

Universidad de Valladolid

Facultad de Ciencias

TRABAJO FIN DE GRADO

Grado en Física

Desarrollo de una base de datos de Pigmentos Históricos

mediante espectroscopía Raman y Colorimetría

Autora:

Lucía Canales Pascual

Tutores:

Javier Pinto Sanz Suset Barroso Solares A. Carmelo Prieto Colorado

Índice

А	bstra	ct	3
R	esum	en	4
С) bjetiv	70	5
1	Int	roducción	6
	1.1	Evolución histórica de los pigmentos	6
	1.2	Importancia del análisis Raman de los pigmentos	7
2	Fu	ndamento teórico	10
	2.1	Interacción radiación materia	10
	2.2	Dispersión inelástica: Raman Stokes y anti-Stokes	13
	2.3	Reglas de selección	14
	2.4	Información espectros Raman	17
3	Ma	teriales y métodos experimentales	20
	3.1	Materiales empleados	20
	3.2	Métodos experimentales	23
	3.2.1	. Espectroscopía Raman	23
	3.2.2	. Colorimetría	27
4	Re	sultados experimentales	29
	4.1	Pigmentos blancos	29
	4.2	Pigmentos amarillos	32
	4.3	Pigmentos naranjas	36
	4.4	Pigmentos rojos	37
	4.5	Pigmentos marrones - ocres	42
	4.6	Pigmentos negros	45
	4.7	Pigmentos verdes	47
	4.8	Pigmentos azules	50
	4.9	Pigmentos violetas	52
5	Co	nclusiones	55
	5.1	Conclusiones generales	55
	5.2	Conclusiones personales	56
6	Re	ferencias	57
7	Lis	ta de figuras	61

8 Lista de tablas	64
Anexo espectros Raman: pigmentos blancos	65
Anexo espectros Raman: pigmentos amarillos	68
Anexo espectros Raman: pigmentos naranjas	71
Anexo espectros Raman: pigmentos rojos	72
Anexo espectros Raman: pigmentos marrones-ocres	76
Anexo espectros Raman: pigmentos negros	79
Anexo espectros Raman: pigmentos verdes	81
Anexo espectros Raman: pigmentos azules	83
Anexo espectros Raman: pigmentos violetas	84

Abstract

Pigments have come along human evolution through history. Until the arrival of the chemical revolution at the beginning of the XVIII century, they were mainly made of minerals and semi-precious stones. Through the emergence of new compounds, panorama drastically changed as newcomers pigments broke into colour palettes. Therefore, as it can be assessed, pigments depended on scientific development closely linked to social, economic and artistic context. Consequently, its analysis can disclose crucial information for a better understanding of an artist and its work.

This project proposes the elaboration of a historical pigment database to create a helpful reference tool for future research. To this effect, a total amount of 65 pigments will be analysed using Raman spectroscopy and colorimetric techniques. Among the major benefits of these two techniques, their non-destructive and *in situ* character stand out. The studied pigments include the historically famous ones: White Lead, Titanium White, Minium, Cinnabar, Chrome Yellow, or Ultramarine Blue.

Keywords: Raman spectroscopy, colorimetry, historical pigments, database

Resumen

Los pigmentos han acompañado a la evolución del ser humano a lo largo de la historia. Hasta la llegada de la revolución química de principios del siglo XVIII, estaban elaborados a base de minerales o piedras semi preciosas. Con la aparición de nuevos compuestos, el panorama cambió totalmente y nuevos pigmentos irrumpieron en las paletas de los artistas. Por tanto, se puede ver cómo los pigmentos dependían del desarrollo científico vinculado al contexto social, económico y artístico del momento, por lo que analizarlos puede desvelar mucha información crucial sobre una obra y su autor.

En este trabajo se propone la elaboración de una base de datos de pigmentos históricos que pueda usarse como herramienta de referencia para futuros trabajos de investigación. Para ello se estudiarán un total de 65 pigmentos mediante la espectroscopía Raman y colorimetría. Entre las grandes ventajas que presentan estas dos técnicas están su carácter no destructivo y su capacidad de ser utilizadas *in situ*. Dentro de los pigmentos analizados se encuentran los históricamente conocidos: Albayalde, Blanco de Titanio, Minio, Cinabrio, Amarillo de Cromo o Azul Ultramar.

Palabras clave: espectroscopía Raman, colorimetría, pigmentos históricos, base de datos

Objetivo

La espectroscopía Raman es una poderosa técnica para el análisis de muestras de patrimonio histórico debido a su rapidez, carácter no destructivo y capacidad de realizar análisis *in situ*. Sin embargo, a pesar de sus grandes ventajas, se enfrenta en ocasiones a problemas de tratamiento de datos e interpretación de resultados.

La principal dificultad es la falta de bases de datos específicas o completas y de acceso abierto [1] para cotejar los espectros obtenidos e identificar los compuestos estudiados. Esta deficiencia ralentiza la investigación e implica la necesidad de buscar y consultar una gran cantidad de material bibliográfico distinto. Aunque es cierto que la situación ha mejorado en los últimos años debido a la publicación de amplias recopilaciones espectroscópicas de pigmentos orgánicos y de origen mineral [2] o de pigmentos sintéticos [3], todavía es necesario subsanar esta carencia.

De ahí que el objetivo de este trabajo sea crear una amplia biblioteca de referencia de pigmentos históricos, tanto orgánicos como inorgánicos, que pueda servir como herramienta para futuros trabajos de investigación. La recopilación estará compuesta por los espectros Raman de los pigmentos, acompañados de sus datos más relevantes como la composición química, las coordenadas RGB e, incluso, un breve resumen de su uso a lo largo de la historia.

1 Introducción

1.1 Evolución histórica de los pigmentos

La historia de los pigmentos comienza hace más de 40.000 años cuando el ser humano, movido por la inquietud de expresarse artísticamente, los empleó en las primeras pinturas rupestres [4]. A partir de ese momento, se inicia su búsqueda que abarca desde de los primeros pigmentos disponibles al alcance de la mano hasta el amplio rango de colores sintéticos ofertado hoy en día.

Los primeros pigmentos empleados eran fáciles de obtener y su origen era mineral o biológico, como los ocres, los óxidos de hierro o el carbón vegetal [5]. A medida que pasaron los siglos la paleta de colores fue aumentando paulatinamente, aunque estaba marcada por la escasez de tonos azules, morados o verdes.

Durante mucho tiempo, el azul más empleado fue el Azul Ultramar, introducido en Europa durante el siglo XIII a través del comercio [6]. Se podía obtener a través de la piedra semipreciosa Lapislázuli [7]. Su difícil obtención hizo que el precio fuera muy elevado, por lo que su uso estuvo limitado a las clases altas de la sociedad e incluso adquirió un significado simbólico importante en la iconografía religiosa (se reservó para decorar imágenes de Cristo y de la Virgen). En la Figura 1 se observa *La virgen de la granada*, obra de 1426 de Fra Angelico, donde se empleó el Lapislázuli para dar color y dotar de un significado místico al manto de la Virgen.

Figura 1: "La virgen de la granada" (1426) obra de Fra Angelico [8].

Bastante análogo fue el uso del color morado ya que el único color púrpura disponible era el Púrpura de Tiro obtenido a partir de la mucosa del caracol *Murex brandaris* [9].

La dificultad en la obtención y disponibilidad de los pigmentos cambió radicalmente con la llegada de la revolución industrial, a finales del siglo XVIII y principios del XIX. El desarrollo de la industria química y la expansión de la industria metalúrgica introdujeron una nueva gama de pigmentos fabricados a partir de materiales inorgánicos sintéticos como Azul de Cobalto, Amarillo de Cromo, Verde Esmeralda y Blanco de Zinc [9].

De esta forma se pudo generalizar el uso de ciertos pigmentos como el Azul Ultramar, gracias a Guimet que en 1826 descubrió el Azul Ultramar sintético [6] y a Mauve que en 1856 hizo lo mismo con el Púrpura [3]. Todos estos hallazgos provocaron que no solo se abarataran y se democratizara su uso, sino que su disponibilidad dejó de estar sujeta al comercio y a la situación económica del país [10]. No por ello el camino del descubrimiento de nuevos pigmentos fue sencillo. A menudo se sintetizaban nuevos colores a partir de elementos tóxicos que pocos años después se retiraban. Este fue el caso del Verde de Scheele, sintetizado por primera vez por Carl Wilhelm Scheele en 1775 [11], que por su gran cantidad de arsénico provocó que apenas un siglo después desapareciera del mercado.

Durante el siglo XX se continuaron sintetizando nuevos pigmentos, como el Azul de Ftalocianina en 1935 [12], y se siguieron retirando otros por su alta toxicidad, como el Bermellón, de alto contenido en mercurio, sustituido por el Rojo de Cadmio. Hoy en día casi la totalidad de los pigmentos empleados son de origen sintético debido a sus numerosas ventajas: son más estables químicamente, lo que garantiza su buena conservación en el tiempo [13], su descripción mediante códigos de colores es mucho más precisa y, sobre todo, son mucho más asequibles.

1.2 Importancia del análisis Raman de los pigmentos

Como se acaba de exponer, la evolución de los pigmentos a lo largo de la historia ha sido un proceso complejo y laborioso ligado al contexto social, económico o histórico del momento. Por ello, el estudio de los materiales pictóricos de un cuadro puede revelar información vital para la comprensión de la obra y del artista. De hecho, se puede caracterizar de manera precisa la paleta de colores usada por un artista y sus discípulos [14], conocer si se empleaban pigmentos puros o mezclas, e incluso saber si el resultado final es consecuencia de aplicar varias capas de diferentes pigmentos o de usar el mismo pigmento varias veces cambiando el tamaño de grano [13].

Un estudio que ilustra el potencial de la técnica Raman fue el análisis realizado a las obras del pintor Diego Velázquez [15]. Los resultados concluyeron que la variedad de pigmentos usada era muy reducida, y que, a partir de mezclas de colores era capaz de reproducir todo el espectro cromático. Por ejemplo, los tonos verdes los conseguía mezclando el mineral Azurita con pigmentos amarillos, en contraste con otros pintores coetáneos, como Zurbarán o Murillo, quienes sí que incorporaban el Verdegrís o el Verde Malaquita a sus paletas. Además, el estudio reveló la simplicidad de su técnica pictórica.

Desde este punto de vista el análisis de los pigmentos es un medio para acreditar la autenticidad de la obra de arte, ya que se puede determinar con bastante fiabilidad el autor, la fecha y la procedencia geográfica de la obra [16]. De esta manera se pueden detectar posibles falsificaciones o restauraciones no notificadas.

Hay numerosos ejemplos donde el análisis científico llevó a identificar falsificaciones, uno de ellos fue el estudio de la obra *Nude woman reclining* (Figura 2) del pintor ruso Marc Chagall fechada en 1910 [12]. Tras analizar los pigmentos se descubrió la presencia del Azul y Verde de Ftalocianina, pigmentos que se sintetizaron por primera vez en 1936 y en 1938, respectivamente. Este anacronismo demostró sin lugar a duda que la obra era una falsificación.

Figura 2: "Nude woman reclining" (1910) [12].

En otro aspecto clave donde es vital el examen científico es en la conservación y la restauración de las obras artísticas. Conocer la composición de los materiales empleados es indispensable para decidir qué técnicas de mantenimiento se adaptan mejor [1,17] y para saber cómo distintos parámetros como la temperatura, humedad o exposición a luz pueden afectar a la pieza [13]. Asimismo, a la hora de elegir los materiales para efectuar la restauración es fundamental conocer la composición química de los originales para evitar generar una gran alteración en la obra original [18].

Un curioso caso donde la espectroscopía Raman aportó información sobre la degradación de una obra con el tiempo fue en el estudio realizado por el Instituto de Arte de Chicago sobre la obra *Madame Leon Clapisson* de Renoir [19]. En el proceso de restauración se descubrió cómo la parte del fondo del retrato, que había estado en contacto con el marco del cuadro, y que, por lo tanto, no había estado expuesto a la luz tenía un color Rojo Carmín, mientras que, el resto tenía un tono grisáceo oscuro. Es decir, todo apuntaba a que el pigmento se había degradado con tiempo y había perdido su color original. La espectroscopía Raman de las franjas rojas determinó que el pigmento empleado era de procedencia orgánica elaborado a partir de la cochinilla. Este tipo de colorantes naturales se basan en la antroquinona, una molécula fotosensible que se degrada con el paso del tiempo.

El análisis confirmó la suposición: el color original del cuadro tenía un tono rojo mucho más vibrante que el que se puede observar en la actualidad. Mediante un software informático se pudo reconstruir el aspecto original de la obra. En la Figura 3 se observa el cuadro en la actualidad (izquierda) y la recreación de su aspecto original (derecha).

Figura 3: "Madame Leon Clapisson" (1883) pintura de Pierre-August Renoir [20]. A la izquierda está una imagen del aspecto real del cuadro a día de hoy, y a la derecha se muestra una recreación digital del aspecto primigenio de la obra. Reproducido de Instituto de Arte de Chicago (CC0).

El análisis pictórico se puede realizar empleando infinidad de técnicas y procedimientos, pero desde las últimas décadas la espectroscopía Raman ha ido ganando cada vez más importancia. Su creciente uso se debe a múltiples factores como rapidez en la toma de medidas y alta eficacia. Sin embargo, es su carácter no invasivo lo que le ha convertido en una técnica espectroscópica líder [21].

Al tratarse de una técnica no destructiva, las muestras usadas se conservan por lo que pueden ser analizadas de nuevo para obtener unos resultados más fiables o pueden usarse para futuras investigaciones [15]. Además, como la muestra no necesita ningún tipo de preparación, existe la posibilidad de realizar la toma de medidas sin contacto, e incluso, a través de un material protector como un polímero o un cristal [22]. El no necesitar consumir muestras, junto con la posibilidad de la toma de medidas sin contacto son dos grandes ventajas en el campo del estudio del patrimonio histórico donde en la mayoría de los casos no está permitido o es desaconsejable la alteración del objeto analizado [14,23].

Asimismo, los nuevos avances tecnológicos y comerciales están haciendo posible que los equipos Raman sean cada vez más ligeros y portátiles, permitiendo así el análisis *in situ* de las obras [24]. En muchas ocasiones esta opción facilita la investigación ya que el transporte de las obras suele ser bastante complejo, pero en otros casos es determinante porque su traslado a un laboratorio resulta inviable. Un caso que ejemplifica esta situación fue el estudio realizado sobre las pinturas del ábside de la iglesia de Santiago Apóstol de la localidad vallisoletana de Alcazarén [25]. En este caso los investigadores se tuvieron que desplazar a la propia iglesia y analizar las pinturas mediante equipos Raman portátiles.

Otra gran ventaja de esta técnica es su alto nivel de exactitud dotándola de la capacidad de distinguir pigmentos inmersos en mezclas complejas [17], o incluso de dar información estructural de los compuestos orgánicos o inorgánicos caracterizados. Así, mediante la espectroscopía Raman es posible diferenciar los minerales anatasa o rutilo [24] a pesar de que ambos tienen idéntica composición química al ser distintas formas minerales del dióxido de titanio (TiO₂).

2 Fundamento teórico

Cuando la luz interacciona con la materia, no siempre se comporta de la misma manera, se puede absorber, transmitir, reflejar o dispersar [26]. Es de este último fenómeno, el menos frecuente de todos, del que hace uso la espectroscopía Raman.

La dispersión a su vez se clasifica en elástica, si la energía se conserva (dispersión Rayleigh), o inelástica, si la energía de la radiación incidente difiere de la dispersada (dispersión Raman). La dispersión Raman es mucho menos frecuente que la Rayleigh, tan solo ocurre en 1 de cada 10^5 fotones. Su poca frecuencia provocó que no se conociera experimentalmente hasta 1928 cuando el físico indio Chandrasekhara Venkata Raman la descubrió [27]. Este hallazgo llegó casi 60 años después del descubrimiento de la dispersión Rayleigh y fue tan importante que apenas dos años después, en 1930, Raman recibió el premio Nobel por su investigación sobre la dispersión de la luz [27].

A pesar de la importancia del descubrimiento, la espectroscopía Raman no tuvo aplicación inmediata debido a una falta de desarrollo tecnológico que imposibilitaba unas buenas condiciones experimentales. La falta de avances en la instrumentación hacía que la señal Raman detectada fuera a menudo muy débil y tuviera mucho ruido no deseado. Fue a partir de la década de los años 60, con el descubrimiento de la tecnología láser [28], cuando esta técnica comenzó a desarrollarse a gran velocidad. Un hito en la evolución de la espectroscopía fue la incorporación de microscopios ópticos a los equipos Raman que posibilitaron el análisis de partículas del tamaño de unas pocas micras [29]. Además, la popularización en el uso de la fibra óptica [18] produjo una gran revolución tanto en los equipos experimentales como en sus posibles aplicaciones.

2.1 Interacción radiación materia

Para comprender el fenómeno físico de la dispersión es necesario analizar el comportamiento tanto de la materia, como de la radiación electromagnética, así como la interacción entre ambos.

Los átomos que forman la materia no están situados en posiciones fijas, sino que vibran respecto a sus posiciones de equilibrio con una frecuencia característica y una amplitud que depende de la temperatura. Los posibles movimientos de vibración que pueden efectuar los átomos que conforman la molécula vienen dados por sus grados de libertad. Sea n el número de átomos de la molécula, si se asignan las coordenadas (x, y, z) para describir la posición de cada átomo en el espacio, la molécula quedará descrita por un total de 3n coordenadas. Estas coordenadas se reparten entre los tres movimientos moleculares posibles: traslación, rotación y vibración. La distribución se recoge en la Tabla 1.

Π ίο το ματογραφικό το ματογραφικ Το προτογραφικό το ματογραφικό το ματογρ	Grados de liberad requeridos			
1 ipo de movimiento	Moléculas lineales	Moléculas no lineales		
Traslación (centro de masas)	3	3		
Rotación (en torno al centro de masas)	2	3		
Vibración	3n-5	3n-6		

Tabla 1: Grados de libertad requeridos para describir los movimientos de una molécula.

Los movimientos de vibración cambian la distancia entre los átomos o el ángulo de enlace. En la Figura 4 se puede observar los movimientos de vibración posibles para una molécula triatómica (n = 3) no lineal.

Figura 4: Movimiento de vibración para una molécula triatómica no lineal.

Si se utiliza la aproximación armónica, los movimientos de vibración se pueden aproximar a un conjunto de osciladores armónicos acoplados. La frecuencia de vibración (ω) depende de la masa reducida (μ) y del tipo de enlace a través de la constante de fuerza (k) del oscilador armónico equivalente. Está dada por la expresión (1):

$$\omega = \sqrt{\frac{k}{\mu}} \tag{1}$$

Resolviendo el oscilador armónico cuántico se llega al resultado de que no todas las energías están permitidas, sino solo aquellas que cumplan la condición:

$$E_j = \hbar \omega_j \left(n_j + \frac{1}{2} \right) \qquad \qquad n_j = 0, 1, 2, \dots$$

$$\tag{2}$$

El subíndice j hace referencia a un oscilador armónico concreto, \hbar es la constante de Planck y el número cuántico n_j sirve para definir el estado de excitación del oscilador armónico y puede tomar cualquier valor del conjunto de los números naturales.

La energía total del sólido se calcula sumando las energías de cada uno de los átomos, ecuación (3):

$$E = \sum_{q} \hbar \omega_{j,q} \left(n_{j,q} + \frac{1}{2} \right) \tag{3}$$

Otra manera de enfocar el problema de la cuantización de la energía es mediante la introducción del concepto de fonones. Los fonones son cuasi-partículas indistinguibles e independientes que obedecen la estadística de Bose y constituyen los llamados modos normales de vibración de la mecánica clásica. Su tratamiento es análogo al de los fotones que forman la radiación electromagnética: las vibraciones en los cristales se deben a fonones excitados, mientras que los fotones excitados componen la radiación electromagnética. La energía total del sólido se calcula de la misma manera mediante la ecuación (3), pero en este caso varía el significado del número cuántico $n_{j,q}$: es el número de fonones con energía $\hbar \omega_{j,q}$ en el estado de vibración especificado por (j, q).

Para estudiar analíticamente las vibraciones de los átomos de la red es conveniente la utilización de las coordenadas normales, una forma particular de coordenadas generalizadas. Las posibles vibraciones están caracterizadas por un vector de onda $\vec{q_i}$ y una frecuencia ω_i , su amplitud viene dada por la ecuación (4):

$$\overrightarrow{Q_j} = \overrightarrow{Q_{jo}} e^{\pm (\overrightarrow{q_j} \cdot \overrightarrow{r} - \omega_j t)} \tag{4}$$

Donde $\overrightarrow{Q_j}$ es la coordenada normal de la vibración colectiva y $\overrightarrow{Q_{jo}}$ una constante.

Una vez que ya se conoce el comportamiento de los átomos, se pueden analizar las consecuencias de aplicar una radiación electromagnética a la materia. La radiación electromagnética está formada por un campo eléctrico y un campo magnético oscilantes, aunque en este caso solo se considerará la componente eléctrica. Si la luz es monocromática, como es el caso de los láseres con los que se trabaja, el campo eléctrico oscilará en el tiempo a una frecuencia determinada, ω_i . Este tiene la forma de la expresión (5):

$$\vec{E} = \overrightarrow{E_o} \cdot e^{i(\overrightarrow{k_o} \cdot \vec{r} - \omega_i t)} \tag{5}$$

Donde $\overrightarrow{k_o}$ es el vector de onda, es equivalente a $\overrightarrow{q_o}$ utilizado para describir las vibraciones reticulares. La elección de dos letras distintas para representar la misma magnitud solo obedece a razones de simplicidad.

Como resultado de la aplicación del campo eléctrico oscilante, la nube electrónica que forma los enlaces de los átomos se deformará, es decir, se polarizará. Consecuentemente aparecerá un momento dipolar eléctrico \vec{P} de la forma dada por la ecuación (6):

$$\vec{P} = \chi \vec{E} \tag{6}$$

Donde χ es la polarizabilidad atómica. La polarizabilidad es la capacidad del material para formar dipolos instantáneos en respuesta dinámica a campos externos. Pero, como los átomos sufren pequeñas oscilaciones respecto a su posición de equilibrio, la polarizabilidad no será una cantidad constante. Para evaluar la variación se puede desarrollar en serie de Taylor en función de las coordenadas normales, ecuación (7):

$$\chi = \chi_o + \sum_i \left(\frac{\partial \chi_{lm}}{\partial \overrightarrow{Q_i}}\right)_o \overrightarrow{Q_j} + \frac{1}{2} \sum_{i,j} \left(\frac{\partial^2 \chi_{lm}}{\partial \overrightarrow{Q_i} \partial \overrightarrow{Q_j}}\right)_o \overrightarrow{Q_i Q_j} + \cdots$$
(7)

Sustituyendo las expresiones (4), (5) y (7) en la ecuación (6) se obtiene el vector polarización en función de las coordenadas normales, ecuación (8):

$$\vec{P} = \chi \vec{E}
= \chi \vec{E_o} \cdot e^{i(\vec{k_o} \cdot \vec{r} - \omega_i t)}
= \chi_o \vec{E_o} \cdot e^{i(\vec{k_o} \cdot \vec{r} - \omega_i t)} + \vec{E_o} \sum_i \left(\frac{\partial \chi_{lm}}{\partial \vec{Q_i}} \right)_o \vec{Q_{jo}} e^{i[(\vec{k_i} \pm \vec{q_j}) \cdot \vec{r} - (\omega_i \pm \omega_j)t]} + \dots$$
(8)

Dispersión Rayleigh Dispersión Raman de primer orden

En el primer término la frecuencia y, por tanto, la energía, se conservan, se corresponde con la dispersión elástica de Rayleigh. El siguiente término es la dispersión Raman de primer orden, donde la frecuencia (ω_s) y el vector de onda resultantes $(\vec{k_s})$ son distintos a los de la radiación incidente (9):

$$\begin{split} &\hbar\omega_s = \hbar\omega_i \pm \hbar\omega_j \\ &\hbar\overrightarrow{k_s} = \hbar\overrightarrow{k_i} \pm \hbar\overrightarrow{q_j} \end{split}$$
(9)

Debido al acoplamiento de las vibraciones con la radiación electromagnética incidente, la frecuencia y el vector de onda resultantes pueden ser mayores o menores que los incidentes. Estas nuevas frecuencias darán lugar a nuevas líneas y bandas que constituyen un espectro Raman.

2.2 Dispersión inelástica: Raman Stokes y anti-Stokes

En esta sección se va a analizar el origen físico de la aparición de las nuevas frecuencias Raman que surgen debido a la interacción entre las vibraciones atómicas y la radiación electromagnética aplicada.

Cuando se aplica radiación electromagnética hay fotones, cuantos de energía, que llegan a las moléculas del sólido. Estas moléculas pueden absorberlos y transicionar a un estado de energía superior denominado "estado virtual". Este estado es altamente inestable, por lo que las moléculas pierden rápidamente energía emitiendo un fotón y decaen a un estado permitido. Dependiendo de la diferencia de energía entre el estado inicial y final se clasifican en dispersiones elástica e inelásticas.

Si el estado al que han llegado tiene la misma energía que el estado de partida, el fotón absorbido y emitido son de la misma frecuencia. Es el caso de la dispersión elástica Rayleigh donde la energía se conserva.

En cambio, si el estado de decaimiento tiene energía distinta al estado de partida, se trata de dispersión Raman donde sí que hay un cambio de frecuencias entre el fotón absorbido y emitido. Hay dos posibles situaciones (Figura 5) [26]:

- La molécula se encuentra en el estado fundamental y tras regresar del estado virtual llega al primer estado excitado de vibraciones moleculares. Es el caso de Raman Stokes en el cual la frecuencia del fotón emitido es menor que la del absorbido, se corresponde con el signo negativo de la ecuación (9).
- El otro caso se corresponde con Raman anti-Stokes. En esta situación la molécula se encuentra inicialmente en un estado rotacional o vibracional excitado, pero tras regresar del estado virtual llega al estado fundamental. El fotón emitido tiene más energía que el absorbido, suma de frecuencias de vibración y radiación de la ecuación (9).

Estos dos fenómenos Raman ocurren a energías simétricas respecto la dispersión Rayleigh debido a que los niveles vibracionales están cuantizados, pero no son igual de probables. Para una misma temperaura la dispersión Raman Stokes es más frecuente que la Raman anti-Stokes, la relación de intensidades está determinada por el cociente entre la población de moléculas que se encuentran en un nivel excitado frente al número de moléculas del estado fundamental. El cálculo de la población de los estados sigue la distribución de Boltzmann, la relación entre la población del estado fundamental N_o y la del primer estado excitado N_1 se muestra en la ecuación (10):

$$\frac{N_1}{N_o} = e^{\frac{-\Delta E}{kT}} \tag{10}$$

Donde ΔE es la diferencia de energía entre los niveles, k la constante de Boltzmann y T la temperatura. Se puede observar cómo cuando $T \rightarrow 0$ K las líneas de Raman anti-Stokes desaparecerán debido a que ninguna molécula tendrá energía vibracional suficiente como para estar en un estado distinto al fundamental. Sin embargo, a medida que aumente la temperatura aparecerán transiciones de Raman anti-Stokes.

En la Figura 5 aparece un esquema de las dispersiones explicadas. Cabe destacar la aparición de picos de dispersión de Raman Stokes y anti-Stokes a desplazamientos simétricos respecto la dispersión Rayleigh. Además, se observa cómo la intensidad del pico Rayleigh es varios órdenes de magnitud mayor que las intensidades Raman. También se cómo percibe la dispersión Raman Stokes es más probable que la Raman anti-Stokes.

Figura 5: Esquema de las dispersiones elásticas e inelásticas [30].

2.3 Reglas de selección

Para que se produzca la dispersión Raman los modos vibracionales tienen que ser activos, es decir, tienen que causar un cambio en la polarizabilidad. Se debe cumplir que la derivada parcial de la polarizabilidad $(\partial \chi)$ respecto a la coordenada normal del modo de vibración $(\partial \vec{Q})$ ha de ser distinta de cero, es decir, se tiene que verificar la ecuación (11):

$$\frac{\partial \chi}{\partial \vec{Q}} \neq 0 \tag{11}$$

Para el caso de los movimientos de vibración de las moléculas triatómicas no lineales como la mostrada en la Figura 4 esta condición se cumple para los tres movimientos. Sin embargo, para una molécula lineal el único modo de vibración que lo cumple es el estiramiento simétrico.

Además, se puede definir el tensor Raman (R_j) que se obtiene con la primera derivada del tensor polarizabilidad con respecto a la coordenada normal del modo de vibración (ecuación (11)). El tensor Raman contiene toda la información sobre la simetría de la red, y, junto con la orientación relativa del cristal y la polarización de la luz, constituye las reglas de selección para las distintas estructuras.

También se debe cumplir la conservación de la energía y del vector de onda. En la ecuación (12) y (13) se muestran, respectivamente, las dos condiciones para un caso genérico donde intervienen n fonones.

$$\hbar\omega_i = \hbar\omega_d + \sum_j^n \hbar\omega_{\nu j}(\vec{q_j}) \tag{12}$$

$$\vec{k_i} = \vec{k_d} + \sum_{j}^{n} \vec{q_j} \tag{13}$$

Donde ω_i, ω_d son las frecuencias de los fotones incidente y dispersado, y ω_j , la de los fonones involucrados. Análogamente, $\vec{k_i}, \vec{k_d}$ son los vectores de onda de los fotones incidente y dispersado, y $\vec{q_j}$ de los fonones implicados.

El módulo del vector de onda del fotón dentro del cristal se relaciona con la longitud de onda en el vacío (λ) y con el índice de refracción (n) mediante:

$$|\vec{k}_{i,d}| = \frac{2\pi}{\lambda_{i,d}} n_{i,d} \tag{14}$$

Además, haciendo uso de la conocida relación $\frac{\omega}{c} = \frac{2\pi}{\lambda}$, el módulo del vector de onda se puede escribir como:

$$|\vec{k}_{i,d}| = \frac{2\pi}{\lambda_{i,d}} n_{i,d} = \frac{\omega_{i,d}}{c} n_{i,d}$$
(15)

La transferencia del vector de ondas de los fonones $(\vec{Q} = \sum_{j} \vec{q_{j}})$ en el proceso de dispersión depende de la geometría, es decir, del ángulo (θ) que forman $\vec{k_{i}}$ y $\vec{k_{d}}$:

$$Q = \left|\sum_{j} \vec{q_j}\right| = \sqrt{k_i^2 + k_d^2 - 2k_i k_d \cos(\theta)}$$
(16)

En la Figura 6 están reflejadas las posibles geometrías en función del ángulo que forman los vectores de onda incidente y dispersado [31]:

Figura 6: Posibles geometrías de dispersión.

El valor mínimo de Q se obtiene cuando $\theta = 0$ en el caso de geometría de dispersión hacia delante. Sustituyendo en la ecuación (16) el valor del ángulo y expresando el vector de onda como la ecuación (15) se llega a:

$$Q_{min} = k_i - k_d = \frac{n_i \omega_i - n_d \omega_d}{c} \tag{17}$$

El valor máximo ocurre en la disposición de retrodispersión cuando $\theta = \pi$:

$$Q_{max} = k_i + k_d = \frac{n_i \omega_i + n_d \omega_d}{c} \tag{18}$$

Otra configuración ampliamente utilizada es la geometría de ángulo recto $\theta = \frac{\pi}{2}$:

$$Q_{\perp} = \sqrt{k_i^2 - k_d^2} = \frac{\sqrt{(n_i \omega_i)^2 + (n_d \omega_d)^2}}{c}$$
(19)

Tomando unos valores de la energía correspondientes a fotones pertenecientes al visible $\hbar\omega_i \approx \hbar\omega_d = 2,5 \ eV$ y usando un valor del índice de reflexión típico para los semiconductores $n_i \approx n_d \approx 4$, con la expresión (18) se observa que la transferencia de vector de onda máxima es del orden de 10⁶ cm⁻¹.

Si se estudia el caso de la dispersión Raman de primer orden donde solo interviene un fonón, Q_{max} establecerá el valor del vector de onda máximo. Comparando $\vec{q_j} \approx 10^6$ cm⁻¹ con los valores de los vectores de onda de los fonones pertenecientes a la primera zona de Brillouin ($|\vec{q}| \leq 2\pi/a_o \sim 10^8$ cm⁻¹), se ve cómo solo los fonones del centro de zona pueden participar en este fenómeno.

Si en la ecuación (8) se siguiera con el desarrollo en serie de Taylor, el siguiente término que se obtendría sería la dispersión Raman de segundo orden. En este proceso intervienen dos fonones, por lo que las ecuaciones de conservación de la energía y del vector de onda son de la forma:

$$\hbar\omega_i = \hbar\omega_d + \hbar\omega_{\nu 1} + \hbar\omega_{\nu 2}
\overrightarrow{k_i} = \overrightarrow{k_d} + \overrightarrow{q_1} + \overrightarrow{q_2}$$
(20)

El uso de la aproximación dipolar implica que los fonones que intervienen han de tener el mismo módulo y cumplir la condición:

$$\overline{q_1} \sim \overline{q_2} \tag{21}$$

Pero, a diferencia del caso anterior, los vectores de onda de los fonones no están restringidos a ningún valor concreto, por lo que los procesos de dispersión Raman de segundo orden dan información sobre los fonones de toda la primera zona de Brillouin. A pesar de que los vectores de onda de los fonones no están restringidos a ningún valor concreto, la condición (21) es más difícil de satisfacer, por lo que la dispersión Raman de segundo orden se dará en mucha menor medida.

En la Figura 7 se muestra un espectro de silicio cristalino (100) donde se puede comprobar cómo la intensidad del pico de la dispersión Raman de primer orden es un orden de magnitud mayor que la de segundo orden.

Figura 7: Espectro Raman de silicio cristalino (100).

Una manera de comprobar que solo los fonones del centro de zona constituyen las dispersiones Raman de primer orden es mediante el análisis de las relaciones de dispersión fonónicas. Las relaciones de dispersión relacionan la frecuencia de las ondas de vibración de los átomos del material, es decir, la frecuencia de los fonones, con el vector de onda [32]. Generalmente para para facilitar su comprensión se suelen representar en gráficas como la mostrada en la Figura 8 para el silicio cristalino. En ella las frecuencias se ordenan en ramas longitudinales o transversales en función de la dirección de la vibración, y en acústicas u ópticas dependiendo de si los átomos vibran en fase o en oposición de fase.

La utilidad del estudio de estas relaciones reside en poder relacionar las frecuencias de los fonones de un material con la aparición de los picos en su correspondiente espectro Raman. En la Figura 7 se muestra el espectro Raman para el silicio cristalino (100), mientras que en la Figura 8 se encuentra su relación de dispersión fonónica. Analizando el espectro Raman se ve como el pico correspondiente a la dispersión de primer orden que aparece por encima de 500 cm⁻¹ solo está producido por la vibración óptica de los fonones

del centro de zona. Si la afirmación de que solo los fonones del centro de zona participan en las dispersiones de primer orden fuera falsa, en el espectro Raman aparecerían distintos picos con distintas frecuencias correspondientes a otros fonones con mayor vector de onda.

Figura 8: Relación de dispersión fonónica del Silicio. Aparece resaltada en color amarillo la región del centro de zona donde se encuentran los fonones que participan en las dispersiones Raman de primer orden. (LA = rama longitudinal acústica, TA = rama transversal acústica, LO = rama longitudinal óptica y TO = rama transversal óptica).

2.4 Información espectros Raman

Los espectros Raman permiten analizar las propiedades de una muestra mediante el estudio de la intensidad, frecuencia y anchura de cada modo Raman. En la Figura 9 se representa un espectro Raman de una muestra de silicio (100) donde aparecen señalados los parámetros característicos:

Figura 9: Parámetros característicos del espectro Raman del Si (100). Es un espectro de la dispersión Raman Stokes, ya que el pico aparece en un desplazamiento (Raman Shift) positivo del número de onda frente a la dispersión Rayleigh.

Cada uno de estos parámetros da información sobre propiedades distintas de la muestra:

- La *posición* de los picos informa sobre la estructura cristalina y las fuerzas de enlace.
- La *intensidad* es proporcional a la ocupación de los niveles vibracionales.
 Prueba de esto es la menor intensidad del espectro Raman anti-Stokes en comparación con Raman Stokes, debido a la menor población del primer estado vibracional.

• La **anchura** de los modos habla sobre el tiempo de vida fonónico, la relajación de las reglas de conservación y la cristalinidad.

La relación entre la anchura y la cristalinidad es una consecuencia clara de las reglas de selección fonónicas explicadas en el apartado (2.3). Cuando un material está desordenado, es decir, ha perdido la estructura cristalina periódica, no tiene sentido hablar de zonas de Brillouin ni de fonones de centro de zona. Como consecuencia, todos los fonones participan en las dispersiones Raman de primer orden y el resultado son espectros con bandas anchas proporcionales a la densidad de estados vibracionales.

Un ejemplo se puede ver en Figura 10 donde se comparan varios espectros de silicio con distinto grado de cristalinidad y se comprueba como a medida que disminuye el orden, la anchura de los picos aumenta.

Figura 10: Comparación espectros Raman de silicio monocristalino, policristalino y amorfo.

- El *perfil de banda* informa sobre las tensiones y el tamaño del cristal.
- La aparición o no de ciertos picos en función de la orientación de las muestras es una consecuencia de las *reglas de selección*.

En ocasiones también aparecen picos o bandas que constituyen ruidos no deseados [27] y que no aportan información relevante. Estos ruidos pueden estar generados por la muestra, por la instrumentación o por fuentes externas.

Un ejemplo de ruido generado por la propia muestra es la fluorescencia [33]. Ocurre cuando una molécula absorbe un fotón y pasa a un estado electrónico excitado donde permanece unas decenas de nanosegundos. A continuación, libera un fotón de menor frecuencia que el incidente y pasa a otro estado excitado de menor energía. Este fenómeno es de emisión, mientras que Raman es de dispersión, tienen una naturaleza totalmente distinta.

En los espectros la fluorescencia aparece como una curvatura de la línea de base que en ocasiones puede alcanzar una intensidad tal que enmascara por completo a las bandas Raman como muestra la Figura 11.

Figura 11: Espectro Raman de materia orgánica. Fenómeno de fluorescencia.

Otra perturbación no deseada es la presencia de rayos cósmicos. Se caracterizan por liberar rápidamente un gran número de electrones en uno o dos elementos del detector. En el espectro aparecen como picos muy estrechos y de gran intensidad, conocidos como picos cósmicos (cosmic spikes). Son poco frecuentes y aparecen en posiciones aleatorias, un ejemplo se recoge en la Figura 12:

Figura 12: Espectro de la Escarlata de Molibdeno. Se observa la presencia de un pico cósmico.

3 Materiales y métodos experimentales

3.1 Materiales empleados

Se han estudiado un total de 65 pigmentos históricos diferentes, tanto de procedencia orgánica como inorgánica. La Tabla 2 recoge nombre comercial, composición química y/o mineralógica y correspondiente código RGB^1 de cada uno de los pigmentos históricos estudiados.

Color # Nombre c		Nombre comercial	Composción química y/o Mineralógica	Coordenadas RGB	
Blanco	Blanco 1 Ye		Sulfato cálcico dihidratado Ca(SO ₄) ₂ .2H ₂ O	(248, 242, 242)	
	2	Blanco de Titanio	Óxido de titanio TiO_2	(240, 241, 242)	
			Cerusita $PbCO_3$		
	3	Albayalde	Hidrocerusita	(235, 231, 230)	
			$2 PbCO_3 \cdot Pb(OH)_2$		
	4	Dlanca Litanán	Baritina $BaSO_4$	(224, 222, 222)	
	4	Bianco Litopon	Sulfuro de zinc ZnS	(234, 232, 228)	
	5	Blanco España	Dolomita $CaMg(CO_3)_2$	(232, 229, 222)	
	6	Blanco de Zinc	Óxido de zinc ZnO	(237, 235, 231)	
	7	Oxalato Cálcico	Oxalato de calcio CaC_2O_4	(241, 241, 239)	
	8	Alúmina	Óxido de aluminio Al ₂ O ₃	(245, 243, 240)	
	9	Baritina	Sulfato bárico $BaSO_4$	(246, 243, 238)	
	10	Calcita	Carbonato de calcio $CaCO_3$	(249, 249, 244)	
	11	Sal de Rochelle	Tartrato sódico potásico (KNaC ₄ H ₄ O ₆ · 4H ₂ O)	(252, 249, 243)	
Amarillo	12	Amarillo de Zinc	$\begin{array}{c} {\rm Cromato~de~zinc~y~potasio} \\ {\rm hidratado} \\ {\rm K_2ZnO(CrO_4)_4\cdot 3H_2O} \end{array}$	(235, 221, 99)	
	13	Amarillo de Cadmio	Sulfuro de cadmio CdS	(255, 245, 0)	
	14	Amarillo de	Cromato de estroncio $SrCrO_4$	(255, 205, 0)	
	14	Estroncio	Baritina $BaSO_4$	(200, 200, 0)	
	15	Amarillo de Cromo Puro	Cromato de plomo $PbCrO_4$	(247, 169, 34)	
	16	Amarillo do Cromo	Cromato de plomo $PbCrO_4$	(255 217 122)	
		Amarmo de Cromo	$Calcita CaCO_3$	(200, 211, 122)	
	17	Oropimente	Trisulfuro de arsénico As_2S_3	(232, 181, 120)	
	18	Óxido de Hierro Amarillo Sintético	Goethita FeOOH	(210, 159, 88)	
Naranja	19	Naranja de Cromo	Cromato básico de plomo Pb ₂ OCrO ₄	(217, 92, 72)	

Tabla 2: Pigmentos históricos analizados.

 $^{^1}$ Las coordenas RGB se han obtenido medinate la técnica de colorimetría (explicada en la apartado 3.3.2 Métodos experimentales).

	20	Naranja de Cadmio	Sulfuro de cadmio CdS	(234, 88, 63)	
Rojo	21	Minio (Plomo Rojo)	Tetróxido de plomo Pb ₃ O ₄	(246, 122, 77)	
	22	Escarlata de Molibdeno	Cromato y molibdato de plomo $Pb(Cr_{19}Mo11)O_4$	(232, 92, 78)	
			Baritina $BaSO_4$		
	23	Cinabrio	Bermellón HgS	(227, 66, 52)	
	24	Rojo Kermes	Acido kermésico	(192, 41, 57)	
		· ·	Baritina BaSO ₄		
	25	Rojo Cadmio	Cd(S,Se)	(194, 60, 77)	
	26	Rojo Normal	Acido kermésico Calcita CaCO ₃	(210, 104, 116)	
	27	Bermellón	Cinabrio HgS Calcita CaCO ₃	(218 99, 111)	
			$\frac{1}{4}$		
	20	Carmín Intenso	Acido carminico $C_{22}H_{20}O_{13}$	(106 68 106)	
	20		Baritina BaSO	(190, 08, 100)	
			Ácido carmínico CoeHooO12		
	29	Carmín	Calcita CaCO ₂	(193, 102, 112)	
	20		Yeso $CaSO_4 \cdot 2H_2O$		
	30	Tierra Roja	Hematites Fe ₂ O ₃	(142, 90, 93)	
		<u> </u>	Hematites Fe_2O_3		
	31	Oxido de Hierro Gloria	Cuarzo Si O_2	(139, 76, 82)	
			Calcita $CaCO_3$		
	32	Óxido de Hierro Rojo Sintético	Hematites Fe_2O_3	(146, 76, 75)	
	33	Almagre	Hematites Fe_2O_3	(138, 69, 67)	
	34	Quinalizarina	1,2,5,8- Tetrahidroxiantraquinona C14H8O6	(157, 65, 56)	
Marrón-			Hematites Fe_2O_3		
ocre	35	Siena Tostada	Cuarzo SiO_2	(134, 94, 93)	
			Calcita $CaCO_3$		
	36	Aureolina	$\begin{array}{l} \text{Amarillo de cobalto} \\ \text{K}_3[\text{Co(NO}_2)_6] \cdot \text{H}_2\text{O}. \end{array}$	(176, 99, 64)	
	37	Siena Natural	Goethita FeOOH Cuarzo SiO ₂	(189, 141, 88)	
			Calcita CaCO ₃		
	38	Ocre Superior	Goethita FeOOH	(214, 161, 95)	
			Goethita FeOOH	_	
	39	Ocre Claro	Cuarzo SiO_2	(195, 152, 114)	
			Calcita CaCO ₃		
			Goethita FeOOH	4	
	40	Sombra Calcinada	Hematites Fe ₂ O ₃	(147, 101, 79)	
			Magnetita Fe_3O_4		

			Calcita CaCO ₃		
			Goethita FeOOH		
	41	Oxido de Hierro	Hematites Fe ₂ O ₃	(133, 96, 71)	
		Pardo	Magnetita Fe ₃ O ₄		
			Hematites Fe ₂ O ₃		
			Goethita FeOOH		
	42	Sombra Tostada	Cuarzo SiO ₂	(111, 86, 83)	
			Calcita CaCO ₃		
			Goethita FeOOH		
	43	Sombra Natural	Cuarzo SiO ₂	(117, 98, 87)	
			Calcita CaCO ₃		
			Goethita FeOOH		
			Hematites Fe ₂ O ₃		
	44	Siena Calcinada	Magnetita Fe ₃ O ₄	(113, 92, 84)	
			Calcita CaCO ₃		
	45	Tierra Cassel	Materia orgánica	(74, 67, 62)	
Negro		Óxido de Hierro			
	46	Negro Sintético	Magnetita Fe_3O_4	(75, 66, 68)	
	47	Negro Viña	Magnetita Fe ₃ O ₄	(73, 67, 68)	
	48	Negro de Humo	Carbón C	(70, 64, 72)	
	49	Lignito	Carbón C	(66, 63, 65)	
			Carbono C		
	50	Negro Martil	Hidroxiapatito Ca ₅ (PO ₄) ₃ OH	(56, 57, 63)	
	51	Negro Marte	Óxido de hierro Fe ₃ O ₄	(109, 110, 101)	
Verde	52	Verde Cromo	Óxido de cromo Cr ₂ O ₃	(46, 58, 35)	
	53	Verde Intorsol	Baritina BaSO ₄	(36, 58, 64)	
		Verde Cobalto	Óxido de hierro y cobalto		
	54		$(CoFeO_2)O_4$		
			Óxido de cobalto y zinc	(74, 143, 100)	
			$CoO \cdot nZnO$		
			Baritina BaSO ₄]	
		Verde Ftalo Medio	Ftalocianina de cobre policloro		
			$\mathrm{C}_{32}\mathrm{H}_{16}\mathrm{CuN_8Cl_{15}}$		
	55		$Calcita CaCO_3$	(108, 162, 119)	
			Baritina $BaSO_4$		
			Cromato de plomo $PbCrO_4$		
			Ftalocianina de cobre		
	56	Verde de Cromo	${ m Cu}({ m C}_{32}{ m H}_{16}{ m N}_8)$	(00, 100, 145)	
	00	Permanente	Calcita CaCO ₃	(92, 182, 145)	
			Baritina $BaSO_4$		
			Yeso $CaSO_4 \cdot 2H_2O$		
			Aceto-arsenito de cobre		
	57	Verde Esmeralda	$Cu(C2H_3O2)_2 \cdot 3Cu(AsO_2)_2$	(0.140.100)	
	57	Oscuro	Calcita CaCO ₃	(0, 142, 123)	
			Baritina BaSO ₄		
			Aceto-arsenito de cobre		
	58	Verde Esmeralda	$\mathrm{Cu}(\mathrm{C_2H_3O_2})_2\cdot 3\mathrm{Cu}(\mathrm{AsO_2})_2$	(89, 196, 184)	
			$Calcita CaCO_3$		

			Baritina $BaSO_4$		
Azul			Ftalocianina de cobre		
	59	Azul Ftalocianina	$\mathrm{Cu}(\mathrm{C}_{32}\mathrm{H}_{16}\mathrm{N}_8)$	(98, 171, 216)	
			$Calcita CaCO_3$		
	60	Azurita	Carbonato de cobre	(0, 127, 251)	
	00	11201100	$Cu(OH)_2 \cdot 2(CuCO_3)$	(0, 127, 201)	
	61	Azul IIItramar	Lazurita	(41 57 193)	
	01	Azur Ottrainar	$(NaCa)_8(AlSiO_4)_6(SO_4,S,Cl)_2$	(41, 57, 125)	
Violeta		Violeta Oscuro	Fosfato de cobalto $Co_3(PO_4)_2$		
	60		Baritina $BaSO_4$	(00 =0 100)	
	02		$Calcita CaCO_3$	(86, 78, 126)	
			Sulfuro de zinc ZnS		
	CO	Violeta Ultramar	Lazurita	(150 105 105)	
	05		$(NaCa)_8(AlSiO_4)_6(SO_4,S,Cl)_2$	(152, 125, 187)	
		Violeta de Manganeso	Fosfato de amonio y		
	64		manganeso $Mn(NH_4)_2P_2O7$	(186, 165, 214)	
			$Calcita CaCO_3$		
			Fucsina C ₂₀ H ₁₉ N ₃ HCl		
	65	Magenta	Calcita $CaCO_3$	(187, 76, 136)	
		0	Baritina $BaSO_4$		

3.2 Métodos experimentales

3.2.1. Espectroscopía Raman

Funcionamiento equipo Raman portátil

Para describir los equipos de espectroscopía Raman portátiles resulta conveniente dividirlos de manera genérica en cuatro partes principales: una fuente de excitación, un cabezal óptico, un sistema de dispersión y un detector. En la Figura 13 se muestra un diagrama por bloques que esquematiza el funcionamiento de un equipo [18].

Las conexiones entre las diferentes partes están realizadas con un conector de fibra óptica que presenta numerosas ventajas: inmunidad frente a interferencias electromagnéticas, mejora en la eficiencia de las medidas y aumento de la seguridad del usuario.

Figura 13 Diagrama de bloques del funcionamiento de un equipo Raman portátil.

A continuación se estudiarán los componentes que forman cada una de las partes:

1. Fuente de excitación

Para que se produzca correctamente el fenómeno de la dispersión Raman, la fuente de excitación debe emitir una luz monocromática de alta intensidad. Por eso, la elección de la fuente queda casi restringida al uso de láseres, ya que emiten luz monocromática, coherente, colimada y con un espectro estable.

Dentro de la gran variedad de láseres con distintas longitudes de onda que existen, los más convenientes son aquellos que emiten dentro del espectro visible y en el infrarrojo. Si se escogiera un láser de emisión ultravioleta la eficiencia sería mayor, ya que es inversamente proporcional a la cuarta potencia de la longitud de onda, pero la alta energía de la luz incidente podría causar problemas de degeneración en la muestra. Además, las intensidades Raman podrían aparecer falseadas, ya que las transiciones electrónicas que genera la luz ultravioleta interfieren causando resonancias. Otro inconveniente del uso de este tipo de láseres es el incremento del coste del equipo, ya que la luz no visible exige que los elementos ópticos sean de muy alta calidad [34].

2. Cabezal óptico

El cabezal óptico constituye el sistema colector de luz, que varía en función de si la técnica Raman usada es microscópica o macroscópica. En este caso se va a detallar el cabezal óptico de micro-Raman dado que es la técnica empleada.

El objetivo del cabezal óptico es colimar y focalizar la luz proveniente del láser y recolectar la luz generada en el proceso de dispersión. Como se trabaja en condiciones de retrodispersión (vector de onda incidente y dispersado en la misma dirección pero distinto sentido, Figura 6), dentro del cabezal se distinguen dos caminos: el de excitación y el de recolección. En la Figura 14 está esquematizado el camino que recorre la luz proveniente del láser (camino de excitación) y el que sigue la luz dispersada (camino de recolección).

Figura 14 Esquema del funcionamiento de un cabezal óptico.

Como se puede observar en el esquema, a la entrada del cabezal óptico, el laser atraviesa un filtro interferencial (2) que elimina otras longitudes de ondas distintas a la del láser que se hayan podido producir por el paso por la fibra óptica. Con el uso de un sistema de espejos de alta reflectividad (3), la luz del láser se focaliza en la muestra mediante un microscopio óptico. La extrema precisión puede causar daños irreversibles en la muestra como consecuencia de la alta cantidad de energía concentrada en un área mínima.

Después de producirse el fenómeno de la dispersión la radiación vuelve al cabezal óptico donde atraviesa un filtro Notch (4). Este filtro tiene la capacidad de eliminar la luz proveniente de la reflexión y de la dispersión Rayleigh. Su buen funcionamiento resulta vital ya que evita que la dispersión Rayleigh, más de cinco órdenes de magnitud mayor que la dispersión Raman, eclipse los modos vibracionales Raman de bajas frecuencias [35].

3. Sistema dispersivo

Está formado por una red de difracción que separa la luz proveniente de la dispersión en función de su longitud de onda. La elección de la red de difracción determina la resolución y el rango espectral. Este componente también se suele llamar monocromador porque separa espacialmente las frecuencias del haz policromátrico resultante de la dispersión.

4. Detector CDD

Es un dispositivo optoelectrónico, generalmente de silicio, que permite la detección de señales extremadamente débiles. Su objetivo es la transformación de la señal luminosa proveniente del monocromador a corriente eléctrica para que pueda ser interpretada por un software. Su funcionamiento es sencillo: cuando se detecta luz aparece una carga y cuanto más brillante sea la luz o más larga la interacción, más carga es registrada.

Los detectores CCD (Charge Coupled Device) actuales realizan operaciones multicanales que permiten obtener el espectro Raman en una sola adquisición. Para reducir posibles problemas derivados del ruido térmico los CDD trabajan a temperaturas muy bajas que se consiguen con el uso de células Peltier o con refrigeración a base de nitrógeno líquido.

Equipo Raman empleado

Para la medida de todas las muestras menos los pigmentos número: 8, 13, 44, 45, 48, 50, 52, 53 y 60 se utilizó un equipo portátil BWTEK equipado con un cabezal de microscopía BAC151C-785, un detector BWTEK Exemplar-PRO (CCD BTC675N), y un láser infrarrojo de $\lambda = 785 \ nm$. El uso de esta longitud de onda presenta uno de los mejores compromisos entre eficiencia y baja fluorescencia.

La potencia del láser se controló variando la intensidad de su corriente de alimentación dentro del rango de 0.4 -0.9 A. La correspondencia entre la corriente suministrada y la potencia obtenida está reflejada en la Figura 15.

Figura 15: Gráfica que relaciona la intensidad de la corriente de alimentación del láser y la potencia resultante.

Los espectros de los pigmentos 8, 44, 45, 48, 50, 53 y 60 mostraban problemas de fluorescencia y, además, presentaban picos con baja intensidad en comparación con el ruido, por lo que se utilizó otro equipo con otra longitud de onda distinta para solucionarlo. Se usó un espectrómetro Raman de alta resolución Horiba-Jobin Yvon LABRAN HR 800 UV implementado con un microscopio BX41, un detector CCD Symphony y un láser verde de $\lambda = 532 nm$ [36].

En ambos equipos, para la caracterización de las muestras, se realizaron tres medidas con tiempos de adquisición muy variados: desde milisegundos hasta más de una hora en función de la respuesta de cada tipo de pigmento. La potencia del láser también fluctuó para evitar la degeneración de las muestras. Por lo general, los pigmentos de color más oscuro necesitaron valores de potencia más bajos debido a su mayor absorción de la radiación.

Un ejemplo donde una elección de una potencia del láser excesiva causó un daño irreversible en el pigmento analizado se muestra en la Figura 16. En la imagen se ve como una muestra del pigmento Negro Viña ha sufrido una degradación, mancha roja central, generada por el uso de una potencia elevada. La extensión de la mancha es del orden de micras, por lo que para visualizarla correctamente se precisó de un microscopio óptico con un objetivo 50x.

Figura 16: Degeneración del pigmento Negro Viña.

Los pigmentos 13 y 52 no se pudieron medir debido a la ínfima cantidad de muestra disponible, por lo que los espectros mostrados en el anexo se corresponden con unas medidas previas realizadas por el Departamento de Física de la Materia Condensada, Cristalografía y Mineralogía de la Universidad de Valladolid.

3.2.2. Colorimetría

La descripción exacta y objetiva de un color es una tarea bastante complicada debido a la multitud de factores que influyen en la percepción del color, como la longitud de onda e intensidad de la fuente de iluminación, o el propio funcionamiento del ojo humano [37]. Para conseguir homogeneizar su descripción han surgido las técnicas colorimétricas, cuyo objetivo es reducir el color a un valor numérico.

Para ello, la CIE (Comission Internationale de l'Éclairage) ha especificado a lo largo de los años varios sistemas estándares de colores: CIE xy, CIE L*ab*, CIE L*C*h, etc. En estos sistemas CIE el color está especificado a través de unas coordenadas colorimétricas relacionadas con los parámetros más importantes de la percepción del ojo humano: la iluminación, la saturación y el tono [37].

En este trabajo se ha usado el sistema CIE L*a*b* (también conocido como CIELAB) en el cual el color se describe a través de tres variables: L*, que representa la iluminación, y dos ejes cromáticos (a* y b*). Los valores de L* van de 0 (negro) a 100 (blanco), los de a* de -128 a 128 en función de la cantidad de rojo y verde, y los de b*, dependiendo del amarillo y azul, de -128 a 128 [38]. Para calcular la diferencia de color² (Δ E) entre dos muestras simplemente hay que calcular la distancia entre sus correspodientes puntos en el diagrama tridimensional CIE L*a*b*, es decir, resolver la ecuación (22):

$$\Delta E_{12} = \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2}$$
(22)

Sin embargo, la visualización de colores a la que el ojo humano está acostumbrado, se consigue usando el sistema RGB. En este sistema tridimensional, también conocido como cubo RGB, cada color se describe como una mezcla de tres colores primarios: el rojo (R), el verde (G) y el azul (B) [39].

Los valores de cada color varían desde 0 a 255 en función su presencia. La ausencia de color, es decir, el (0,0,0) representa al negro, mientras que, la máxima mezcla de los tres (255, 255, 255) se corresponde con el blanco.

Para pasar de un sistema a otro simplemente hay que aplicar unas fórmulas de conversión de coordenadas, pero generalmente se usan softwares informáticos que simplifican el trabajo.

Equipo colorimétrico empleado

La toma de medidas de las coordenadas L*a*b* se ha realizado usando un colorímetro comercial Colourpin SE (NCS Color AB, USA). La iluminación seleccionada ha sido D65 con 10° de observador estándar [38].

Para cada muestra se han tomado cuatro medidas para obtener unos valores L*a*b* lo más exactos posibles. Se ha buscado que la diferencia de color (ΔE) entre cada medida fuera bastante pequeña, aproximadamente $\Delta E < 2$. Una diferencia de color de esta magnitud es difícilmente apreciable, ya que es menor que la denominada JND "just noticeable difference", es decir, la diferencia de colores perceptible por el ojo humano [40].

² Para designar la diferencia de color se utiliza ΔE . La letra griega delta se utiliza comúnmente para indicar una variación, y la letra *E* viene de la inicial de la palabra alemana *Empfindung*, que significa sensación [40].

Los valores L*a*b* finales son el resultado de realizar la media aritmética de las cuatro medidas. Para hallar las correspondientes coordenadas RGB recogidas en la Tabla 2 se ha utilizado el software de conversión de coordenadas de la compañía NIX [41]. Los gráficos mostrados en el apartado de resultados se han elaborado usando el software informático Matlab.

Los pigmentos número 13, 23, 52, 61 y 60 no se han podido medir experimentalmente debido a la escasez de muestra. Las coordenadas RGB mostradas en la Tabla 2 se han tomado de la biblioteca de colores [42].

4 Resultados experimentales

En esta sección se recogen los resultados experimentales tanto del análisis Raman, como de la colorimetría. Los pigmentos aparecen agrupados por colores según el orden expuesto en la Tabla 2.

Para cada color analizado se presenta una pequeña introducción histórica que explica la evolución de los distintos pigmentos con el paso del tiempo. A continuación, para cada pigmento analizado, se especifica la composición, el desplazamiento Raman de las señales espectroscópicas y la asignación de los modos vibracionales. Por último, se muestran los resultados del análisis colorimétrico y se representan los pigmentos en un diagrama CIE L*a*b* en tres dimensiones.

La notación que se ha seguido para nombrar las bandas vibracionales es la estándar: la letra v designa los modos de tensión o *streching* y la letra δ se refiere a los modos de flexión o *bending*. Los modos simétricos o asimétricos se distinguen por los subíndices *sim* o *asim*. Además, junto con el número de onda de los desplazamientos Raman, se indica de manera cualitativa sus intensidades relativas. El código seguido procede del inglés y es el usual en la bibliografía [2]: vs = muy fuerte, s = fuerte, m = medio, w = débil, vw = muy débil, sh = hombro y br = ancho. En algunos casos para indicar que hay algún pico concreto que domina el espectro y es muy característico, se resalta su número de onda en negrita.

4.1 Pigmentos blancos

Entre todos los pigmentos blancos analizados (Tabla 3), el Albayalde ha sido el pigmento blanco más utilizado a lo largo de la historia. Su uso comenzó en la Antigüedad y se prolongó hasta el siglo XIX cuando fue retirado del mercado al descubrirse, que al manipularlo, su alto contenido en plomo producía una intoxicación conocida como saturnismo [43].

Fue entonces cuando se buscaron otras alternativas inorgánicas más seguras y estables como el Blanco Litopón o el Blanco de Zinc. Pero, desde principios del siglo XX hasta la actualidad, el Blanco de Titanio se ha impuesto como el pigmento blanco por excelencia. Tiene un color muy puro y brillante, un tono muy homogéneo y no se degrada con el paso del tiempo.

Nombre	Composición	Condiciones experimentales ³	Número de onda/cm ⁻¹ e	Asignación de modos vibracionales	Aparición ⁴
			intensidad relativa		
Yeso	Sulfato cálcico	50x	121 w	Vibraciones enlace Ca-O	Mineral
[13, 44, 45]	dihidratado	I = 0,62 A	179w		
Figura 31	$\operatorname{Ca}(\operatorname{SO}_4)_2\cdot$	t = 60 s	412 w	$\delta_{sim} (SO_4)^{2-}$	
	$2H_2O$	5 acum	491 w	$\delta_{sim}(SO_4)^{2-}$ [en el plano]	
			$617 \ {\rm w}$	$\delta_{\rm asim} ({ m SO}_4)^{2-}$	
			667 vw	$\delta_{asim} (SO_4)^{2-}$ [fuera plano]	
			1007 vs	$v_{sim} (SO_4)^{2-}$	
			$1135 {\rm ~w}$	$\nu_{\rm asim} ({ m SO}_4)^{2-}$	

Tabla 3: Resultados Raman pigmentos blancos.

 $^{^{3}}$ En esta columna se especifican las condiciones experimentales concretas de cada muestra. Los parámetros son: objetivo del microscopio óptico, intensidad de la corriente que suministra la potencia al láser (I), duración de la toma de la medida (t) y número de acumulaciones realizadas (acum).

 $^{^4}$ Se va a especificar si es un mineral y/o la fecha de su primera fabricación sintética.

Blanco de	Óxido de	50x	141vs , 395vw	$\delta_{sim}~(\text{O-Ti-O})$	1923
Titanio	titanio TiO ₂	I = 0,60 A	514 vw	$\nu_{\rm sim}$, $\nu_{\rm asim} \left({\rm O-Ti} \right)$	
[13, 46]	(Fase anatasa)	t = 40 s	636 vw	v_{sim} (O-Ti)	
Figura 32		1 acum			
Albayalde	Cerusita	50x	153 w, 215 w 319	Vibraciones de la red	Mineral/
[13, 47]	PbCO ₃	I = 0,48 A	W	Vibraciones de la red	Sintético:
Figura 33	Hidrocerusita	t = 25 s	411 w	Vibración enlace Pb-O	1500- 500 a.C.
	$2PbCO_3 \cdot$	1 acum	678 vw	$\delta_{\rm asim}~({ m CO}_3)^{2-}$	
	$Pb(OH)_2$		830 vw	$\delta_{\rm asim} ({\rm CO}_3)^{2-}$	
				(solo hidrocerusita)	
			1050 vs	$v_{\rm sim} (\rm CO_3)^{2-1}$	
			1364 w	v_{asim} (CO ₃) ²⁻	
Blanco Litopón	Baritina BaSO ₄	50x	161 m	Vibraciones enlace Ba-O	Sintético:
[13, 45, 48, 49]	Sulfuro de zinc	I = 0,45 A	214 m, 345 s	v (Zn-S), δ (Zn-S)	1874
Figura 34	ZnS	t = 70 s	450 m	$\delta_{sim} (SO_4)^{2-}$	
		1 acum	615 w, 668 w	$\delta_{asim} (SO_4)^{2-}$	
			986 vs	$v_{sim} (SO_4)^{2-}$	
			1138 vw	$v_{asim} (SO_4)^{2-}$	
Blanco España	Dolomita	50x	172 w	δ (O-Mg-O)	Mineral
[50]	$\operatorname{CaMg}(\operatorname{CO}_3)_2$	I = 0,62 A	257 vw	Vibración de un posible	
Figura 35		t = 10 s		catión sustituto del Mg	
		3 acum	298 m	$\delta_{\rm sim}$ (O-Mg-O)	
			415 m	-	
			559 m, 648 m,	$\delta_{\rm asim} (\rm CO_3)^{2-1}$	
			$723 \mathrm{m}$	[fuera del plano]	
			1096 s	$v_{\rm sim}$ (CO ₃) ²	
	,		$1321 \text{ vw}-1592 \text{ vw}^5$	v_{asim} (CO ₃) ²⁻	
Blanco de	Oxido de zinc	50x	103 m	δ_{asim} (Zn-O)	Sintético:
Zinc	ZnO	I = 0,80 A	256 vw	$\delta_{\rm sim}$ (Zn-O)	1834
[13,51,52]		t = 30 s	467 w	δ_{asim} (Zn-O)	
Figura 36		3 acum	536 w	$v_{\rm sim}$ (Zn-O)	
			621 vs	$\delta_{\rm asim}$ (Zn-O)	
			753 w	$\delta_{\rm sim}$ (Zn-O)	
			853 sh(vw)	$\delta_{\rm sim} (O-C-O)^{0}$	
Oxalato	Oxalato de	50x	136 vs, 195 s	ν (Ca-O), δ (Ca-O)	Mineral
Cálcico	calcio CaC ₂ O ₄	I = 0,66 A	501 w	δ_{sim} (O–C-O)	(Whewellita,
[45,53]		t = 40 s	895 w	\mathbf{v} (C-C)	Weddellita,
Figura 37		3 acum	940 sh(w)	$v_{\rm sim}$ (C-C)	caoxita)
			1462 s	\mathbf{v} (C-O)	
			1489 m	v_{sim} (C-O)	
	<u> </u>	100	1028 VW	V _{asim} (C-O)	
	Oxido de	100x	133 m	Fotoluminiscencia	Mineral
[04] D: 00	aluminio Al_2O_3	P=5,85 mW	408 w	-	
Figura 38		t=90s	608 W	-	
		2 acum	100	3.7.1 . 1	
BARITINA	Sullato barico	DUX	180 VW	vibraciones enlace	Mineral
[13,45,48] Eiguna 20	BaSO ₄	I = 0,44 A	452 m	Ba-U	
r igura 39		t = 00 s	010 m, 040 vw	$O_{sim}(SU_4)^2$	
		1 acum	980 VS	$O_{asim}(SO_4)^2$	
			1138 VW	$V_{sim} (SO_4)^2$	
<i>Cl_1.4.</i>	Carban (1	50	159 - 9707	Vasim (SU4)"	۱ <i>.</i> ۱
[12 44 FO]	carbonato de	XUG	152 S, 278' VS	movimiento de Ca $^{-1}$	mineral
[13,44,50] Figure 40	carcio CaCO3	I = 0.00 A	710	respecto $(UU_3)^-$	
r igura 40		t = 100 s	(10 m	Oasim (CO3)	

 5 Puede sugerir que los grupos carbonatos están distor
sionados y con baja cristalinidad.

 6 El grupo acetato proviene del proceso de síntesis.

 7 La presencia de este pico indica que el carbonato cálcico analizado proviene del mineral calcita. Sirve para distinguirlo frente a otras formas de cristalización como la Vaterita o Aragonito.

		1 acum	1085 vs	$\nu_{\rm sim}~({\rm CO}_3)^{2-}$	
			$1435 \ \mathrm{vw}$	$v_{\rm asim} ({ m CO}_3)^{2-}$	
Sal de Rochelle	Tartrato sódico	50x	239 m	_	Sintético:
[55]	potásico	I = 0,67 A	$367 \mathrm{w}$	$\delta~(\mathrm{C-(OH)}),\nu~(\mathrm{C-C-C})$	1672
Figura 41	$(KNaC_4H_4O_6 \cdot$	$t = 120 \ s$	529 s, 641 w	τ^{8} (C-O-O)	
	$4H_2O)$	1 acum	809 vs	ν (C-O-O)	
			887 m, 991 s	v (C-C)	
			1069 w	v (C-(OH))	
			1112 w	-	
			1210 m	-	
			1336 s, 1377 s	δ (C-(OH))	
			$1425 \ s$	$v_{\rm sim}$ (C-O)	
			1595 w	$v_{\rm asim}$ (C-O)	
			$2933~\mathrm{vw}$	ν (CH)	

Resulta interesante comparar los espectros obtenidos para tres pigmentos de tipo carbonato: Albayalde, Blanco España y Calcita. Sus espectros Raman (Figura 33, Figura 35, Figura 40) se comparan en la Figura 17:

Figura 17: Comparación de los espectros Raman de los compuestos carbonatos: Blanco de España (azul), Albayalde (naranja) y Calcita (rojo). Aparece resaltado el pico de v_{asim} (CO₃)²⁻.

Se ve como son muy parecidos, pero su mayor similitud se encuentra en el pico de la tensión asimétrica del ion $(CO3)^{2}$. Estudiando la variación de su posición en función del tipo de carbonato se puede observar el efecto de la sustitución catiónica [56]. La teoría predice que a medida que disminuye el radio del catión, a igualdad de carga, la posición de la banda de $v_{sim}(CO_3)^{2-}$ se desplaza hacia número de onda mayores.

Experimentalmente se comprueba con la dolomita (Blanco España) y la calcita. Para la dolomita $(CaMg(CO_3)_2)$ el pico aparece en 1096 cm⁻¹, mientras que para la Calcita (CaCO₃) está en 1085 cm⁻¹. Los resultados son coherentes ya que el radio del magnesio y del calcio son 0.65 Å y 0.99 Å, respectivamente. El caso de la cerusita (Albayalde) es una excepción donde no se observa este efecto debido a la naturaleza covalente parcial del enlace con el carbonato.

A continuación, en la Tabla 4 se muestran los resultados⁹ del análisis colorimétrico.

 $^{^{8}}$ La letra τ designa al modo vibracional de torsión. Es poco frecuente y se suele dar en moléculas con un gran número de átomos.

 $^{^{9}}$ Los valores que aparecen son el resultado de hacer la media aritmética entre los valores obtenidos de las cuatro medidas efectuadas.

Nombre	L^*	a*	b*	ΔE^*ab
Yeso	95.52	1.83	0.98	1.19
Blanco de Titanio	95.15	0.40	-0.81	0.34
Albayalde	92.48	0.56	0.67	0.35
Blanco Litopón	91.80	-0.57	2.41	3.29
Blanco de España	91.38	-0.39	3.97	0.96
Blanco de Zinc	93.48	0.17	2.70	1.30
Oxalato Cálcico	94.59	-0.12	0.61	1.33
Alúmina	95.55	-0.02	1.73	0.70
Baritina	95.58	0.03	3.49	0.93
Calcita	97.27	0.95	0.51	0.71
Sal de Rochelle	97.82	0.28	2.91	0.90

Tabla 4: Resultados colorimétricos pigmentos blancos.

En la Figura 18 se puede ver una representación en tres dimensiones de sus coordenadas colorimétricas en el espacio CIE L*a*b*. Se observa como todos los pigmentos aparecen agrupados, esto quiere decir que apenas hay diferencia cromática entre ellos. Además, todos cuentan con altos valores de L*, la luminosidad, mientras que sus coordenadas a* y b* son prácticamente nulas.

Figura 18: Gráfica CIE L*a*b* 3D de los pigmentos blancos.

4.2 Pigmentos amarillos

Los pigmentos amarillos orgánicos tuvieron el mismo problema: no tenían un color puro, presentaban subtonos ocres y no eran demasiado luminosos. Los primeros empleados fueron óxidos provenientes de minerales como la goethita. Más adelante, los egipcios incorporaron el Oropimente, un pigmento caracterizado por su brillo, pero no muy abundante y bastante tóxico por su contenido en arsénico. A menudo, a lo largo de la historia, los artistas optaron por mezclar pigmentos verdes y rojos para conseguir el tono amarillo deseado, pero la situación no era nada sostenible ya que, tanto los pigmentos azules como verdes, eran difíciles de conseguir. El panorama se mantuvo sin cambios hasta la revolución de la industria química del siglo XVIII. En 1797 Vauquelin descubrió el cromo [44] dando lugar al popular Amarillo de Cromo. Este famoso pigmento, acompañado de otros menos populares como el Amarillo de Estroncio y el Amarillo de Zinc [57], desbancó completamente a los anteriores debido a su vitalidad y su color puro. Con el tiempo se demostró que no eran químicamente estables y que bajo la exposición a la luz o a la humedad, el color amarillo se degradaba hacia tonos más marrones o verdosos. Actualmente se está investigando las posibles degradaciones que han sufrido los cuadros de Van Gogh, fiel defensor del Amarillo de Cromo [58]. A partir de 1845 se introdujo en el mundo del arte el pigmento amarillo definitivo, el Amarillo de Cadmio. Este pigmento sí que es químicamente estable y apenas presenta problemas de incopatibilidades en las mezclas. Fue el elegido por Piet Mondrian para elaborar su famoso cuadro *Composición en rojo, amarillo y azul* [59].

En la Tabla 5 aparecen los resultados del análisis Raman de una selección de pigmentos amarillos tanto orgánicos como inorgánicos.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Amarillo de Zinc [57] Figura 42	Cromato de zinc y potasio hidratado K ₂ ZnO(CrO ₄) ₄ · 3H ₂ O	50x I= 0,48 A t = 8 s 1 acum	341 m 399 sh(vw) 868 vs 889 sh (vw)	$\begin{array}{c} \delta \; ({\rm CrO4})^{2-} \\ \delta \; ({\rm CrO4})^{2-} \\ \nu_{\rm sim} \; ({\rm CrO_4})^{2-} \\ \nu_{\rm asim} \; ({\rm CrO_4})^{2-} \end{array}$	Sintético: Principios S.XIX
Amarillo de Cadmio [13,59,60] Figura 43	Sulfuro de cadmio CdS	-	937 w 301 m 601 s 900 w	- v-1LO ¹⁰ v-2LO v-3LO	Mineral: Greenockita/ Sintético: 1845
<i>Amarillo de</i> <i>Estroncio</i> [57,61] Figura 44	Cromato de estroncio SrCrO ₄ Baritina BaSO ₄	$50x \\ I = 0.44 A \\ t = 7 s \\ 1 acum$	135, 219 vw 356 m 401 sh(vw) 975 vw 1168 s 1251 s	$\begin{array}{c} Vibraciones\ enlace\ Ba-O\\ \delta\ (CrO4)^{2-}\\ \delta\ (CrO4)^{2-}\\ \nu_{sim}\ (SO4)^{2-}\\ \nu_{asim}\ (SO4)^{2-}\\ \end{array}$	Sintético: Principios S.XIX
Amarillo de Cromo Puro [13,44] Figura 45	Cromato de plomo PbCrO ₄	50x I= 0,41 A t = 10 s 1 acum	107 w 355 s 834 vs	Vibraciones del enlace Pb-O $\delta (CrO_4)^{2-}$ $\nu_{sim} (CrO_4)^{2-}$	Sintético: 1809
Amarillo de Cromo [13,44,50] Figura 46	Cromato de plomo PbCrO ₄ Calcita CaCO ₃	50x $I = 0.55 A$ $t = 7 s$ $4 acum$	151 m, 278 s, 356 m 376 396 sh(vw) 710 w 838 s 1085 vs 1282 br(vw) 1436 vw 1742 vw	$\begin{array}{c} \text{Movimiento de Ca}^{2+} \\ \text{respecto } (\text{CO}_3)^{2-} \\ & \delta (\text{CrO}_4)^{2-} \\ & \delta (\text{CrO}_4)^{2-} \\ & \nu_{\text{sim}} (\text{CO}_3)^{2-} \\ & - \\ & \nu_{\text{sim}} (\text{CrO}_4)^{2-} \\ & \nu_{\text{asim}} (\text{CO}_3)^{2-} \end{array}$	Sintético: 1809

1 a Dia J. Mesultados Mainan pignientos amarino	Tabla 5:	Resultados	Raman	pigmentos	amarillos
---	----------	------------	-------	-----------	-----------

 $^{^{10}}$ LO: modo longitudinal óptico

Oropimente	Trisulfuro de arsénico	50x	105 vw	v_{sim} (As-S-As)	Mineral
[21, 62]	As_2S_3	I = 0,45 A	$136 {\rm w}$	δ (As-S-As)	
	Figura 47	$t=500\ ms$	150 w	δ (As-As-S)	
		1 acum	178 vw	δ (S-As-S)	
			201 w	δ (As-S-As)	
			289 m	v_{sim} (As-S)	
			309 s	$v_{\rm asim}$ (As-S)	
			351 vs	v (As-S)	
			$377 \mathrm{sh(vw)}$	v_{sim} (As-S-As)	
	Rejalgar ¹¹	50x	137 vw	δ (As-S-As)	
	As_4S_4	I = 0.45 A	178 vs	δ (As-As-S)	
	Figura 48	$t=400\ ms$	215 s	δ (S-As-S)	
		1 acum	306 w	$v_{\rm asim} ({\rm As-S})$	
			348 vs	v_{sim} (As-S)	
Óxido de	Goethita FeOOH	50x	108 vw, 158 vw	Vibraciones de la red	Mineral
Hierro		I = 0.37 A	$201 \mathrm{sh(vw)}$	$\nu_{\rm asim}({\rm Fe-O})$	
Amarillo		t=500~s	$235 \mathrm{m}$	$\delta_{\rm sim}({\rm Fe-O})$	
Sintético		1 acum	292 s	$\delta_{\rm sim}({\rm Fe-O})$	
[17, 63]			388 vs	$\delta_{\rm sim}({\rm Fe-O})$	
Figura 49			473 m	$\delta_{\rm sim}({\rm Fe-O})$	
			541 m	$\nu_{\rm asim}({\rm Fe-O})$	
			991 m	δ (ОН)	
			$2874~\mathrm{w}$	ν (OH)	

En el análisis del Oropimente, con la ayuda del microscopio, se ha detectado la presencia del Rejalgar, otro sulfuro mineral con un color más anaranjado y rojizo. Estos dos minerales se distinguen fácilmente, ya que aparecen formando granos bien diferenciados. Según Franquelo et al. [64], la aparición combinada de estos dos minerales es bastante frecuente.

Debido a la gran resolución lateral Raman (1 μ m) se ha podido analizar de forma independiente ambos compuestos y se han obtenido sus correspondientes espectros Raman (Figura 47 y Figura 48). Unas imágenes de los granos de Oropimente y Rejalgar tomadas usando un microscopio óptico con un objetivo x50, se muestran en las Figura 19 y Figura 20.

Figura 19: Granos de Oropimente. Imagen tomada con un microcopio óptico con objetivo de 50x.

 $^{^{11}}$ No es un componente del Oropimente, es un mineral que sue le aparecer acompañándolo. Presenta cristales bien diferenciados y con la suficiente precisión se pue de extraer su espectro Raman.

Figura 20: Granos de Rejalgar. Imagen tomada con un microcopio óptico con objetivo de 50x.

En la Tabla 6 se recogen los parámetros colorimétricos de los pigmentos amarillos.

Nombre	L*	a*	b*	ΔE^*ab
Amarillo de Zinc	86.88	-10.18	59.94	3.45
Amarillo de Cadmio	95.04	-11.21	91.62	-
Amarillo de Estroncio	85.42	5.17	86.35	2.48
Amarillo de Cromo Puro	74.97	18.75	73.48	2.19
Amarillo de Cromo	87.63	2.03	50.78	0.76
Oropimente	77.19	11.25	38.33	7.17
Óxido de Hierro Amarillo				
Sintético	69.35	11.15	44.06	3.35

Tabla 6: Resultados colorimétricos pigmentos amarillos.

Se puede observar como la diferencia de color (ΔE^*ab) entre distintas medidas del Oropimente es considerablemente mayor que en el caso de otros pigmentos. Una posible causa puede ser su composición no homogénea que se acaba de describir que hace que los resultados dependan fuertemente del punto concreto analizado.

En la Figura 21 se observa la representación en tres dimensiones de las coordenadas $L^*a^*b^*$ de los pigmentos amarillos. En este caso los pigmentos están bastante distanciados, aunque todos poseen valores elevados de la coordenada b*, la responsable de caracterizar el tono amarillo. El parámetro L* sí que tiene una notable variación entre los más luminosos, los colores sintéticos como el Amarillo de Zinc o de Cadmio, y los más apagados, el Óxido de Hierro y el Oropimente.

Figura 21: Gráfica CIE L*a*b* 3D de los pigmentos amarillos.

4.3 Pigmentos naranjas

La evolución histórica de los pigmentos naranjas fue análoga a la de los amarillos. En la naturaleza era difícil encontrar compuestos que puedieran ser usados como pigmentos naranjas. Una de las pocas fuentes era el Rejalgar, un mineral, sulfuro de arsénico, que se presenta acompañando al Oropimente (ambos se han analizado en el apartado 4.2).

Fue con la llegada de la revolución química cuando aparecieron los primeros pigmentos naranjas elaborados sin mezcla de colores [9]. El primero fue el Naranja de Cromo, pero se retiró un siglo después debido a su inestabilidad frente al paso del tiempo. Apenas 50 años después apareció el pigmento que perdura hasta nuestros días, el Naranja de Cadmio.

En la Tabla 7 aparece el resultado del análisis Raman de estos dos pigmentos sintéticos.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Naranja de	Cromato básico de	50x	142 m	Vibraciones del enlace	Sintético:
Cromo	plomo	I = 0,44 A		Pb-O	1809
[2, 13, 44]	$PbCrO4 \cdot PbO$	t = 5 s	$339 \mathrm{m}$	$\delta ({\rm CrO_4})^{2-}$	
Figura 50		3 acum	376 sh(w)	$\delta (CrO_4)^{2-}$	
			823 vs	$v_{sim} (CrO_4)^{2-}$	
Naranja de	Sulfuro de	50x	127 m	-	Mineral:
Cadmio	cadmio CdS	I = 0,47 A	224 vs	-	Greenockita/
[13, 59, 60, 65]		t = 7 s	292 w	v-1LO	Sintético:
Figura 51		3 acum	331 w	-	1845
			583 vw	v-2LO	

Tabla 7: Resultados Raman pigmentos naranjas.

Los resultados de su análisis colorimétrico se recogen en la Tabla 8.

Nombre	L^*	a*	b*	ΔE^*ab
Naranja de Cromo	55.36	48.60	38.62	2.35
Naranja de Cadmio	57.04	54.54	44.24	2.84

Tabla 8: Resultados colorimétricos pigmentos naranjas.

En la Figura 22 se representan las coordenadas de los pigmentos sintéticos Naranja de Cromo y Naranja de Cadmio en el espacio CIE L*a*b* tridimensional.

Figura 22: Gráfica CIE L*a*b* 3D de los pigmentos naranjas.

4.4 Pigmentos rojos

Los pigmentos rojos fueron, junto a los blancos y negros, los primeros empleados por el ser humano. Se elaboraban a partir de la Goethita, un mineral ferroso relativamente común. Algunos ejemplos de este tipo son el Almagre, la Tierra Roja o los Óxidos de Hierro. Los pigmentos rojos elaborados a base de minerales no fueron los únicos provenientes de la naturaleza, a partir de insectos como los kermes o las cochinillas se obtuvieron los ácidos kermésico y carmínico que originaron los muy conocidos pigmentos Rojo Kermes y Carmín [66].

Más adelante, de la mano de la civilización egipcia [21] se empezó a utilizar el mineral Cinabrio, sulfuro de mercurio caracterizado por su color rojo intenso. Este mineral dio lugar al pigmento denominado Bermellón, que resultó muy codiciado especialmente para los habitantes del Imperio Romano. Tanto es así, que ya en la alta Edad Media se conocía la manera sintética de producirlo. Hoy en día ya no está en uso debido a su alta toxicidad y su oscurecimiento con el paso del tiempo. También hubo otros casos de pigmentos sintéticos que se empezaron a elaborar desde la Antigüedad, como el óxido de plomo rojo conocido como Minio.

Aunque es cierto que estos pigmentos han seguido en uso durante muchos más siglos, con la llegada de la revolución industrial se introdujeron otros nuevos mucho más seguros y con mejores propiedades de conservación. Ejemplo de ello es el Rojo de Cadmio, análogo al Amarillo y Naranja de Cadmio, pero elaborado con selenio en vez de sulfuro [13]. La historia de los pigmentos ha seguido evolucionando, de hecho, durante el siglo XX se han introducido otros nuevos muy utilizados en la actualidad, como la Escarlata de Molibdeno, ampliamente extendido en aplicaciones industriales [67].

En la Tabla 9 se detallan los resultados del análisis Raman de una colección de pigmentos rojos procedentes de distintos momentos históricos.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Minio	Tetróxido de	50x	118 vs	δ(O-Pb-O)	Sintético:
(Plomo Rojo)	plomo Pb ₃ O ₄	I = 0,43 A	148 w	δ(O-Pb-O)	1500- 500 a.C.
[2, 13, 68, 69]		t = 2 s	222 w	$\delta(\text{O-Pb-O})$	
Figura 52		1 acum	309 w	-	
			$387 \mathrm{w}$	-	
			546 ¹² m	v(Pb-O)	
Escarlata de	Cromato y	50x	141 m	Vibraciones red	Sintético:
Molibdeno	molibdato de	I = 0,40 A	334 m, 357 m	$\delta_{sim} (MoO_4)^{2-}$,	1934
[44, 48, 67]	plomo	t = 5 s		$\delta_{\rm sim} ({\rm CrO_4})^{2-}$,	
Figura 53	$Pb(Cr_{19}Mo11)O_4$	4 acum		$\delta_{\rm sim} ({ m SO}_4)^{2-}$	
	Baritina $BaSO_4$		816 vs	$v_{\rm sim} ({ m MoO_4})^{2-},$	
				$v_{\rm sim} ({\rm CrO_4})^{2-},$	
				$v_{sim} (SO_4)^{2-}$	
Cinabrio	Bermellón HgS	50x	251 vs	v _{sim} (Hg-S)	Mineral:
[2,70]		l = 0,37 A	279 sh(vw), 341 w	Vibraciones Hg-S fuera	Cinabrio
Figura 54		t = 550 ms		plano	
D · 17	á · 1 1 / ·	1 acum	940		T /
10 40 71	Acido kermesico	JUX	340 vw	Vibraciones enlace Ba-O	Insecto:
[2,48,71] Eiguna 55	Baritina BaSO ₄	1= 0,45 A	579 vw, 422 vw	$o_{sim}(SO_4)^2$	Kermes
r igura 55		t = 0 s	524 VW	_	
		5 acum	500 VW	$\delta_{asim} (SO_4)^2$	
			012 VW, 071 W 722 W	-	
			722 w 739 w	-	
			810 vw	-	
			957 w	$\nu_{\rm sim}({ m SO}_4)^{2-}$	
			1059 w	$\gamma_{ m CH}$ 13	
			1104 w	$\delta_{\rm OH} + \delta_{\rm CH}$	
			$1158 { m w}$	$\nu_{\rm asim}({ m SO}_4)^{2-}$	
			1226 s	$\delta_{\rm OH} + \delta_{\rm CH}$	
			$1274 { m \ s}$	$\delta_{ m OH}$	
			1353 vs	$\delta_{\rm OH} + \delta_{\rm CH}$	
			1387 sh(m)	$\delta_{\rm OH} + \delta_{\rm CH}$	
			1458 sh(m)	$\delta_{\rm OH} + \delta_{\rm CH}$	
			1481 s	$\delta_{\rm OH} + \delta_{\rm CH}$	
			$1552 \mathrm{sh}(\mathrm{m})$	$v_{\rm ring} + \delta_{\rm OH}$	
			1556 vs	$v_{\rm ring} + \delta_{\rm OH}$	
Rojo Cadmio	Sulfoseleniuro de	50x	127 s	-	Sintético
[9, 13, 65]	cadmio $Cd(S,Se)$	I = 0,45 A	190 w	$\nu\text{-LO(CdSe)}$	1910
Figura 56		t = 2 s	232 vs	$\nu\text{-LO}(\mathrm{CdS})$	
		10 acum	326 m	-	
			444 br(w)	v-O(CdSe) + LO(CdS)	
			562 w	v-LO(CdS)	

Tabla 9:	Resultados	Raman	pigmentos	rojos.
----------	------------	-------	-----------	--------

 $^{^{12}}$ Este pico que está en 541 cm $^{-1}$ es el más característico del espectro, aunque en este caso no es el más intenso.

 $^{^{13}}$ La letra γ designa la deformación.

Rojo Normal	Ácido kermésico	50x	115 w	-	Insecto:
[2,50,71]	Calcita CaCO ₃	I = 0,47 A	146 m, 275 s	Movimiento de Ca ²⁺	Kermes
Figura 57		t = 13 s		respecto (CO ₃) ²⁻	
		4 acum	333 br(w)	-	
			404 w	-	
			555 br(vw)	-	
			633 br(vw)	-	
			$707 \mathrm{w}$	$\delta_{\rm sim}~({ m CO}_3)^{2-}$	
			831 br(vw)	$\delta_{\rm ring} + \delta_{\rm OH}$	
			960 br(vw)	үсн	
			1083 vs	$v_{\rm sim} ({\rm CO}_3)^{2-}$	
			1104 w	δ_{CH}	
			1202 vw	$\delta_{\rm CH}+$ $\delta_{\rm OH}$	
			1229 vw	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1256 vw	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1322 s	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1361 vw	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1398 w	-	
			1429 vw	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1481 vw	$\delta_{\rm CH} + \delta_{\rm OH}$	
			1497 vw	-	
			1554 vw	$\nu_{\rm ring} + \delta_{\rm OH}$	
			1592 m	$\nu_{\rm ring} + \delta_{\rm OH}$	
Bermellón	Cinabrio HgS	50x	109 vw, 147 vw	Movimiento de Ca ²⁺	Mineral:
[2, 50, 70]	Calcita CaCO ₃	I = 0,60 A		respecto $(CO_3)^{2}$	Cinabrio /
Figura 58	Baritina BaSO ₄	t = 15 s	273 s	$\nu_{\rm sim}({\rm Hg-S})$	Sintético:
		1 acum	337 vw	Vibraciones Hg-S fuera	S. VIII
				plano	
			453 w	$\delta_{ m sim}~(m SO_4)^{2-}$	
			623 br(w)	$\delta_{\rm asim} ({ m SO}_4)^{2-}$	
			712 w	$\delta_{\rm sim}~({ m CO}_3)^{2-}$	
			825 br(vw)	-	
			984 m	$v_{\rm sim} ({\rm SO}_4)^{2-}$	
			1083 vs	$v_{\rm sim}$ (CO ₃) ²⁻	
			1226 w	$v_{asim} (SO_4)^{2^-}$	
			1352 vw	-	
			1402 w	-	
			1485 w	Vasim (CO ₃) ²	
			1535 vw	-	
	<u> </u>		1596 w	-	
Carmín	Acido carmínico	50x	173 vw, 276vw,	Vibraciones red	Insecto:
	$C_{22}H_{20}O_{13}$	I = 0.6 A	332 vw, 332 vw		Cochinilla
[2,48,50,71]	Calcita CaCO ₃	t = 13 s	463 vw	$\delta_{\rm sim}$ (SO ₄) ²	
Figura 59	Baritina $BaSO_4$	2 acum	496 W	-	
			514 W	-	
			594 VW	$\delta_{asim} (SO_4)^2$	
			708 VW	O_{asim} (CO ₃) ⁻	
			745 W	-	
			990 w 1026 www	V_{sim} (SO4)	
			1086 m	$O_{CH} + O_{OH}$	
			1030 III 1121 w	$V_{\rm sim}$ (CO3)	
			1181 a	Sourt Sour	
			1931 o	$\delta_{\text{OH}} + \delta_{\text{OH}}$	
			1264 s	$\delta_{CH} + \delta_{OH}$	
			1393 ch(vw)	-	
			1362 ve	-	
			1409 sh(vw)	$v_{asim} (C\Omega_2)^{2-}$	
			1493 vs	$\delta_{CH} + \delta_{OH}$	
			1549 w	$v_{ring} + \delta_{OH} + \delta_{CH}$	
			1600 vs	$v_{\rm ring} + \delta_{\rm OH} + \delta_{\rm CH}$	

Lucía Canales Pascual

Carmín	Ácido carmínico	50x	151 w, 267 m, 327	Vibraciones red	Insecto:
[2, 45, 50, 71]	$C_{22}H_{20}O_{13}$	I = 0,49 A	w, 346 w		Cochinilla
Figura 60	Calcita CaCO ₃	t = 7 s	407 w	$\delta_{sim} (SO_4)^{2-}$	
	Yeso	1 acum	564 vw	-	
	$CaSO_4 \cdot 2H_2O$		616 vw	$\delta_{\rm asim}~({ m SO}_4)^{2-}$	
			630 vw	$\delta_{\rm asim}~({ m SO}_4)^{2-}$	
			710 w	$\delta_{\rm asim} ({ m CO}_3)^{2-}$	
			963 br(vw)	$v_{\rm sim}~({ m SO}_4)^{2-}$	
			1082 vs	$v_{sim} (CO_3)^{2-}$	
			1104 sh(m)	$\nu_{\rm asim} ({ m SO}_4)^{2-}/$	
				$\delta_{\rm OH} + \delta_{\rm CH}$	
			1323 vs	-	
			1399 w	-	
			1429 sh(vw)	$v_{\rm asim}~({\rm CO}_3)^{2-}$	
			1498 vw	$\delta_{\rm OH} + \delta_{\rm CH}$	
			1588 m	$\nu_{\rm ring} + \delta_{\rm OH} + \delta_{\rm CH}$	
Tierra Roja	Hematites Fe ₂ O ₃	50x	221 w	$\nu_{\rm asim}({\rm Fe-O})$	Mineral
[13, 17]		I = 0.37 A	288 s	$\delta_{\rm sim}$ (Fe-O)	
Figura 61		t = 120 s	402 s	$\delta_{\rm sim}$ (Fe-O)	
		1 acum	544 br(vw)	$v_{\rm asim}$ (Fe-O)	
			605 w	$\delta_{\rm sim}$ (Fe-O)	
Óxido de	Hematites Fe ₂ O ₃	50x	165 w	Vibraciones red	Mineral
Hierro	Cuarzo SiO_2	I = 0,40 A	$258 \mathrm{~s}$	$\nu_{\rm asim}$ (Fe-O)	
Gloria	Calcita CaCO ₃	t = 7 s	329 vs,	$\delta_{\rm sim}$ (Fe-O)	
[13, 17, 50, 72]		5 acum	396 sh(m)		
Figura 62			$555 \mathrm{s}$	$\nu_{\rm asim}$ (Fe-O)	
			$638 \mathrm{~m}$	-	
			718 m	$\delta_{\rm asim} ({ m CO}_3)^{2-}$	
			814 w	δ (Si-O-Si)	
			$955 \mathrm{m}$	-	
			1105 s	$\nu_{\rm sim}~({ m CO}_3)^{2-}$	
			1207 m	v_{asim} (SiO ₄)	
Óxido de	Hematites Fe ₂ O ₃	50x	212 s	$v_{\rm asim}$ (Fe-O)	Mineral
Hierro Rojo		I = 0,38 A	281 vs	$\delta_{\rm sim}$ (Fe-O)	
Sintético		t = 300 s	$395 \mathrm{m}$	$\delta_{\rm sim}$ (Fe-O)	
[13, 17]		1 acum	482 vw	$v_{\rm asim}$ (Fe-O)	
Figura 63			598 w	$\delta_{\rm sim}$ (Fe-O)	
			1298 br(vw)	Dispersión 2 magnones ¹⁴	
Almagre	Hematites Fe ₂ O ₃	50x	220 s	$v_{\rm asim}$ (Fe-O)	Mineral
[13, 17]		I = 0,36 A	288 vs	$\delta_{\rm sim}$ (Fe-O)	
Figura 64		t = 600 s	404 m	$\delta_{\rm sim}$ (Fe-O)	
		1 acum	489 w	$v_{\rm asim}$ (Fe-O)	
			605 m	$\delta_{\rm sim}$ (Fe-O)	
			$653 \mathrm{sh(vw)}$	Presencia magnetita ¹⁵	
			1313 w	Dispersión 2 magnones	
Quinalizarina	1,2,5,8-	50x	112 vs	-	Sintético:
[73]	Tetrahidroxiantra	I = 0,38 A	250 w	-	S.XX
Figura 65	quinona $C_{14}H_8O_6$	t = 3 s	333 w	-	
		5 acum	$452 \mathrm{m}$	$\delta(C-C)$	
			645 vw	δ(C-C)	
			724 vw	-	
			953 vw	δ(C-C)	

 $^{^{14}}$ En los espectros de Hematites puede aparecer un pequeño pico alrededor de 1320 cm⁻¹ provocado por la dispersión de dos magnones que provienen de la interacción entre dos espines paralelos cercanos [17].

 $^{^{15}}$ En el análisis Raman de Hematites una banda sobre 650 cm⁻¹ puede sugerir la presencia de Magnetita, otro mineral férrico. La aparición combinada de estos dos minerales no es de extrañar, ya que suelen aparecer mezclados en la naturaleza [93].

 995 vw	δ(C-C)	
$1394 \mathrm{w}$	ν(C-C)	
 1560 vw	ν(C-C)	

En la Tabla 10 se recogen los resultados de colorimetría de los pigmentos rojos.

Nombre	L*	a*	b*	ΔE^*ab
Minio (Plomo Rojo)	65.15	44.43	45.63	2.77
Escarlata de Molibdeno	55.81	49.46	34.36	4.08
Cinabrio	53.17	62.16	46.03	-
Rojo Kermes	43.44	59.01	28.67	1.38
Rojo Cadmio	45.50	54.42	21.43	1.60
Rojo Normal	56.16	42.67	13.15	1.57
Bermellón	56.90	48.21	16.09	0.88
Carmín Intenso	38.81	9.86	5.60	2.13
Carmín	53.69	37.28	10.56	6.25
Tierra Roja	43.96	21.93	6.76	2.21
Óxido de Hierro Gloria	40.20	26.66	8.29	4.00
Óxido de Hierro Rojo Sintético	41.32	28.95	13.99	2.97
Almagre	38.20	29.15	14.80	3.11
Quinalizarina	39.78	38.14	25.07	1.33

Tabla 10: Resultados colorimétricos pigmentos rojos.

En la Figura 23 aparece la representación tridimensional de las coordenadas $L^*a^*b^*$ de los pigmentos rojos analizados. Se observa como los pigmentos elaborados a partir del mineral férrico Goethita tienen iluminaciones más bajas.

Figura 23: Gráfica CIE L*a*b* 3D de los pigmentos rojos.

4.5 Pigmentos marrones - ocres

La mayoría de los pigmentos con tonos marrones y ocres apenas han evolucionado desde la Antigüedad y tienen una composición bastante similar. Están formados por minerales ferrosos como Goethita, Hematites, Magnetita y a menudo aparecen acompañados por Cuarzo o Calcita [74].

Se dividen en tres grandes familias, las Sienas, las Sombras y los Ocres. Aunque se parecen bastante, pequeñas diferencias en su composición hacen que sus cualidades y su aspecto fluctúen totalmente. Las Sienas están formados por silicatos muy finos, lo que las hace idóneas para elaborar pinturas donde se necesita cierto grado de transparencia, como las veladuras [74]. Por el contrario, las Sombras están compuestos por granos más gruesos que hacen que sus componentes no se terminen de mezclar del todo y se perciban los colores con cierta vibración. Finalmente, los Ocres, suelen tener una composición más alta en hidróxido de hierro y son muy variados.

Además, dentro de cada familia se distinguen por otros "apellidos" como natural, tostado o calcinado que hacen referencia al proceso que se ha llevado a cabo para su obtención. Los naturales suelen estar compuestos por Goethita, los tostados muestran un color más rojizo provocado por la conversión de la Goethita en Hematites [10] y los calcinados han sido expuestos a temperaturas mayores [17].

Los resultados Raman del análisis de estos pigmentos se muestran en la Tabla 11.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Siena Tostada	Hematites Fe ₂ O ₃	50x	115 w	Vibraciones red	Sintético:
[13, 17, 50, 72]	Cuarzo SiO ₂	I = 0,40 A	$216 \mathrm{sh(w)}$	$\nu_{\rm asim}({\rm Fe-O})$	Antigüedad
Figura 66	Calcita CaCO ₃	t = 120 s	279 vs	$\delta_{\rm sim}$ (Fe-O)	
	-	1 acum	394 s	$v_{\rm asim}$ (Fe-O)	
			590 w	$\nu_{\rm asim}({\rm Fe-O})$	
			709 vw	$\delta_{\rm asim}~({ m CO}_3)^{2-}$	
			955 vw	-	
			1082 w	$\nu_{\rm sim} ({ m CO}_3)^{2-}$	
Aureolina	Amarillo de	50x	$169~\mathrm{vs},205~\mathrm{w}$	Vibraciones red	1852
[6]	cobalto	I = 0,42 A	245 vs, $298~\mathrm{v}$		
Figura 67	$K_3[Co(NO_2)_6]$ ·	t = 10 s	552 vw	-	
	H_2O	1 acum	833 vs	δ	
			860 m	δ	
			1318 vs	$v_{\rm sim}$	
			1410 vw	v	
			1467 vs	V	
Siena Natural	Goethita FeOOH	50x	148 w	Vibraciones red	Mineral
[13, 17, 50, 63, 72]	Cuarzo SiO ₂	I = 0,37 A	228 w	$\nu_{\rm asim}({\rm Fe-O})$	
Figura 68	Calcita CaCO ₂	t = 180 s	289 s	$\delta_{\rm sim}$ (Fe-O)	
	Calcita Cacos	1 acum	390 vs	$\delta_{\rm sim}$ (Fe-O)	
			$475 {\rm w}$	v_{sim} (Si-O-Si)	
			$545 \mathrm{w}$	$v_{\rm asim}$ (Fe-O)	
			705 vw	$\delta_{\rm asim} ({\rm CO}_3)^{2-}$	
			837 m	δ (Si-O-Si)	
			987 vw	δ (OH)	
			1080 s	$\nu_{\rm sim} ({ m CO}_3)^{2-}$	
			2049 vw	-	
			2123 vw	-	
			2880 vw	ν (ОН)	

Tabla 11: Resultados Raman pigmentos marrones – ocres.

Lucía Canales Pascual

Ocre Superior	Goethita FeOOH	50x	$105~\mathrm{vw}, 167~\mathrm{vw}$	Vibraciones red	Mineral
[13, 17, 63]		$\mathbf{I}{=0,37}~\mathbf{A}$	238 m	$\nu_{\rm asim}({\rm Fe-O})$	
Figura 69		t=600~s	292 s	$\delta_{\rm sim}$ (Fe-O)	
		1 acum	391 vs	$\delta_{\rm sim}$ (Fe-O)	
			$473 \mathrm{m}$	-	
			$541 \mathrm{m}$	$v_{\rm asim}$ (Fe-O)	
			983 vw	δ (OH)	
			$2874~\mathrm{vw}$	ν (OH)	
Ocre Claro	Goethita FeOOH	50x	146 w	Vibraciones red	Mineral
[13.17.50.63.72]	Cuarzo SiOa	I = 0.40 A	276 s	$\delta_{\rm sim}$ (Fe-O)	
Figura 70		t = 90 s	395 vs	$\delta_{\rm sim}$ (Fe-O)	
8	Calcita $CaCO_3$	1 acum	545 w	v _{asim} (Fe-O)	
			620 w	$\delta_{\rm sim}$ (Fe-O), δ (OH)	
			710 w	$\delta_{\rm asim} ({\rm CO}_3)^{2-}$	
			950 vw	δ (OH)	
			1079 vs	$v_{\rm sim}$ (CO ₃) ²⁻	
			1115 sh(vw)	v_{asim} (CO ₃) ²⁻	
			1309 w	Dispersión 2 magnones	
			1600 w	-	
			2884 vw	ν (OH)	
Sombra	Goethita FeOOH	50x	150 vw	Vibraciones red	Sintético:
Calcinada	Hematites Fea	I = 0.3 A	222 w	v _{asim} (Fe-O)	Antigüedad
[13.17.50.63.75]	Mamatita Ea O	t = 1200 s	283 vs	$\delta_{\rm sim}$ (Fe-O)	8444-4
Figura 71	Magnetita Fe ₃ O ₄	1 acum	402 s	$\delta_{\rm sim}$ (Fe-O)	
8	Calcita CaCO ₃		548 w	v _{asim} (Fe-O)	
			610 w	$\delta_{\rm sim}$ (Fe-O)	
			655 w	v _{asim} (Fe-O)	
				(Magnetita)	
			711 w	$\delta_{asim} (CO_3)^{2-}$	
			917 w	δ (OH)	
			1098 vs	$v_{\rm sim} ({\rm CO}_3)^{2-}$	
			1319 vw	Dispersión 2 magnones	
			2873 w	ν (OH)	
Óxido de	Goethita FeOOH	50x	116 w	Vibraciones red	Mineral
Hierro Pardo	Hematites Fe ₂ O ₃	I = 0.36 A	217 s	v _{sim} (Fe-O)	
[13, 17, 63, 75]	Magnetita FeaO	t = 600 s	282 vs	v_{sim} (Fe-O),	
Figura 72	Magnetita 1 0304	1 acum		$v_{\rm asim}$ (Fe-O)	
			400 s	$\delta_{\rm sim}$ (Fe-O)	
			487 vw	$v_{\rm asim}$ (Fe-O)	
			602 w	$\delta_{\rm sim}$ (Fe-O)	
			1315 vw	Dispersión 2 magnones	
			2666 vw	-	
			$3070 \ br(w)$	v (OH)	
Sombra	Goethita FeOOH	50x	121 w	Vibraciones red	Sintético:
Tostada	Hematites Fe ₂ O ₃	I = 0,36 A	$222 \mathrm{sh(w)}$	$\nu_{\rm asim}~({\rm Fe-O})$	Antigüedad
[13, 17, 50, 63, 72]	Cuarzo SiO2	t = 100 s	280 vs	$\delta_{\rm sim}$ (Fe-O)	
Figura 73	Calaita CaCO	1 acum	$347 \mathrm{sh(w)}$	-	
	Calcita CaCO3		404 vs	$\delta_{\rm sim}$ (Fe-O)	
			$625 \mathrm{m}$	δ_{sim} (Fe-O), $\delta(OH)$	
			712 w	$\delta_{asim} (CO_3)^{2-}$	
			952 vw	δ (OH)	
			$1087 {\rm w}$	$v_{\rm sim} ({ m CO}_3)^{2-}$	
			1318 w	Dispersión 2 magnones	
			2118 w	-	
			2660 w	-	
			2872 w	ν (OH)	
Sombra	Goethita FeOOH	50x	110 w	Vibraciones red	Mineral
Natural	Cuarzo SiO ₂	I = 0,36 A	236 w	$v_{\rm asim}$ (Fe-O)	
[13, 17, 50, 63, 72]	Calcita CaCO ₃	t=180~s	292 w	$\delta_{\rm sim}~({\rm Fe-O})$	
Figura 74		1 acum	385 vs	$\delta_{\rm sim}({\rm Fe-O})$	
			457 sh(m)	v _{sim} (Si-O-Si)	

			$547 \mathrm{m}$	$\nu_{\rm asim}$ (Fe-O)	
			651 w	Presencia magnetita	
			710 w	$\delta_{ m asim} ({ m CO}_3)^{2-}$	
			833 vw	δ (Si-O-Si)	
			$1079 \ \mathrm{w}$	$v_{\rm sim} ({ m CO}_3)^{2-}$	
			1331 w	Dispersión 2 magnones	
			1600 w	-	
			$2876~\mathrm{w}$	-	
			3171 vw	ν (OH)	
Siena	Goethita FeOOH	100x	$223 \mathrm{~s}$	v _{asim} (Fe-O)	Sintético:
Calcinada	Hematites Fe ₂ O ₃	P=2,34 mW	$287 \mathrm{s}$	$\delta_{\rm sim}$ (Fe-O)	Antigüedad
[13, 17, 50, 63, 75]	Magnetita Fe ₃ O ₄	2 acum	$405 \mathrm{~s}$	$\delta_{\rm sim}$ (Fe-O)	
Figura 75	Calcita CaCO ₂		$537 \mathrm{w}$	$v_{\rm asim}$ (Fe-O)	
	Calcina Cacos		656 w	$v_{\rm asim}$ (Fe-O)	
				(Magnetita)	
			961 w	δ (OH)	
			1085 vs	$ u_{ m sim}~(m CO_3)^{2-}$	
			1225 sh(w)	-	
			1317 m	Dispersión 2 magnones	
			$1958~\mathrm{vw}$	-	
Tierra Cassel	Materia orgánica	100x	450 br(w)	Las bandas anchas de 1350	S. XVII
[76, 77]		P=23,4 mW	1100 sh(w)	$\rm cm^{\text{-}1}$ y 1571 $\rm cm^{\text{-}1}$ dominan el	
Figura 76		2 acum	$1350 \mathrm{\ br}(\mathrm{s})$	espectro e indican que es	
			$1571 \ br(s)$	material altamente amorfo	

Este grupo de pigmentos representan una buena oportunidad para observar como el espectro Raman de una mezcla de compuestos tiene modos reconocibles de cada uno de sus ellos. Un ejemplo donde se observa de manera bastante clara este fenómeno es en la Siena Natural, pigmento compuesto por Goethita, Calcita y Cuarzo. En la Figura 24 aparece el espectro Raman de la Siena Natural seguido del de cada uno de sus componentes:

Figura 24: Análisis comparativo del espectro Raman de la Siena Natural a través de sus componentes: Goethita, Calcita y Cuarzo.

Se puede apreciar como en este caso sí que se cumple relativamente bien el principio de superposición, aunque este no es siempre el caso. En determinadas mezclas, sobre todo en las que participan un pigmento claro y uno más oscuro, no se encuentra un comportamiento tan lineal, y suele suceder que las bandas del más oscuro enmascaren al resto [23].

En la Tabla 12 se muestran los resultados del análisis colorimétrico de los pigmentos marrones - ocres.

Nombre	L*	a*	b*	ΔE^*ab
Siena Tostada	43.97	15.82	6.67	3.98
Aureolina	49.61	28.15	33.42	0.48
Siena Natural	61.65	12.37	35.15	1.94
Ocre Superior	70.00	11.84	41.54	4.18
Ocre Claro	66.09	11.07	25.81	0.45
Sombra Calcinada	47.34	16.15	20.22	0.73
Óxido de Hierro Pardo	44.48	11.74	19.90	1.13
Sombra Tostada	38.81	9.86	5.60	2.13
Sombra Natural	43.37	5.56	9.90	2.05
Siena Calcinada	40.77	7.37	7.79	5.51
Tierra Cassel	28.75	1.99	4.25	1.79

Tabla 12: Resultados colorimétricos pigmentos marrones - ocres.

La representación en tres dimensiones de sus coordenadas aparece en la Figura 25. A excepción de la Aureolina, la Siena Natural y los Ocres, todos muestran tonos bastante apagados.

Figura 25: Gráfica CIE L*a*b* 3D de los pigmentos marrones-ocres.

4.6 Pigmentos negros

Los pigmentos negros fueron uno de los primeros empleados por la humanidad. Al principio se conseguían quemando huesos, Negro Marfil, o bien quemando aceites y grasas, Negro Humo. Hoy en día no se producen por combustión, sino que todos tienen origen sintético. Junto a estos hay pigmentos negros compuestos a base de óxidos de hierro, como el Negro Marte.

En la Tabla 13 se recogen los resultados Raman de los pigmentos negros.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Óxido de	Magnetita Fe ₃ O ₄	50x	106 s	Vibraciones red	Antigüedad
Hierro Negro	0	I = 0.37 A	329 vs	$v_{\rm sim}$ (Fe-O)	0
Sintético		t = 360 s	479 m	$v_{\rm asim}$ (Fe-O)	
[75]		1 acum	$638 \mathrm{\ s}$	$v_{\rm sim}$ (Fe-O)	
Figura 77			700 s	$v_{\rm sim}$ (Fe-O)	
Negro Viña	Magnetita Fe ₃ O ₄	100x	217 vs	v _{asim} (Fe-O)	Antigüedad
[75]		P=2,34 mW	281 s	$v_{\rm sim}$ (Fe-O)	
Figura 78		1 acum	406 vw	-	
			496 vw	$v_{\rm asim}$ (Fe-O)	
			687 br(w)	$v_{\rm sim}$ (Fe-O)	
Negro de	Carbón C	100x	$1350 \ br(s)$	v (C-C)	Antigüedad
Humo		P=2,34 mW	$1600 \ br(s)$	Vibración enlaces $C=C$	
[76]		1 acum		Hay bandas anchas	
Figura 79				propias de un material	
				amorfo	
Lignito	Carbón C	50x	$1350 \mathrm{\ br}(\mathrm{vs})$	v (C-C)	Antigüedad
[76]		I = 0,42 A	$1600 \mathrm{br(s)}$	Vibración enlaces $C=C$	
Figura 80		$t = 600 \ s$		Hay bandas anchas	
		1 acum		propias de un material	
				amorfo	
Negro Marfil	Carbón C	100x	256 vw	Vibraciones red	Antigüedad
[76, 78]	Hidroxiapatito	P=23,40 mW	418 w	$\delta_{\rm sim}$ (O-P-O)	
Figura 81	$Ca_5(PO_4)_3OH$	1 acum	660 w	-	
			836 w	-	
			$953 \mathrm{\ s}$	v_{sim} (O-P)	
			$1350 \mathrm{\ br}(\mathrm{s})$	v (C-C)	
			1600 br(vs)	Vibración enlaces C=C	
Negro Marte	Óxido de hierro	50x	122 w	Vibraciones red	Antigüedad
[17]	Fe_3O_4	I = 0,38 A	194 vw	$v_{\rm asim}$ (Fe-O)	
Figura 82		t = 300 s	253 vw	$v_{\rm asim}$ (Fe-O)	
		1 acum	350 vw	v_{sim} (Fe-O)	
			462 vs	v _{asim} (Fe-O)	

Tabla 13: Resultados Raman pigmentos negros.

En la Tabla 14 se recogen los valores de las coordenadas colorimétricas de los pigmentos negros. Analizando los resultados llama la atención los valores relativamente altos de la coordenada L*, ya que generalmente los pigmentos negros suelen tener valores nulos o casi nulos de este parámetro.

Nombre	L*	a*	b*	ΔE^*ab
Óxido de Hierro Negro Sintético	29.38	4.10	0.46	1.46
Negro Viña	29.12	2.67	0.12	1.04
Negro de Humo	27.54	4.15	-4.44	2.29
Lignito	27.24	1.50	-1.22	0.60
Negro Marfil	23.96	1.25	-2.97	1.05
Negro Marte	45.72	-1.87	5.12	1.30

Tabla 14: Resultados colorimétricos pigmentos negros.

En la Figura 26 se representan en el espacio CIE L*a*b* las coordenadas colorimétricas de los pigmentos negros.

Figura 26: Gráfica CIE L*a*b* 3D de los pigmentos negros.

4.7 Pigmentos verdes

Los pigmentos verdes han sido históricamente bastante difíciles de conseguir. Aunque el verde está bastante presente en la naturaleza a través de la vegetación, no forma sustancias adecuadas para elaborar tintes o pigmentos. Uno de los primeros utilizados fue el Verde Malaquita, empleado por los egipcios, sin embargo, su elevado precio y su mal envejecimiento hicieron que no tuviera mucho éxito. Hubo intentos posteriores para conseguir nuevos colores verdes. Los romanos intentaron producir el Verdegrís a través de la oxidación, pero tampoco fue muy fructífero. Durante la Edad Media se usaban tintes procedentes de hojas de plátanos y helechos que eran bastante fugaces y resistían bastante mal el paso del tiempo [79].

La historia se mantuvo sin cambios hasta 1775 cuando Scheele sintetizó el color que lleva su nombre. Este color, hecho a base de un arseniato de cobre, revolucionó el mercado y fue ampliamente empleado, su uso abarcó desde tintes de telas, hasta la decoración de las casas [80]. Poco tiempo después se supo que era muy tóxico, y que podía causar enfermedades o incluso hasta la muerte. Como consecuencia cayó en desuso y desde 1960 está totalmente prohibido.

Más adelante, con el descubrimiento del cromo, se sintetizaron nuevos compuestos como el Verde de Cromo o Viridián, que sustituyeron al fatídico Verde de Scheele [81]. Hoy en día estos compuestos siguen en uso, pero desde el siglo XX hay muchos otros nuevos como el Verde de Ftalocianina.

En la Tabla 15 se exponen los resultados del análisis Raman de una selección de pigmentos verdes.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Verde Cromo	Óxido de cromo	_	359 vw	δ (O-Cr-O)	Sintético:
[2,82]	Cr_2O_3		379 vw	δ (O-Cr-O)	Principios
Figura 83			687 vw	-	S.XIX
			839 vs	v _{sim} (Cr-O)	
			988 vw 1086 vw	_	

Tabla 15: Resultados Raman pigmentos verdes.

Verde	Baritina $BaSO_4$	100x	282 m	Vibraciones enlace	Sintético:
Intorsol		P=5,85 mW	490	Ba=0	S.XX
[48]		2 acum	439 w	$\delta_{sim}(SO4)$	
Figura 84			734 W	Oasim (SO4)	
			847 w	-	
			930 w	-	
			1100w	-	
			1251 W	$\frac{-}{(SO_{1})^{2-}}$	
			1343 vs	Vsim (504)	
			1503 w	$V_{\rm min}$ (SO ₄) ²⁻	
			1581 w	$V_{\text{asim}} (SO_4)^{2^-}$	
	,		1617 w	Vasim (SO4)	
Verde	Oxido de hierro y	50x	171 vs	Vibraciones red	Sintético:
Cobalto	cobalto	I = 0,39 A	239 vw	δ (Zn-O), δ_{sim} (Fe-O)	1780
[2, 48, 83]	$(CoFeO_2)O_4$	t = 400 s	333 br(w)	$\delta_{\rm sim}$ (Fe-O)	
Figura 85	Óxido de cobalto	1 acum	470 w	v (Co-O), v (Zn-O),	
	y zinc		518 w	v (Co-O),	
	$CoO \cdot nZnO$			$v_{\rm asim}$ (Fe-O)	
	Baritina BaSO ₄		706 vs	ν (Co-O)	
			980 vw	-	
Verde Ftalo	Ftalocianina de	50x	144 vw,	Vibraciones red	Sintético:
Medio	cobre policloro	I = 0,38 A	$259~\mathrm{vw},348~\mathrm{w}$		1932
[48, 50, 84]	$C_{32}H_{16}CuN_8Cl_{15}$	t = 150 s	447 w	$\delta_{ m sim}~({ m SO}_4)^{2-}$	
Figura 86	Calcita CaCO ₃	2 acum	470 w		
	Baritina BaSO ₄		531 w	$^{10}C_1$ -N ₂ -C ₁ , C ₂ -C ₃ -C ₄ , N ₁ -C ₁ , C ₂ -	
				$C_3, C_1-N_2, C_3-C_4-C_4$	
			634 w	δ_{asim} (SO ₄) ²⁻	
			681 s	$\delta_{asim} (SO_4)^{2-}$	
			$736 \mathrm{~s}$	C_1 - N_2 - C_1 , C_1 - N_2 , C_2 - C_3 - C_4 , C_1 - C_2	
			776 m	-	
			876 w	-	
			$943~\mathrm{w},979~\mathrm{w}$	$v_{sim}(SO_4)^{2-}$	
			$1081 \mathrm{w}$	$v_{sim}(CO_3)^{2-}$,	
				C_4 - C_4 , C_3 - C_4 , C_1 - C_2 , N_1 - C_1 , C_3 - C_4 ,	
				$Cu-N_1$	
			1137 w	$v_{ m asim}(m SO_4)^{2-}$	
			$1207 \mathrm{\ s}$	—	
			$1274~\mathrm{s}$	-	
			$1337~\mathrm{s}$	C. Na Ca Ca Ca Ca	
			$1443 {\rm w}$	$C_{1-1N_{2}}^{2-}$ C ₂	
			1531 vs	$v_{asim}(0,03)$, 01-02, 02-02-03, 02-	
				$\bigcirc 3 - \bigcirc 4,$	
				$\bigcirc 3 - \bigcirc 4 - \bigcirc 4$	
				$1 \times 1 - \bigcirc 1, \bigcirc 1 - 1 \times 2, \bigcirc 3 - \bigcirc 4,$	
				U_2 - U_3 - U_4 , U_2 - U_2 - U_3	

 16 Los números que identifican a los carbonos y nitrógenos que participan en las vibraciones están referidos a los mostrados en esta imagen de la molécula de ftalocianina de cobre [84].

Lucía	Canales	Pascual	

Verde de	Cromato de	50x	145 vw, 245vw	Vibraciones red	Sintético:
Cromo	plomo PbCrO ₄	I = 0.38 A	333 w	$\delta_{sim} (SO_4)^{2-}, \delta (CrO_4)^{2-}$	1938
Permanente	Etalocianina de	t = 70 s	531 w	$C_1-N_2-C_1, C_2-C_3-C_4, N_1-C_1, C_2-$	
[44, 48, 50, 84]	cobre	1 acum		$C_3, C_1-N_2, C_3-C_4-C_4$	
Figura 87	$Cu(C_{32}H_{16}N_8)$		$679 \mathrm{~s}$	$\delta_{asim} (SO_4)^{2-}$	
	Calcita CaCO ₃		$738 \mathrm{\ s}$	$C_1\text{-}N_2\text{-}C_1,C_1\text{-}N_2,C_2\text{-}C_3\text{-}C_4,C_1\text{-}C_2$	
	Baritina BaSO		769 m, 813 w	$v_{sim}(CrO_4)^{2-}$	
	Vaca		$1081 \mathrm{w}$	$v_{sim}(SO_4)^{2-}$, $v_{sim}(CO_3)^{2-}$,	
	Teso			$C_4\text{-}C_4,C_3\text{-}C_4,C_1\text{-}C_2,N_1\text{-}C_1,C_3\text{-}C_4,$	
	$CaSO_4 \cdot 2H_2O$			Cu-N ₁	
			$1207~\mathrm{s}$	—	
			$1283 \ s$	-	
			$1332 \mathrm{~s}$	$C_1 - N_2, C_2 - C_2, C_1 - C_2$	
			1443 w	$V_{asim}(CO_3)^2$, C_1 - C_2 , C_2 - C_2 - C_3 ,	
				$C_2-C_3-C_4, C_3-C_4-C_4$	
			1528 vs	N_1 - C_1 , C_1 - N_2 , C_3 - C_4 ,	
	Acata anacrita da	50	9.41	(A_2, O, A_2)	Cintático
Verue Famoroldo	Aceto-aiseinto de	JUX I 0.27_A	541 VW	$\delta (AS-O-AS)$	1814
Oceruro	cobre	I = 0.37 A t = 120 a	080 m 725 m	$\delta_{asim} (SO_4)$ $\delta_{asim} (CO_2)^{2-}$	1014
[2 44 48 50 85]	$Cu(C_2H_3O_2)_2$ ·	t = 120 s	735 m 771 m	$V_{asim} (CO3)$	
[2,44,40,50,65] Figura 88	$3Cu(AsO_2)_2$	1 acum	811 vw	v(As-O)	
rigura 00	Calcita CaCO ₃		963 vw	$v (C-C) v = (SO_4)^{2-}$	
	Baritina $BaSO_4$		1077 vw	$V_{\rm cim} (CO_2)^{2-}$	
			1208 m	$V_{sim} (SO_4)^{2^-}$	
			1275 m		
			1334 m	_	
			1440 vw	v (CO ₂)	
			1538 vs	v (CO ₂)	
Verde	Aceto-arsenito de	50x	$335 \mathrm{w}$	δ (As-O-As)	Sintético:
Esmeralda	cobre	I = 0,39 A	$684 \mathrm{~s}$	$\delta_{ m asim} ({ m SO}_4)^{2-}$	1814
[2, 44, 48, 50, 85]	$Cu(C_2H_3O_2)_2$.	t = 45 s	$742 \mathrm{~s}$	$\delta_{\rm asim} ({ m CO}_3)^{2-}$	
Figura 89	$3Cu(AsO_2)_2$	2 acum	766 m	v (As-O)	
	Calcita CaCO ₂		807 vw	v (As-O)	
	Pariting PaSO		959 vw	ν (C-C), ν_{sim} (SO ₄) ^{2–}	
	Dantina Da5O4		1082 w	$ u_{ m sim}~(m CO_3)^{2-}$	
			1206 m	$v_{ m asim}~(m SO_4)^{2-}$	
			$1275~\mathrm{m}$	-	
			1336 m	-	
			$1445~\mathrm{vw}$	ν (CO ₂)	
			1534 vs	ν (CO ₂)	

Los resultados de colorimetría de los pigmentos verdes aparecen en la Tabla 16.

Tabla 16: Resultados colorimétricos pigmentos verdes.

Nombre	L*	a*	b*	ΔE^*ab
Verde Cromo	22.80	-8.93	12.63	-
Verde Intorsol	22.67	-7.4	-6.4175	0.92799274
Verde Cobalto	53.73	-31.73	15.945	1.36249933
Verde Ftalo Medio	61.5225	-29.695	17.2875	2.25514757
Verde de Cromo Permanente	67.5075	-35.5925	11.4075	0.35312871
Verde Esmeralda Oscuro	51.8625	-41.8725	0.4325	3.75174737
Verde Esmeralda	72.515	-34.295	-2.575	2.85569936

Como se recoge en la Figura 27, todas las coordenadas fluctúan bastante entre los distintos verdes. Por ejemplo, los colores Verde Esmeralda o Verde Cobalto son muy distintos al Verde Intorsol o al Verde Cromo.

Figura 27: Gráfica CIE L*a*b* 3D de los pigmentos verdes.

4.8 Pigmentos azules

Los colores azules están raramente disponibles en la naturaleza, por tanto, los pigmentos debían ser sintéticos. Los egipcios desarrollaron uno de los primeros, el conocido como Azul Egipcio [86]. Su calidad y conservación eran bastante buenas y hasta nuestros días han llegado muestras sin sufrir apenas degradación. Pero, con el transcurso de los siglos, la forma de obtención de este pigmento cayó en el olvido.

En Europa durante la Edad Media no se conocía ningún procedimiento para elaborar azul sintético, la única forma conocida de obtener algún pigmento azul era mediante la piedra preciosa Lapislázuli. Tras un proceso de extracción y tratamiento relativamente largo, se obtenía el Azul Ultramar [6]. El alto precio de este pigmento hizo que su uso adquiriera un significado simbólico en la iconografía religiosa. Durante esta etapa también se empleó otro mineral, la Azurita, que, aunque era más asequible, seguía siendo bastante inalcanzable comparado con el resto de los pigmentos.

Con el desarrollo de la química, en 1826 Guimet descubre el Azul Ultramar sintético. Este hallazgo supuso una enorme revolución porque se democratizó la disponibilidad del color azul [5]. Con el paso de los años se han seguido sintetizando nuevos pigmentos como el Azul Cerúleo, el Azul Klein o el Azul de Ftalocianina.

En la Tabla 17 se recoge los resultados del análisis Raman de los pigmentos azules.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e	Asignación de modos	Aparición
			intensidad	vibracionales	
			relativa		
Azul	Ftalocianina de	50x	136 vw, 273 w	Vibraciones red	Sintético:
Ftalocianina	cobre	I = 0,40 A	477 vw	-	1936
[2,50,82]	$Cu(C_{32}H_{16}N_8)$	t = 60 s	586 vw	$C_1\text{-}N_2\text{-}C_1,\ C_2\text{-}C_3\text{-}C_4,\ N_1\text{-}C_1,$	
Figura 90	Calcita CaCO ₃	1 acum		C_2 - C_3 , C_1 - N_2 , C_3 - C_4 - C_4	

Tabla 17: Resultados Raman pigmentos azules.

			676 m	_	
			$744 \mathrm{~s}$	$C_1-N_2-C_1, C_1-N_2, C_2-C_3-C_4,$	
				C_1 - C_2	
			949 vw	-	
			1086 s	v _{sim} (CO ₃) ²⁻ , C ₄ -C ₄ , C ₃ -C ₄ , C ₁ -	
				C ₂ , N ₁ -C ₁ , C ₃ -C ₄ , Cu-N ₁	
			1140 m	C ₃ -C ₄ , C ₁ -N ₂ , C ₁ -C ₂ , N ₁ -C ₁ ,	
				$C_2-C_2-C_3, C_2-C_3-C_4$	
			1308 sh(vw)	C ₁ -N ₂ , C ₂ -C ₂ , C ₁ -C ₂	
			1340 s	C1-N2 C2-C2 C1-C2	
			1450 w	$v_{asim}(CO_3)^{2-}$, C ₁ -C ₂ , C ₂ -C ₂ -C ₃	
				$C_2-C_3-C_4$ $C_3-C_4-C_4$	
			1524 vs	N_1-C_1 C_1-N_2 C_2-C_4 C_2-C_2	
				C_3-C_4 $C_2-C_2-C_3$	
Azurita	Carbonato de cobre	100x	123 w	Vibraciones red	Mineral/
[45 87]	Cu(OH) ₂ .	P=5.85 mW	167 w	δ fuera plano	Sintético
Figura 91	$2(CuCO_2)$	2 acum	260 s	δ (O-Cu-OH)	S XVII
i iguiu oi	2(00003)	2 douin	280 sh(vw)	δ (O-Cu-OH)	5
			$327 \operatorname{sh}(\operatorname{vw})$	δ (Cu-O)	
			404 vs	δ (Cu-O)	
			528 w	-	
			745 sh(vw)	$\delta_{\rm asim} ({ m CO}_3)^{2-}$	
			767 w	$\delta_{\rm asim} ({\rm CO}_3)^{2-}$	
			838 yw	$\delta_{\rm sim} ({\rm CO}_3)^{2-}$	
			942 vw	_	
			1086 m	$v_{\rm sim} ({ m CO}_3)^{2-}$	
			1426 m	$v_{asim} (CO_3)^{2-}$	
			1420 III 1456 sh(m)	$v_{asim} (CO_3)^{2-}$	
			1586 m	δ (О-Н)	
			2422 m	ν (O-H)	
1 and		50%	242 m		Minoral
AZUI IIItaomoo	Lazurita (NaCa) $_8$ ·	JUX I 0.40 A	245 VW	-	Minerai:
	$(AlSiO_4)_6$ ·	I = 0,40 A	517 W	8 (53)	Cint (tion)
[0,45] E:	$(SO_4,S,Cl)_2$	l = 2 s	518 VW	$-\frac{1}{2}$	Sintetico:
Figura 92		3 acum	091 VS	v (03)	1828
			643 sn(w)	_	
			793 W	_	
			833 W	Las bandas de 1000- $2000~{\rm cm}^{-}$	
			1049 w	$^{\scriptscriptstyle 1}$ son el resultado de la	
			1140 vw	fluorescencia.	
			1251 vs	Indican que es Lazurita	
			1303 sh(m)	natural	
			$1358 { m m}$		

En la Tabla 18 aparecen los resultados colorimétricos de los pigmentos azules.

Tabla 18: Resultados	colorimétricos	pigmentos azules.
1 0010 10. 10000100000	001011110011000	pignicitivos azaros.

Nombre	L^*	a*	b*	ΔE^*ab
Azul Ftalocianina	67.16	-9.53	-29.86	1.02
Azurita	53.02	7.92	-71.19	-
Azul Ultramar	25.64	11.51	-40.41	-

En la Figura 28 se representan en el espacio CIE L*a*b* tridimensional las coordenadas de los pigmentos Azul Ftalocianina, Azurita y Azul Ultramar.

Figura 28: Gráfica CIE L*a*b* 3D de los pigmentos azules.

4.9 Pigmentos violetas

Al igual que los pigmentos azules, los violetas son difíciles de extraer de la naturaleza. Los primeros en sintetizar un color morado fueron los fenicios, a través del molusco *Murex Brandaris*. El color se llamaba Púrpura de Tiro, y se conseguía usando su glándula hipobranquial [9]. El pigmento era muy caro ya que se necesitaba una cantidad enorme de moluscos, por lo que estuvo relacionado con las clases altas.

Con el tiempo se obtuvo algún otro tinte morado más mediante colorantes naturales de hongos y líquenes [88], pero no se consiguió ninguno de calidad destacable. Todo cambió cuando Mauve en 1856 descubrió el púrpura sintético [3], a partir de ese momento se empezó a producir una amplia gamas de tonos violetas. A este descubrimiento le siguieron otros muy importantes como el Fucsia o el Violeta de Cobalto.

En la Tabla 19 se encuentran los resultados Raman del análisis de los pigmentos violetas.

Nombre	Composición	Condiciones experimentales	Número de onda/cm ⁻¹ e intensidad relativa	Asignación de modos vibracionales	Aparición
Violeta Oscuro [48–50,89,90] Figura 93	Fostato de cobalto Co ₃ (PO ₄) ₂ Baritina BaSO ₄ Calcita CaCO ₃ Sulfuro de zinc ZnS	$J_{\rm H} = 0.4 \text{ A}$ $t = 3 \text{ s}$ 1 acum	120 w 253 w, 312 w 415 w 526 w 664 w 718 vw 847 br(vw) 936 br(vw) 1107 vw 1107 vw	Vibraciones red $v(Zn-S), \delta(Zn-S)$ $\delta_{sim} (SO4)^{2-}, \delta_{sim} (PO4)^{3-}$ $\delta_{asim} (PO4)^{3-}$ $\delta_{asim} (SO4)^{2-}$ $\delta_{asim} (CO3)^{2-}$ - $v_{sim} (SO4)^{2-}, v_{sim} (PO4)^{3-}$ $v_{sim} (CO3)^{2-}, v_{asim} (PO4)^{3-}$ $v_{sim} (SO4)^{2-}, v_{asim} (PO4)^{3-}$	Sintetico: 1859
			1205 m 1255 w 1342 m 1387 vs	- - -	

Tabla 19: Resultados Raman pigmentos violetas.

 $^{\rm 17}$ A pesar de ser los picos que dominan el espectro, en la bibliografía no aparecen

			1433 s	-	
			1594 vw	_	
Violeta	Lagunita (NaCa)	50x	198 w	_	Mineral.
Ultramar	Lazunta (NaCa)8	I = 0.41 A	243 w	$\delta(S_3)$	Lapislázuli/
[45]	$(AlSiO_4)_6$ ·	t = 18 s	326 w	_	Sintético:
Figura 94	$(\mathrm{SO}_4,\mathrm{S},\mathrm{Cl})_2$	3 acum	538 vs	ν (S ₃ -)	1828
1 iguite o i			639 vw	_	
			727 vw	-	
			808 vw	-	
			951 w	- Les les les le 1000-0000	
			1105 vw	Las bandas de 1000-2000	
			1205 vw	fluorescencia	
			1319 vw	Indican que es Lazurita	
			1407 vw	natural	
Violeta de	Fosfato de amonio	50x	147 m, 242 s	Vibraciones red	Sintético:
Manganeso	v manganeso	I = 0.58 A	416 vw	-	S. XIX
[50,91]	$Mn(NH_4)_2P_2O7$	t = 25 s	710 w	$\delta_{asim} (CO_3)^{2-}$,	
Figura 95	Calcita CaCO ₃	2 acum		v_{sim} (P-O-P)	
Ũ			833 br(vw)	ν (Р-О-Н)	
			1085 vs	$v_{sim} (CO_3)^{2-}, v_{sim} (PO_2)$	
			1433 vw	$\nu_{\rm asim}~({\rm CO}_3)^{2-}, \delta~({\rm NH_4})$	
Magenta	Fucsina	50x	269 s	Vibraciones red	Sintético:
[48, 50, 92]	$C_{20}H_{19}N_3HCl$	I = 0,56 A	338 m	δ_{asim} (C- fenilo)	1859-1860
Figura 96	Calcita CaCO ₃	t = 5 s	$453 \mathrm{~s}$	$\delta_{ m sim}({ m SO}_4)^{2-}$,	
	Baritina BaSO ₄	5 acum		$v_{\rm sim}$ (benceno)	
			$549 \mathrm{m}$	$\gamma ~(\text{C-N})$	
			$656 \mathrm{m}$	$\delta_{ m sim}~(m SO_4)^{2-}$	
			713 s	$\delta_{ m sim}~(m CO_3)^{2-}$	
			815 w	ν (anillo aromático)	
			$951 \mathrm{w}$	$\nu_{\rm asim}$ (benceno), $\delta(\text{C-C-C})$	
			$984 \mathrm{w}$	$v_{\rm sim} ({ m SO}_4)^{2-}$	
			1083 vs	$\nu_{\rm sim} ({ m CO}_3)^{2-}$	
			1127 sh(w)	$v_{asim} (SO_4)^{2-}$	
			1200 w	-	
			1313 s	$v_{asim}(C-C-C)$	
			$1408 {\rm w}$	$\nu_{\rm asim} ({ m CO}_3)^{2-}$	
				ν (C-N),	
			1510 w	v (anillo aromático)	
			$1567 \mathrm{m}$	v_{asim} (benceno)	
			$1597 \mathrm{~s}$	$v_{\rm asim}$ (benceno)	
			1642 m	$v_{\rm sim}$ (benceno)	

En la Tabla 20 se recogen los resultados de colorimetría de los pigmentos violetas.

48.78

Magenta

Nombre	L*	a*	b*	ΔE^*ab
Violeta Oscuro	35.55	15.40	-26.38	1.67
Violeta Ultramar	56.32	22.92	-28.72	1.88
Violeta de Manganeso	71.09	17.15	-21.74	1.46

Tabla 20: Resultados colorimétricos pigmentos violetas.

La representación tridimensional de las coordenadas de la tabla anterior se muestra en la Figura 29.

50.90

-11.00

3.22

Figura 29: Gráfica CIE L*a*b* 3D de los pigmentos violetas.

En la Figura 30 se han representado todos los pigmentos estudiados. Se puede ver cómo la clasificación por grupos de colores elegida funciona bastante bien, ya que los pigmentos aparecen bastante agrupados por colores distintos y apenas se mezclan.

Figura 30: Gráfica CIE L*a*b* 3D de todos los pigmentos analizados.

5 Conclusiones

5.1 Conclusiones generales

En este Trabajo Fin de Grado se ha llevado a cabo la caracterización de 65 pigmentos históricos, tanto orgánicos como inorgánicos, empleados en diferentes épocas del desarrollo de nuestra civilización. El estudio abarca desde pigmentos naturales ya utilizados en pinturas rupestras hasta pigmentos sintéticos desarrollados a lo largo del siglo XX. Las técnicas empleadas para el estudio de los pigmentos han sido la espectroscopía Raman y la Colorimetría, sobre cuyos fundamentos básicos, aplicación y tratamiento de datos se ha podido profundizar en el desarrollo de este trabajo.

A lo largo del trabajo se ha comprobado cómo estas técnicas permiten estudiar y diferenciar los pigmentos de manera no invasiva ni destructiva, un aspecto fundamental a la hora de estudiar materiales del patrimonio histórico y cultural. Particularmente, la técnica de espectroscopía Raman ha demostrado una gran precisión y fiabilidad para la determinación de la composición química y/o mineralógica de los pigmentos estudiados. Los resultados obtenidos mediante ambas técnicas más destacables son:

- Se han determinado las coordenadas de color que permiten situar los pigmentos dentro de un mapa cromático sin ambigüedad. Este análisis ha permitido distinguir la existencia de diferencias significativas, es decir, perceptibles al ojo humano, entre las tonalidades de los distintos pigmentos que presentan colores similares. Por ejemplo, los pigmentos blancos estudiados presentan tonalidades prácticamente indistinguibles, mientras que los pigmentos rojos muestras una mayor diversidad.
- La espectroscopía Raman en modo microscópico ha permitido identificar las fases componentes de los pigmentos atendiendo a su estructura dinámico vibracional. Ha sido posible identificar tanto las cargas intertes utilizadas (como la calcita, yeso o baritina), así como las fases asociadas al color, ya fueran minerales, compuestos orgánicos y/o inorgánicos. Un aspecto destacable en el estudio mediante espectroscopía Raman es que, con el objeto de asegurar la preservación de los pigmentos estudiados, ha sido necesario optimizar las condiciones de medida, e incluso emplear distintos espectrómetros Raman, para cada pigmento. Las condiciones óptimas y equipamiento empleados han sido reportados en este trabajo, a fin de servir de guía para trabajos de investigación futuros.

Se espera que la base de datos de espectroscopía Raman y Colorimetría sirva como referencia para el desarrollo de trabajos de investigación sobre materiales del patrimonio histórico y cultural, en los que, como se ha destacado en este trabajo, este tipo de análisis científicos proporcionan información transcendental sobre su origen, autoría y estado de preservación. En concreto, se espera que contribuya a corto plazo a facilitar las tareas de datación y autentificación de obras de arte mediante técnicas no destructivas y con criterios científicos rigurosos.

Adicionalmente, este trabajo también pretende destacar la necesaria conexión y aplicación de técnicas experimentales propias del ámbito de la Ciencia de Materiales, la Física o la Química en el estudio y preservación del Patrimonio Histórico y Cultural.

5.2 Conclusiones personales

El TFG se entiende como la labor final de un grado universitario y he podido comprobar por qué. Emprender por primera vez un trabajo como este ha supuesto un desafío. Se trataba de enfrentarme al estudio de un tema con cierta profundidad, lo que ha exigido el manejo de un gran número de fuentes documentales y de datos. Ha sido mi primer contacto con el mundo de la investigación que me ha dado la oportunidad de aplicar de forma conjunta los contenidos teóricos y prácticos estudiados durante el grado, y además, de descubrir un área de la física en la que me gustaría seguir profundizando.

6 Referencias

- M.C. Caggiani, A. Cosentino, A. Mangone, Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database, Microchem. J. 129 (2016) 123–132. https://doi.org/10.1016/j.microc.2016.06.020.
- [2] L. Burgio, R.J.H. Clark, Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation, 2001. https://doi.org/10.1016/S1386-1425(00)00495-9.
- [3] N.C. Scherrer, Z. Stefan, D. Francoise, F. Annette, K. Renate, Synthetic organic pigments of the 20th and 21st century relevant to artist's paints: Raman spectra reference collection, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 73 (2008) 505–524. https://doi.org/10.1016/j.saa.2008.11.029.
- [4] La pintura rupestre más antigua realizada por Homo sapiens tiene 45.500 años, Natl. Geogr. Mag. (n.d.). https://historia.nationalgeographic.com.es/a/pintura-rupestre-mas-antigua-conocida-tiene-45500-anos_16160 (accessed May 28, 2021).
- [5] C. Álvarez Romero, Los pigmentos en la Prehistoria: proyecto de experimentación térmica con óxidos e hidróxidos de hierro, Boletín Arqueol. Exp. 9 (2012) 25–42. https://revistas.uam.es/arqexp/article/view/5703.
- [6] E. Del Federico, W. Shöfberger, J. Schelvis, S. Kapetanaki, L. Tyne, A. Jerschow, Insight into framework destruction in ultramarine pigments, Inorg. Chem. 45 (2006) 1270–1276. https://doi.org/10.1021/ic050903z.
- [7] M. González-Cabrera, P. Arjonilla, A. Domínguez-Vidal, M.J. Ayora-Cañada, Natural or synthetic? Simultaneous Raman/luminescence hyperspectral microimaging for the fast distinction of ultramarine pigments, Dye. Pigment. 178 (2020). https://doi.org/10.1016/j.dyepig.2020.108349.
- [8] A. García, La Virgen de la Granada, Tasación Arte. (n.d.). http://tasaciondearte.com/la-virgen-de-lagranada/ (accessed May 28, 2021).
- [9] A.M. Correia, R.J.H. Clark, M.I.M. Ribeiro, M.L.T. Duarte, Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousão (1859–1884), J. Raman Spectrosc. 38 (2007) 1538–1553. https://doi.org/10.1002/jrs.
- [10] H.G.M. Edwards, Analytical raman spectroscopic discrimination between yellow pigments of the renaissance, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 80 (2011) 14–20. https://doi.org/10.1016/j.saa.2010.12.023.
- [11] Verde de Scheele, Química Fácil. (2021). https://quimicafacil.net/ciencia-y-arte/verde-de-scheele/.
- [12] T.D. Chaplin, R.J.H. Clark, Identification by Raman microscopy of anachronistic pigments on a purported Chagall nude: conservation consequences, Appl. Phys. A Mater. Sci. Process. 122 (2016) 1–5. https://doi.org/10.1007/s00339-016-9644-3.
- R.J.H. Clark, Raman microscopy: Application to the identification of pigments on medieval manuscripts, Chem. Soc. Rev. 24 (1995) 187–196. https://doi.org/10.1039/CS9952400187.
- [14] L. Burgio, R.J.H. Clark, R.R. Hark, Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 5726–5731. https://doi.org/10.1073/pnas.0914797107.
- [15] P.C. Gutiérrez-Neira, F. Agulló-Rueda, A. Climent-Font, C. Garrido, Raman spectroscopy analysis of pigments on Diego Velázquez paintings, Vib. Spectrosc. 69 (2013) 13–20. https://doi.org/10.1016/j.vibspec.2013.09.007.
- [16] P. Vandenabeele, L. Moens, H.G.M. Edwards, R. Dams, Raman spectroscopic database of azo and application to modern art studies, J. Raman Spectrosc. 31 (2000) 509–517. https://doi.org/10.1002/1097-4555(200006)31:6<509::AID-JRS566>3.0.CO;2-0.
- [17] D. Cosano, D. Esquivel, C.M. Costa, C. Jiménez-Sanchidrián, J.R. Ruiz, Identification of pigments in the Annunciation sculptural group (Cordoba, Spain) by micro-Raman spectroscopy, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 214 (2019) 139–145. https://doi.org/10.1016/j.saa.2019.02.019.
- [18] G. Barja-Becker, S. Ruiz-Moreno, A. López-Gil, Análisis no destructivo de obras de arte con espectroscopia Raman, Buran. 26 (2011) 5–10.
- [19] E. Stoye, Raman reveals Renoir's true colours, Chem. World. (2014). https://www.chemistryworld.com/news/raman-reveals-renoirs-true-colours/7090.article.
- [20] A.I. of Chicago, Madame Léon Clapisson, (n.d.). https://www.artic.edu/artworks/16622/madame-leonclapisson.
- [21] D. Bersani, P.P. Lottici, Raman spectroscopy of minerals and mineral pigments in archaeometry, J. Raman

Spectrosc. 47 (2016) 499-530. https://doi.org/10.1002/jrs.4914.

- [22] S. Pagès-Camagna, D. Raue, Coloured materials used in Elephantine: Evolution and continuity from the Old Kingdom to the Roman Period, J. Archaeol. Sci. Reports. 7 (2016) 662–667. https://doi.org/10.1016/j.jasrep.2016.02.002.
- [23] M. Breitman, S. Ruiz-Moreno, A.L. Gil, Experimental problems in Raman spectroscopy applied to pigment identification in mixtures, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68 (2007) 1114–1119. https://doi.org/10.1016/j.saa.2007.06.042.
- [24] K. Castro, A. Sarmiento, M. Pérez-Alonso, J.M. Madariaga, E. Princi, S. Vicini, E. Pedemonte, M.D. Rodríguez-Laso, Vibrational spectroscopy at the service of industrial archaeology: Nineteenth-century wallpaper, TrAC Trends Anal. Chem. 26 (2007) 347–359. https://doi.org/10.1016/j.trac.2007.02.003.
- [25] J. Souto, V. Gutiérrez-Vicente, A.C. Prieto, Raman analysis of Gothic wall paintings in the apse of the Santiago Apóstol church in Alcazarén, J. Cult. Herit. 22 (2016) 1061–1065. https://doi.org/10.1016/j.culher.2016.06.005.
- [26] J.L. Pérez, R. Murillo, R. Gómez, Espectroscopías Raman e Infrarroja, (2011).
- [27] R. Pérez Pueyo, Procesado y Optimización de Espectros Raman mediante Técnicas de Lógica Difusa: Aplicación a la identificación de Materiales Pictóricos, (2005) 10–34.
- [28] Los orígenes del láser, Investig. Cienc. (n.d.). https://www.investigacionyciencia.es/revistas/temas/fsica-yaplicaciones-del-lser-507/los-orgenes-del-lser-463 (accessed April 13, 2021).
- [29] D. Bersani, C. Conti, P. Matousek, F. Pozzi, P. Vandenablee, Methodological evolutions of Raman spectroscopy in art and archaeology, (2016).
- [30] P.J. Larkin, General Outline for IR and Raman Spectral Interpretation, Infrared Raman Spectrosc. (2018) 135–151. https://doi.org/10.1016/b978-0-12-804162-8.00007-0.
- [31] A. García, Espectros resonantes de la dispersión Raman en semiconductores, (1996).
- [32] Charles Kittel, Introduction to solid state physics, 1953.
- [33] S.P. Best, R.J.H. Clark, R. Withnall, Non-destructive pigment analysis of artefacts by Raman microscopy, Endeavour. 16 (1992) 66–73. https://doi.org/10.1016/0160-9327(92)90004-9.
- [34] E. Smith, Modern Raman spectroscopy—a practical approach., 2005. https://doi.org/10.1002/jrs.1320.
- [35] X. Fontané, Caracterización por espectroscopia Raman de semiconductores Cu2ZnSnS4 para nuevas tecnologías fotovoltaicas, (2013).
- [36] S. Barroso-Solares, D. Cuadra-Rodriguez, M.L. Rodriguez-Mendez, M.A. Rodriguez-Perez, J. Pinto, A new generation of hollow polymeric microfibers produced by gas dissolution foaming, J. Mater. Chem. B. 8 (2020) 8820–8829. https://doi.org/10.1039/D0TB01560A.
- [37] C. Frausto-Reyes, M. Ortiz-Morales, J.M. Bujdud-Pérez, G.E. Magaña-Cota, R. Mejía-Falcón, Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 74 (2009) 1275–1279. https://doi.org/10.1016/j.saa.2009.09.060.
- [38] S. Barroso-Solares, P. Cimavilla-Roman, M.A. Rodriguez-Perez, J. Pinto, Non-invasive approaches for the evaluation of the functionalization of melamine foams with in-situ synthesized silver nanoparticles, Polymers (Basel). 12 (2020). https://doi.org/10.3390/POLYM12050996.
- [39] J.A. Castillo, RGB qué es esto y para qué se utiliza en informática, Prof. Rev. (2019). https://www.profesionalreview.com/2019/01/20/rgb-que-es/.
- [40] M.B. González, Discriminación visual del color, Universidad de Sevilla, 2019.
- [41] N.C. Sensor, Free color converter, (n.d.). https://www.nixsensor.com/free-color-converter/.
- [42] Encycolorpedia, (n.d.). https://encycolorpedia.es/.
- [43] M. Alsonso Lobato, Materiales y técnicas pictóricas (III): El blanco de plomo, InvestigArt. (n.d.). https://www.investigart.com/2014/10/27/el-blanco-de-plomo/.
- [44] O. Petrova, D. Pankin, A. Povolotckaia, E. Borisov, T. Krivul'ko, N. Kurganov, A. Kurochkin, Pigment palette study of the XIX century plafond painting by Raman spectroscopy, J. Cult. Herit. 37 (2019) 233–237. https://doi.org/10.1016/j.culher.2018.11.010.
- [45] N. Buzgar, A. Buzatu, A.I. Apopei, V. Cotiugă, In situ Raman spectroscopy at the Voroneţ Monastery (16th century, Romania): New results for green and blue pigments, Vib. Spectrosc. 72 (2014) 142–148. https://doi.org/10.1016/j.vibspec.2014.03.008.
- [46] T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321–324. https://doi.org/10.1002/jrs.1250070606.
- [47] W.N. Martens, L. Rintoul, J.T. Kloprogge, R.L. Frost, Single crystal raman spectroscopy of cerussite, Am. Mineral. 89 (2004) 352–358. https://doi.org/10.2138/am-2004-2-314.

- [48] S.N. White, Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals, Chem. Geol. 259 (2009) 240–252. https://doi.org/10.1016/j.chemgeo.2008.11.008.
- [49] Q. Xiong, J. Wang, O. Reese, L.C.L.Y. Voon, P.C. Eklund, Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires, Nano Lett. 4 (2004) 1991–1996. https://doi.org/10.1021/nl048720h.
- [50] J. Sun, Z. Wu, H. Cheng, Z. Zhang, R.L. Frost, A Raman spectroscopic comparison of calcite and dolomite, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 117 (2014) 158–162. https://doi.org/10.1016/j.saa.2013.08.014.
- [51] I. Musa, N. Qamhieh, S.T. Mahmoud, Synthesis and length dependent photoluminescence property of zinc oxide nanorods, Results Phys. 7 (2017) 3552–3556. https://doi.org/10.1016/j.rinp.2017.09.035.
- [52] O.D. Jaimes, I.C. Rincón, H. Peña-Pedraza, Método de la correlación en un cristal de ZnO., Cienc. En Desarro.
 9 (2018) 57–67. https://doi.org/10.19053/01217488.v9.n2.2018.8753.
- [53] R.L. Frost, J. Yang, Z. Ding, Raman spectroscopy of natural oxalates –implications for the evidence of life on Mars, Science (80-.). (2003).
- [54] D. Tuschel, Photoluminescence spectroscopy using a Raman spectrometer, Spectrosc. (Santa Monica). 31 (2016) 14–21.
- [55] V. Mathivanan, M. Haris, Studies on solution-grown pure and doped Sodium Potassium tartrate crystals, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 102 (2013) 341–349. https://doi.org/10.1016/j.saa.2012.10.033.
- [56] Y.N. Zhuravlev, V. V. Atuchin, Comprehensive density functional theory studies of vibrational spectra of carbonates, Nanomaterials. 10 (2020) 1–19. https://doi.org/10.3390/nano10112275.
- [57] V. Otero, M.F. Campos, J. V. Pinto, M. Vilarigues, L. Carlyle, M.J. Melo, Barium, zinc and strontium yellows in late 19th-early 20th century oil paintings, Herit. Sci. 5 (2017) 1–13. https://doi.org/10.1186/s40494-017-0160-3.
- [58] J.W. Riddle, E.J. Hopkins, I.S. Butler, Variable-temperature micro-Raman spectra of the synthetic artists' pigments, chrome yellow and maya blue: An undergraduate research project, Spectrosc. Lett. 48 (2015) 556– 560. https://doi.org/10.1080/00387010.2014.924529.
- [59] N. Everall, B. King, I. Clegg, Raman effect in Cadmium Sulfide, Chem. Br. 36 (2000) 40–43. https://doi.org/10.1142/9789813143500_0001.
- [60] R.R. Prabhu, M.A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy, Bull. Mater. Sci. 31 (2008) 511–515. https://doi.org/10.1007/s12034-008-0080-7.
- [61] W. Scheuermann, G.J. Ritter, The Vibrational Spectra of Strontium Chromate (SrCrO4), (1970).
- [62] H. Cheng, Y. Zhou, R.L. Frost, Structure comparison of Orpiment and Realgar by Raman spectroscopy, 9860 (n.d.) 2–7.
- [63] G.N. Kustova, E.B. Burgina, V.A. Sadykov, S.G. Poryvaev, Vibrational spectroscopic investigation of the goethite thermal decomposition products, Phys. Chem. Miner. 18 (1992) 379–382. https://doi.org/10.1007/BF00199419.
- [64] M.L. Franquelo, A. Duran, L.K. Herrera, M.C. Jimenez de Haro, J.L. Perez-Rodriguez, Comparison between micro-Raman and micro-FTIR spectroscopy techniques for the characterization of pigments from Southern Spain Cultural Heritage, J. Mol. Struct. 924–926 (2009) 404–412. https://doi.org/10.1016/j.molstruc.2008.11.041.
- [65] R.J.H. Clark, Pigment identification by spectroscopic means: an arts/science interface, Comptes Rendus Chim.
 5 (2002) 7–20. https://doi.org/10.1016/s1631-0748(02)01341-3.
- [66] HiSoUR, Color rojo en historia y arte, (n.d.). https://www.hisour.com/es/red-color-in-history-and-art-26650/.
- [67] M. Crane, R.L. Frost, P.A. Williams, J.T. Kloprogge, Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite, J. Raman Spectrosc. 33 (2002) 62–66. https://doi.org/10.1002/jrs.820.
- [68] S. Bruni, F. Cariati, F. Casadio, L. Toniolo, Identification of pigments on a XV century illuminated parchment by Raman and FTIR microspectroscopies, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 55 (1999) 1371–1377. https://doi.org/10.1016/S1386-1425(98)00300-X.
- [69] P. Holakooei, A.H. Karimy, Micro-Raman spectroscopy and X-ray fluorescence spectrometry on the characterization of the Persian pigments used in the pre-seventeenth century wall paintings of Masjid-i Jame of Abarqu, central Iran, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 134 (2015) 419–427. https://doi.org/10.1016/j.saa.2014.06.123.
- [70] E. V. Shabunya-Klyachkovskaya, O.S. Kulakovich, S. V. Gaponenko, Surface enhanced Raman scattering of

inorganic microcrystalline art pigments for systematic cultural heritage studies, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 222 (2019) 117235. https://doi.org/10.1016/j.saa.2019.117235.

- I. Osticioli, M. Pagliai, D. Comelli, V. Schettino, A. Nevin, Red lakes from Leonardo's Last Supper and other Old Master Paintings: Micro-Raman spectroscopy of anthraquinone pigments in paint cross-sections, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 222 (2019) 117273. https://doi.org/10.1016/j.saa.2019.117273.
- [72] S.I. and U., S. S.K. Sharma, A.K.Misra, Remote Raman Spectroscopy of Various Mixed and Composite Mineral Phases, Spectrochim. Acta. (2006) 2–3.
- [73] F. Stenman, Raman scattering from powdered 9, 10-Anthraquinone, (1969).
- [74] J. González, La importancia de los colores tierra, sienas y ocres en la paleta del pintor, Ttamayo. (2017). https://www.ttamayo.com/2017/05/colores-tierra-sienas-ocres/.
- [75] O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424–430. https://doi.org/10.1016/S0022-4596(03)00294-9.
- [76] L.D. Mateos Luque, J.R. Ruiz, Análisis de pigmentos por espectroscopia Raman de la villa romana de El Ruedo, Antiquitas. 27 (2015) 69–83.
- [77] Pardo Van Dyke, (n.d.). http://www.materialesparartistas.com/pardo van dyke.html.
- [78] G. Muedas Taipe, A.L. Almandoz Landa, F.A. Santillán Espinoza, Preparación Y Caracterización De Biosorbentes Basados En Compósitos De Mwcnt-Magnetitahidroxiapatita Y Su Potencial Aplicación En La Remoción De Metales Pesados, Rev. La Soc. Química Del Perú. 85 (2019) 463–475. https://doi.org/10.37761/rsqp.v85i4.260.
- [79] U.C. de Madrid, El verde, (n.d.). https://www.ucm.es/capire/gamacolores-verde.
- [80] R. Beltrán Suito, Sorprendentemente verdes: el cobre y sus pigmentos, Rev. Química. 26 (2012) 13–15.
- [81] Viridian, (n.d.). http://www.materialesparartistas.com/viridian.html.
- [82] M.A. Vuurman, D.J. Stufkens, A. Oskam, J.A. Moulijn, F. Kapteijn, Raman spectra of chromium oxide species in CrO3/Al2O3 catalysts, J. Mol. Catal. 60 (1990) 83–98. https://doi.org/10.1016/0304-5102(90)85070-X.
- [83] E. Mwenesongole, A Raman- and XRD study of the crystal chemistry of cobalt blue, Master Os Sci. Diss. (2008) 138. http://hdl.handle.net/2263/29925.
- [84] N.M. Grechukha, K.O. Gorshkova, M.S. Panov, I.I. Tumkin, E.O. Kirillova, V. V. Lukianov, N.P. Kirillova, V.A. Kochemirovsky, Analysis of the aging processes of writing ink: Raman spectroscopy versus gas chromatography aspects, Appl. Sci. 7 (2017). https://doi.org/10.3390/app7100991.
- [85] Z. Li, L. Wang, H. Chen, Q. Ma, Degradation of emerald green: scientific studies on multi-polychrome Vairocana Statue in Dazu Rock Carvings, Chongqing, China, Herit. Sci. 8 (2020) 1–12. https://doi.org/10.1186/s40494-020-00410-2.
- [86] E. invernadero Creativo, La evolución de los pigmentos azules. El azul en la historia del arte., (2020). https://www.elinvernaderocreativo.com/la-evolucion-de-los-pigmentos-azules-el-azul-en-la-historia-del-arte/.
- [87] Azurita, (n.d.). http://www.materialesparartistas.com/azurita.htm.
- [88] La tabla periódica en el arte: Cobalto, Científica, Cátedra Cult. UPV. (n.d.). https://culturacientifica.com/2019/06/16/la-tabla-periodica-en-el-arte-cobalto/.
- [89] F. Casadio, A. Bezúr, I. Fiedler, K. Muir, T. Trad, S. MacCagnola, Pablo Picasso to Jasper Johns: A Raman study of cobalt-based synthetic inorganic pigments, J. Raman Spectrosc. 43 (2012) 1761–1771. https://doi.org/10.1002/jrs.4081.
- [90] Violeta de Cobalto, Macurela. (n.d.). https://www.macuarela.com/2021/04/el-violeta-de-cobalto.html.
- [91] K. Brouzi, A. Ennaciri, F. Capitelli, V. Valentini, G. Mattei, M. Harcharras, Vibrational study of manganese ammonium dihydrogendiphosphate hydrated Mn0.5NH4H2P2O7 · H2O, Phosphorus, Sulfur Silicon Relat. Elem. 180 (2005) 545–553. https://doi.org/10.1080/104265090517307.
- [92] A. Cesaratto, J.R. Lombardi, M. Leona, Tracking photo-degradation of triarylmethane dyes with surfaceenhanced Raman spectroscopy, J. Raman Spectrosc. 48 (2017) 418–424. https://doi.org/10.1002/jrs.5056.
- [93] D. Cosano, L.D. Mateos, C. Jiménez-Sanchidrián, J.R. Ruiz, Identification by Raman microspectroscopy of pigments in seated statues found in the Torreparedones Roman archaeological site (Baena, Spain), Microchem. J. 130 (2017) 191–197. https://doi.org/10.1016/j.microc.2016.09.003.

7 Lista de figuras

Figura 1: "La virgen de la granada" (1426) obra de Fra Angelico [8]	6
Figura 2: "Nude woman reclining" (1910) [12]	7
Figura 3: "Madame Leon Clapisson" (1883) pintura de Pierre-August Renoir	[20]. A la
izquierda está una imagen del aspecto real del cuadro a día de hoy, y a la d	erecha se
muestra una recreación digital del aspecto primigenio de la obra. Reprod	ucido de
Instituto de Arte de Chicago (CC0).	8
Figura 4: Movimiento de vibración para una molécula triatómica no lineal	11
Figura 5: Esquema de las dispersiones elásticas e inelásticas [30]	14
Figura 6: Posibles geometrías de dispersión	15
Figura 7: Espectro Raman de silicio cristalino (100)	16
Figura 8: Relación de dispersión fonónica del Silicio. Aparece resaltada	en color
amarillo la región del centro de zona donde se encuentran los fonones que part	icipan en
las dispersiones Raman de primer orden. (LA = rama longitudinal acústica, TA	$\Lambda = rama$
transversal acústica, $LO = rama$ longitudinal óptica y $TO = rama transversa$	l óptica).
	17
Figura 9: Parámetros característicos del espectro Raman del Si (100). Es un	espectro
de la dispersión Raman Stokes, ya que el pico aparece en un desplazamiento	(Raman
Shift) positivo del número de onda frente a la dispersión Rayleigh	17
Figura 10: Comparación espectros Raman de silicio monocristalino, policri	stalino y
amorfo	18
Figura 11: Espectro Raman de materia orgánica. Fenómeno de fluorescencia-	19
Figura 12: Espectro de la Escarlata de Molibdeno. Se observa la presencia d	e un pico
cósmico	19
Figura 13 Diagrama de bloques del funcionamiento de un equipo Raman por	tátil24
Figura 14 Esquema del funcionamiento de un cabezal óptico	25
Figura 15: Gráfica que relaciona la intensidad de la corriente de alimentación	del láser
y la potencia resultante	26
Figura 16: Degeneración del pigmento Negro Viña	26
Figura 17: Comparación de los espectros Raman de los compuestos carbonato	s: Blanco
de España (azul), Albayalde (naranja) y Calcita (rojo). Aparece resaltado el pie	eo de $v_{\rm asim}$
$(CO_3)^{2-}$	31
Figura 18: Gráfica CIE L*a*b* 3D de los pigmentos blancos	32
Figura 19: Granos de Oropimente. Imagen tomada con un microcopio ó	ptico con
objetivo de 50x	34
Figura 20: Granos de Rejalgar. Imagen tomada con un microcopio óptico con	ı objetivo
de 50x	35
Figura 21: Gráfica CIE L*a*b* 3D de los pigmentos amarillos	36
Figura 22: Gráfica CIE L*a*b* 3D de los pigmentos naranjas	37
Figura 23: Gráfica CIE L*a*b* 3D de los pigmentos rojos	41

Figura 24: Análisis comparativo del espectro Raman de la Siena Natural a travé	és de
sus componentes: Goethita, Calcita y Cuarzo	44
Figura 25: Gráfica CIE L*a*b* 3D de los pigmentos marrones-ocres	45
Figura 26: Gráfica CIE L*a*b* 3D de los pigmentos negros	47
Figura 27: Gráfica CIE L*a*b* 3D de los pigmentos verdes	50
Figura 28: Gráfica CIE L*a*b* 3D de los pigmentos azules	52
Figura 29: Gráfica CIE L*a*b* 3D de los pigmentos violetas	54
Figura 30: Gráfica CIE L*a*b* 3D de todos los pigmentos analizados	54
Figura 31: Espectro Raman del Yeso (1)	65
Figura 32: Espectro Raman del Blanco de Titanio (2)	65
Figura 33: Espectro Raman del Albayalde (3)	65
Figura 34: Espectro Raman del Blanco Litopón (4)	66
Figura 35: Espectro Raman del Blanco España (5)	66
Figura 36: Espectro Raman del Blanco Zinc (6)	66
Figura 37: Espectro Raman del Oxalato Cálcico (7)	66
Figura 38: Espectro Raman de la Alúmina (8)	67
Figura 39: Espectro Raman de la Baritina (9)	67
Figura 40: Espectro Raman de la Calcita (10)	67
Figura 41: Espectro Raman de la Sal de Rochelle (11)	67
Figura 42: Espectro Raman del Amarillo de Zinc (12)	68
Figura 43: Espectro Raman del Amarillo de Cadmio (13)	68
Figura 44: Espectro Raman del Amarillo de Estroncio (14)	68
Figura 45: Espectro Raman del Amarillo de Cromo Puro (15)	69
Figura 46: Espectro Raman del Amarillo de Cromo (16)	69
Figura 47: Espectro Raman del Oropimente (17)	69
Figura 48: Espectro Raman del Oropimente (Rejalgar) (17)	69
Figura 49: Espectro Raman del Óxido Amarillo Sintético (18)	70
Figura 50: Espectro Raman del Naranja de Cromo (19)	71
Figura 51: Espectro Raman del Naranja de Cadmio (20)	71
Figura 52: Espectro Raman del Minio (Rojo Plomo) (21)	72
Figura 53: Espectro Raman de la Escarlata de Molibdeno (22)	72
Figura 54: Espectro Raman del Cinabrio (23)	72
Figura 55: Espectro Raman del Rojo Kermes (24)	73
Figura 56: Espectro Raman del Rojo Cadmio (25)	73
Figura 57: Espectro Raman del Rojo Normal (26)	73
Figura 58: Espectro Raman del Bermellón (27)	73
Figura 59: Espectro Raman del Carmín Intenso (28)	74
Figura 60: Espectro Raman del Carmín (29)	74
Figura 61: Espectro Raman de la Tierra Roja (30)	74
Figura 62: Espectro Raman del Óxido de Hierro Gloria (31)	74
Figura 63: Espectro Raman del Óxido de Hierro Rojo sintético (32)	75

Figura	64:	$\operatorname{Espectro}$	Raman	del Almagre (33)	75
Figura	65:	Espectro	Raman	de la Quinalizarina (34)	75
Figura	66:	Espectro	Raman	de la Siena Tostada (35)	76
Figura	67:	Espectro	Raman	de la Aureolina (36)	76
Figura	68:	Espectro	Raman	de la Siena natural (37)	76
Figura	69:	Espectro	Raman	del Ocre Superior (38)	77
Figura	70:	Espectro	Raman	del Ocre Claro (39)	77
Figura	71:	Espectro	Raman	de la Sombra Calcinada (40)	77
Figura	72:	Espectro	Raman	del Óxido de Hierro Pardo (41)	77
Figura	73:	Espectro	Raman	de la Sombra Tostada (42)	78
Figura	74:	Espectro	Raman	de la Sombra Natural (43)	78
Figura	75:	Espectro	Raman	de la Siena Calcinada (44)	78
Figura	76:	Espectro	Raman	de Tierra Cassel (45)	78
Figura	77:	Espectro	Raman	del Óxido de Hierro Negro Sintético (46)	79
Figura	78:	Espectro	Raman	del Negro Viña (47)	79
Figura	79:	Espectro	Raman	del Negro de Humo (48)	79
Figura	80:	Espectro	Raman	del Lignito (49)	80
Figura	81:	Espectro	Raman	del Negro Marfil (50)	80
Figura	82:	Espectro	Raman	del Negro Marte (51)	80
Figura	83:	Espectro	Raman	del Verde Cromo (52)	81
Figura	84:	Espectro	Raman	del Verde Intorsol (53)	81
Figura	85:	Espectro	Raman	del Verde Cobalto (54)	81
Figura	86:	Espectro	Raman	del Verde Ftalo Medio (55)	82
Figura	87:	Espectro	Raman	del Verde Cromo Permanente (56)	82
Figura	88:	Espectro	Raman	del Verde Esmeralda Oscuro (57)	82
Figura	89:	Espectro	Raman	del Verde Esmeralda (58)	82
Figura	90:	Espectro	Raman	del Azul de Ftalocianina (59)	83
Figura	91:	Espectro	Raman	de la Azurita (60)	83
Figura	92:	Espectro	Raman	del Azul Ultramar (61)	83
Figura	93:	Espectro	Raman	del Violeta Oscuro (62)	84
Figura	94:	Espectro	Raman	del Violeta Ultramar (63)	84
Figura	95:	Espectro	Raman	del Violeta de Manganeso (64)	84
Figura	96:	Espectro	Raman	del Magenta (65)	85

8 Lista de tablas

Tabla 1: Grados de libertad requeridos para describir los movimientos de u	na molécula
	10
Tabla 2: Pigmentos históricos analizados	20
Tabla 3: Resultados Raman pigmentos blancos	29
Tabla 4: Resultados colorimétricos pigmentos blancos	32
Tabla 5: Resultados Raman pigmentos amarillos	33
Tabla 6: Resultados colorimétricos pigmentos amarillos	35
Tabla 7: Resultados Raman pigmentos naranjas	36
Tabla 8: Resultados colorimétricos pigmentos naranjas	37
Tabla 9: Resultados Raman pigmentos rojos	38
Tabla 10: Resultados colorimétricos pigmentos rojos	41
Tabla 11: Resultados Raman pigmentos marrones – ocres	42
Tabla 12: Resultados colorimétricos pigmentos marrones - ocres	45
Tabla 13: Resultados Raman pigmentos negros	46
Tabla 14: Resultados colorimétricos pigmentos negros	46
Tabla 15: Resultados Raman pigmentos verdes	47
Tabla 16: Resultados colorimétricos pigmentos verdes	49
Tabla 17: Resultados Raman pigmentos azules	50
Tabla 18: Resultados colorimétricos pigmentos azules	51
Tabla 19: Resultados Raman pigmentos violetas	52
Tabla 20: Resultados colorimétricos pigmentos violetas	53

Anexo espectros Raman: pigmentos blancos

Figura 31: Espectro Raman del Yeso (1).

Figura 32: Espectro Raman del Blanco de Titanio (2).

Figura 33: Espectro Raman del Albayalde (3).

Figura 34: Espectro Raman del Blanco Litopón (4).

Figura 35: Espectro Raman del Blanco España (5).

Figura 36: Espectro Raman del Blanco Zinc (6).

Figura 37: Espectro Raman del Oxalato Cálcico (7).

Figura 39: Espectro Raman de la Baritina (9).

Figura 40: Espectro Raman de la Calcita (10).

Figura 41: Espectro Raman de la Sal de Rochelle (11).

Anexo espectros Raman: pigmentos amarillos

Figura 42: Espectro Raman del Amarillo de Zinc (12).

Figura 43: Espectro Raman del Amarillo de Cadmio (13).

Figura 44: Espectro Raman del Amarillo de Estroncio (14).

Figura 45: Espectro Raman del Amarillo de Cromo Puro (15).

Figura 46: Espectro Raman del Amarillo de Cromo (16).

Figura 47: Espectro Raman del Oropimente (17).

Figura 48: Espectro Raman del Oropimente (Rejalgar) (17).

Figura 49: Espectro Raman del Óxido Amarillo Sintético (18).

Figura 50: Espectro Raman del Naranja de Cromo (19).

Figura 51: Espectro Raman del Naranja de Cadmio (20).
Anexo espectros Raman: pigmentos rojos

Figura 52: Espectro Raman del Minio (Rojo Plomo) (21).

Figura 53: Espectro Raman de la Escarlata de Molibdeno (22).

Figura 54: Espectro Raman del Cinabrio (23).

Figura 55: Espectro Raman del Rojo Kermes (24).

Figura 56: Espectro Raman del Rojo Cadmio (25).

Figura 57: Espectro Raman del Rojo Normal (26).

Figura 59: Espectro Raman del Carmín Intenso (28).

Figura 60: Espectro Raman del Carmín (29).

Figura 61: Espectro Raman de la Tierra Roja (30).

Figura 62: Espectro Raman del Óxido de Hierro Gloria (31).

Figura 63: Espectro Raman del Óxido de Hierro Rojo sintético (32).

Figura 64: Espectro Raman del Almagre (33).

Figura 65: Espectro Raman de la Quinalizarina (34).

Anexo espectros Raman: pigmentos marrones-ocres

Figura 66: Espectro Raman de la Siena Tostada (35).

Figura 67: Espectro Raman de la Aureolina (36).

Figura 68: Espectro Raman de la Siena natural (37).

Figura 69: Espectro Raman del Ocre Superior (38).

Figura 70: Espectro Raman del Ocre Claro (39).

Figura 71: Espectro Raman de la Sombra Calcinada (40).

Figura 72: Espectro Raman del Óxido de Hierro Pardo (41).

Figura 73: Espectro Raman de la Sombra Tostada (42).

Figura 74: Espectro Raman de la Sombra Natural (43).

Figura 75: Espectro Raman de la Siena Calcinada (44).

Figura 76: Espectro Raman de Tierra Cassel (45).

Anexo espectros Raman: pigmentos negros

Figura 77: Espectro Raman del Óxido de Hierro Negro Sintético (46).

Figura 78: Espectro Raman del Negro Viña (47).

Figura 79: Espectro Raman del Negro de Humo (48).

Figura 80: Espectro Raman del Lignito (49).

Figura 81: Espectro Raman del Negro Marfil (50).

Figura 82: Espectro Raman del Negro Marte (51).

Anexo espectros Raman: pigmentos verdes

Figura 83: Espectro Raman del Verde Cromo (52).

Figura 84: Espectro Raman del Verde Intorsol (53).

Figura 85: Espectro Raman del Verde Cobalto (54).

Figura 86: Espectro Raman del Verde Ftalo Medio (55).

Figura 87: Espectro Raman del Verde Cromo Permanente (56).

Figura 88: Espectro Raman del Verde Esmeralda Oscuro (57).

Figura 89: Espectro Raman del Verde Esmeralda (58).

Anexo espectros Raman: pigmentos azules

Figura 90: Espectro Raman del Azul de Ftalocianina (59).

Figura 91: Espectro Raman de la Azurita (60).

Figura 92: Espectro Raman del Azul Ultramar (61).

Figura 93: Espectro Raman del Violeta Oscuro (62).

Figura 94: Espectro Raman del Violeta Ultramar (63).

Figura 95: Espectro Raman del Violeta de Manganeso (64).

Figura 96: Espectro Raman del Magenta (65).