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a b s t r a c t

Many brain–computer interface (BCI) studies overlook the channel optimization due to its inherent
complexity. However, a careful channel selection increases the performance and users’ comfort
while reducing the cost of the system. Evolutionary meta-heuristics, which have demonstrated their
usefulness in solving complex problems, have not been fully exploited yet in this context. The purpose
of the study is two-fold: (1) to propose a novel algorithm to find an optimal channel set for each user
and compare it with other existing meta-heuristics; and (2) to establish guidelines for adapting these
optimization strategies to this framework. A total of 3 single-objective (GA, BDE, BPSO) and 4 multi-
objective (NSGA-II, BMOPSO, SPEA2, PEAIL) existing algorithms have been adapted and tested with 3
public databases: ‘BCI competition III-dataset II’, ‘Center Speller’ and ‘RSVP Speller’. Dual-Front Sorting
Algorithm (DFGA), a novel multi-objective discrete method especially designed to the BCI framework,
is proposed as well. Results showed that all meta-heuristics outperformed the full set and the common
8-channel set for P300-based BCIs. DFGA showed a significant improvement of accuracy of 3.9% over
the latter using also 8 channels; and obtained similar accuracies using a mean of 4.66 channels. A
topographic analysis also reinforced the need to customize a channel set for each user. Thus, the
proposed method computes an optimal set of solutions with different number of channels, allowing
the user to select the most appropriate distribution for the next BCI sessions.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

Brain–Computer Interfaces (BCIs) are communication systems
that allow users to control devices and applications using their

own brain signals. These systems have been successfully applied
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in order to improve the quality of life of people with motor dis-
abilities who suffer from a disease that impairs the neural path-
ways that control muscles or even the muscles themselves [1].
Electroencephalogram (EEG) is commonly used to monitor the
brain activity due to its portability, non-invasiveness and low
cost. Therefore, electrical potentials are recorded by placing elec-
trodes on the user’s scalp [1].

Since decoding users’ intentions from the EEG is not straight-
orward, BCIs rely on control signals to handle the control of
he system. In particular, the P300 evoked potentials, which are
ositive peaks produced in response to infrequent and significant
timuli approximately 300 ms after their onset, are the key aspect
f the most well-known BCI-based spelling system [1]. The ‘P300
peller’ generates these signals through the odd-ball paradigm
n order to spell certain words or commands. The application
isplays a matrix containing characters or symbols, whose rows
nd columns are randomly flashing. Users, who have to focus on
desired command, will generate a P300 potential whenever the
ow or the column that contains the command is highlighted.
ence, the selected command is determined by computing the
ntersection between the row and the column that produced the
otential [2].
Due to the low signal-to-noise ratio and high inter-session

ariability of these event-related potentials, several repetitions
f the same stimulus are required to detect a reliable response.
ithout a proper processing stage, these high dimensional data

an produce over-fitting, resulting in poor performance [3,4]. The
urse of dimensionality can be addressed by means of feature
election and extraction methods [4,5], regularized classifiers [6]
r channel selection procedures [3,7]. Among them, only channel
election methods are able to reduce the cost of the system,
educe power consumption on EEG caps and increase user com-
ort [3]. Nevertheless, the selection of the most relevant sensors is
ot trivial as there are 2N subset combinations for an N-channel
ap, making the exhaustive search intractable in practice [3]. For
his reason, most P300-based studies overlook the optimization
f the most relevant subset of channels and take a predefined 8-
hannel set as a general rule of thumb [8]. Notwithstanding its
sefulness as a quick solution, an optimization for each user is
eneficial owing to the intrinsic inter-subject variability of the BCI
ystems.
Although there are many feature selection methods that could

e applied to this problem, such as step-wise regression [9], fast
orrelation based filters [10], elastic neural networks [11], or ex-
lainable deep learning [12], meta-heuristics have demonstrated
igh performances solving complex optimization problems [13].
euristics refer to problem-specific strategies that iteratively
mprove a candidate solution, whereas meta-heuristics generalize
hese strategies to problem-independent frameworks [13,14].
warm intelligence techniques and evolutionary algorithms, fam-
lies of population-based meta-heuristics, have been previously
pplied in EEG signals to solve optimization problems [4,7,15–
9,19–30]. Despite their popularity, the contribution of meta-
euristics to P300-based BCIs is still scarce. Most of these pre-
ious studies are related to motor imagery (MI) BCIs [15–23] or
iometric-oriented person identification systems [24,25], whose
ignal processing stage is completely different (e.g., neural
ources, control signals, paradigms, spatial filtering and feature
xtraction) and thus, results cannot be generalized to P300-based
CIs. Regarding the P300-based studies, most of them have used
ingle-objective algorithms that optimized the final classification
ccuracy of the system [4,26–28,30]. However, we believe that a
hannel selection procedure should follow a two-fold objective:
i) to minimize the number of selected channels, and (ii) to
aximize the system’s performance. Some recent studies used

weighted aggregation approach to combine both objectives

2

into a single one, but the simultaneous optimization was not
explored [7,22,31].

Traditional multi-objective approaches, which optimize both
objectives at the same time, have been explored in MI-based BCIs,
such as multi-objective particle swarm optimization (MOPSO)
[16–18] or non-sorting genetic algorithm II (NSGA-II) [20,23].
By contrast, multi-objective algorithms applied to P300-based
BCIs are more limited. Kee et al. [19] compared the performance
between several single-objective genetic algorithms (GA) and
NSGA-II with 2 subjects, whereas Chaurasiya et al. [29] em-
ployed a multi-objective binary differential-evolution algorithm
with 9 subjects, reaching several subsets of channels that assured
suitable classification performances. Nevertheless, the number of
subjects was limited, and both databases were recorded using the
row-col paradigm (RCP). Nowadays, P300-based BCIs offer a wide
range of stimulation paradigms that elicit different event-related
responses and thus, the generalization of those results to other
setups is unclear. Furthermore, despite their scarce application
in P300-based BCI studies, swarm intelligence and evolutionary
computation are growing research fields that integrate a large
amount of different algorithms that could be adapted to the
channel selection problem. In fact, the vast majority of them
have yet to be applied to P300-based BCIs. To the best of our
knowledge, there are no studies that compare their efficacy in
selecting the most appropriate subset of channels or even estab-
lishing the key aspects for their adaptation to BCI systems, which
is not trivial. Furthermore, none of the previous studies tested any
meta-heuristic with paradigms other than RCP, restricting their
generalization. Lastly, it is noteworthy that there is also no study
aimed at designing any multi-objective algorithm customized for
the P300-based BCI channel selection problem.

The objective of this study is two-fold: (1) to propose a novel
multi-objective method to find an optimal channel set especially
suited for P300-based BCIs and compare its usefulness with 7
additional meta-heuristics; and (2) to establish guidelines for
adapting these optimization strategies to the channel selection
problem. Although there are many meta-heuristics that could be
adapted to this problem, only those that have previously applied
in BCIs, that have direct or explicit contribution to our proposed
meta-heuristic or that have been recently proposed were in-
cluded in this comparison: GA, BDE and BPSO as single-objective;
and NSGA-II, SPEA2, BMOPSO and PEAIL as multi-objective. We
have also tried to maintain diversity in the way they deal to the
updating of the population for each iteration. To sum up, the main
contributions of this study are the following: proposal of a novel
multi-objective algorithm especially designed for this problem,
comparison of 7 meta-heuristics to the P300-based BCI channel
selection problem, enumeration of a detailed set of guidelines
to adapt any meta-heuristic for the channel selection, and eval-
uation with three databases that employ different P300-based
paradigms.

2. Subjects

In order to improve the generalization of the results, the
algorithms have been tested with three public P300-based BCI
databases that were recorded using different stimulation
paradigms: row-col paradigm (RCP), center speller (CS) and rapid
serial visual presentation (RSVP). Examples of the stimulation
sequences for these paradigms are depicted in Fig. 1.

2.1. BCI competition III: dataset II

The ‘BCI competition III: dataset II’ [32] was recorded from
2 different healthy subjects (i.e., A and B) that were asked to

spell words in 5 RCP sessions. Signals were recorded using a
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Fig. 1. Examples of stimuli intensification sequences for the paradigms: (a) row-col paradigm, (b) center speller, (c) rapid serial visual presentation.
4-channel EEG cap with a sampling frequency of 240 Hz and
and-pass filtered from 0.1 Hz to 60 Hz. Training and testing
ets were composed of 85 and 100 trials, respectively [32]. RCP
s the most common P300-based spelling paradigm, which con-
ists of displaying a matrix that contains characters or symbols.
sers have to stare at the target command while the matrix’s
ows and columns are randomly flashing. Whenever the row or
olumn that contains the target is flickered, a P300 potential
s generated. Hence, the desired command can be identified by
omputing the intersection between the row and the column
hat produced these P300 responses [2]. In this dataset, there are
2 different classes (i.e., rows and columns), and 15 sequences
i.e., repetitions) were used. Therefore, a trial is composed by 180
bservations [32].

.2. Center speller database

The ‘Center Speller (008-2015)’ database [33] was recorded
rom 13 healthy subjects (i.e., C01–C13) that were asked to per-
orm spelling tasks using the CS paradigm. Signals were recorded
sing a 63-channel EEG cap with a sampling frequency of 250 Hz
nd band-pass filtered from 0.016 Hz to 250 Hz. Training data
as composed of 17 trials, whereas testing data varied between
2–49 trials, depending on the subject [33]. CS was originally
esigned to avoid eye movements. The paradigm displays groups
f commands in the center of the screen, overlaid with colored
eometric shapes. The groups are randomly flickered until the
ser selects one of them. Then, the commands that were included
nside the selected group are displayed in the same way, allowing
he user to select the final command [33]. In practice, there are
2 different classes (6 groups in 2 levels), and 10 sequences were
sed. A trial is composed by 120 observations [33].
3

2.3. RSVP speller database

The ‘RSVP Speller (010-2015)’ database [34] was recorded
from 12 healthy subjects (i.e., R01–R12) that were asked to
perform spelling tasks using the RSVP paradigm. Signals were
recorded using a 63-channel EEG cap with a sampling frequency
of 1000 Hz, and then down-sampled to 200 Hz [34]. However,
since the fifth subject only used 61 channels, electrodes P8 and
O2 were excluded from the database for the sake of homogeneity.
Training data was composed of 24 trials, whereas testing data
(copy and free spelling) varied between 37–50 trials, depending
on the subject [34]. RSVP was also developed to exploit the foveal
visual field and avoid eye movements by depicting symbols in the
center of the screen in a serial manner. The database includes a
vocabulary of 30 characters (26 letters and 4 symbols). In order
to favor the identification of the shapes, half of the letters were
uppercase and the other half lowercase, using 5 different colors.
Therefore, there are 30 classes, and 10 sequences were used,
resulting in 300 observations per trial [34].

3. Methods

3.1. Pre-processing and feature extraction

Before applying any optimization procedure, relevant features
of the EEG signals should be extracted for each epoch (i.e., stim-
ulus) and channel. In fact, pre-processing, as well as feature
extraction and selection procedures influence the final accuracy
in a high extent. Due to the purpose of the study, signal pro-
cessing stages were composed of a standardized framework, in-
tended to isolate the channel selection procedure. We did not
apply any further pre-processing step besides the aforementioned
band-pass filtering embedded in each database [32–34]. Epochs
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were extracted using windows in the range [0, 800] ms from the
timuli onsets, and normalized via z-score over a [−200, 0] ms
baseline. As stated in BCI literature, this range is large enough
to capture relevant event-related potentials, including the P300
wave [1]. These epochs were then decimated to 25 Hz, keeping
a total of 20 features per stimulus and channel. It is noteworthy
that the decimation process encompasses a low-pass filtering (to
avoid aliasing), followed by a down-sampling procedure [7,35].
Hereafter, epochs from different databases and sampling rates
have the same number of features. Note that, from the point of
view of a subsequent classifier, epochs are input observations.

3.2. Defining the optimization problem

The goal of an optimization algorithm is to provide a suit-
able solution that satisfies the problem constraints and optimizes
(either maximizing or minimizing) one or more objective func-
tions to the greatest extent [14]. Since we are considering an
N-channel selection problem, a possible solution may be defined
as x = [x1, x2, . . . , xN ], xi ∈ {0, 1}, where 1 and 0 represent the
election and rejection of a channel i, respectively. Hence, this
ombinatorial problem is constrained to a discrete N-dimensional
pace, whose solutions are restricted to binary positions. When a
olution x is evaluated, features associated with the channels that
satisfy xi = 1 are concatenated as an input feature vector.

In a BCI channel selection problem, two main objectives must
e pursued: (i) maximize system performance, and (ii) minimize
he number of channels. Even though the modeling of the lat-
er is straightforward (see Eq. (1)), the system performance can
e estimated following several approaches. The most intuitive
olution is to use the output training accuracy of the classifier
sing a certain solution x [19,26,29]. However, due to the limited

number of trials, this method usually provides a low-resolution
score [36]. The resolution can be improved by using stimuli-
based, rather than character trial-based. Previous studies used
approaches derived from the confusion matrix of the stimuli
classification [4,27,28]. Nevertheless, the area under ROC curve
(AUC) is recommended because it is able to successfully estimate
the discriminative ability of a binary classifier using only training
data [3,36]. Therefore, the objectives are modeled as follows:

min F (x) =

⎧⎪⎨⎪⎩
f1(x) = 1− AUC(x)

f2(x) =
N∑

n=1

xn
, (1)

where f1(x) belongs to the first objective (i.e., minimize the sys-
tem error) and f2(x) to the second objective (i.e., minimize the
number of channels). In this study, AUC has been derived from
5-fold cross-validated linear discriminant analysis (LDA) that is
pplied to the solution x using the training dataset [7,35,37]. That
s, the features whose channels satisfy xi = 0 are removed from
the observations matrix, which is the input of the LDA classifier.
Training set is then divided into 5 subsets and a cross-validation
procedure is applied (i.e., 4 subsets are used for training and the
remaining one for testing), returning a total of 5 AUCs. Finally,
AUC is computed as the average of all of them. LDA was used as
classifier due to its well-known excellent performances in P300-
based BCIs and the lack of hyperparameters to optimize [5–7,19,
20,29,33,38].

3.3. Single-objective meta-heuristics

Meta-heuristics produce acceptable solutions to complex
roblems in a reasonable computation time [13]. In particu-
ar, single-objective meta-heuristics iteratively produce these so-
utions following a certain objective. However, a BCI channel
4

selection problem should have a two-fold purpose. Thus, the
multi-objective problem stated in Eq. (1) is then combined into a
single-objective one [39]:

min F (x) = ω1f1(x)+ ω2

(
f2(x)− 1
N − 1

)3

, (2)

where ω1 + ω2 = 1, and ω1 and ω2 are constants that weigh
the importance of each objective. Since we consider that reaching
suitable accuracies is more important than drastically reducing
the number of required channels, coefficients have been heuris-
tically set to ω1 = 0.7 and ω2 = 0.3 [7,31,35]. In addition,
after mapping the f2(x) from [1,N] → [0, 1], its output is
raised to the third power to empathize the search of lightweight
solutions. Note that the polynomial function punishes the search
for solutions with a high number of channels more than a simple
linear function. This function was heuristically chosen after a
preliminary testing [7,31,35]. The three single-objective meta-
heuristics that have been adapted to BCI framework are described
below.

3.3.1. Genetic algorithm
One of the most well-known meta-heuristics is the genetic

algorithm (GA), originally developed by Holland [40]. GAs have
been modified to improve their ability to find the global optimum
of complex optimization problems in many ways. In short, GAs
apply the Darwinian principle of survival of the fittest individu-
als in a population using recombination, selection and mutation
operators [13,14]. In this study, a GA with elitism, binary tour-
nament selection, single-point crossover and bit string mutation
has been employed [13,14].

3.3.2. Binary differential evolution
The differential evolution (DE) algorithm, originally developed

by Storn and Price [41] for continuous functions, has some simi-
larities to GAs in terms of its structure, composed by mutation,
crossover and selection operator. However, instead of making
random mutation and crossover schemes, DE combines the in-
formation of three randomly chosen individuals. Binary DE (BDE)
applies a discretization of the mutation formula in order to adapt
it to binary problems [42]. The mutation of the ith channel of an
individual x is performed as follows:

x′i =
{
ui, if rand ≤ pc or i = r
xi, otherwise , (3)

where rand ∼ U(0, 1), r is a random integer between [1,N], pc is
the crossover rate, and ui is the mutated channel, computed as:

ui =

{
1, if rand ≤ (1+ e

−2b(vi+F ·(yi−zi)−1/2)
1+2F )−1

0, otherwise
, (4)

where rand ∼ U(0, 1); v, y and z are randomly selected individu-
als of the current population; F is the weighting factor; and b > 0
is the bandwidth factor.

3.3.3. Binary particle swarm optimization
Kennedy and Eberhart [43] developed the Particle Swarm

Optimization (PSO) algorithm, a nature-inspired meta-heuristic
based on the social schooling and flocking behavior of fishes
and birds. The optimization relies on adjusting the trajectories
and positions of a set of particles (i.e., solutions) that ‘‘fly’’ over
the search space, whose movement have both deterministic and
stochastic components [13,14,43]. In this study, the standard
constraint of Clerc and Kennedy [44] is used, leading to:

v′ = χ [v+ ϵ C (l − x)+ ϵ C (g − x)], (5)
1 1 2 2
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χ =
2

φ − 2+
√

φ2 − 4φ
, with φ = C1 + C2; (6)

where v′ is the updated velocity of a particle x; v is the last
velocity; ϵ1, ϵ2 ∼ U(0, 1); χ is the constraint multiplier; C1 and
C2 are the personal and global confidence constants, respectively;
l is the best position found by the particle x; and g is the best
global position found so far. It is worthy to note that the standard
constraint requires that φ > 4 [44,45]. Since the velocities are
continuous, the algorithm should be adapted to binary spaces.
Binary PSO (BSPO) is usually achieved using a position transfor-
mation via transfer functions [46,47]. In this study, the adaptation
has been performed following the expression:

x′i =
{
¬xi, if rand < T (v′i )
xi, if rand ≥ T (v′i )

, (7)

where rand∼ U(0, 1), and T (t) = |t/
√
1+ t2| is a v-shaped

ransfer function [47].

.4. Multi-objective meta-heuristics

In contrast to the single-objective strategies, multi-objective
eta-heuristics involve the simultaneous optimization of two or

hree objectives [48]. Since these objectives are usually conflicting
mong themselves, the concept of dominance is introduced for
etermining the quality of each solution [49]. It is said that a
olution y dominates a solution z (i.e., y ≻ z) if ∀i : fi(y) ≤ fi(z)
nd ∃j : fj(y) < fj(z). The Pareto-front, a curve that contains
ptimal solutions (i.e., those that are not dominated by any other
olutions), is estimated by the multi-objective algorithms and
epicts the trade-off among the objectives [49]. Regarding the
CI channel selection problem, the Pareto-front returns a set of
olutions that have different number of channels, allowing the
ser to select one of them.

.4.1. Non-Sorting Genetic Algorithm II
The most popular approach for extending GAs to multi-

bjective optimization problems is the Non-Sorting Genetic Al-
orithm II (NSGA-II), proposed by Deb et al. [48]. Crossover and
utation operators are the same as GAs, whereas the selection
perator is more complex. Firstly, in order to estimate the quality
f each chromosome, the algorithm establishes a hierarchy of
areto-fronts according to its dominance. The first Pareto-front
i.e., rank = 1) is composed by the non-dominated chromo-
omes of the current population. Then, the second Pareto-front
i.e., rank = 2) is computed in the same way, but ignoring
he chromosomes of the first front. This process is repeated
equentially until there are no chromosomes left [48]. However,
he selection of a parent population is not only based on the rank
f the chromosomes, but also on their crowding distances. These
etrics are included to spread the solutions along the Pareto-

ront and avoid getting trapped in local minima. The crowding
istance of a chromosome is computed as the average distance
etween its two adjacent solutions with the same rank. Boundary
olutions are assigned an infinite distance value. Considering two
hromosomes, the solution with lower rank is preferred. Whether
oth have the same rank, the less crowded solution is preferred
i.e., higher distance value). The parent population is sequentially
illed with the firsts Pareto-fronts until the number of included
olutions is greater or equal than m/2. Then, parent solutions are
runcated based on the crowding distances until the number of
olutions is exactly m/2. Further information can be found in Deb

t al. [48]. f

5

.4.2. Binary multi-objective PSO
Due to its usefulness to solve complex optimization problems,

any authors have tried to adapt the PSO algorithm to multi-
bjective environments [39]. Here, a Binary Multi-Objective PSO
BMOPSO) approach is applied. Since the conflicting objectives do
ot allow the establishing of an optimal global solution g , the
ajor adaptation must reside in the way to select the leader of
ach particle. In this study, a repository approach is employed.
on-dominated solutions are stored in an external repository
ith ‘‘unlimited’’ size. Note that its maximum size would be the
aximum number of channels (i.e., the resolution of the BCI
roblem). A particle’s leader is randomly selected from the repos-
tory, and it is attached to the particle until the leader is no longer
art of the repository. In that case, the leader is substituted by
nother randomly selected one. In addition, a three-fold bit string
utation is also used, which consists on dividing the swarm in

hree parts and apply: (1) no mutation; (2) uniform mutation
ith probability pm; (3) non-uniform mutation with probability
n = (1− gen/ngen)5N [50].

.4.3. Strength Pareto Evolutionary Algorithm 2
Zitzler et al. [51] proposed the Strength Pareto Evolutionary

lgorithm 2 (SPEA2), a multi-objective algorithm that integrates
he concepts of dominance and crowding density in a single
etric: the strength. The strength Si is computed as the number
f solutions that the ith particle dominates. Then, the unified

fitness is calculated as follows:

Fi = Ri +
1

σ k
i + 2

, (8)

where Ri is the sum of the strengths of the particles that domi-
nates i, and σ k

i is the distance sought of the particle (i.e., distance
o the k-nearest neighbor), where k = ⌊

√
m⌉. Note that non-

ominated individuals would have R = 0 and thus, F < 1.
PEA2 also uses a repository with fixed size that is updated
ollowing an environmental selection procedure. Solutions are
orted according to their F values, and the repository is filled
ith them. If the number of solutions of the repository is higher
han the maximum size Nr , a truncation process is applied. Then,
he algorithm removes solutions from the repository according to
heir σ k (i.e., high σk values are preferred), in order to preserve
areto-front spreading [51].

.4.4. Pareto evolutionary algorithm based on incremental learning
Recently, Rong-Juan et al. [52] proposed a discrete multi-

bjective algorithm that introduces the concept of incremental
earning to update solutions by exploring probability distribu-
ions of promising search regions. The algorithm, known as Pareto
volutionary Algorithm based on Incremental Learning (PEAIL),
lso uses non-dominated sorting to keep track of hierarchical
areto fronts, as NSGA-II does [48]. The incremental learning
tage selects an excellent individual, then estimates a proba-
ility model and predicts a new children population using that
nformation:

i ← (xi + xe · L)/(L+ 1), (9)

here xi is the solution being updated, xe is a randomly selected
olution from the first Pareto front, and L is the learning rate
arameter. Check [52] for further information.

.5. Our proposal: Dual-front genetic algorithm

Even though there is a great variety of meta-heuristics from
ingle to multi-objective algorithms, all of them should be
dapted to the channel selection problem. The BCI framework

orces the algorithms to work with binary solutions, involving the



V. Martínez-Cagigal, E. Santamaría-Vázquez and R. Hornero Applied Soft Computing 115 (2022) 108176

i
r

u
a
s
a
w
e
s
b

Fig. 2. Summary of DFGA with visual aids to clarify operations. (a) Flowchart of the algorithm. Note that the backward elimination step is only performed as an
nitialization. BT: binary tournament, F: fitness evaluation. (b) Dual-front sorting. (c) Parent selection. (d) Single-point crossover. (e) Bit-string mutation. (f) Elitist
epository updating.
se of transfer functions in some cases. These functions convert
solution alteration into a probability of change, increasing the
tochasticity of the algorithm. Moreover, the conversion can be
ddressed as a multivalued function of the type f : R → {0, 1},
hich means that there are infinite input values that produce
xactly the same output, hindering the local exploitation of new
olutions. By extension, there is no point in using operators
ased on continuous distances. Since f2(x) already restricts the

size of multi-objective repositories to N , limitation strategies
(e.g., crowding, distance sought) also entail an unnecessary com-
putational cost. In order to overcome these restraints, a novel
multi-objective algorithm is proposed: the Dual-Front Genetic Al-
gorithm (DFGA). DFGA is specially designed to the BCI framework
by means of five key aspects: (i) deterministic initialization, (ii)
dual-front sorting, (iii) genetic operators, (iv) synthetic solutions,
and (v) elitism. A detailed flowchart is depicted in Fig. 2(a), while
the pseudo-code and a complexity analysis are included in the
supplementary material.

Deterministic initialization. Heuristics generally initialize the
population by generating random solutions. However, the use of
deterministic initialization can reduce the inter-run variability
due to stochastic effects and a large amount of computation
time. Although deterministic algorithms are unlikely to provide
a global optimum, DFGA considers their outputs as intermediate
solutions. Regardless of their qualities, we hypothesize that these
solutions are equivalent to those that will be eventually reached
after several generations of a randomly-initialized algorithm. In
this study, backward elimination (BE) is used to initialize the
repository. The algorithm begins with the full set of channels and
sequentially removes the most irrelevant one [9]. The rejected
6

channel in each step is the one that returns the minimum f1(x)
value if removed from the model x (i.e., its inclusion does not
contribute to improve the system’s performance). The algorithm
continues removing channels until the set is empty. Note that this
operation will fill the repository R up with N solutions.

Dual-front sorting. Due to the deterministic initialization, the
repository should have a well-defined curve from the very be-
ginning of the algorithm. This aspect leads to a Pareto-front that
is supposed to include solutions with few number of channels.
Traditionally, only the Pareto-optimal solutions are considered
in the selection stage. Despite their convenience over dominated
solutions, considering only the Pareto-front would lead to a local
exploitation of solutions with few channels. However, because of
the intrinsic fixed size of the repository in BCI problems (i.e., lim-
ited to N), the exploitation of solutions with a greater number of
channels is no longer an issue, instead it may favor the spreading
of the Pareto-front and the global search of DFGA. According to
this rationale, DFGA subdivides the repository into two sets: O
(i.e., optimal set), which includes the non-dominated solutions;
and S (i.e., sub-optimal set), which includes the dominated so-
lutions. Dual-front sorting operation is shown in Fig. 2(b). Then,
binary tournament selection is applied in both sets, selecting
2N/3 solutions from O, and N/3 solutions from S. Note that a
solution may be selected more than once in the new popula-
tion. Finally, these solutions are combined in the population to
suffer recombination (i.e., crossover) and mutation, as shown
in Fig. 2(c).

Genetic operators. Owing to the binary nature of the search
space, we consider that traditional genetic operators are the most
convenient approach for generating new solutions from a parent
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Table 1
Method-specific hyperparameters.
Prm. Value Description Algorithm

m 20 No. individuals All

pm 1/N aMutation rate
GA, NSGA-II,
BMOPSO, SPEA2,
PEAIL, DFGA

pc 0.90 aCrossover rate GA, NSGA-II,
SPEA2, PEAIL
DFGA

F 0.80 bWeighting factor BDE
b N bBandwidth factor BDE
pde 0.20 bBDE crossover rate BDE
C1 2.05 cPersonal confidence BPSO, BMOPSO
C2 2.05 cGlobal confidence BPSO, BMOPSO
Vmax 1.00 cMaximum velocity BPSO, BMOPSO
L 0.06 dLearning rate PEAIL

aDeb et al. [48].
bWang et al. [42].
cClerc and Kennedy [44].
dRong-Juan et al. [52].

population. First, for each solution xi, single-point crossover is
pplied with probability pc . That is, xi and another randomly
icked solution xj (i ̸= j) are combined into x′i ← xi[1 : u]∪xj[u+
: N], where u ∼ rand ∈ [1,N]. For each solution, bit-string
utation is also computed with probability pm. In other words, if

he nth bit of a solution x′i has to be mutated, its value is flipped
i.e., x′′i [n] ← ¬x

′

i[n]). The procedure is illustrated in Fig. 2(d–e).

ynthetic solutions. When the values of pc or pm are too high,
he mutated population tends to exploit the middle part of the
epository. In other words, solutions with few channels tend to
dd more channels, whereas crowded solutions tend to decrease
heir number of channels. In order to maintain a similar exploita-
ion across the entire repository spectrum, synthetic solutions
re generated apart from the mutated population. However, a
andom generation of solutions across this spectrum will unnec-
ssarily increase the number of evaluations, slowing down the
lgorithm. DFGA generates synthetic solutions trying maintain
he most relevant channels of the current repository. The rank
f the ith channel is defined as the number of times that the
hannel i is present in the repository (i.e., ri = |i ∈ R|). DFGA
teratively creates solutions that have from 1 to N − 1 channels
y means of a roulette wheel selection (i.e., fitness proportionate
election) based on the rank values. It is worthy to mention that
FGA generates a total of N − 1 solutions, since the Nth solution
hat contains all the channels is already part of the repository.

litism. In each generation, the repository is updated following
n elitist approach. As depicted in Fig. 2(f), for each unique
alue of f2(x) (i.e., for each number of channels), the repository
olution that minimizes f1(x) is selected. Note that this operation
s applied in the repository, which includes both non-dominated
nd dominated solutions, creating a balance between local and
lobal exploitation.

. Results

Hyperparameters, detailed in Table 1, were set following the
ecommendations of the literature [42,44,48,52]. In order
o assure a fair comparison among the algorithms, the number
f generations varied in function of the amount of evaluations
hat were performed in a single iteration, while the number of
ndividuals of every single meta-heuristic was fixed to m =

0 [4,7,25,30]. Table 2 details the computational cost, including
he number of evaluations per generation and the number of
7

able 2
pproximate computational costs of single and multi-objective
eta-heuristics.

Mtd. No. eval. Eval. time No. gen.

Single
GA 20 eval./gen. 785 ms/eval. 200 gen.
BDE 20 eval./gen. 810 ms/eval. 200 gen.
BPSO 20 eval./gen. 858 ms/eval. 200 gen.

Multi

NSGA-II 40 eval./gen. 331 ms/eval. 100 gen.
SPEA2 20 eval./gen. 835 ms/eval. 200 gen.
BMOPSO 20 eval./gen. 852 ms/eval. 200 gen.
PEAIL 40 eval./gen. 415 ms/eval. 100 gen.
DFGA 123 eval./gen. 591 ms/eval. 32 gen.

Mtd.: method, gen.: generation, eval.: evaluation.

generations for each method. In total, 4000 evaluations were
performed. Furthermore, all the algorithms were computed 20
times in order to avoid local minima. The experiments were
executed in an Intel Core i7-7700 CPU @ 3.60 GHz, 32 GB RAM,
Windows 10 Pro, using MATLAB

®
2018b.

A convergence analysis for single-objective meta-heuristics
is depicted in Fig. 3. These averaged convergence curves
show the evolution of the aggregated objective function F (x)
across the generations. Thus, they estimate the ability of each
method to find an optimal solution in the training phase. The
detailed convergence curves for each subject can be found in the
supplementary material. Concerning the multi-objective meta-
heuristics, the evolution of the computed Pareto-fronts over the
generations of the algorithms is depicted in Fig. 4, also in training
phase.

Ranks of selected channels for both single and multi-objective
meta-heuristics are displayed in Fig. 5, including the common
Krusienski’s 8-channel set. The rank of a channel is defined as
the normalized number of times that the channel was selected
in the algorithm repetitions. For multi-objective algorithms, only
the ranks of channels that belongs to the repository are in-
cluded. Scalp distributions of the averaged rank values over the
meta-heuristics are depicted for each subject as well.

In order to evaluate the actual performance of the single-
objective algorithms using testing datasets, it is required to select
a single solution among the repetitions. Therefore, the solution
that reached the minimal F (x) value was selected for each single-
objective method. Table 3 summarizes the averaged testing accu-
racies and number of channels of the selected solutions for each
subject, in function of the employed method, using the maximum
number of sequences available in each database. Regarding the
multi-objective algorithms, the final Pareto-front for each subject
is composed of the non-dominated solutions of all repetitions.
Testing accuracies (i.e., ratio of correctly predicted characters) of
the solutions that belongs to the final Pareto-fronts are shown
in Fig. 6, again using the maximum number of sequences avail-
able. Finally, computation costs of all algorithms are detailed
in Table 2.

5. Discussion

5.1. Convergence analysis

Regarding the single-objective meta-heuristics, results showed
that the inherently discrete algorithms (i.e., GA and BDE) con-
verge to optimal solutions faster than BPSO, and were able to
reach the minimal objective value for every single subject. In-
herent discrete algorithms are understood as meta-heuristics
that employs binary methodologies to improve their solutions
(i.e., mutation, crossover). Even though BPSO showed a slower
convergence than GA or BDE, the reached F (x) values are almost
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v

Fig. 3. Averaged convergence curves of single-objective meta-heuristics (GA, BDE and BPSO) for each database in function of the F (x) aggregated function. Mean
alues are displayed with solid lines, whereas the 95% confidence interval of the subjects’ repetitions is indicated by the shaded area.
Fig. 4. Evolution of Pareto-optimal solutions of the multi-objective meta-heuristics for each subject across all the repetitions: DFGA (red), NSGA-II (blue), SPEA2
(yellow), BMOPSO (green) and PEAIL (purple).
8
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N

Fig. 5. Channel ranks of the selected and the Pareto-optimal solutions for single-objective (GA, BDE, BPSO) and multi-objective (NSGA-II, BMOPSO, SPEA2, PEAIL,
DFGA) meta-heuristics, respectively. Krusienski’s 8-channel set (KRU) is also included. Averaged scalp distributions over the algorithms are depicted as well.
analogous, suggesting that BPSO, GA and BDE would show similar
performances in testing phase. It is also noteworthy that, even
though the averaged convergence of GA was faster than BDE,
the curve reached a standstill over the 100th generation, being
overcame by BDE thereafter.

Multi-objective meta-heuristics results showed that DFGA,
SGA-II, SPEA2 and PEAIL algorithms were able to reach similar
9

Pareto-fronts, outperforming BMOPSO. Besides the proper per-
formance of DFGA, NSGA-II, SPEA2 and PEAIL in training phase,
they did not converge to their optimal solutions in the same
amount of time. DFGA converged faster than the rest, likely due
to its deterministic initialization, which allows the algorithm to
avoid evaluating solutions that are far from reaching the optimal
value. Among the others, NSGA-II converged faster than PEAIL and
SPEA2, whose trails spread across higher non-optimal f (x) values.
2
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Fig. 6. Testing character accuracies of the final Pareto-fronts returned by multi-objective meta-heuristics (DFGA, NSGA-II, SPEA2, BMOPSO, PEAIL) for the averaged
subjects of each database. For comparison purposes, Krusienski’s set (KRU) is also depicted.
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Table 3
Averaged testing accuracies and number of channels across users of the selected
run for each single-objective method.
Mtd. Competition Center RSVP

Acc. N Acc. N Acc. N

GA 92.0% 14.0 97.4% 12.4 84.6% 13.4
BDE 92.0% 14.5 97.9% 12.5 85.5% 13.4
BPSO 92.0% 14.0 96.8% 12.5 85.0% 13.7

ALL 92.0% 64.0 86.5% 63.0 80.3% 61.0
KRU 86.5% 8.0 95.2% 8.0 78.6% 8.0

Mtd.: method, Acc.: accuracy, N: no. of sequences. Results obtained using the
maximum number of sequences available for each database (competition: 15,
center: 10, RSVP: 10).

In contrast to the training performance of these algorithms,
BMOPSO did not show a suitable convergence. In fact, their final
values were far from matching the Pareto-fronts of DFGA, NSGA-
II, SPEA2 and PEAIL. It is noteworthy that BMOPSO fronts keep
high f2(x) values, which demonstrates that the algorithm was not
able to improve solutions with a few channels. Owing to this
behavior, it is not possible to assure that BMOPSO would reach
proper performances in testing phase.

Considering these convergence results, it might be argued
that meta-heuristics that work with discrete solutions (i.e., GA,
BDE, DFGA, NSGA-II, SPEA2, PEAIL) present superior convergence
results, which could be somewhat expected due to the nature of
the problem. On the one hand, it can be said that local search
strategies that rely on mutation, crossover and strength opera-
tors favor the convergence in the P300-based BCI channel se-
lection problem [13,14,51]. On the other hand, the behavior of
BPSO and BMOPSO could imply that the discretization of con-
tinuous solutions cannot follow small value changes, hindering
the local exploitation of the continuous-based algorithms if their
hyperparameters have not been properly fixed.

5.2. Channel distributions

Averaged channel ranks of Fig. 5 show that meta-heuristics
in general had a slight tendency to mainly select electrodes
over the occipital lobe. However, the optimal channel set was
clearly different for each subject. This behavior confirms the
fact that a customized channel selection procedure prior to the
BCI session benefits the subsequent performance. Despite the
Krusienski’s [8] common 8-channel set is suitable as a general
rule of thumb, results did not considered that combination op-
timal for any subject or database. This fact is reinforced in the
testing phase, where both single-objective and multi-objective
10
algorithm solutions outperformed the 8-channel set, as can be
noticed in Table 3 and Fig. 6. Moreover, the computed Pareto-
fronts did not generally kept solutions with more than ∼ 20
hannels. This fact suggests that a set with few channels is able
o reach similar or even better performances than the full set,
educing the dimensionality and the computational cost of the
CI processing framework.
According to the previous analysis, meta-heuristics that con-

erged faster for this optimization problem have also succeeded
n finding the most relevant channels for each subject. As can be
een in Fig. 5, GA, BDE, BPSO, DFGA, NSGA-II, SPEA2 and PEAIL
eiteratively selected a specific combination of channels, which is
ifferent for each subject. By contrast, BMOPSO did not show clear
ifferences between channel ranks, which once again indicates a
ack of convergence to a global optimum.

From the well-defined electrodes that were repeatedly se-
ected for each subject, algorithms showed a special focus on
he occipital cortex. From a biological point of view, this ten-
ency is sound. As aforementioned, the f1(x) objective is aimed
o maximize the classification performance between target and
on-target event-related stimuli, elicited through a visual odd-
all task. The response is therefore modeled as an event-related
otential (ERP) composed by several components, such as P1, N1,
2, N2 or P3; which are taken into account when extracting and
lassifying the features. Among them, P3 (i.e., P300) should be
he most prominent one in the RCP [1,53]. The primary visual
ortex, highly specialized in processing information about visual
timuli, static and moving objects; is located at the posterior part
f the occipital lobe [54]. Hence, it is expected that occipital elec-
rodes contain relevant discriminative information about target
i.e., ERP is present) and non-target signals (i.e., no ERP should
e present) and thus, that they would likely be selected in the
hannel selection process. Nevertheless, the optimal channel sets
re clearly different among subjects, which is relative common
n the literature [19,26,27,29]. This fact should not be surprising,
ince classifiers are frequently optimized for each subject because
f the inter-subject and inter-session variability of the EEG sig-
als [38]. Even though the rationale behind the fact that optimal
hannel sets differ among subjects is not clear, it is believed that
EG is highly sensitive to external factors, such as inter-subject
ariations in cap positions [55]. In fact, it is common that EEG
aps does not correctly fit some users, making some electrodes
obbly and producing noise. Furthermore, it should be taken into
ccount that EEG channels cannot pinpoint neural sources owing
o attenuation and volume conduction effects, being limited to a
patial resolution about 5–10 cm and hindering the location of
hese sources in certain brain areas [1].
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In short, we believe that most relevant channels for classifica-
ion may not necessarily be the same among different users. Like
eature selection and classification, results have shown the need
o optimize the channel selection stage for each user. Notwith-
tanding its usefulness as a preliminary approach, the common
ruskienski’s set [8], which mainly locates channels over the
arietal and occipital cortex, appears to be a suboptimal solution.
ote that our study is not intended to propose a general distri-
ution of electrodes for any user, but to emphasize the need to
ustomize the channel set for each subject.

.3. Testing assessment

Single-objective approaches return a single solution with a
ertain number of channels, which minimizes the general objec-
ive F (x). For this reason, averaged testing accuracies of Table 3
hould be taken into consideration together with the number of
hannels of each solution. According to the results, even though
ll the single-objective meta-heuristics reached higher accuracies
n comparison to the full set and the Krusienski’s 8-channel
et, BDE stood out considering the channel-performance trade-
ff. BDE (competition: 92.0% with 14.5ch, center: 97.9% with
2.5ch, RSVP: 85.5% with 13.4ch) reached the highest average
ccuracy with a scarce channel set, followed by GA (competition:
2.0% with 14.0ch, center: 97.4% with 12.4ch, RSVP: 84.6% with
3.4ch) and BPSO (competition: 92.0% with 14.0ch, center: 96.8%
ith 12.5ch, RSVP: 85.0% with 13.7ch). Nevertheless, all methods
eached similar or even higher accuracies than the full set of
hannels, probably due to the drastic increase in dimensionality;
utperforming as well the accuracy obtained by the typical 8-
hannel set. It is worthy to mention, however, that Krusienski’s
et also used less number of channels. In fact, the increase in
esting accuracy of the three methods in comparison with the
ull set (i.e., ALL) and the Krusienski’s set (i.e., KRU) is statistically
ignificant for almost all subjects (i.e., p–value < 0.05, Wilcoxon
igned-rank test, false discovery rate corrected by the Benjamini–
ochberg procedure). In particular, the number of subjects (out of
7) that yielded significant differences were: 23 (ALL vs. GA), 27
ALL vs. BDE), 22 (ALL vs. BPSO), 21 (KRU vs. GA, BDE or BPSO). As
xpected, the differences among GA, BDE and BPSO results are not
ignificant. A detailed table with the p-values of each subject and
omparison is included in the supplementary material. Therefore,
t can be assured that GA, BDE and PSO outperformed ALL and
RU; and that their solutions were similar in terms of reached
ccuracies.
The main advantage of the multi-objective meta-heuristics

n comparison with the single-objective ones is that they re-
urn a set of optimal solutions for each number of channels,
llowing the user to select the most appropriate configuration.
n fact, not only these solutions indicate the number of chan-
els that already reaches the maximum performance, but also
heir scarce solutions overcame the Krusienski’s set. According
o Fig. 6, the typical 8-channel set is outperformed using only
channels by DFGA, NSGA-II, SPEA2 and PEAIL. By contrast,

MOPSO needed 13 channels to outperform it. These results
re similar or even better than the individual solutions reached
y single-objective algorithms. As can be noticed, DFGA, NSGA-
I, SPEA2 and PEAIL reached similar performance results, which
mproved as the number of channels increased. Those results
lso outperformed BMOPSO, whose solutions, in spite of using
ore channels, generally obtained lower accuracies. Results also
howed that there is a point for each subject where accuracies
ome to a standstill. In particular, using more than 15 channels in
he competition or RSVP databases could be counter-productive;
s well as using more than 20 channels in the center database.
his fact reinforces the usefulness of dimensionality reduction
echniques, such as channel and feature selection or classifier
egularization, to assure a suitable testing performance in BCI
ystems.
11
5.4. Related work

Regarding related previous studies, we consider that MI-based
[15–23] and auditory potential [28] BCI studies are not compa-
rable in terms of performance, since those control signals are
generally less reliable than P300 potentials and thus, obtain sig-
nificantly lower accuracies. From the P300-based BCI studies,
the reached accuracies of our work are similar or even higher
than those reported previously, as shown in Table 4. The most
straightforward comparison comes from the ‘III BCI Competition
2005 (dataset II)’ (2 subjects), used by [4,19,27,30]. Kee et al.
[19] reached an average accuracy of 93.6% with 22.3 channels
using GA; and 94.9% with 25.7 channels using NSGA-II. Arican
and Polat [30] reached an averaged accuracy of 89.90% with 8
channels using BPSO and a boosted tree classifier. All of them
used 15 sequences. A combination of wavelets and BPSO was
also used by Perseh and Sharafat [4], obtaining 85% with 31
channels; and Gonzalez et al. [27], 67.5% with 33.5 channels using
only 5 sequences. As can be seen, it is hard to compare the
accuracies provided each study reported solutions with different
number of channels or sequences. In our study, GA, BDE and
BPSO yielded an averaged accuracy of 92% with 14 channels. The
multi-objective metrics reached 90% of accuracy using 7 (DFGA,
SPEA2), 8 (NSGA-II) and 11 (PEAIL) channels, which increased
until a maximum of 97% with 23 channels using 15 sequences.
There are also studies with custom databases, such as Chaurasiya
et al. [29] (9 subjects, 15 sequences), who obtained a mean of
92.8% with 26.1 channels using MOBDE; or Jin et al. [26] (11
subjects, 15 sequences), who tested a RCP-based Chinese speller
using PSO and LDA, reaching a mean of 71.09% with 7.63 chan-
nels. Besides the III BCI Competition database (2 subjects), our
study also comprises the results with two additional databases:
Center Speller (13 subjects, 10 sequences), and RSVP Speller (12
subjects, 10 sequences). However, no direct comparison can be
made since there are no previous studies that have tested any
meta-heuristic for selecting channels with any paradigm apart
from RCP. In terms of accuracy, our results for single-objective
(center: 97.36% with 12.46 channels, RSVP: 85.03% with 13.5
channels) and averaged multi-objective (center: 97.64% with 8
channels, RSVP: 84.87% with 8 channels) algorithms are similar
to the performances reported in the literature [33,34]. In this
context, we would also like to encourage researchers to use our
results and these public databases as a benchmark for favoring
quantitative comparisons in the BCI channel selection problem.

Recently, deep learning has started to make a breakthrough
in the P300-based BCI field due to its ability to achieve superior
performances, especially in the decoding stage [12,56–61]. In the
era of deep learning, one may wonder whether a channel selec-
tion based on classical machine learning methodologies is still
relevant. In that respect, many of the deep learning approaches
for P300-based BCIs do not get rid of pre-processing and channel
selection stages, but are applied as a direct substitute of the
feature extraction and classification stages. However, there is a
possibility in which the interpretation of the deep neural network
(DNN) may lead to channel and feature selection alternatives.

For instance, Cecotti and Gräser [12] addressed the channel
selection optimization by rejecting the smallest weights from
the first hidden layer. However, a direct analysis of weights has
disadvantages that should not be overlooked, as it is completely
dependent on the DNN architecture used to classify P300 po-
tentials. Today, it is generally accepted by the academia that
bringing understanding to DNN models is still a very challenging
issue. While single-layer linear transformations can be easily
interpreted by looking at the learned weights, multiple layers
with non-linear interactions on each layer involve disentangling
a complicated nested structure [62]. In general, the more in-

terpretable the model, the simpler and less accurate [62,63].
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Table 4
Comparison between channel selection meta-heuristics applied in P300-based
BCIs.
Study Database Ns Method Accuracy Nc

Kee et al. [19] Comp. 15 GA 93.60% 22.3
NSGA-II 94.90% 25.7

Arican and Polat [30] Comp. 15 BPSO 89.90% 8.0
Perseh and Sharafat [4] Comp. 15 BPSO 85.00% 31.0
Gonzalez et al. [27] Comp. 5 BPSO 67.50% 33.5
Chaurasiya et al. [29] Custom, 9HS 15 MOBDE 92.80% 26.1
Jin et al. [26] Custom, 11HS 15 BPSO 71.09% 7.6
Our study Comp. 15 GA 92.00% 14.0

BDE 92.00% 14.5
BPSO 92.00% 14.0
DFGAa 94.50% 20.0
NSGA-IIa 94.50% 20.0
SPEA2a 94.00% 16.0
BMOPSOa 92.50% 20.0
PEAILa 94.00% 14.0

Center 10 GA 97.40% 12.4
BDE 97.90% 12.5
BPSO 96.80% 12.5
DFGAa 97.88% 7.0
NSGA-IIa 98.46% 8.0
SPEA2a 97.72% 9.0
BMOPSOa 97.82% 16.0
PEAILa 100.0% 19.0

RSVP 10 GA 84.60% 13.4
BDE 85.50% 13.4
BPSO 85.00% 13.7
DFGAa 85.73% 14.0
NSGA-IIa 86.05% 7.0
SPEA2a 85.73% 8.0
BMOPSOa 84.80% 18.0
PEAILa 85.82% 15.0

Ns: number of sequences, Nc : averaged number of channels, Comp.: III BCI
ompetition 2005 (dataset II), HS: healthy subjects, GA: genetic algorithm,
SGA-II: non-sorting genetic algorithm 2, BPSO: binary particle swarm opti-
ization, BA: bees algorithm, ABC: artificial bee colony, BAS: binary ant system,
A: firefly algorithm, MOBDE: multi-objective binary differential evolution,
DE: binary differential evolution, DFGA: dual-front sorting algorithm, SPEA2:
trength pareto evolutionary algorithm 2, BMOPSO: binary multi-objective
article swarm optimization, PEAIL: Pareto Evolutionary Algorithm based on
ncremental Learning.
The selected solution for the multi-objective approaches was the one that
aximized the accuracy in the range Nc ∈ [5, 20]. The rest of the accuracies
an be checked in Fig. 6.

lthough this approach would be feasible in simple convolutional
eural networks (CNN) where spatial information is processed in
single layer [12], it would be a serious challenge in more com-
lex and recent architectures (e.g., CNN-BLSTM, DeepConvNet,
EGNet, EEG-Inception [56–61]). Since the complexity of DNN
rchitectures is increasing rapidly, it is expected that the spatial
nformation from the EEG is likely to be processed multiple times
n different layers [61]. Thus, the difficulty of evaluating the
mportance of each channel and its contribution to the final result
ould increase exponentially.
Moreover, the efficacy of this approach when using simple

NN architectures compared to the proposed meta-heuristics is
ot clear, as they reported an average accuracy of 87.0% (8 ch.) in
he ‘III BCI Competition 2005 (dataset II)’. As shown in Fig. 6, the
rusienski’s set already achieved a mean accuracy of 86.5% (8 ch.),
.e., without performing channel selection. Similarly, the solutions
chieved by most of the multi-objective meta-heuristics using
nly 8 channels clearly outperformed the accuracy of Cecotti and
räser [12]: 90.5% (DFGA, NSGA-II, SPEA2) and 89.0% (PEAIL);
ven being obtained by an LDA, a machine learning method much
impler than a CNN.
To the best of our knowledge, none of the DNN-based ap-

roaches applied in P300-based BCIs performed a different chan-
el selection approach [56–61], instead they used the full set
12
of channels available. By contrast, Zhang et al. [64] recently
published a channel selection method based on adding sparse
regularization to squeeze-and-excitation blocks in a CNN and
applied it to MI decoding. However, whether this method is
feasible for P300-based BCIs is an open question yet.

Noteworthy, a DNN-based channel selection procedure would
presumably require using the initial number of electrodes (e.g.,
64) whenever the model is tested with new observations. This
problem could be solved by retraining the DNN with the ‘‘rele-
vant’’ channels. However, if this taxonomy is done using explain-
able DNNs without a wrapper test of the solution, it cannot be
claimed that the performance would be maximized. In this case,
we believe deep learning does not provide enough incentives to
be a substitute for the proposed meta-heuristics. In this context,
the proposed meta-heuristics can be applied in an initial channel
selection stage for P300-based BCIs, as they are totally indepen-
dent of the DNN architecture. It should be also noted that there
are still many BCI applications that use classical machine learning
methods (e.g., LDA, SVM), either due to limited computational
power, few training examples or even preference, which would
also clearly benefit from our proposal.

5.5. Hyperparameters

The main drawback of most meta-heuristics is the need to fix
hyperparameters, which usually depend on the context of the
problem. Poorly chosen values may cause convergence issues,
limiting the performance of the algorithm [13]. Since all algo-
rithms were able to converge before reaching their own limit of
generations, the number of individuals and generations were ap-
propriate. In this context, the quality of a meta-heuristic must not
be only assessed according to the performance results, but also
taking into account the number of required hyperparameters. The
less hyperparameters, the more likely it is to assure reliable and
generalizable results. GA, DFGA, NSGA-II and SPEA2 only require
mutation and crossover rates to be fixed. Fortunately, these pa-
rameters are widely studied in the literature, where often are 1/N
for the mutation rate, and 0.90–0.95 for the crossover rate [13,
48,49]. A similar approach is followed in BDE, whose extra pa-
rameters are intended to perform a mutation procedure [42].
PEAIL also requires an additional parameter: the learning rate,
which controls the confidence on the best individual [52]. BPSO
and BMOPSO add three hyperparameters more (i.e., personal and
global confidences and maximum velocity). Although there are
several studies that tried to find global relations among their
values, further endeavors should be made in order to make PSO
algorithms problem-independent [13,44]. Since these hyperpa-
rameters directly weigh the velocity of the particles, which is then
used as an input of a transfer function, care must be taken in
order to limit their values in the range [0, 1]. Otherwise, particles
will not tend to improve their solutions, restricting global and
local exploitation. In this study, we fixed the hyperparameters
according to the recommendations of the literature, as indicated
in Table 1. These values yielded suitable performances, but could
have been improved by means of a hyperparameter optimization
or following an adaptive approach. It is also worthy to mention
that the weights ω1 and ω2 of F (x) were heuristically set to 0.7
and 0.3, respectively, in view of preliminary results [7,31,35].
Note that the value difference between ω1 and ω2 would cause
a strengthen of solutions in a certain f2(x) range, while avoiding
the search in other spaces. The supervisor could vary the ω1/ω2
atio to obtain different optimal solutions, simulating the search
ver the f (x) spectrum as multi-objective approaches do.
2
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5.6. Computational cost

A comparison between computational costs of different meta-
euristics is tricky, forcing to consider several aspects at the
ame time. On the one hand, Table 2 details the approximate
uration of a generation and the number of evaluations that
omprised a generation. Note that the number of evaluations per
eneration differs depending on the meta-heuristic strategy and
hus, algorithms can only be compared in terms of the duration
f a single evaluation. For this reason, the number of generations
f each algorithm has been adapted in order to assure a fair
omparison among them, so that every single method performs a
otal of 4000 evaluations. On the other hand, it is also essential to
onsider additional aspects, such as the convergence of the algo-
ithms, their search depth and the programming approach. When
bstracting a meta-heuristic as a black box, the total time of the
xecution varies according to the required number of generations
o reach a suitable convergence. These differences usually affect
he computational cost in a higher extent than the individual
uration of a evaluation, making it essential to be taken into
onsideration. Moreover, a correct implementation of these meta-
euristics should employ a hash table to match the previously
omputed solutions with their fitnesses. Note that an intense
earch depth will inevitable generate repeated solutions. The
ash map acts as a remainder and allows avoiding unnecessary
valuations. Noteworthy, the computation time of a generation
hould decline exponentially when the algorithm goes on. Note
hat Table 2 measurements were made without considering any
ash table (i.e., an initial generation).
The overall complexity of DFGA in asymptotic notation be-

aves as O(NoN2), where No is the number of objectives. An
analysis of the complexity of each DFGA step is detailed in the
supplementary material, which demonstrates that the exponen-
tial increase in operations is mainly due to the dual-front sorting
procedure. However, this trend is similar to other recent multi-
objective algorithms, such as NSGA-II, SPEA2, PEAIL and BMOPSO,
whose complexity behaves as O(Nom2) [65,66]. Note that m in-
icates the population size which, in case of DFGA, equals to
(the no. channels) due to the deterministic initialization. This

act partly explains why DFGA performs a higher number of
valuations in a single generation. It is also noteworthy that
he presented asymptotic complexity analysis involves only the
dvancing of a single generation, allowing the comparison among
ifferent algorithms, since their convergences are not determinis-
ic [66]. Moreover, note that these complexities indicate the worst
ases, which usually decrease as generations increase due to the
ash table implementation.
According to Table 2, NSGA-II, PEAIL and DFGA were the least

ime-consuming, spending less than 600 ms per evaluation with
he selected hyperparameters. In addition, they demonstrated
xcellent convergence abilities, making them excellent multi-
bjective approaches to address this problem. By contrast, BPSO
nd BMOPSO not only were the most time-consuming algorithms,
ut also their performances were inferior. For the single-objective
pproaches, it is worthwhile to use GA or BDE, whose conver-
ence abilities balanced out their evaluation costs. In any case,
he overall duration of these algorithms restrict their application
o the calibration session, where the weights of the classifier are
ptimized for each subject. Then, the selected channels should be
urther applied in the testing sessions.

.7. Guidelines

A series of guidelines or practical recommendations for the
pplication of meta-heuristics to BCI systems are derived from
he discussed results:
13
1. Multi-objective algorithms should be used instead of single-
objective meta-heuristics if computation time is not an
issue. Otherwise, it is preferable even using determinis-
tic algorithms, such as BE, to provide sub-optimal but
acceptable solutions.

2. Discrete algorithms that use mutation, crossover or
strength operators should be preferred (e.g., single-
objective: GA, BDE; multi-objective: DFGA, NSGA-II, SPEA2,
PEAIL).

3. Whether discretization is required to adapt a continuous-
based meta-heuristic to the BCI framework, avoid using
transfer functions and attempt to redefine the equations
(Section 3.5). Still, if conversion via transfer functions is
used, care should be taken with the hyperparameters val-
ues. Assure that the input of the function always lies within
the range [0, 1]. Otherwise, the probability of change of
the solutions would increase drastically, hindering the con-
vergence of the algorithm. Furthermore, distance metrics
should not be employed after applying the discrete trans-
formation unless it is a Hamming distance.

4. For single-objective algorithms, use an aggregation ap-
proach to minimize two objectives at one: number of
channels and performance error (Section 3.2). AUC-based
modeling of the performance should be preferred instead
of accuracies in order to increment the resolution of the
objective values.

5. Multi-objective repository limitation strategies, such as
crowding distances or distance sought, are not necessary in
the BCI channel selection problem and should be avoided
to prevent worthless computational costs (Section 3.5).

6. A hybrid meta-heuristic that also employs deterministic
methods, such as DFGA, should be preferred. DFGA reached
similar accuracies than NSGA-II, SPEA2, or PEAIL, but con-
verged faster (Section 4).

7. A convergence detection method to stop the iterations is
recommended rather than using a maximum generation
limit for practical purposes (e.g., none or petty changes
along the n last generations).

8. Repeated solutions across generations are unavoidable. It
is required to implement a hash map (e.g., dictionary)
for matching previously computed solutions with their fit-
nesses, in order to avoid unnecessary evaluations.

.8. Contributions, limitations and future work

According to the experimental outcomes, it has been demon-
trated the utility of meta-heuristics to find an optimal combi-
ation of channels in P300-based BCI systems. The importance
f selecting an optimal channel set for each user has been high-
ighted as well. Moreover, to the best of our knowledge, this
s the first study that provides a comprehensive comparison of
ifferent meta-heuristics that can be applied to the BCI channel
election problem. Previous studies have isolated the application
f BPSO, BDE, GA and NSGA-II, but no comparison has been per-
ormed; whereas this manuscript has included a total of 3 single-
bjective (i.e., GA, BDE, BPSO) and 5 multi-objective (i.e., DFGA,
SGA-II, SPEA2, PEAIL, BMOPSO) algorithms. As a result, GA,
DE, BPSO, DFGA, NSGA-II, SPEA2 and PEAIL have reached high
erformances in testing phase, outperforming the full set and the
ommon Krusienski’s 8-channel set in three databases with dif-
erent paradigms. Due to the characteristics of the BCI framework,
one of the well-known methods can be applied in a productive
ay without a proper modification. For that reason, DFGA, a
ew multi-objective meta-heuristic, has been especially designed
o optimize channel or feature sets in BCI systems. Moreover,
esults have shown that the meta-heuristics that exhibited better
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convergences repeatedly selected the same distribution of chan-
nels, which clearly depended on the subject. It is thus suggested
that Krusienski’s set (or any set that covers the occipital lobe)
is a general rule of thumb solution that could led to acceptable
performances, but definitely suboptimal. This fact reinforces the
importance of performing a channel optimization for each user
to maximize the performance of the system. In fact, due to the
high inter-session and inter-subject variability of the EEG, the
optimization of signal processing stages such as feature selection
and classification for each user are a common practice. Hence, we
would want to encourage researchers to integrate channel selec-
tion procedures to those optimization pipelines. In this context,
the supervisor could apply DFGA in the first session, select an
appropriate channel set and avoid placing extra electrodes for the
next BCI sessions. Noteworthy, in order to ease the application of
meta-heuristics in these systems, a series of guidelines have been
detailed.

Despite the aforementioned strengths, several limitations can
e pointed out. Firstly, since the purpose of the manuscript
as focused on the channel selection procedure, only basic fea-
ure extraction (i.e., down-sampling) and classification (i.e., LDA)
ethods have been applied. Testing accuracies, especially those

han belong to crowded channel sets, could have been improved
y using regularization techniques [4–6] or deep learning ap-
roaches [58,67]. Moreover, the algorithms entail high compu-
ational costs. Further endeavors should be aimed at assigning
topping criteria that could avoid the computation of worthless
enerations, allowing a better estimation of the total duration
or each model. The computational cost is mainly caused by the
rapper nature of the algorithms, which evaluate the quality
f a solution by training and testing different LDA models [68].
mbedded techniques (e.g., heuristic search methods), which
ook for optimal sets inside the classifier constructor, are less
ntensive than wrappers [68,69]. A future endeavor could be
imed at developing new embedded techniques that could reduce
he computational cost by modifying the training procedures
f certain classifiers. It is worth mentioning that Deb and Jain
70] proposed an extension of NSGA-II, called NSGA-III, to han-
le many-objective (i.e., four or more objectives) optimization
roblems. Although its application to this problem could be also
nteresting as a further research line, we applied NSGA-II as it
s oriented to solve multi-objective optimization problems. Care
hould be also taken when using transfer functions, such as
hose used in BPSO or BMOPSO, since they could be fruitless to
he proper exploitation of the discrete space. Another research
ine could be focused on providing a comprehensive comparison
f alternative genetic operators and strategies to maximize the
erformance of DFGA. Hyperparameters were fixed according to
he recommendations of the literature. However, an optimization
f these values would be beneficial to the final performance of the
lgorithms. Adaptive approaches that vary the hyperparameters
n function of the generation could also enhance the results. It
hould be also mentioned that the competition database contains
ore training trials than those that are commonly in practice.

t would be also interesting to explore the usefulness of inter-
retable deep learning approaches to infer the significance of the
elected channels in the classification stage [63]. Another future
esearch line could be focused on assessing the performance
f these methods with less training trials. Finally, although it
as not been explored in study, results suggest that the pro-
osed meta-heuristics could be also applied to feature selection

roblems. L

14
6. Conclusions

A comprehensive comparison among 8 different
meta-heuristics applied to the P300-based BCI channel selection
problem has been performed in this study. In particular, 3 single-
objective and 5 multi-objective algorithms have been included.
Due to the discrete characteristics of the BCI framework, the
majority of them have been modified in different ways in order
to adapt them to the aforementioned problem. For this reason,
a series of guidelines or practical recommendations have been
detailed as an aid for further adaptations. A novel multi-objective
algorithm, DFGA, has been especially developed for BCI systems.
Methods have been tested with three public databases that used
different stimulation paradigms: competition (2 users with 64ch.,
RCP), center speller (13 users with 63ch., CS paradigm) and RSVP
speller (12 users with 61ch., RSVP). Results showed that meta-
heuristics are able to provide solutions that simultaneously use
few number of channels and reach high accuracies. In fact, the
full set of channels and the common Krusienki’s 8-channel set
have been outperformed by all methods, demonstrating their
usefulness to provide an optimized channel set for each user.

The main findings of the study can be summarized as follows:

1. Optimal channel sets show a high inter-subject variability,
which makes essential the optimization for each individual,
instead of using a common set for all of them.

2. Inherently discrete algorithms (i.e., GA, BDE, DFGA, NSGA-
II, SPEA2, PEAIL) usually reach higher performances due to
the dichotomous nature of the problem.

3. Among single-objective meta-heuristics, GA, and BDE pro-
vide suitable convergences and high accuracies. Regard-
ing multi-objective algorithms, DFGA, NSGA-II, SPEA2 and
PEAIL provided competitive results.

4. A balanced combination of deterministic and stochastic
techniques is beneficial. DFGA reaches an excellent perfor-
mance, as well as NSGA-II, SPEA2 and PEAIL, but converges
considerably faster to their optimal solutions.

5. Hyperparameter tuning is crucial. BMOPSO could not con-
verge to an optimal solution, whereas it is possible to
guarantee the convergence of the rest in a single run.
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