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NHC-Catalysed [3+2]-Asymmetric Annulation between Pyrazolin-
4,5-diones and Enals: Synthesis of Novel Spirocyclic Pyrazolone -
Butyrolactones and Computational Study of Mechanism and 
Stereoselectivity
Marta Gil-Ordóñez,a Alicia Maestro,*a Pablo Ortega,b Pablo G. Jambrina,b José M. Andrés*a

Chiral pyrazolones with a spirocyclic centre at the C4-position are widely found in a large family of medically relevant 
compounds. In recent years, organocatalysis, particularly that performed with quiral N-heterocyclic carbenes (NHCs), has 
allowed the enantioselective synthesis of these spirocyclic compounds despite its inherent difficulty. In this work, we 
describe the fully diastereo- and highly enantioselective synthesis of novel spirocyclic pyrazolone -butyrolactones via NHC-
catalysed [3+2] annulation reaction of enals and 1H-pyrazol-4,5-diones. To understand the catalytic mechanism and origin 
of stereoselectivity, electronic structure calculations were carried out. After considering various pathways, we concluded 
that stereoselectivity-determining step is the formation of the lactone that proceeds after addition of the NHC derived 
homoenolate to the electrophilic carbonyl group of pyrazolin-4,5-dione. Our calculations predict that the free energy barrier 
is lower for the (RS) product, which is also the main product experimentally obtained.

Introduction
A five-membered heterocycle with two adjacent nitrogen atoms 
such as the pyrazole ring stands out within the exclusive world 
of heterocyclic systems.1 Not only does it play a prominent role 
in materials2 and coordination chemistry,3 its pyrazol-3-one 
derivatives also exhibit a broad spectrum of potent biological 
and pharmaceutical activities.4 In particular, the asymmetric 
synthesis of pyrazolones with a quaternary spirocyclic centre at 
the C4 position has attracted the attention from synthetic 
chemists because spiropyrazolones combine their well-known 
biological properties with others provided by the rigidity of the 
skeleton present in spiro compounds (Figure 1).5 
Over the past few years some organocatalytic strategies have 
been developed to access spiropyrazolones with a heteroatom 
incorporated in the chiral spirocentre.6 Wang group has used 
quinine-derived thioureas and squaramides for the construction 
of spiro 4-aminopiropyrazolones from versatile 4-
isothiocyanato pyrazolones.7 There are also not many examples 
describing access to chiral spirocyclic pyrazolones bearing a 4-
oxygen incorporated spirocentre. The diastereodivergent and 
enantioselective epoxidation of unsaturated pyrazolones 
developed by the Lattanzi group provide trans- or cis-
spiropyrazolone epoxides using amine-thioureas as effective 

catalysts.8 Likewise, the bifunctional squaramide-catalysed 
reaction of in-situ-generated o-quinone methides with 
pyrazolin-5-ones and 4-halo pyrazolones provides easy access 
to chiral spiro-benzofuran pyrazolones.9 

Fig 1 Some representative biologically active spiropyrazolones with a quaternary 
centre in C4 position.

However, to the best of our knowledge there are no examples 
describing the preparation of spiropyrazolone -butyrolactones 
despite the interest of this cyclic ester unit as a chiral building 
block for the synthesis of diverse biological active compounds 
and complex molecules. Instead, various organometallic10 and 
organocatalytic11 approaches have been described for the 
synthesis of spirooxindole -lactones using isatins, 3-hydroxy or 
methylene oxindoles as starting materials. Among them, chiral 
N-heterocyclic carbene (NHC) catalysed asymmetric reactions12 
constitute an excellent tool to synthesize these spiro 
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compounds through either NHC-catalysed oxidative [3+2] 
annulation reaction of dioxindoles and enals,13 the HOBt-
assisted [3+2] annulation of carboxylic esters with isatins via 
acyl azolium intermediate,14 or the enantioselective addition of 
homoenolate derived enals to isatins by cooperative NHC/Lewis 
acid catalysis.15 After reviewing the existing literature, we found 
only three examples that describe the NHC-catalysed 
asymmetric synthesis of spirocyclic pyrazolones. The Biju and 
Yang/Zhong groups have reported the preparation of 
pyrazolone-fused spirocyclohexanones through [3+3] or [4+2] 
annulation reactions of enals or -chloroenals, respectively, and 
-arylidene pyrazolinones (Scheme 1a and 1b).16 On the other 
hand, Enders group has developed a one-pot three-component 
diastereo and enantioselective synthesis of spirocyclopentane 
pyrazolones by means of an aldol condensation followed by 
NHC-catalysed [3+2] annulation reaction (Scheme 1c).17

Scheme 1 Asymmetric NHC-catalysed reactions for the synthesis of 
spiropyrazolones.

Due to the interest of this type of compounds, herein we report 
their stereoselective synthesis by means a [3+2] annulation of 
enals and 1H-pyrazol-4,5-diones performed with chiral NHCs. To 
elucidate the mechanism of this cycloaddition reaction, we 
carried out electronic structure calculations at a density 
functional theory (DFT) level. These calculations also shed light 
on the origin of the stereoselectivity experimentally obtained. 

Results and Discussion
We started our studies by combining pyrazolin-4,5-dione 1a and 
cinnamaldehyde 2a in the presence of different NHC pre-
catalysts AE, DABCO as base, and toluene as solvent at room 
temperature (Table 1). The diastereoselectivity for the reaction 
was excellent in almost all cases, and the spiro γ-butyrolactone 
3a was obtained as a single diastereomer (entries 1, 35 and 7). 

The best enantiomeric ratio (86:14) and yield (72%) was 
achieved when N-mesityl triazolium salt B (Bode’s catalyst) was 
used (entry 3). 

Table 1 Optimization of reaction conditions.a

Entry pre-NHC Base Solvent Yield (%)b drc erd

1 A DABCO Toluene 41 >99:<1 37:63

2 A1 DABCO Toluene n.r.  

3 B DABCO Toluene 72 >99:<1 86:14

4 C1 DABCO Toluene 38 >99:<1 79:21

5 C2 DABCO Toluene 45 >99:<1 86:14

6 D DABCO Toluene <10 n.d. n.d.

7 E DABCO Toluene 31 >99:<1 50:50

8 B DABCO Mesitylene 65 >99:<1 87:13

9 B DABCO Et2O 66 >99:<1 71:29

10 B DABCO THF 34 >99:<1 74:26

11 B DABCO DCM 50 >99:<1 77:23

12 B DABCO CHCl3 35 >99:<1 74:26

13 B DMAP Toluene 62 >99:<1 79:21

14 B TBD Toluene 25 >99:<1 82:18

15 B Cs2CO3 Toluene 8 >99:<1 87:13

16 B DBU Toluene n.r.  

17 B DIPEA Toluene 52 >99:<1 84:16

18 B KOt-Bu Toluene 29 >99:<1 88:12

19 B NaOAc Toluene 73 >99:<1 74:26

20 B TMEDA Toluene 23 >99:<1 82:18

21e B DABCO Toluene 22 >99:<1 86:14

22f B DABCO Toluene 62 >99:<1 79:21

23g B DABCO Toluene 45 >99:<1 78:22

24h B DABCO Toluene 58 >99:<1 80:20

25i B DABCO Toluene 39 >99:<1 76:24

a Reaction conditions: 1a (0.06 mmol), 2a (0.06 mmol), pre-NHC (10 mol%), base 
(0.5 equiv), solvent (1 mL), at rt for 16 h. b Yield of 3a after column chromatography. 
c Dr values determined by 1H NMR. d Er values determined via chiral HPLC analysis. 
e Molar ratio 1a:2a 1:2. f Molar ratio 1a:2a 1.2:1. g LiCl as additive. h 0C. i 7 mol% 
of catalyst B. 
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When a strong electron-withdrawing group was introduced on 
the indanol ring (catalyst C2) no change in the enantioselectivity 
was produced but the yield decreased dramatically (entry 5). A 
total loss of enantio-discrimination was observed when catalyst 
E with a pentafluorophenyl group was used (entry 7). 
Unfortunately, no [3+2] annulation was observed when using 
pre-catalyst A1 derived from (S)-pyroglutamic acid with a silyl 
ether substituent (entry 2).18 Achiral catalyst E afforded racemic 
adduct 3a with low yield (entry 6). With Bode’s catalyst as the 
most suitable among those examined, solvent screening 
indicated that toluene was the best solvent for this reaction 
because although mesitylene kept the same level of 
enantioselectivity (87:13, entry 8), the yield was slightly lower. 
Further optimization was carried out to found the best base to 
access the N-heterocyclic carbene catalyst (entries 1320). 
Although the reaction works well with different bases, DABCO 
was retained as the base of choice. Inorganic bases as Cs2CO3 or 
KOt-Bu gave the desired product with high diastereo- and 
enantioselectivity, although with lower yield. On the other 
hand, in the reactions promoted with bases such as DMAP or 
NaOAc the enantioselectivity decreased slightly. When DBU was 
used as the base, no reaction was observed. Finally, other 
parameters were evaluated (entries 2125). However, neither 
the pyrazolin-4,5-dione/enal molar ratio, nor the presence of 
additives nor the temperature led to an improvement of the 
previous er and yields.
The scope of the reaction was first examined by modification of 
the substituents of pyrazolin-4,5-dione. The diastereoselectivity 
remained excellent (>99:<1) except in the case of substrates 
having a non-bulky alkyl substituent (R1), such as a methyl group 
(3b) (Table 2, entry 2).

Table 2 Substrate scope for pyrazolin-4,5-diones 1a–f.a

Entry R1, R2 Base Yield (%)b drc erd

1 Ph, Ph, 3a DABCO 72 >99:<1 86:14

2 Me, Ph, 3b DABCO 49 77:23 81:19e

3 t-Bu, Ph, 3c DABCO 73 >99:<1 73:27

4 t-Bu, Ph, 3c TBD 63 >99:<1 87:13

5 Naph, Ph, 3d DABCO 45 >99:<1 81:19

6 Ph, Me, 3e DABCO 65 >99:<1 80:20

7 t-Bu, Me, 3f TBD 58 >99:<1 84:16

a Reaction conditions: 1a–f (0.06 mmol), 2a (0.06 mmol), B (10 mol%), DABCO or 
TBD (0.5 equiv), toluene (1 mL), at rt for 16 h. b Yield of 3 after column 
chromatography. c Dr values determined by 1H NMR. d Er values determined via 
chiral HPLC analysis. e Er for major diastereomer.

It should be noted that a base change is necessary to maintain 
the level of enantioselectivity in case of 3-tert-butyl substituted 
pyrazolin-4,5-diones. In this case, 1,5,7-triazabicyclo[4.4.0]dec-
5-ene (TBD) (entries 3, 4 and 7) was the most suitable base 
leading to 3c and 3f with total diastereoselectivity and good 

enantioselectivity (see Supporting Information for optimization 
of reaction conditions, table S2).
Next, we studied the influence of the enal by using aliphatic and 
aromatic ,-unsaturated aldehydes (Table 3). The reaction of 
pyrazolin-4,5-dione 1a with para-halo substituted 
cinnamaldehydes worked well, furnishing the desired spiro 
compounds 3ab and 3ac in good yields with total 
diastereoselectivity and good enantioselectivity. As can be seen, 
the presence of strongly electron-withdrawing (NO2) and 
electron-donating (MeO) groups in this position of enal led to 
the lactones 3ad and 3ae in good yields but with lower 
enantioselectivity. However, C-3 tert-butyl substituted 
pyrazolin-4,5-dione 3c reacted with different p-substituted 
cinnamaldehydes affording adducts 3cb–3ce with better 
enantiomeric ratios independently of the electronic properties 
of the substituent present in the aromatic ring. The introduction 
of a methoxy group at the ortho-position of the aryl ring 
resulted in a significant decrease in both yield and 
enantioselectivity (3cf). The reaction also tolerates an N-methyl 
group to provide, in a diastereoselective way, the desired 
product 3fb in 71% yield with a good er of 90:10. Interestingly, 
the reaction also works with enals bearing a β-methyl 
substituent giving the corresponding products (3ag and 3cg) 
with good yields, very high diastereoselectivity (>99:<1), and 
moderate to good enantioselectivities (er 80:20–92:8).

Table 3 Substrate scope for enals 2b–g.a

a Reaction conditions: 1 (0.06 mmol), 2b–g (0.06 mmol), B (10 mol%), DABCO 
or TBD (0.5 equiv), toluene (1 mL), at rt for 16 h. b Yield of 3 after column 
chromatography. c Dr values determined by 1H NMR. d Er values determined 
via chiral HPLC analysis. e 1c (1.3 mmol), 2b (1.3 mmol), TBD (0.5 equiv), 
toluene (15 mL), at rt for 16 h.
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To demonstrate the synthetic utility of this reaction, a gram-
scale synthesis of spiro compound 3cb was carried out. 
Although it was observed a slight decrease in the yield, both 
diastereoselectivity and enantioselectivity remained excellent 
(Table 3, entry 3cb).
In order to determinate the absolute configuration of products, 
optically pure (4R,5S)-4-(4-chlorophenyl)-7,9-diphenyl-1-oxa-
7,8-diazaspiro[4.4]non-8-ene-2,6-dione, ()-3ac was isolated 
after recrystallization from chloroform.19 X-ray crystallographic 
analysis of a single-crystal confirmed the absolute configuration 
as (4R,5S) for the spirocycle (see the Supporting Information for 
details).

Computational Methods and Model Reaction
To elucidate the mechanism of the NHC-catalysed [3+2] 
asymmetric annulation, and rationalise the origin of the 
enantio- and diastereoselectivity observed, we carried out 
electronic structure calculations. The stationary points (minima 
and saddle points) were optimized at the M06-2X/6-31G(d,p)20 
level of theory using Gaussian16.21 Solvation effects were 
included using the SMD continuum solvation model,22 with the 
default parameters for toluene. 
Frequencies were calculated to ensure the convergence and 
intrinsic reaction coordinate (IRC) calculations were carried out 
to confirm that the transition states obtained connect reactants 
and products.23 Subsequently, single-point calculations of the 
stationary points were computed at a M062X/maug-cc-pVTZ 
level, and the free-energies reported were obtained by adding 
the electronic energy at the M062X/maug-cc-pVTZ level of 
theory with the thermal free energies computed at the 
M062X/6-31G(d, p) level. This selection of functional and basis 
set was done according to recent benchmarks,24 and the overall 
procedure is similar to those followed in the literature for the 
study of other NHC-catalysed [3+2] asymmetric annulations.25

To study the NHC-catalysed [3+2] asymmetric annulations 
performed in this work, we used as a model the reaction 
between R2(1c) and R1(2e), (Scheme 2) for which the highest er 
(94:6) was experimentally obtained (see Table 3).

Scheme 2 NHC-catalysed [3+2] asymmetric annulation model used in the 
calculations.

The mechanism that emerges from our calculations is depicted 
in Scheme 3. In it, we can differentiate two different stages. In 
the first stage, the NHC catalyst reacts with the aldehyde moiety 
of R1(2e), forming a new C-C bond, and finally leading to the 
IM2. 

Scheme 3 Catalytic cycle of [3+2] cycloaddition reaction.

The free energy profile for the first stage is shown in Scheme 4. 
According to our calculations, the rate-limiting step in this stage 
is the hydrogen migration and formation of Breslow 
intermediate. The free energy barrier for the intramolecular 
hydrogen migration is too high (> 50 kcal/mol). However, this 
energy barrier shrinks to 27.56 kcal/mol if assisted by two water 
molecules that could be present in catalytic concentrations in 
the bulk, and to 22.92 kcal/mol if hydrogen migration is assisted 
by TBD.26 Depending on the side of the carbene attack with 
respect to the aldehyde, the reaction can proceed via a Re/Si 
path. As it is shown in Scheme 4, the barrier for the Si 
mechanism is larger, regardless of whether the reaction is 
assisted by water or TBD. Accordingly, from this step, we only 
focused on the Re mechanism. 

Scheme 4 Free-energy profile of the first stage of the reaction. The solvation-
corrected relative free-energies at the SMD(toluene)/M06-2X/maug-cc-pVTZ level 
are given in kcal/mol. Cartesian coordinates of all the stationary points are shown 
in the Supporting Information.

In the second stage, whose free-energy profile is depicted in 
Scheme 5, R2(1c) reacts with the activated aldehyde (Re_IM2), 
leading to the formation of P(3ce) and the release of the NHC 
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catalyst. This stage consists of three further steps, addition of 
the pyrazolin-4,5-dione (3rd step), formation of the lactone (4th 
step), and release of NHC (5th step). Of these steps, the 4th step 
is the rate-limiting step and also will determine the er and dr 
ratios. In our calculations, the 4th step is divided in two stages. 
In a first stage, the basis assists the proton transfer from a 
hydroxyl group at C4-position of the pyrazoldione moiety to the 
-carbon atom of the homoenolate intermediate, a process 
that is associated with high energy barriers. Then the 
dissociation of TBD occurs and spontaneous rearrangement to 
IM4.

Scheme 5 Free-energy profile of the second stage of the reaction. The solvation-
corrected relative free-energies at the SMD(toluene)/M06-2X/maug-cc-pVTZ level 
are given in kcal/mol. Cartesian coordinates of all the stationary points are shown 
in the Supporting Information.

As it is depicted in Figure 2, depending on the attack mode of 
the pyrazoldione R2(1c) in the 3rd step, and as a consequence of 
the presence of two prochiral faces in both R2 as Breslow 
intermediate Re_IM2, we could find four different mechanisms 
that will produce four different stereoisomers (SS), (SR), (RR) 
and (RS). The formation of rotational conformers associated 
with the Z-configuration of the C=C bond was not feasible due 
to the high energy barrier associated with C=C torsion (above 30 
kcal/mol). Although the free-energy barrier for the four 
pathways is considerably different ranging from 2.63 to 12.04 
kcal/mol, all barriers are well below those obtained in the 4th 
step. In this step, formation of the lactone proceeds via 
protonation of the basis (TBD). Our calculations predict that the 
free energy barrier is lower for the (RS) mechanism, which after 
NHC release that proceeds with almost no barrier, will produce 
the P(RS)(3ce) product. This is also the main product obtained 
experimentally (with an er of 94:6).

Fig 2 Diagram of the four possible modes of attack of R2(1c) on Re_IM2. The 
coordinates of the transition states originated from these modes of attack are 
shown in the Supporting Information, and their energies are depicted in Scheme 
5 (TS3).

To rationalize the origin of the enantioselectivity, we analyse 
the structure of the four TS4 (shown in Scheme S6 in the 
Supporting Information). According to TS4 structures, there is a 
good correlation between the degree of synchronicity of the 
two proton transfer steps at the saddle point and the energy 
barrier, as it was previously observed for Diels-Alder reactions.27 
For the TS4(SR) and TS4(RS) structures, both protons are 
located between IM3 and TBD at the TS, while for TS4(SS) the 
OH group of pyrazoldione has not been deprotonated, and for 
TS4(RR) this proton has already been transferred to TBD. To 
quantify the origin of the differences, we combine the 
distortion-interaction analysis (following the analysis carried 
out for other NHC-catalysis articles25a,d,28) with the energy 
decomposition analysis (carried out using QChem 5.229,30) and a 
6-31G basis set. Leaving aside the entropic contribution, 
stabilization of the TS4(RS) is traced back from a more 
favourable interaction, which is induced by the relaxation of the 
molecular orbitals of the fragments (lower polarization energy. 
For details see Scheme S7 and Tables S3 and S4 in the 
Supporting Information). 

Conclusions
In the present work, we have described the first asymmetric 
synthesis of spiropyrazolone γ-butyrolactones from 1H-pyrazol-
4,5-diones and enals by an NHC-catalysed [3+2] annulation 
process. The developed protocol is mild and tolerates a wide 
range of substituents on both substrates. The use of Bode’s 
catalyst in this cascade reaction provided the enantioenriched 
spirocyclic compounds containing two contiguous stereogenic 
centres in good yields with excellent diastereoselectivity and 
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good enantioselectivity. To understand the catalytic mechanism 
and origin of stereoselectivity, electronic structure calculations 
were carried out. These indicate that the Brnsted base used to 
generate the carbene NHC, also assists the hydrogen migration 
for the generation of homoenolate. Furthermore, the formation 
of the lactone that proceeds after the pyrazolin-4,5-dione 
attack on the Breslow intermediate is the rate-limiting step and 
determining of the enantio- and diastereomeric ratios. The 
pathway responsible for the RS-configuration of spirocyclic 
pyrazolones has been identified to be the most favourable one.
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