relationship among
them.

As shown in Proposition 2, the self-dual core Â inherits from the OWA oper-
ator A the properties of continuity, idempotency, symmetry and stability for
translations. The positivity of the normalized weights in A implies that Â is
increasing with normalized weights. Hence, the self-dual core component can
be interpreted as a weighted mean.

In turn, the remainder Ã is symmetric, fulfils Ã(x1, . . . , xq) = 0 if and only
if x1 = · · · = xq, and Proposition 4 ensures that Ã inherits from A the strict
S-concavity (respectively, the strict S-convexity). Consequently, the Pigou-
Dalton transfer principle is satisfied for −Ã (respectively Ã). Hence, we can
obtain a direct interpretation of this component as a measure of inequality.
In addition, the anti–self-duality ensures that Ã(1 − x) = Ã(x). Thus, the
anti-self-dual remainder measures equally the inequality of achievements and
shortfalls.

Welfare and illfare functions can be decomposed in the following way

W (x) = Ŵ (x) + W̃ (x)

L(y) = L̂(y) + L̃(y) = Ŵ ∗(y) + W̃ ∗(y) = Ŵ (y)− W̃ (y).

4.1 The dual decomposition of the Gini welfare and illfare functions

Proposition 12 The absolute Gini inequality index is anti-self-dual, i.e., it
satisfies GA(1− x) = GA(x), for every x ∈ [0, 1]n.
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Proof: The derivation is as follows:

GA(1− x) = µ(1− x)− 1

n

n∑
i=1

2i− 1

n
(1− x)[i] =

= 1− µ(x)− 1

n

n∑
i=1

2(n− i+ 1)− 1

n

(
1− x[i]

)
=

= 1− µ(x)− 1

n

n∑
i=1

(
2− 2i− 1

n

) (
1− x[i]

)
=

= 1− µ(x)− 1

n

n∑
i=1

2
(
1− x[i]

)
+

1

n

n∑
i=1

2i− 1

n

(
1− x[i]

)
=

= 1− µ(x)− 2 + 2µ(x) + 1− 1

n

n∑
i=1

2i− 1

n
x[i] =

= µ(x)− 1

n

n∑
i=1

2i− 1

n
x[i] = GA(x),

where we have used that
n∑
i=1

2i− 1

n
= n.

Remark 16 Since WG(1−x) = µ(1−x)−GA(1−x) = 1− µ(x)−GA(x),
the dual Gini welfare function can be written as W ∗

G(x) = 1−WG(1− x) =
µ(x) +GA(x).

Proposition 13 The self-dual core of the Gini welfare function is the arith-
metic mean.

Proof: Taking into account Remark 16, we have

ŴG(x) =
WG(x) +W ∗

G(x)

2
=
µ(x)−GA(x) + µ(x) +GA(x)

2
= µ(x).

Proposition 14 The anti-self-dual remainder of the Gini welfare function is
minus the absolute Gini index.

Proof: Taking into account Remark 16, we have

W̃G(x) =
WG(x)−W ∗

G(x)

2
=
µ(x)−GA(x)− µ(x)−GA(x)

2
= −GA(x).
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Remark 17 The Gini welfare function can be decomposed as

WG(x) = µ(x)−GA(x),

whereas the decomposition of the Gini illfare function is

LG(y) = µ(y) +GA(y).

In this case the absolute Gini index takes part as the inequality term in the
two sides. In fact the absolute Gini index measures equally the inequality of
achievements and shortfalls.

Notice that the above decompositions were also obtained in Remarks 5 and 6.

4.2 The dual decomposition of the Bonferroni and De Vergottini welfare and
illfare functions

Proposition 15 The duality relation between the absolute Bonferroni and the
absolute De Vergottini inequality indices is expressed by

BA(1− x) = VA(x) and VA(1− x) = BA(x),

for every x ∈ [0, 1]n

Proof: The derivation is as follows:

BA(1− x) = µ(1− x)− 1

n

n∑
i=1

mi(1− x) = (1− µ(x))− 1

n

n∑
i=1

(1−Mi(x)) =

= 1− µ(x)− 1 +
1

n

n∑
i=1

Mi(x) = VA(x).

On the other hand, VA(1− x) = BA(1− (1− x)) = BA(x).

Remark 18 Since WB(1−x) = µ(1−x)−BA(1−x) = 1−µ(x)−VA(x), the
dual Bonferroni welfare function can be written as W ∗

B(x) = 1−WB(1−x) =
µ(x) + VA(x).

Proposition 16 The self-dual core and the anti-self-dual remainder of the
Bonferroni welfare function are given by

ŴB(x) = µ(x)− BA(x)− VA(x)

2
and W̃B(x) = −BA(x) + VA(x)

2
.
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Proof: Taking into account Remark 18, the derivations are as follows:

ŴB(x) =
WB(x) +W ∗

B(x)

2
=
µ(x)−BA(x) + µ(x) + VA(x)

2
=

= µ(x)− BA(x)− VA(x)

2
.

W̃B(x) =
WB(x)−W ∗

B(x)

2
=
µ(x)−BA(x)− µ(x)− VA(x)

2
=

= −BA(x) + VA(x)

2
.

Remark 19 The Bonferroni welfare function can be written as follows

WB(x) =

(
µ(x)− BA(x)− VA(x)

2

)
+

(
−BA(x) + VA(x)

2

)

and the Bonferroni illfare function as

LB(y) =

(
µ(y)− BA(y)− VA(y)

2

)
+

(
BA(y) + VA(y)

2

)
.

Consequently, the Bonferroni welfare and illfare functions can be decomposed
in terms of a central index and a consistent inequality index.

Remark 20 It is easy to see that the self-dual core and the anti-self-dual
remainder of the Bonferroni welfare function can be also expressed as

ŴB(x) =
n∑
i=1

vi + ui
2

x[i] and W̃B(x) =
n∑
i=1

vi − ui
2

x[i].

On the one hand, ŴB is a self-dual OWA operator with larger outer weights
and smaller inner weights. It is therefore not S-concave, which means that it
is not a welfare function. However, it can be considered as a self-dual central
index. On the other hand, W̃B is strictly S-convex (the coefficients of the x[i]

are decreasing) and invariant for translations (the coefficients of the x[i] have
zero sum). Then, it is an anti-self-dual (thus consistent) inequality index.
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Remark 21 Since

WV (1− x) = µ(1− x)− VA(1− x)

c
= 1− µ(x)− BA(x)

c
,

the dual normalized De Vergottini welfare function can be written as

W ∗
V

(x) = 1−WV (1− x) = µ(x) +
BA(x)

c
.

Proposition 17 The self-dual core and the anti-self-dual remainder of the
normalized De Vergottini welfare function are given by

ŴV (x) = µ(x) +
BA(x)− VA(x)

2 c
and W̃V (x) = −BA(x) + VA(x)

2 c
.

Proof: Taking into account Remark 21, the derivations are as follows:

ŴV (x) =
WV (x) +W ∗

V
(x)

2
=
µ(x)− 1

c
VA(x) + µ(x) + 1

c
BA(x)

2
=

= µ(x) +
BA(x)− VA(x)

2 c
.

W̃V (x) =
WV (x)−W ∗

V
(x)

2
=
µ(x)− 1

c
VA(x)− µ(x)− 1

c
BA(x)

2
=

= −BA(x) + VA(x)

2 c
.

Remark 22 The De Vergottini welfare function can be written as follows

WV (x) =

(
µ(x)− BA(x)− VA(x)

2c

)
+

(
−BA(x) + VA(x)

2c

)

and the Vergottini illfare function

LV (y) =

(
µ(y)− BA(y)− VA(y)

2c

)
+

(
BA(y) + VA(y)

2c

)
.

Consequently, the De Vergottini welfare and illfare functions can be decom-
posed in terms of a central index and a consistent inequality index.

Remark 23 Analogous statements to those provided in Remark 20 apply
for the self-dual core and the anti-self-dual remainder of the normalized De
Vergottini welfare function.
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It is worth noting the dual behavior of the decomposition components for
the Bonferroni and the normalized De Vergottini welfare functions. On the
one hand, the anti-self-dual remainders are equal but for the normalization
constant. The role played by the absolute Gini index in the anti-self-dual
remainder of the Gini welfare function is replaced now by an average of the
respective absolute indices. On the other hand, the components of the self-dual
cores are completely symmetric but, once again, the normalization constant
is present.

Finally, the dual decomposition of the Bonferroni and De Vergottini welfare
functions suggests the possibility of constructing an extended family of wel-
fare functions, with their associated self-dual central indices and anti-self-dual
(thus consistent) inequality indices. The idea is that of generalizing the con-
cepts of upper and lower averages involved in the construction of BA and VA by
means of generalized coefficients ui (positive increasing, unit sum) and vi (pos-
itive decreasing, unit sum), such that un−i+1 = vi as usual for i = 1, . . . , n.
The corresponding expressions for the generalized Bonferroni and De Vergot-
tini inequality indices would be again (the unchanged notation is meant to
emphasize the analogy with the classical construction)

BA(x) =
n∑
i=1

(1/n− ui)x[i] , VA(x) =
n∑
i=1

(vi − 1/n)x[i]

and therefore the generalized self-dual central index and anti-self-dual (thus
consistent) inequality index would be as before (Remarks 19 and 20), respec-
tively,

µ(x)−1

2
(BA(x)−VA(x)) =

n∑
i=1

vi + ui
2

x[i] ,
1

2
(BA(x)+VA(x)) =

n∑
i=1

vi − ui
2

x[i],

with corresponding expressions for the generalized welfare functions (choosing
the normalization in an appropriate way). This new families of central and
(consistent) inequality indices, which includes the classical Gini (linear coef-
ficients), Bonferroni, and De Vergottini classical constructions, is now being
investigated and will be the subject of a future publication.

5 An illustrative example

Imagine that we want to analyze the welfare due to employment in a society of
four individuals. Consider x = (0.35, 0.70, 0.90, 0.91) the distribution of the
employment duration rates. On the other hand, we could analyze the illfare
due to unemployment in the same society. The unemployment duration rate
distribution is y = 1−x = (0.65, 0.30, 0.10, 0.09), that represents the shortfall
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distribution. The corresponding means are µ(x) = 0.715 and µ(y) = 0.285,
respectively.

In this example we measure the social welfare/illfare according to the the Gini,
Bonferroni and normalized De Vergottini functions. Table 1 shows these values
and also the corresponding inequality values of employment and unemploy-
ment.

Table 1. Gini, Bonferroni and normalized De Vergottini welfare/illfare functions
and inequality measures

WG(x) WB(x) WV (x) LG(y) LB(y) LV (y)

0.598 0.560 0.627 0.403 0.440 0.373

GA(x) BA(x) V A(x) GA(y) BA(y) V A(y)

0.118 0.155 0.088 0.118 0.127 0.107

As shown in this table, all the employment welfare functions can be decom-
posed as the subtraction of the mean and the inequality of employment rates.
Nevertheless, only the Gini unemployment illfare function allows a decompo-
sition as the sum of the mean and the inequality of unemployment. This is not
true for the Bonferroni and the normalized De Vergottini unemployment illfare
functions. In these cases, the inequality of employment and unemployment do
not coincide.

Table 2 shows the dual decomposition of the welfare and ilffare functions asso-
ciated with Gini, Bonferroni and normalized De Vergottini indices proposed in
this paper. As we have proved, the two terms can be interpreted as a weighted
mean and an inequality term. The particularity of this proposal is that the in-
equality terms measure equally the inequality of achievements and shortfalls.
In this case, the employment welfare (illfare) functions can be decomposed as
the subtraction (sum) of a weighted mean of the rate of employment (unem-
ployment) and an inequality measure of employment (unemployment).

Table 2. The dual decomposition of the Gini, Bonferroni and normalized De
Vergottini welfare and illfare functions

ŴG(x) W̃G(x) ŴB(x) W̃B(x) ŴV (x) W̃V (x)

0.715 −0.118 0.701 −0.141 0.725 −0.098

L̂G(y) L̃G(y) L̂B(y) L̃B(y) L̂V (y) L̃V (y)

0.285 0.118 0.299 0.141 0.275 0.098
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6 Concluding remarks

We have examined the dual decomposition of the OWA welfare functions as-
sociated with the Gini, Bonferroni, and De Vergottini indices in the standard
framework of aggregation functions on the [0, 1]n domain. Variables bounded
on the [0, 1]n domain can encode achievements or shortfalls. In this way a
complementary illfare framework can be introduced. We have shown that the
complementary illfare functions are also OWA operators and the dual decom-
position has allowed us to identify and establish the relationship between the
respective inequality and mean terms.

In addition, the dual decomposition highlights the distinct and complementary
nature of the three classical inequality indices. In the Gini index case, the
central result is GA(1− x) = GA(x) and the dual decomposition reproduces
in a natural way the canonical construction of the associated welfare function.
In the Bonferroni and De Vergottini cases, the central result is BA(1− x) =
VA(x) (and vice-versa) and the natural dual relationship between the two
indices emerges very clearly in the way the self-dual cores and anti-self-dual
remainders of the two welfare functions combine the two inequality indices.
An appropriate normalization of the De Vergottini index is considered.

Finally, the orness of the welfare functions associated with three classical in-
equality indices has been computed, obtaining values in the (0, 1/2) inter-
val due to the common emphasis on poorer incomes. In the large population
asymptotic limit, the orness values of the Gini (1/3), Bonferroni (1/4), and De
Vergottini (1/2) welfare functions recall the character of the associated clas-
sical inequality indices and constitute further evidence of the duality pattern
illustrated by the dual decomposition.
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Properties, classes and construction methods, in: T. Calvo, G. Mayor, R. Mesiar
(Eds.), Aggregation Operators: New Trends and Applications, Physica-Verlag,
Heidelberg, 2002, pp. 3–104.

[11] S.R. Chakravarty, A deprivation-based axiomatic characterization of the
absolute Bonferroni index of inequality, Journal of Economic Inequality 5 (2007)
339–351.

[12] S.R. Chakravarty, Inequality, Polarization and Poverty: Advances in
Distributional Analysis, Springer-Verlag, New York, 2009.

[13] S.R. Chakravarty, P. Muliere, Welfare indicators: a review and new perspectives.
Measurement of inequality, Metron-International Journal of Statistics 61 (2003)
457–497.

[14] PM. Clarke, UG. Gerdtham, M. Johannesson, K. Bingefors, L. Smith, On the
measurement of relative and absolute income-related health inequality, Social
Science and Medicine 55 (2002) 1923–1928.

[15] M. De Vergottini, Sugli indici di concentrazione, Statistica 10 (1940) 445–454.

34



[16] D. Donaldson, J. Weymark, A single-parameter generalization of the Gini
indices of inequality, Journal of Economic Theory 22 (1980) 67–86.

[17] D. Donaldson, J. Weymark, Ethically flexible Gini indices for income
distributions in the continuum, Journal of Economic Theory 29 (1983) 353–
358.

[18] R. Dorfman, A formula for the Gini coefficient, The Review of Economics and
Statistics 61 (1979) 146–149.

[19] U. Ebert, Measurement of inequality: an attempt at unification and
generalization, Social Choice and Welfare 5 (1988) 147–169.

[20] G. Erreygers, Can a single indicator measure both attainment and shortfall
inequality?, Journal of Health Economics 28 (2008) 885–893.

[21] D. Filev, R.R. Yager, Analytic properties of maximum entropy OWA operators,
Information Sciences 85 (1995) 11–27.

[22] J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision
Support, Kluwer Academic Publishers, Dordrecht, 1994.
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