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Abstract: A system of additive equations was developed to predict whole-tree volume and the different
components of Corsican pine. In this work, the nonlinear seemingly unrelated regression (NSUR) approach,
which guarantees additivity in nonlinear equations, was evaluated. The effect of bark thickness on the accuracy
of the results for all tree components was also assessed. Data for 351 trees, ranging in age from 10 to 72 years,
were collected from 65 public and private sites. The volume estimates show average biases that range in absolute
values from 2.19 to 31.02 dm3 for whole-tree, from 1.41 to 27.31 dm3 for wood, and from 1.05 to 16.52 dm3

for bark volume components. Errors in volume predictions were relatively small, representing less than 3% of
the average observed wood volume and less than 6% of the average observed bark volume. This research showed
that satisfactory predictions can be obtained from forcing additivity using NSUR approach with a minimal
number of easily measurable tree variables, such as dbh and total height. FOR. SCI. 59(4):464–471.
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RAPIDLY RISING COSTS OF CONVENTIONAL FUELS

have caused a renewed interest in the use of wood
and bark residues for fuel. Accurate predictions

involving wood and bark products classified by merchant-
able sizes are a matter of interest for forest managers.
Volume prediction to any merchantable limit has been
achieved by several methods, but the most widely used is to
define an equation describing the stem taper. Integration of
the taper equation from the ground to any height provides an
estimate of the merchantable volume to that height. Stem
form and the variation of taper have been widely studied
through the development of taper functions by many forest
researchers throughout the world (e.g., Kozak 1988, Newn-
ham 1992, Daquitaine et al. 1999, Bi et al. 2010). To
develop a taper function, pairs of data of diameter and
height along the stem are required. In most cases, stem taper
functions are referenced to dbh and predict the diameter
inside bark (Garber and Maguire 2003, Sharma and Zhang
2004, Calama and Montero 2006), although rarely they
predict the diameter over bark (Rojo et al. 2005, Trincado
and Burkhart 2006, Crecente-Campo et al. 2009, Sevillano-
Marco et al. 2009) and bark thickness (Laasasenaho et al.
2005).

Taper equations have been developed in Spain since the
1970s. A considerable number of taper equations have been
developed for particular regions and species, most of them
for softwoods (e.g., Rojo et al. 2005, Crecente-Campo et al.
2009, Sevillano-Marco et al. 2009) but also some for hard-
woods (e.g., Barrio-Anta et al. 2007, Rodríguez et al. 2010).

European black pine (Pinus nigra Arnold) forests, com-

prising a variety of subspecies, generally occupy medium
and high mountain zones, often on substrates rich in mag-
nesium. Populations of black pine extend over more than
3.5 million ha from western North Africa through southern
Europe to Asia Minor. Black pine is one of the major
species used for afforestation of arid and rocky terrain in the
sub-Mediterranean region (Isajev et al. 2004). Corsican pine
(Pinus nigra subsp. laricio [Poir.] Maire) is an important
subspecies for sandy soils and drier coastal areas. This
conifer is native to Corsica in France and Calabria and to
Sicily in southern Italy, and it is one of the main tree species
used in plantations in the Basque Country (northern Spain)
because of its extremely fast growth and its mechanical
properties for lumber. According to the Spanish government
(Ministerio de Agricultura 2007), in the Basque Country,
there are approximately 325,000 ha of forest, of which
12,728 are occupied by Corsican pine. In addition, Corsican
pine annual harvest (23,300 m3) represents 4% of the total
harvested volume of wood in the Basque Country (Minis-
terio de Agricultura 2007).

At present, a stem taper function for Corsican pine plan-
tations is available for France (Meredieu et al. 1999). This
equation predicts the diameter over bark along the stem, but
it cannot estimate the volume of the bark, which is becom-
ing increasingly important for enhancing forest bioenergy.
This model is incorporated on the Capsis (AMAP 2012)
PNN module, a distance-independent tree growth model for
pure even-aged stands of black pine (Dreyfus 1993).

In the present study, an additive system of taper equa-
tions for Corsican pine is developed. To conduct this study,
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a data set from northern Spain is used. This system requires
values for only two variables for each tree: dbh and total
height (th). Three interrelated equations constitute the sys-
tem: a stem taper function to predict diameter over bark, a
taper equation to predict diameter inside bark, and a bark
curve to predict double-bark thickness from the ground to
any height of the tree.

Materials and Methods
Study Area and Data Collection

Data from 65 public and private forests in the Basque
Country region in northern Spain, situated between the
longitude coordinates 03°26�49� W and 01°46�37� W and
the latitude coordinates 43°26�56� N and 42°37�19� N, were
used. A total of 351 Corsican pines were selected for
destructive sampling according to the protocol of Garber
and Maguire (2003). Before felling, three attributes were
recorded for each jth tree: dbh, dbhj (to the nearest 0.1 cm);
total tree height, hj (to the nearest 0.01 m); and height to the
lowest living branch, hlbj (to the nearest 0.01 m). Each jth
tree was felled, minimizing stem breakage. A tape measure
was stretched along the bole from the base to the tree top.
Total height from the base of the stump to the top of the tree
was recorded with a laser hypsometer. The tree was divided
into sections, and thin disks were removed for diameter
measurements at the following ith heights (hi): ground level,
80 cm above the ground level, breast height, and a height
midway between every other whorl pair above breast height
(1–2 m intervals). For each disk, height (hi, to the nearest
0.01 m), diameter over bark (diameter outside barkij, to the
nearest 0.1 cm), and diameter inside bark (diameter inside
barkij, to the nearest 0.1 cm) were measured in two opposite
positions, and double-bark thickness (dbtij) was estimated
according to this formula: dbtij � diameter outside barkij �
diameter inside barkij. A total of 3,397 disks were cut,
averaging 3–17 disks per tree (Table 1).

Volume Component Estimation: Stem Taper
Function

Three tree components (w � wood; b � bark; and wt �
whole tree) were considered. To obtain an accurate volume
prediction for each component, several methods can be
used, usually involving the use of volume ratio and stem
taper equations. In this case, a stem taper function analysis
was carried out. A taper equation describes the mathemat-
ical relation between tree height and the stem diameter at
that height. It is thus possible to calculate the diameter, for
any component, at any arbitrary height. The model Stud
described by Daquitaine et al. (1999) was selected for
evaluation because it is robust against heteroscedasticity,
and it is flexible to capture the variations in the stem form
(Lizarralde 2008, Cabanillas 2010, Rodríguez et al. 2010,
Fonweban et al. 2012). This is a variable-exponent taper
equation that describes the stem shape with a changing
exponent from ground to top. This model is basically an
allometric function with the following formulation: dijk �
u(hij /h)q, where dijk is the ith diameter measurement of the
kth component (diameter outside bark, diameter inside bark,
and dbt) for the jth tree at any height (hij), u is an exponen-
tial function that describes the butt region, and q is the
exponent term describing the tree form. As suggested in
several studies, it is advantageous to incorporate some stem
form surrogate into taper models, typically a diameter-
height ratio, height-diameter ratio, height to the crown
base (hcb), or crown ratio (Kozak 1988, Newnham 1992).
We evaluated which of these variables were correlated
with the estimated parameters of the model, and we ex-
panded the original model by incorporating some of them.
In any case, height to the crown base (hcb) was not signif-
icant, so the model only included height-diameter ratio. The
mathematical formulation of the Stud model is as follows
(Equation 1)

�1 � �2�1 � �hij /hj��

dijk � �1 � �3 � e��4��hij /hj�� � �5 � �1 � �hij /hj�� (1)

where �1 � �10 � �11 � (hj /dbhj); �5 � �50 � �51 � Zj, dijk is
the ith diameter measurement of the kth component (diam-
eter outside bark, diameter inside bark, and dbt) for the jth
tree at any height (hij), Zj (cm) is the reference breast height
measure (dbh, dibh, or dbtbh for diameter outside bark,
diameter inside bark, and dbt predictions, respectively) for
the jth tree, and �i represents the parameters to estimate; �10

and �11 control the upper part of the curve, �2 controls the
middle part, �3 is the size of the buttress, �4 is the length of
the stem affected by the buttress, and �50 and �51 explain the
diameter at ground level without the buttress.

Diameter predictions based on stem taper functions, for
different tree components, depend on the reference mea-
surement at breast height (i.e., diameter inside bark predic-
tions depend on the diameter inside bark at breast height).
Moreover, in standing trees, diameter inside bark is gener-
ally calculated by subtracting the double-bark thickness
(dbt) on the diameter over bark (diameter outside bark; i.e.,

Table 1. Mean, maximum, minimum, and SD for tree char-
acteristics.

Variable Mean Maximum Minimum SD

disks � tree�1 8.5 17.0 3.0 2.7
dbh (cm) 22.9 52.4 8.5 8.1
dibh (cm) 19.4 45.4 7.5 7.0
dbtbh (cm) 9.0 1.0 1.4 3.5
dob (cm) 20.8 54.6 7.9 8.2
dib (cm) 17.9 45.6 7.1 7.0
dbt (cm) 2.9 9.8 0.6 1.5
h (m) 14.4 29.8 4.1 5.8
hcb (m) 6.1 18.2 0.5 4.3
hd � h � dbh�1 63.1 110.4 32.0 15.5
age (yr) 33.2 72.0 10.0 15.4
v (m3) 0.379 2.568 0.013 0.422
ibv (m3) 0.290 2.063 0.010 0.330
bv (m3) 0.089 0.606 0.003 0.094

Sample size (n) � 351 trees; dibh, diameter inside bark at breast height;
dbtbh, double-bark thickness at breast height; h, total height; hcb, height
to the crown base; hd � h � dbh�1, slenderness coefficient; v, over bark
volume; ibv, inner bark volume; bv, bark volume.
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diameter inside bark � diameter outside bark � dbt). There-
fore, wood and bark volume estimations are based on bark-
thickness measurements, but bark-thickness measurements
are time-consuming and often imprecise, compromising
subsequent predictions. For this reason, in this article, two
ways for fitting the different stem taper functions for each
tree component are evaluated: case 1, in which, for each
component, the taper equation depends on its reference
breast height measurement (dbh, dibh, or dbtbh for diameter
outside bark, diameter inside bark, and dbt predictions,
respectively) and case 2, in which, for all components, the
taper functions only depend on the dbh. Thus, case 1 is a
priori a more accurate method but also more expensive,
whereas case 2 may represent significant cost savings in the
measurement of standing trees.

Because the database contains multiple observations for
each tree, it is reasonable to expect that the observations
within each tree are spatially correlated, which violates the
assumption of independent error terms. Spatial autocorrela-
tion measures the degree of how a phenomenon of interest
is correlated to itself in space (Cliff and Ord 1973). Positive
spatial autocorrelation (�i � 0) indicates that similar values
appear close to each other or as a cluster in space. Negative
spatial autocorrelation (�i 	 0) indicates that neighboring
values are dissimilar or, equivalently, that similar values are
dispersed. Null spatial autocorrelation indicates that the
spatial pattern is random. To overcome possible autocorre-
lation, for each tree component, the error term was modeled
using a continuous autoregressive error structure (Gregoire
et al. 1995). Models were fitted using the SAS/ETS
MODEL procedure (SAS Institute, Inc. 2010). To check
randomness, autocorrelation plots were evaluated by com-
puting autocorrelations for residual values at varying spatial
lags.

Procedures for Additivity on Nonlinear Taper
Equations

The property of additivity assures that regression func-
tions are consistent with each other. That is, if one tree
component is part of another component, it is logical to
expect the estimate of the part not to exceed the estimate of
the whole. In addition, if a component is defined as the sum
of two subcomponents, its regression estimate should equal
the sum of the regression estimates of the two subcompo-
nents. The problem of forcing additivity on a set of linear
tree biomass functions has been discussed since the 1970s
(Kozak 1970, Chiyenda and Kozak 1984, Cunia and Briggs
1985, Parresol 1999). According to Parresol (2001), there
are only two procedures to force additivity in nonlinear
equations: a simple combination approach and a nonlinear
joint-generalized regression with parameter restrictions. In
the first procedure, the over bark taper equation is defined as
the sum of the separately calculated inside bark taper equa-
tion and a double-bark function. The second procedure or
nonlinear seemingly unrelated regression (NSUR) approach
is more general and flexible than the first procedure (Par-
resol 2001). In this case, the errors in different equations
might be correlated and the efficiency of the estimation
might be improved by taking these cross-equation correla-

tions into account, using the NSUR procedure. As for or-
dinary least squares, the NSUR method assumes that all the
regressors are independent variables, but NSUR uses the
correlations among the errors in different equations to im-
prove the regression estimates (SAS Institute, Inc. 2010).
Therefore, a set of nonlinear regression functions are spec-
ified such that each component regression contains its own
independent variables, the total tree regression is a function
of all independent variables used, and the additivity is
ensured by setting constraints on the regression coefficients.
These two procedures have been successfully used with
different forest species (Carvalho and Parresol 2003, Bi et
al. 2010, Ruiz-Peinado et al. 2011).

If the errors in the different equations are correlated (the
normal situation for biomass and volume equations), the
NSUR procedure is preferable to the simple combination
approach (Parresol 2001, Bi et al. 2010) because seemingly
unrelated regression takes into account the contemporane-
ous correlations, which results in lower variance. Only the
NSUR procedure was evaluated in this work, and it was
fitted using the SAS/ETS MODEL procedure (SAS Insti-
tute, Inc. 2010).

Model Evaluation and Validation

Two NSUR fits were performed (case 1 and case 2). The
estimates of each tree component after the two different fits
were compared using both numerical and graphical analyses
(Huang et al. 2003). Two statistical criteria obtained from
the residuals were examined: root mean square error
(RMSE; Equation 2) and the coefficient of determination
for nonlinear regression (pseudo-R2; Equation 3).

RMSE �
��

i�1

n

�Yik � Y� i�
2

n � p
(2)

R2 � 1 �

�
i�1

n

�Yik � Ŷik�
2

�
i�1

n

�Yik � Y� i�
2

(3)

where Yik and Ŷik are the ith observed and predicted values
of diameter for component k, Y� k is the mean of n observed
values for the same component, and p is the number of
model parameters.

The taper functions were also assessed using box plots
representing diameter residuals (diameter outside bark, di-
ameter inside bark, and dbt) by relative height along the
stem (i.e., 5, 15, 25, and so on, up to 95%). The same was
done for volume residuals in each tree component by diam-
eter class. These graphs, drawn by relative height or dbh
classes, are important to show areas or tree size classes for
which the functions provide especially poor or good predic-
tions (Kozak and Smith 1993, Crecente-Campo et al. 2009).

Because an independent sample was not available to test
the quality of predictions, an n-way cross-validation (i.e., a
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first-order jackknife approach) of each model was per-
formed, estimating the residual for one tree by excluding
that tree every time. This was then repeated for all trees in
the data set (351 times) and the RMSE of the estimate and
the model efficiency (MEF) (equivalent to the R2 of the
fitting phase) were calculated from these residuals. Al-
though this approach is not a real method of model valida-
tion (Huang et al. 2003), it has been used as an additional
criterion to select the best model (Myers 1990) while wait-
ing for a new independent data set to assess the true quality
of the predictions.

Results

The models were initially fitted without expanding the
error terms to account for autocorrelation, and, conse-
quently, strong autocorrelation among all models was ob-
served. A first-order continuous autoregressive error struc-
ture was required to model the inherent autocorrelation of
the hierarchical data. A similar trend in residuals of the taper

model as a function of the distance between the measure-
ments along the stem within the same tree was apparent in
all of the models analyzed. Autocorrelation plots of the
residuals obtained from each tree component in case 2 are
shown in Figure 1.

All the estimated parameters were significant at P 	 0.05
(Table 2). The spatial autocorrelation coefficients (�i) for
each fit were positive and highly significant, indicating
strong spatial autocorrelation in the dependent variables.
With examination of the six combinations of the residuals
(two fits and three tree components), in all cases the as-
sumption of the homoscedasticity of the residues was sat-
isfied, i.e., their variances do not vary with the effects being
modeled (Figure 2). Only in the estimation of “dbt” (bottom
row) and especially in case 2 (right column) we found a
slight heteroscedasticity in the residual, but all cases indi-
cated a random pattern of residuals around 0. All the models
provided good data fits (Table 3), although, in the case of
wood and whole-tree components, they explained more than

Figure 1. Autocorrelation plots for additive stem diameter prediction on the tree com-
ponents (A. whole-tree; B. wood; C. bark), fitted without considering the autocorrelation
parameters (left column) and using a first-order continuous autoregressive error structure
(right column) for residuals obtained in case 2. Continuous lines represent the
95%-confidence region.
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98% of the total variance of the diameter, whereas the bark
component explained more than 90% of the total variance of
the dbt. As expected, taper functions depending on dbh for
all tree components and, in particular, in the dbt model,
produced worse predictions than taper equations, depending
on their reference breast height measurement. They enhance
these differences in cross-validation, for which differences
between cases are large, both in terms of RMSE (case 1 �
0.3884; case 2 � 0.6129) and MEF (case 1 � 0.9295; case

2 � 0.8245). The biggest RMSE was found in the whole-
tree prediction (RMSE � 0.855), whereas in the other
components, it was 0.836 and 0.455 for diameter inside bark
and dbt, respectively. In all fits, RMSE obtained in the
cross-validation phase (Table 3) was, on average, 1.253
times higher, ranging from 1.041 to 1.384 times, than those
obtained in the fitting phase.

The detailed error analysis on diameter and volume pre-
dictions showed a similar trend in all evaluated fits (Figure

Table 2. Parameter estimates for the models analyzed.

Case ED �10 �11 �2 �3 �4 �50 �51 �1

1 dib 0.78869
(0.0267)

0.00207
(0.0004)

0.35332
(0.0379)

0.17814
(0.0099)

19.62196
(1.8871)

1.81916
(0.1183)

0.91106
(0.0100)

0.88854
(0.0107)

dbt 0.29868
(0.0582)

�0.00709
(0.0008)

1.35200
(0.2512)

1.79852
(0.2039)

8.58929
(0.3205)

0.47981
(0.0295)

0.40563
(0.0343)

0.25390
(0.0220)

2 dib 0.76486
(0.0260)

0.00203
(0.0004)

0.31441
(0.0366)

0.16922
(0.0098)

20.14156
(2.0439)

1.48395
(0.1223)

0.78923
(0.0085)

0.89064
(0.0101)

dbt 0.65230
(0.1574)

�0.00822
(0.0025)

1.20140
(0.3012)

1.38421
(0.1520)

10.39340
(0.5586)

0.82077
(0.0536)

0.06728
(0.0053)

0.76061
(0.0145)

Approximate SEs appear in parentheses. ED, estimated diameter (dib, diameter inside bark; dbt, double-bark thickness); �i, parameters to estimate; �1,
spatial autocorrelation parameter.

Figure 2. Scatterplots of residuals versus predicted for the diameter outside bark (dob;
top row), diameter inside bark (dib; middle row), and dbt (bottom row) in each different
case (case 1 in the left column and case 2 in the right column).

Table 3. Goodness-of-fit statistics of the models analyzed.

Case

Fitting phase Cross-validation phase

RMSE R2 RMSE R2

dob dib dbt dob dib dbt dob dib dbt dob dib dbt

1 0.8548 0.8276 0.3736 0.9890 0.9859 0.9348 1.1064 1.0184 0.3884 0.9816 0.9786 0.9295
2 0.8470 0.8357 0.4550 0.9892 0.9856 0.9033 1.1141 1.1122 0.6129 0.9813 0.9745 0.8245

dob, diameter over bark; dib, diameter inside bark; dbt, double-bark thickness.
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3). The box plots of diameter residuals (diameter outside
bark, diameter inside bark, and dbt) against relative height
classes (Figure 3A) and residuals of the percentage volume
(whole tree, wood, and bark) against diameter classes (Fig-
ure 3B) did not show any clear systematic trend that could
show a deficient behavior of the models.

All models estimated tree component volumes well
across the sampled diameter classes. It should be noted that
the precision tends to decrease (higher variability) with
diameter increment, i.e., for the largest trees. The volume
estimates show average biases, in absolute values, that
range from 2.19 to 31.02 dm3 for whole-tree, from 1.41 to
27.31 dm3 for wood, and from 1.05 to 16.52 dm3 for bark
volume components. In all cases, the volume was overesti-
mated in small trees (dbh 	 25 cm) and was underestimated
in the largest trees (dbh � 45 cm). In both cases, these
biases were small, representing less than 3% of the average
observed wood volume and less than 6% of the average
observed bark volume.

Discussion
Additive stem taper functions are not common world-

wide. This type of function improves stem estimation and

allows better decisions in operational forestry in a wide
array of management objectives (bioenergy, timber, and
others). Different additive stem taper functions were fitted
for black pine trees in the Basque Country (northern Spain).
All models were fitted by using a first-order continuous
autoregressive error structure to deal with the problem of
autocorrelation associated with the use of repeated measures
within an individual tree. According to West et al. (1984),
although accounting for autocorrelation does not improve
the predictive ability of the model, it prevents underestima-
tion of the covariance matrix of the parameters and im-
proves interpretation of the statistical properties.

The Stud model was found to represent stem shape quite
accurately, especially in the high-volume butt region. Ac-
cording to Cao et al. (1980) this is an important feature in
most variable exponent models. The model evaluated cap-
tures the variations of the tree accurately for the three tree
components; bark, wood, and whole-tree. Finally, the nu-
merical integration of the taper function yields a reliable
mean prediction for the different volumes of a particular
tree.

In terms of accuracy, the proposed additive volume sys-
tem demonstrated RMSE values (approximately 0.85 for

Figure 3. A. Box plots of diameter residuals (y-axis, cm) against relative stem height classes (x-axis, percentage). B. Box plots of
volume residuals (y-axis, m3) against dbh classes (x-axis, cm) for the two analyzed cases (case 1 in black and case 2 in white) on the
three tree components analyzed (1 � diameter over bark, 2 � diameter inside bark, and 3 � dbt). The boxes represent the
interquartile ranges. The maximum and minimum diameter over bark prediction errors are represented by points, and the 5 and
95% are represented, respectively, by the upper and lower small horizontal lines crossing the vertical lines. The number of disks
for each relative stem height class is represented by n.
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diameter outside bark, 0.83 for diameter inside bark, and
0.40 for dbt) similar in range to those obtained for other
coniferous studies: 0.85 for diameter outside bark in radiata
pine (Sevillano-Marco et al. 2009), 1.09 for diameter inside
bark in lodgepole pine (Garber and Maguire 2003), 1.08 for
diameter inside bark in Ponderosa pine (Garber and
Maguire 2003), and 0.77 (ranging from 0.68 to 0.86) for
diameter inside bark in Jack pine (Sharma and Zhang 2004).
For typical species in the Mediterranean area, the RMSE
obtained ranged from 1.47 to 1.71; 1.710 for diameter inside
bark in stone pine (Calama and Montero 2006), 1.511 for
diameter outside bark in Aleppo pine (Cabanillas 2010), and
1.479 for diameter outside bark in maritime pine (Rojo et al.
2005). These large RMSE values are probably due to the
high variability of bark thickness, which is primarily con-
trolled by environmental and genetic factors. Despite the
practical importance of bark thickness (e.g., bioenergy as-
sessment and nutrient studies), models predicting it at dif-
ferent relative stem heights are not common. For example,
Laasasenaho et al. (2005) obtained an error in bark volume
that varied from 5.27 to 7.79 dm3 for Norway spruce, and
they proposed combining the bark model with existing stem
curve models to calculate stem volume, both under and over
bark, for any arbitrary portion of the stem.

The pattern of the plots of d residuals (inside and over
bark) against relative height classes (Figure 3) is similar for
other species (Garber and Maguire 2003, Sharma and Zhang
2004, Rojo et al. 2005, Crecente-Campo et al. 2009). The
model tends to underestimate the diameters in the lower and
upper sections, whereas the midsection diameters are over-
estimated. In addition, for relative heights between 0 and
10% and 75 and 85%, both models showed larger SEs of the
estimates than at other height intervals. These relative
height classes may be associated with stem butt swell, in
which it is common to find them in other stem taper func-
tions (Jiang et al. 2005), and small diameter near the top of
the tree where they have low relevance for the subsequent
estimation of the volume. Because stem analysis was usu-
ally not performed at top diameter values smaller than 7 cm
and few measurements existed in the top sections, these
results should be considered carefully. However, because
the latter part of the stem is the least valuable and the part
that accumulates least volume, these results do not have a
great impact on the overall performance and applied use of
the models. For sections closer to the ground, both models
provided good estimates. Accurate predictions of diameters
of these sections are important because the base log is
particularly important from a commercial point of view. All
these statistics and plots show no clear advantage of case 1
(for each component the taper equation depends on its
reference breast height measurement) against the other.
However, case 2 (for all components the taper functions
only depend on the dbh) represents a significant time re-
duction in data collection.

In summary, this additive system appropriately described
the data and accurately predicted the volume for the three
tree components along the stem, showing an appropriate
distribution of the residuals and providing more than ac-
ceptable goodness-of-fit statistics.
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A merchantable volume system for Pinus sylvestris L. in the
major mountain ranges of Spain. Ann. For. Sci. 66:808–820.

CUNIA, T., AND R.D. BRIGGS. 1985. Forcing additivity of biomass
tables—Use of the generalized least-square method. Can. J.
For. Res. 15:23–28.

DAQUITAINE, R., L. SAINT-ANDRÉ, AND J.M. LEBAN. 1999. Prod-
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