

Universidad deValladolid

UNIVERSIDAD DE VALLADOLID ESCUELA DE INGENIERIAS INDUSTRIALES Grado en Ingeniería en Tecnologías Industriales

Estudio de sondas de corriente Rogowski

para su empleo en sistemas de

monitorización de eficiencia energética

Autora:

Velasco Caminero, María

Tutores:

Domínguez Vázquez, José Antonio Departamento de Tecnología Electrónica

> Platón Arias, Luis Empresa TERMIA Auditores Energéticos S.L.

Valladolid, Noviembre 2021.

Resumen

La sociedad cada vez está más concienciada con la importancia de la mejora de la eficiencia energética. Desde la empresa Termia quieren contribuir a esta acción mediante la fabricación de un equipo de submetering económico para que las empresas puedan optimizar su uso energético.

Con este proyecto se pretende realizar la selección de los sensores de corriente a utilizar en el equipo a partir de los requisitos impuestos. Para ello se va a seleccionar el modelo más idóneo de bobina Rogowski tras haber analizado las opciones disponibles en el mercado. A través de dos tipos diferenciados de ensayos, uno realizado en un laboratorio acreditado y otro ejecutado en las instalaciones de la empresa, se va a comprobar la aptitud de estas sondas para su aplicación en el equipo mencionado, así como el error que presenta el dispositivo a bajas corrientes.

Palabras Clave

Bobina Rogowski, equipo de submetering, eficiencia energética, intensidad eléctrica, ensayos.

Abstract

The search for energy efficiency is more and more present in our days. In order to optimise the energy use of companies, Termia company wants to design and produce an economical submetering equipment.

The aim of this project is to select and test the current sensors to use in the equipment. To this end, after analysing the options available on the market, we select the most suitable Rogowski coil model according to the requirements imposed. Then, we carried out two different types of tests, one in an accredited laboratory and the other at the company's facilities. The purpose of these tests is to check the suitability of the sensors for their application in the equipment, as well as the error presented by the device at low currents.

Keywords

Rogowski coil, submetering equipment, energy efficiency, electric current, tests.

Índice

1. Introducción y justificación	3
1.1. Motivación1	3
1.2. Objetivos1	4
1.3. Estructura del documento1	4
2. Estado del arte 1	5
2.1. Eficiencia energética1	5
2.2. Sistemas de medida para monitorización de eficiencia energética1	6
2.3. Proveedores de sondas Rogowski1	9
3. Análisis técnico de las sondas Rogowski 2	1
3.1. Funcionamiento de la sonda Rogowski2	1
3.1.1. Principio de funcionamiento2	1
3.1.2. Factores de influencia en la bobina20	6
3.2. Características de la sonda seleccionada2	7
3.3. Características del chip de medida2	7
4. Tests de idoneidad de la sonda Meatrol MRC-36	1
4.1. Ensayos en LACECAL	1
4.1.1. Condiciones de ensayo3	1
4.1.2. Datos obtenidos	2
4.1.3. Tratamiento de datos3	2
4.1.3.1. Diagramas de caja y bigotes (box-plot)32	2
4.1.3.2. Estimación del error introducido por la sonda en el cálculo de l potencia aparente4	a 6
4.1.3.3. Interpolación lineal. Relación entre I _{real} y I _{medida} 44	8
4.2. Ensayos con el prototipo del equipo de medida50	0
4.2.1. Diseño y construcción de la fuente de corriente5.	1
4.2.2. Equipamiento utilizado y montaje del sistema de ensayo5	5
4.2.3. Condiciones de ensayo5	7
4.2.4. Resultado de los ensayos5	7
4.2.5. Caracterización del equipo de medida5	8
4.2.5.1. Cálculo del error y su incertidumbre asociada	8
4.2.5.2. Análisis y representación gráfica del error59	9
4.2.5.3. Intensidad real frente a intensidad medida64	4

5. Conclusiones
5.1. Conclusiones67
5.2. Líneas futuras de trabajo67
Bibliografía
Anexos
Anexo 1: Resultado de los ensayos en LACECAL73
Anexo 2: Datos promedio de intensidades y errores de las sondas ensayadas
Anexo 3: Datos obtenidos en los ensayos en las inmediaciones de la empresa 91
Anexo 4: Errores e incertidumbres de los ensayos realizados en las inmediaciones de la empresa95
Anexo 5: Certificado de calibración de la pinza amperimétrica 100

Índice de figuras

Universidad de Valladolid

Figura 1: Transformador de corriente de núcleo abierto de Circutor17
Figura 2: Colocación de una bobina Rogowski18
Figura 3: Bobina Rogowski21
Figura 4: Regla de la mano derecha21
Figura 5: Representación del elemento infinitesimal de una bobina22
Figura 6: (a)Autointegración (b)Integración C/R (c)Integración activa24
Figura 7: Circuito equivalente del amplificador operacional24
Figura 8: Circuito integrador25
Figura 9: Interferencia de un campo magnético lejano26
Figura 10: Sonda MRC-3627
Figura 11: Equipo para la realización de los ensayos [LACECAL]31
Figura 12: Representación de un diagrama de caja y bigotes
Figura 13: Diferencia entre precisión y exactitud
Figura 14: Diagrama de caja y bigotes para la medida de 0 amperios35
Figura 15: Diagrama de caja y bigotes para la medida de 100 amperios36
Figura 16: Diagrama de caja y bigotes para la medida de 200 amperios37
Figura 17: Diagrama de caja y bigotes para la medida de 300 amperios38
Figura 18: Diagrama de caja y bigotes para la medida de 400 amperios39
Figura 19: Diagrama de caja y bigotes para la medida de 500 amperios40
Figura 20: Diagrama de caja y bigotes para la medida de 600 amperios41
Figura 21: Diagrama de caja y bigotes para la medida de 700 amperios42
Figura 22: Diagrama de caja y bigotes para la medida de 800 amperios43
Figura 23: Diagrama de caja y bigotes para la medida de 900 amperios44
Figura 24: Diagrama de caja y bigotes para la medida de 1000 amperios45
Figura 25: Recta de regresión lineal49
Figura 26: Esquema del generador de corrientes diseñado51
Figura 27: Generador de corrientes52
Figura 28: Esquema del transformador toroidal53
Figura 29: Esquema del transformador intermedio53
Figura 30: Autotransformador54
Figura 31: Prototipo del equipo de submetering55

Figura 32: Montaje del sistema de ensayo (I)55	5
Figura 33: Montaje del sistema de ensayo (II)56	3
Figura 34: Visualización de los datos mediante puerto serie	3
Figura 35: Arrollamiento del cable para medidas comprendidas entre 30 y 60 A57) 7
Figura 36: Errores e incetidumbres del prototipo con la sonda 160)
Figura 37: Errores e incetidumbres del prototipo con la sonda 261	L
Figura 38: Errores e incetidumbres del prototipo con la sonda 561	L
Figura 39: Errores e incetidumbres del prototipo con la sonda 661	L
Figura 40: Errores e incetidumbres del prototipo con la sonda 762	2
Figura 41: Errores e incetidumbres del prototipo con la sonda 862	2
Figura 42: Errores e incetidumbres del prototipo con la sonda 962	2
Figura 43: Errores e incetidumbres del prototipo con la sonda 1063	3
Figura 44: Errores e incetidumbres del prototipo con la sonda 1163	3
Figura 45: Errores e incetidumbres del prototipo con la sonda 1263	3
Figura 46: Errores e incetidumbres del prototipo con la sonda 1364	ł
Figura 47: Errores e incetidumbres del prototipo con la sonda 1464	ļ
Figura 48: Recta de ajuste para la intensidad eficaz65	5

Índice de tablas

Universidad de Valladolid

Tabla 1: Proveedores de equipos de monitorización energética	.19
Tabla 2: Proveedores de sondas Rogowski	.19
Tabla 3: Potencias medidas para un caso de sistema trifásico equilibrado	.47
Tabla 4: Potencias medidas promedio para las sondas considerando sistema trifásico equilibrado	un .47
Tabla 5: Errores promedio de todas las sondas	.48
Tabla 6: Intensidades promedio medidas con sus correspondientes errores	48
Tabla 7: Valor de la nueva intensidad aplicando la recta de regresión	.50
Tabla 8: Elementos necesarios para la construcción de la fuente de corrien precios asociados	te y .51
Tabla 9: Incertidumbres del patrón	.58
Tabla 10: Intensidades promedio de todas las sondas	.65
Tabla 11: Incertidumbre promedio	.66
Tabla 12: Medidas realizadas con la sonda 1 (ensayos LACECAL)	.73
Tabla 13: Medidas realizadas con la sonda 2 (ensayos LACECAL)	.74
Tabla 14: Medidas realizadas con la sonda 3 (ensayos LACECAL)	.75
Tabla 15: Medidas realizadas con la sonda 4 (ensayos LACECAL)	.76
Tabla 16: Medidas realizadas con la sonda 5 (ensayos LACECAL)	.77
Tabla 17: Medidas realizadas con la sonda 6 (ensayos LACECAL)	.78
Tabla 18: Medidas realizadas con la sonda 7 (ensayos LACECAL)	.79
Tabla 19: Medidas realizadas con la sonda 8 (ensayos LACECAL)	.80
Tabla 20: Medidas realizadas con la sonda 9 (ensayos LACECAL)	.81
Tabla 21: Medidas realizadas con la sonda 10 (ensayos LACECAL)	.82
Tabla 22: Medidas realizadas con la sonda 11 (ensayos LACECAL)	.83
Tabla 23: Medidas realizadas con la sonda 12 (ensayos LACECAL)	.84
Tabla 24: Medidas realizadas con la sonda 13 (ensayos LACECAL)	.85
Tabla 25: Medidas realizadas con la sonda 14 (ensayos LACECAL)	.86
Tabla 26: Medidas realizadas con la sonda 15 (ensayos LACECAL)	.87
Tabla 27: Intensidades promedio medidas con las sondas ensayadas LACECAL	en .88
Tabla 28: Errores absolutos promedio de la potencia aparente	.89
Tabla 29: Errores relativos promedio de la potencia aparente	.90

Tabla 30: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 1, 2 y 591
Tabla 31: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 6, 7 y 892
Tabla 32: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 9, 10 y 1193
Tabla 33: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 12, 13 y 1494
Tabla 34: Errores e incertidumbres calculados a partir de los ensayos en la empresa95
Tabla 35: Incertidumbres asociadas a la tolerancia del patrón
Tabla 36: Incertidumbres debidas a la repetibilidad de las medidas97
Tabla 37: Valores máximos del error del prototipo en el cálculo de la intensidad eficaz98
Tabla 38: Valores mínimos del error del prototipo en el cálculo de la intensidad eficaz99

Nomenclatura utilizada

- I_{RMS} Intensidad eficaz
- V_{RMS} Tensión eficaz
- *S* Potencia aparente
- P Potencia activa
- FP Factor de potencia
- Q Potencia reactiva
- *n* Número de muestras por periodo
- *H* Intensidad de campo magnético
- N Número de espiras
- A Sección transversal de la bobina
- *dl* Elemento de longitud infinitesimal de la bobina
- α Ángulo formado entre la dirección de *H* y la dirección de *dl*
- ϕ Flujo magnético
- *B* Inducción magnética
- dS Elemento de superficie infinitesimal
- μ_0 Permeabilidad magnética del núcleo de la bobina
- v_{espira} Tensión inducida en una espira
- v_{bobina} Tensión inducida en la bobina
- M Inductancia mutua en la bobina
- Z_{in} Impedancia de entrada
- Zout Impedancia de salida
- C Capacidad de un condensador

1. Introducción y justificación

1.1. Motivación

Resulta innegable que en la actualidad el precio de la energía tiene una tendencia creciente, lo cual afecta directamente a la competitividad de las empresas. Además, cada vez está más presente el compromiso de reducir las emisiones que contribuyen al cambio climático. Esta unión de dos factores hace necesaria una mejora de la eficiencia energética dentro de las organizaciones. Para que esto suceda, es necesario identificar dónde se dan los principales consumos de energía, lo que se denomina como cost allocation. En este Trabajo Fin de Grado nos vamos a centrar en el ámbito eléctrico exclusivamente. La realización del cost allocation es posible mediante la instalación de unos equipos que realicen medidas parciales por debajo del contador fiscal, denominados equipos de submetering. El problema es que el elevado coste de este tipo de equipos en la actualidad tiene como consecuencia que las empresas no los instalen.

Desde la empresa Termia Auditores Energéticos S.L. en orden a ofertar el servicio de submetering, proponen el desarrollo de unos equipos de submetering de bajo coste, para que las empresas no tengan que acometer una gran inversión.

Dentro del proceso de diseño de estos equipos de submetering de energía eléctrica, Termia define los siguientes requisitos técnicos:

- Los equipos deben de estar dotados de comunicaciones inalámbricas ya que se quieren utilizar para realizar lo que se denomina submetering distribuido, es decir, se mide directamente en la máquina.
- La medida de corriente se debe realizar mediante sensores del tipo bobina Rogowski. Esto se debe a que este tipo de sensor se puede instalar sin necesidad de desconectar el equipo y además, presenta un amplio rango de medida por lo que se puede utilizar un único tipo de sensor para abarcar un amplio rango de intensidades.
 El rango de medida especificado está entre 0 y 1000 amperios lo que supone una potencia activa trifásica entre 0 - 554 kW¹ con un factor de potencia 0.8 inductivo. De este modo se engloban las potencias más
 - comúnmente utilizadas en la industria.
- El error de medida debe ser igual o inferior al ±10% del fondo de escala.
 Como se pretende utilizar solo para realizar cost allocation no es necesario tener una mayor exactitud ya que no se va a facturar en relación a las medidas realizadas.
- Debe tener bajo coste, en torno a 80-100 €/unidad. Para que esto sea viable, el precio total de las sondas Rogowski no debe superar los 30-

¹ Tomando como tensión de línea 400V: P_{máx}=V_L·I_L·cosφ=400·√3·1000·0.8≈554,26 kW

50 € por cada equipo de medida. Ese precio se refiere a las tres sondas necesarias para medir la corriente (una por fase).

1.2. Objetivos

Este Trabajo Fin de Grado persigue dos objetivos fundamentales. El primero es hacer un breve análisis de la oferta actual de proveedores de sondas Rogowski para seleccionar aquellas que ofrezcan un producto que se adapte a los requisitos impuestos. El segundo objetivo y principal, es evaluar las prestaciones de las sondas del proveedor seleccionado. Para cumplir este último objetivo, se han propuestos los siguientes objetivos parciales:

- Entender el funcionamiento de las bobinas Rogowski.
- Ensayar las bobinas en todo su rango de funcionamiento en un laboratorio de calibración para comprobar la idoneidad de las mismas.
- Fabricar un generador de corrientes con un rango de salida de 0 a 50 amperios para poder realizar ensayos a bajas corrientes en las instalaciones de la empresa.
- Analizar los resultados de los distintos ensayos.

1.3. Estructura del documento

El primer capítulo de este Trabajo es esta introducción donde se han descrito los motivos que hacen necesaria la realización del mismo, así como los objetivos a cumplir.

En el segundo capítulo se realiza un análisis del estado del arte, centrándose en la eficiencia energética y en los sistemas que existen en la actualidad para monitorizar los consumos energéticos. Asimismo, también se muestran los proveedores de sondas Rogowski más relevantes.

En el tercer capítulo, se analizan las características de las bobinas Rogowski y se muestran las prestaciones de la sonda seleccionada para la utilización en el equipo de submetering.

En el cuarto capítulo, se estudia la idoneidad de las sondas seleccionadas para poder utilizarlas como sensores de corriente en el equipo de submetering. Para ello, se describen en detalle los distintos ensayos ejecutados y se realiza un tratamiento de los datos obtenidos en estos ensayos.

Y para finalizar, en el quinto capítulo se exponen las conclusiones extraídas de la realización de este Trabajo Fin de Grado, así como las líneas futuras de trabajo. Finalmente se incluye la bibliografía y anexos utilizados.

2. Estado del arte

Universidad de Valladolid

2.1. Eficiencia energética

La eficiencia energética se puede definir a grandes rasgos como la utilización de la menor cantidad posible de energía para proporcionar productos y servicios manteniendo todas sus prestaciones. [1]

La mejora de la eficiencia energética tiene grandes beneficios en multitud de ámbitos: en el ámbito medioambiental destaca la considerable reducción de las emisiones de CO₂ consiguiendo una descarbonización del sistema energético, así como la reducción de otros gases de efecto invernadero; en el ámbito económico sobresale la mejora en la productividad y en la competitividad de las empresas así como la creación de empleos; en el ámbito energético cabe resaltar el descenso de la dependencia energética garantizando el suministro; y en el ámbito social supone un mejor acceso a la energía y una minoración de la pobreza energética, es decir, se facilita el acceso a la energía a todo el mundo independientemente de su nivel de ingresos. También hay que mencionar otras ventajas como la repercusión positiva en la salud de las personas y la calidad del aire, así como la reducción de residuos. [2]

La eficiencia energética es algo que se lleva persiguiendo durante varias décadas. Ya en 1998, con el protocolo de Kyoto, se hace presente la preocupación por el medio ambiente a nivel internacional y la necesidad de frenar el cambio climático. Concretamente en el artículo 2 se expone la importancia de fomentar la eficiencia energética para promover el desarrollo sostenible. [3]

Posteriormente en 2007, los dirigentes de la Unión Europea [4] establecieron una serie de objetivos a cumplir de cara a 2020 en el Paquete de medidas de 2020. Este paquete fijaba los siguientes objetivos clave:

- Reducir las emisiones de gases de efecto invernadero un 20% respecto de los niveles de 1990.
- Conseguir que al menos un 20% de la energía de la UE proceda de fuentes renovables.
- Mejorar la eficiencia energética un 20%.

Estos propósitos, conocidos como objetivos 20-20-20, se vieron reflejados en la legislación de 2009. [4]

Más adelante, en 2015, el Acuerdo de París supuso un cambio en la lucha contra el cambio climático. Es el primer tratado internacional sobre el cambio climático jurídicamente vinculante. Las partes establecieron un marco de acción común y global para procurar contener el aumento de la temperatura media mundial por debajo de los 2 °C con respecto a los niveles preindustriales.

Universidad deValladolid

Para cumplir con este objetivo, se propuso conseguir alcanzar el máximo de las emisiones de gases de efecto invernadero lo antes posible para, a partir de ese momento, reducir rápidamente estas emisiones. [5], [6].

Actualmente, España ya ha elaborado el Plan Nacional Integrado de Energía y Clima 2021-2030 (PNIEC) [7] donde se establecen los objetivos marcados de cara a 2030 en coherencia con lo pactado en el Acuerdo de París. Aplicando las medidas expuestas en este plan, se estima que en 2030 se puede llegar a:

- Reducir las emisiones de gases efecto invernadero en un 23% respecto a 1990.
- Aumentar la presencia de energías renovables hasta el 42% en el uso de energía final.
- Mejorar la eficiencia energética en un 39,5% en términos de consumo de energía primaria. Esto supone que en 2030 el consumo de energía primaria, sin incluir los usos no energéticos, debería ser de 98,5 Mtep.
- Conseguir que el 74% de la generación de energía proceda de fuentes renovables.

Si todo evoluciona de la forma prevista, se pretende que en 2050 la Unión Europea alcance una economía "*próspera, moderna, competitiva y climáticamente neutra*", avanzando hacia un sistema de generación 100% renovable y reduciendo las emisiones brutas totales de gases de efecto invernadero un 90% respecto a 1990. [7], [8]

2.2. Sistemas de medida para monitorización de eficiencia energética

Para poder mejorar el uso que se hace de la energía, resulta fundamental monitorizar su consumo lo que implica la realización de medidas sobre las variables eléctricas. Por ello, será necesario contar con equipos de medida que no solo se encarguen de medir sino de recoger toda la información necesaria (parte hardware). Dicha información deberá ser accesible mediante distintos protocolos de comunicación, para poder procesarla y sacar conclusiones (parte software). [9]

En función de la aplicación, será necesario medir diferentes magnitudes eléctricas, tal como indica Franck Gruffad [10]:

- Para realizar un cost allocation bastará con monitorizar la energía activa. De este modo se puede calcular el consumo de energía por tiempo de uso y el coste energético.
- Para realizar un análisis del uso de la energía y un estudio de ahorro de costes resulta útil medir las energías activa y reactiva, así como la potencia demandada, el factor de potencia y los armónicos de tensión y corriente.

Para aplicaciones de supervisión de red, monitorización de la disponibilidad de la energía y planificación de instalaciones será necesario monitorizar, como mínimo, la corriente, la tensión, la frecuencia, los armónicos de tensión y de corriente, el desequilibrio de tensiones y corrientes y la potencia demandada.

Para cubrir las necesidades que implican mediciones de corriente, existen principalmente dos sondas de medida: los transformadores de intensidad o corriente y las sondas Rogowski.

Los transformadores de intensidad son aquellos dispositivos que permiten reducir los valores de intensidad del lugar de la red en el que se encuentran conectados a valores proporcionales a éstos. El objetivo es que tanto su colocación como su manipulación se puedan realizar de forma segura y no resulte peligroso. Normalmente, se reduce a valores de intensidad normalizados, que suelen ser 5 A o 1 A. [11]

Para aplicaciones que requieran realizar medidas en instalaciones que ya se encuentran en funcionamiento, destaca la utilización de los transformadores de corriente de núcleo abierto o partido (*Figura 1*), ya que permiten ser instalados sin necesidad de abrir el circuito. El principal inconveniente de estos equipos es que presentan un rango de medida bastante reducido. Por ejemplo, el modelo de la *Figura 1* (TQ-6 de Circutor) sirve para intensidades de 100 a 400 A. [12], [13]

Figura 1: Transformador de corriente de núcleo abierto de Circutor [13]

Además, otro inconveniente que presentan este tipo de sensores es que, debido a su elevado tamaño, resulta difícil su colocación en los circuitos existentes.

La alternativa al uso de los clásicos transformadores de corriente son las sondas Rogowski (Figura 2). Estos transductores de corriente son unos dispositivos flexibles utilizados para medir corrientes alternas aprovechando las propiedades electromagnéticas de los conductores. En el capítulo 3 se explica en detalle estos sensores.

Estudio de sondas de corriente Rogowski para su empleo en sistemas de monitorización de eficiencia energética

Figura 2: Colocación de una bobina Rogowski [14]

En el mercado existen diversos sistemas de medida para monitorización energética, pero ninguno se adapta a los requerimientos impuestos por la empresa Termia, la cual impuso:

- Equipos con comunicaciones inalámbricas.
- Utilización de bobinas Rogowski para la medida de corriente.
- Error de medida igual o inferior al ±10% de fondo de escala.
- Precio comprendido entre 80-100 €/unidad.

A continuación, se detallan los proveedores más importantes de este tipo de equipos:

Proveedor	Sondas Rogowski	Comunicaciones inalámbricas	Precio ² (€)	Imagen	
4-Noks	No	Sí	582		
SaturnSouth	No	Sí	250		
Billion	No	Sí	384	Billion SG3030	
LEM	Sí	Sí	850		
Accuenergy	Sí	Sí	334		

² El precio mostrado se corresponde con la opción más económica dentro de las disponibles. En todo caso, se incluye en el precio tanto el equipo de medida como el equipo necesario para realizar las comunicaciones.

J&D sensing	Sí	Sí	1439	
SATEC	No	No	306	
DENT Instruments	Sí	No	454	
Janitza	Sí	No	618	

Tabla 1: Proveedores de equipos de monitorización energética

Como se puede comprobar a partir de la información mostrada en la *Tabla 1*, aunque existen multitud de proveedores que ofertan diferentes equipos de monitorización energética, ninguno de ellos se adapta a todas las especificaciones que busca Termia. Por esto la empresa Termia ha decidido fabricar sus propios equipos de submetering.

2.3. Proveedores de sondas Rogowski

Actualmente en el mercado existen diversos proveedores de sondas Rogowski. En la *Tabla 2* se muestra un listado con los modelos de sondas que más se adaptan a los requisitos exigidos, indicando sus principales características.

		Cara	Precio		
Proveedor	Modelo	Rango	Error	Diámetro sonda	por unidad
Algodue Elettronica	MFC 150	De mA a cientos de kA	<1%	8 mm	35,00€
Meatrol Electrical	MRC-36	1-1.000	±1%	6 mm	15,00€
Cie s.r.l.	FLEXIV300.100	Hasta 100 kA	±1%	12 mm	22,46€
HEYI Electric solution	FRC-210	1-1.000 A	1%	6,5 mm	25,93€
Chauvin Arnoux Group	MiniFLEX	0,5-3.000 A	<1%	5 mm	70,00€
GFUVE	FQ-RCT01-55	10-10.000 A	<1%	8 mm	91,80€
Magnelab	RCT-350T	250-5.000 A	<1%	8 mm	65,64€
Rocoil Ltd	4000 Type 4022	1-1.000 A	<1%	6 mm	53,11€

Tabla 2: Proveedores de sondas Rogowski

Como se puede apreciar, hay sondas que superan ampliamente el rango de medida buscado, pudiendo medir corrientes del orden de decenas hasta cientos de kiloamperios. Por otro lado, todas las sondas presentan una precisión similar en la medida con un error menor al 1% en valor absoluto. En cuanto al diámetro de la sonda no se ha impuesto ningún requisito, por lo que en un principio todos los tamaños son válidos. En resumen, todas las sondas consideradas, anteriormente expuestas, cumplen con los requisitos técnicos necesarios.

No obstante, dentro de ellas, la más económica es el modelo MRC-36 fabricado por Meatrol Electrical. Por este motivo, seleccionamos esta sonda para su posible utilización en el equipo fabricado por Termia.

3. Análisis técnico de las sondas Rogowski

3.1. Funcionamiento de la sonda Rogowski

3.1.1. Principio de funcionamiento

Una sonda o bobina de tipo Rogowski está constituida por una bobina arrollada en forma de toroide, como se muestra en la *Figura 3*. El devanado está bobinado sobre un núcleo no magnético, que habitualmente es aire. Gracias a esto no se saturan magnéticamente y funcionan de forma lineal. Aunque en contrapartida presentan menor sensibilidad que las sondas de núcleo magnético. Este tipo de dispositivo resulta muy útil para la medición de corrientes alternas o transitorias desde decenas de amperios hasta miles de amperios. [15]

Figura 3: Bobina Rogowski [16]

El principio de funcionamiento de la bobina de Rogowski se fundamenta en las leyes de Faraday y de Ampère.

Así bien, se sabe que cuando un conductor es atravesado por una corriente alterna, se genera un campo magnético pulsante concéntrico al conductor. La ley de Ampère enuncia este hecho mediante la expresión matemática (1). [17]

$$i = \oint \vec{H} \cdot \vec{dl} \tag{1}$$

Además, se puede conocer el sentido del campo magnético que se genera a través de la regla de la mano derecha: el dedo pulgar indica el sentido de la corriente que atraviesa el conductor mientras que los demás dedos se van cerrando en torno a la palma de la mano siguiendo la dirección del campo magnético (*Figura 4*). [18]

Figura 4: Regla de la mano derecha [19]

De acuerdo con la expresión (1), la integral de línea del campo magnético alrededor del bucle es igual a la corriente neta encerrada por él, sin importar el camino que tome el bucle. En la *Figura* 5 se muestra una bobina helicoidal con N espiras por metro y una sección transversal A que rodea al conductor por el que circula la corriente que se pretende medir. [17]

Figura 5: Representación del elemento infinitesimal de una bobina [20]

Atendiendo a la representación que se muestra en la *Figura* 5 y tomando un elemento diferencial de longitud, la ley de Ampère se puede reescribir de la siguiente manera, mostrada en la *ecuación* (2). [21]

$$i = \oint_0^l H \cdot \cos \alpha \, dl \tag{2}$$

Siendo *H* la intensidad de campo magnético, *dl* un elemento de longitud infinitesimal a lo largo del camino cerrado y α el ángulo formado entre la dirección del campo magnético y la dirección del elemento de longitud infinitesimal. [17], [22]

Además, al situar la bobina Rogowski rodeando al conductor que genera la corriente que se desea medir, se va a inducir una tensión en los extremos de la bobina de acuerdo con la ley de Faraday-Lenz, que se muestra en la *expresión (3)*.

$$v_{espira} = -\frac{d\phi}{dt} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \vec{dS} = -\int_{S} \frac{\vec{dB}}{dt} \cdot \vec{dS}$$
(3)

Siendo $d\phi$ el flujo magnético que atraviesa la sección de un elemento infinitesimal de superficie dS y B la inducción magnética en la superficie de la sección del núcleo. [17], [22]

La inducción magnética se crea por la intensidad de campo magnético y se relacionan mediante la expresión $\vec{B} = \mu \vec{H}$. Sustituyendo este resultado en la ecuación (3), se obtiene la expresión (4).

$$v_{espira} = -\mu_0 \int_{S} \frac{\overrightarrow{dH}}{dt} \cdot \overrightarrow{dS} = -\mu_0 A \frac{dH}{dt} \cos \alpha \tag{4}$$

Donde A es la superficie de la espira y μ_0 es la permeabilidad magnética del núcleo de la bobina.

La tensión inducida total será la suma de la tensión inducida en cada una de las espiras que componen las bobinas. Denotando como Ndl al número de espiras en una sección de longitud dl, se integra para toda la longitud de la bobina obteniendo la tensión inducida total, que se muestra en la *expresión* (5). [21], [22]

$$v_{bobina} = \int_{0}^{l} v_{espira} N dl = -\mu_0 A N \int_{0}^{l} \frac{dH}{dt} \cos \alpha \, dl$$

$$= -\mu_0 A N \frac{d}{dt} \left(\int_{0}^{l} dH \cos \alpha \, dl \right)$$
(5)

Si se sustituye el resultado de la ley de Ampère (*ecuación (2)*), se obtiene la *ecuación (6*).

$$v_{bobina} = -\mu_0 A N \frac{di}{dt} \tag{6}$$

Por lo tanto, la salida que facilita esta bobina es proporcional a la derivada de la intensidad que se desea medir. Se puede denotar como inductancia mutua, M, a la constante de proporcionalidad con lo que la expresión (6) se puede reescribir de forma más compacta como se muestra en la ecuación (7). [22]

$$v_{bobina} = -M \frac{di(t)}{dt} \tag{7}$$

En la ecuación (7), se ve que para obtener una señal proporcional a la corriente es necesario integrar la tensión de salida de la bobina. Para conseguir esto, hay varias alternativas, según el Centro Nacional de Metrología, CENAM: [23]

- Autointegración aprovechando la inductancia de la bobina (L/R), mostrado en la Figura 6a.
- Utilizando un circuito integrador con resistencias y condensadores (RC), como se muestra en la Figura 6b.
- Mediante un circuito integrador activo con amplificadores operacionales como se muestra en la Figura 6c.

Estudio de sondas de corriente Rogowski para su empleo en sistemas de monitorización de eficiencia energética

Figura 6: (a)Autointegración (b)Integración C/R (c)Integración activa [23]

Los métodos de integración L/R y RC se emplean principalmente para la medición de corrientes de alta frecuencia (>100 kHz). A frecuencias bajas, como es el caso de la frecuencia de la red eléctrica (50 Hz), la tensión inducida en los terminales de la bobina suele ser bajo. Esto implica la necesidad de amplificar la señal, por lo que tendremos que trabajar con amplificadores operacionales que realicen dicha tarea. Por tanto, este último caso es el que se procede a analizar. [23]

Primeramente, es necesario conocer las propiedades de un amplificador operacional. Se parte de su circuito equivalente mostrado en la *Figura* 7.

Figura 7: Circuito equivalente del amplificador operacional

Las principales características del amplificador operacional son [24]:

- Posee una elevada impedancia de entrada (Z_{in}), del orden de M Ω .
- Presenta una impedancia de salida (Z_{out}) muy baja.

- Ganancia de tensión en lazo abierto muy elevada (>10⁵). Se define la ganancia de tensión como el cociente entre las amplitudes de las tensiones de salida y de entrada del amplificador.
- Entrada diferencial: V_d es la tensión diferencial de entrada ($V_d = V_y V_x$).

Se aprecia que la caída de tensión que se produce en la impedancia de entrada, V_{in} , no es más que la diferencia de potencial que hay entre la entrada no inversora (+) y la entrada inversora (-), es decir, $V_y - V_x = V_{in}$. [24]

Una vez aclarados estos conceptos, se procede a analizar el circuito integrador, cuyo esquema se muestra en la *Figura* 8.

Figura 8: Circuito integrador

Nótese que, al ser la impedancia de entrada muy elevada, la intensidad que entra al amplificador operacional va a ser prácticamente nula, es decir, $i_x = i_y = 0$. [24], [25]

Además, como $V_y - V_x = V_{in}$, si se aplica la ley de Ohm generalizada se tiene lo mostrado en la ecuación (8).

$$V_y - V_x = i_x \cdot Z_{in} \to V_y - V_x = 0 \to V_y = V_x \tag{8}$$

Ahora se va a aplicar el método de nudos al circuito, obteniendo lo mostrado en la ecuación (9). Se recuerda que las intensidades denotadas como i_x e i_y tienen valor nulo.

$$i_1 = i_C \to \frac{V_i - V_x}{R} = C \frac{d(V_x - V_0)}{dt}$$
 (9)

Se puede apreciar que $V_y = 0$ ya que este terminal está conectado a tierra. De acuerdo con la ecuación (8) se tiene que $V_y = V_x = 0$, por lo que la ecuación (9) se reescribe del siguiente modo, obteniendo la *ecuación* (10). [24], [25]

$$\frac{V_i}{R} = -C \frac{dV_0}{dt} \to dV_0 = -\frac{1}{RC} V_i dt \tag{10}$$

Integrando a ambos lados de la ecuación se obtiene que la salida del integrador toma la forma de la ecuación (11).

$$V_0(t) = -\frac{1}{RC} \int_0^t V_i(t) dt$$
 (11)

3.1.2. Factores de influencia en la bobina

La bobina Rogowski va a tener un error asociado a la posición, ya que la integral de línea de la ley de Ampère requiere que la bobina posea sección transversal nula. Debido a la forma helicoidal del devanado, se crea un volumen que sólo se aproxima a este requerimiento de la ley de Ampère. Este error se puede minimizar si el devanado está bobinado con un número constante de vueltas por unidad de longitud y si el área de la sección transversal es pequeña, lo que quiere decir que el radio de la sección transversal de la bobina debe ser mucho menor que la distancia de la bobina al conductor de corriente siempre que sea circular. [20]–[22]

Además, debido a que la bobina de Rogowski se basa en la medición del campo magnético, hace que este tipo de sensor de corriente sea susceptible a la interferencia del campo magnético externo. Para minimizar esta interferencia, se procede del siguiente modo [26]:

 Minimizar el área de bucle: Cualquier espira formada por un conductor captará el campo magnético. Por lo tanto, es importante minimizar esta área no deseada para reducir la captación de interferencias.

• Diseñar la bobina con cancelación de interferencias: La interferencia normalmente procede de un campo electromagnético lejano. Es importante que la bobina sea capaz de diferenciar entre la interferencia del campo lejano y la señal de campo cercano que se desea medir. Esto se consigue con la forma circular de la bobina toroidal ya que asegura que haya fuerzas electromotrices opuestas cuando se aplica una interferencia de campo lejano a la bobina (*Figura* 9).

Figura 9: Interferencia de un campo magnético lejano [26]

No obstante, hay que tener en cuenta que para que se produzca una cancelación perfecta, se requiere un bobinado perfectamente uniforme y una impedancia de la bobina nula. En la práctica, la pequeña falta de uniformidad del devanado y la impedancia del cable se crearán una cierta susceptibilidad a las interferencias en la bobina Rogowski. [26]

3.2. Características de la sonda seleccionada

La sonda que se va a estudiar se corresponde con el modelo MRC-36 fabricado por Meatrol. Según especificaciones del fabricante [14]:

- Presenta una alta linealidad desde 1 A hasta 1000 A.
- La corriente nominal de referencia es de 600 A.
- Posee 6 mm de sección.
- La deriva del cero (zero drift) es ≤0.05 mV.
- Su salida es de 50mV/kA a 50 Hz cuando está calibrada y 60 MV/kA a 50 Hz cuando está sin calibrar.
- Tiene 36 mm de ventana.
- El error de lectura es <0.5% con la bobina calibrada (posición central, 25 °C) y <5% cuando no está calibrada (posición central, 25 °C).

Figura 10: Sonda MRC-36 [14]

 El error de posición es <0.5% si se sitúa el conductor junto al mecanismo de enganche (punto rojo en la *Figura 10*) y <1% si se sitúa el conductor adyacente a la pinza opuesta (puntos azules en la *Figura 10*).

Además, esta bobina viene provista de una pantalla contra la influencia de los campos magnéticos externos por lo que, según especificaciones del fabricante, garantiza una medición estable para bajas corrientes y hasta cientos de amperios.

3.3. Características del chip de medida

El chip de medida que se va a utilizar en el prototipo del equipo de submetering fabricado por Termia es el modelo M90E36A de Atmel, Microchip. Este chip es adecuado para contadores polifásicos multifunción, pudiendo emplearse en sistemas trifásicos de 3 o 4 hilos. [27]

A continuación, se muestra la forma en la que dicho chip calcula las distintas magnitudes eléctricas de interés de acuerdo con la información proporcionada por el fabricante [28]:

• Intensidad eficaz: El cálculo del valor eficaz de la corriente se realiza a partir de la media cuadrática, de acuerdo con la ecuación (12).

$$I_{RMS} = \sqrt{\frac{\sum_{n=0}^{N-1} (i_n)^2}{N}}$$
(12)

Donde *N* es el número total de muestras por periodo.

Además, se puede calcular el valor instantáneo de la corriente que circula por la línea neutra como $i_N = i_A + i_B + i_C$.

• **Tensión eficaz**: El cálculo del valor eficaz de la tensión se realiza a partir de la *ecuación (13)*.

$$V_{RMS} = \sqrt{\frac{\sum_{n=0}^{N-1} (v_n)^2}{N}}$$
(13)

Al igual que en el cálculo de la intensidad eficaz, *N* representa el número total de muestras por periodo.

• **Potencia aparente**: La potencia aparente por fase se calcula como el producto de la corriente en valor eficaz por el valor eficaz de la tensión, como se muestra en la *ecuación* (14).

$$S = I_{RMS} \cdot V_{RMS} \tag{14}$$

 Potencia activa: Para el cálculo de la potencia activa se multiplica la corriente instantánea por la tensión instantánea para crear la potencia instantánea. Entonces, esta potencia se convierte en potencia activa mediante el cálculo del valor medio, tal como se muestra en la ecuación (15).

$$P = \frac{1}{N} \sum_{k=0}^{N-1} V_k \cdot I_k$$
(15)

• Factor de potencia: Para cada fase, el factor de potencia se obtiene dividiendo la potencia activa entre la potencia aparente, como describe la ecuación (16).

$$FP = \frac{P}{S} \tag{16}$$

• **Potencia reactiva**: El cálculo de la potencia reactiva se realiza utilizando un cambio en la fase del voltaje igual a 90°. A partir de este voltaje desfasado y de la intensidad se calcula la potencia promedio, que se corresponde con la potencia reactiva. Se procede a demostrar la validez de este cálculo, partiendo de $v(t) = V_0 \cdot \sin(\omega t + 90)$ y $i(t) = I_0 \cdot \sin(\omega t + \varphi)$. Por lo tanto, se tiene la potencia instantánea mostrada en la ecuación (17).

$$p(t) = v(t) \cdot i(t) = V_0 I_0 \cdot \sin(\omega t + 90) \cdot \sin(\omega t + \varphi)$$
(17)

Aplicando la relación trigonométrica sin $a \cdot \sin b = \frac{1}{2} [\cos(a - b) - \cos(a + b)]$, se tiene lo mostrado en la *ecuación (18)*.

$$p(t) = \frac{V_0 I_0}{2} \cdot \cos(90 - \varphi) \cdot \cos(2\omega t + 90 + \varphi)$$
(18)

Ahora se realiza el cálculo de la potencia promedio. Nótese que en la *ecuación* (18), el término del coseno que depende del tiempo toma el mismo valor en el instante inicial que transcurrido un periodo, por lo que al realizar la integral este término desaparece, de modo que se obtiene lo mostrado en la *ecuación* (19).

$$P_{prom} = \frac{1}{T} \int_0^T p(t) dt = \frac{V_0}{\sqrt{2}} \frac{I_0}{\sqrt{2}} \cos(90 - \varphi) = V_{ef} I_{ef} \sin \varphi = Q$$
(19)

4. Tests de idoneidad de la sonda Meatrol MRC-36

Para poder comprobar la calidad de las sondas seleccionadas, se realizan dos ensayos diferentes a partir de una muestra representativa de la población:

- Ensayos en el Laboratorio de Calibración Eléctrica de Castilla y León (LACECAL): Se lleva a ensayar una muestra de las sondas seleccionadas a este laboratorio especializado para poder comprobar la calidad de sus medidas en todo el rango de funcionamiento (de 0 a 1000 A).
- Ensayos en las instalaciones de la empresa: A partir de un generador de corrientes construido en sus inmediaciones, se ensaya el conjunto de las sondas y el prototipo del equipo de submetering en un rango de 0 a 90 amperios para determinar el error del conjunto.

4.1. Ensayos en LACECAL

4.1.1. Condiciones de ensayo

Primeramente, se tomó una muestra de 15 sondas del modelo MRC-36 de Meatrol. Éstas se llevaron a ensayar a LACECAL.

Para el ensayo de las sondas se deben definir unas condiciones de ensayo, las cuales se deben mantener durante toda la calibración. Dichas condiciones son las siguientes:

- Temperatura: 23±2 °C.
- Humedad relativa: <70%.
- Estabilización térmica antes de comenzar la calibración, permaneciendo durante al menos 12 horas en el interior del laboratorio bajo las condiciones ambientales mencionadas.

También se tiene en cuenta el tiempo de estabilización después del encendido que se indique en el manual o especificaciones de las sondas.

El equipo que han utilizado en LACECAL para realizar los ensayos se muestra en la *Figura 11*.

Figura 11: Equipo para la realización de los ensayos [LACECAL]

4.1.2. Datos obtenidos

Para cada sonda, se tienen 11 puntos de medida que se corresponde con intensidades iguales a 0 A, 100 A, 200 A, 300 A, 400 A, 500 A, 600 A, 700 A, 800 A, 900 A y 1000 A. En cada uno de estos escalones de intensidad y para cada una de las sondas se realizan 10 medidas para asegurar que dicha medida no cambia. Los datos obtenidos se muestran en el anexo 1 (*Tabla 12* a *Tabla 26*). Cabe decir que para la sonda 7, cuando se tiene una entrada aplicada igual a 800 amperios, se obtiene una salida muy alejada a la esperada. Como esto no sucede en otros puntos, se considera que este es un valor atípico y por lo tanto no se va a tener en cuenta a la hora de realizar el tratamiento de datos.

4.1.3. Tratamiento de datos

4.1.3.1. Diagramas de caja y bigotes (box-plot)

Un diagrama de caja y bigotes o box-plot es una representación sencilla de un conjunto de datos. Muestra a simple vista una representación gráfica de la mediana y los cuartiles de los datos. A continuación, se recuerdan los conceptos estadísticos más relevantes para la realización de estos diagramas [29]:

- Mediana (*m*): Valor central de los valores observados. De forma más precisa, si se ordenan el total de las observaciones realizadas (*N*) de menor a mayor, la mediana es el valor que ocupa la posición $\left(\frac{N+1}{2}\right)$ si *N* es impar, o la media entre los valores que ocupan las posiciones $\left(\frac{N}{2}\right)$ y $\left(\frac{N}{2}+1\right)$ si *N* es par.
- Primer cuartil (Q_1) : Valor tal que la cuarta parte de los datos son inferiores a él y una cuarta parte de los datos son superiores al mismo.
- Tercer cuartil (Q_3) : De forma análoga a la definición del primer cuartil, el tercer cuartil es aquel valor tal que tres cuartas partes de los datos son inferiores a él y una cuarta parte de los datos son superiores al mismo.
- Rango intercuartílico (*IQR*): Diferencia entre el tercer y el primer cuartil.

En la *Figura 12* se muestra una representación de un box-plot. La caja comprende el 50% de los valores centrales de los datos, extendiéndose entre el primer y el tercer cuartil. La línea central se corresponde con la mediana. Los bigotes se extienden desde el menor al mayor de los valores observados y considerados normales.

Estudio de sondas de corriente Rogowski para su empleo en sistemas de monitorización de eficiencia energética

Figura 12: Representación de un diagrama de caja y bigotes [29]

Además, estos diagramas permiten identificar los valores atípicos. Todos aquellos valores extremos que queden por encima del límite superior o por debajo del límite inferior son un resultado atípico. Dichos limites se definen del siguiente modo:

- Límite inferior: $Q_1 1, 5 \cdot IQR$.
- Límite superior: $Q_3 + 1.5 \cdot IQR$.

Estos valores se representan con un punto en la gráfica. [29], [30]

Por otra parte, cabe decir que este tipo de gráficos están basados en medidas resistentes a la presencia de valores atípicos. Es decir, la mediana es un indicador robusto de la posición, así como el rango intercuartílico lo es de la dispersión, al verse ambos poco influenciados por la presencia de valores anómalos. [30]

Con estos diagramas, se puede hacer un primer análisis rápido y visual del conjunto de datos del que se dispone y que se ha mostrado en el punto 4.1.2. Para graficarlos, se va a utilizar la herramienta Excel. Cabe decir que en todos los diagramas (*Figura 14* a *Figura 24*) se ha representado el valor de la salida esperada con una recta horizontal discontinua roja. Además, para hacer una valoración más visual de la bondad de las medidas, se ha representado un rectángulo azul (trazado con rayas de estilo "guion-punto") que comprende el $\pm 0,5\%$ del valor de salida esperado. Asimismo, los límites del eje vertical se han fijado en un $\pm 2\%$ del valor de salida esperado, excepto en la medida de los 0 amperios que se ha fijado de forma arbitraria, para poder comparar todas las gráficas de las distintas medidas de intensidad.

Para cada escalón de intensidad, se han representado los diagramas de caja y bigotes tomando como variable de estudio la salida medida de cada sonda. Se comienza analizando los datos correspondientes a las medidas realizadas a los 0 amperios.

Antes de realizar este análisis, hay que aclarar que exactitud y precisión no son lo mismo. Se entiende por exactitud la concordancia entre el valor medido y el verdadero valor de la magnitud que se quiere medir. Por otra parte, se puede

definir la precisión como el grado de concordancia entre las diferentes medidas realizadas. Esto se entiende mejor de manera gráfica, como ilustra la *Figura* 13. [31]

Figura 13: Diferencia entre precisión y exactitud [31]

Aclarados estos conceptos se procede a estudiar los diferentes box-plot realizados. Tras analizar y comparar todos los diagramas (*Figura 14* a *Figura 24*) se puede concluir que todas las sondas presentan medidas aceptables ya que en muy pocos casos se sobrepasa el $\pm 1\%$ de la salida esperada (excepto en la sonda 2 a los 100 amperios y las medidas correspondientes a 0 amperios). Además, se aprecia que todas las sondas poseen un sesgo, en la mayoría de los casos negativo al presentar su medida por debajo de la esperada.

Se observa que las sondas más exactas y precisas son las sondas 13 y 14, aunque en ciertos puntos de medida (por ejemplo 100 o 200 amperios, respectivamente) presenta una dispersión más elevada. Las sondas 2, 4 y 6 suelen ser las menos exactas, aunque no suelen presentar una dispersión muy elevada.

También se observa que el mayor punto de dispersión se encuentra en 100 amperios, lo cual implica que las sondas a bajas intensidades son menos precisas. Aun así, los errores están bastante contenidos, pues como se ha mencionado, las medidas realizadas no sobrepasan el 1% de la salida esperada en valor absoluto. Al mismo tiempo se aprecia que por lo general, a medida que se aumenta la corriente, la salida medida se va alejando ligeramente de la salida esperada.

Ahora se procede a realizar un análisis individual de cada diagrama de caja y bigotes.

Figura 14: Diagrama de caja y bigotes para la medida de 0 amperios

En la *Figura 14*, se observa que todas las sondas presentan salidas superiores a 0 mV, es decir, presentan un sesgo. Además, se aprecia que todas las sondas excepto la 3, 4 y 5 presentan una buena precisión, o lo que es lo mismo, una dispersión reducida en comparación con el resto de sondas. Asimismo, las sondas 6 y 10 presentan valores que se consideran atípicos.

Figura 15: Diagrama de caja y bigotes para la medida de 100 amperios

En la *Figura 15*, se ve que las sondas 2, 6, 7, 10 y 14 presentan una dispersión baja de los datos. Por otro lado, todas las mediciones realizadas con las sondas 2 y 5 se alejan en más de un 0,5% de la salida esperada. Algo similar ocurre con la sonda 15, que presenta la mayor parte de sus medidas fuera del 0,5% de la salida esperada. Las sondas que presentan mejores medidas en cuanto a exactitud y precisión son las sondas 6, 8, 9 y 10.

Figura 16: Diagrama de caja y bigotes para la medida de 200 amperios

En la *Figura 16*, se observa que todas las sondas menos la 14 presentan una dispersión baja. La mayor parte de las medidas de las sondas se sitúan por debajo de la salida esperada por lo que se deduce que estas sondas presentan un sesgo negativo. Las sondas 3, 11, 12, 13 y 14 son las más exactas ya que son las que más se aproximan a los 10 mV. Por otro lado, las sondas 2 y 5 son las únicas que se alejan más allá del 0,5% de la salida esperada.

Figura 17: Diagrama de caja y bigotes para la medida de 300 amperios

En la *Figura* 17, se aprecia que todas las sondas se encuentran por debajo del valor esperado excepto la sonda 14, que presenta algunas de sus mediciones por encima de este valor. Las sondas 3, 8, 9, 12, 14 y 15 presentan una precisión baja en comparación con el resto. Además, las sondas 1, 4, 6 y 15 se alejan más del 0,5% de la medida esperada. Por otra parte, las sondas más exactas son las sondas 7, 10, 13 y 14.

Figura 18: Diagrama de caja y bigotes para la medida de 400 amperios

En la *Figura 18*, se ve que, de nuevo, la mayor parte de las sondas presentan una salida por debajo de la esperada. Las sondas más precisas y exactas son la 7 y la 13. Las sondas 2, 4, 5, 6, 11 y 15 presentan medidas más allá del 0,5% de la salida esperada. En general, la dispersión que presentan las sondas a los 400 amperios es considerablemente baja.

Figura 19: Diagrama de caja y bigotes para la medida de 500 amperios

En la *Figura 19*, se observa que todas las sondas menos la 14 presentan sus medidas por debajo de la salida esperada. Las sondas 2, 4, 6, 8 y 15 son poco exactas ya que se encuentran alejadas, más del 0,5% del valor esperado. Las sondas 3, 4, 9 y 13 presentan una dispersión ínfima, mientras que la sonda 10 es la que mayor dispersión presenta. En general, todas las sondas son muy precisas.

Figura 20: Diagrama de caja y bigotes para la medida de 600 amperios

En la *Figura 20*, se observa que todas las sondas presentan una medida por debajo de los 30 mV, es decir, tienen un sesgo negativo. Las sondas 2, 4, 6, 8, y 15 son las menos exactas ya que se alejan más del 0,5% de la salida esperada. La dispersión que presentan las sondas 1, 7, 8 y 12 es elevada en comparación con el resto. Además, la sonda más precisa y exacta es la sonda 14.

Figura 21: Diagrama de caja y bigotes para la medida de 700 amperios

En la *Figura 21*, se ve que todas las sondas excepto la 14 presentan sus medidas por debajo de la salida esperada. Las sondas 7, 11 y 12 presentan mayor dispersión en la medida, mientras que el resto son más precisas. No obstante, las sondas que más se aproximan a los 35 mV son la 13 y la 14, mientras que las sondas 2, 4, 6 y 15 se encuentran más allá del 0,5% de la salida esperada.

Figura 22: Diagrama de caja y bigotes para la medida de 800 amperios

En la *Figura 22*, se aprecia que, como en otras ocasiones, todas las sondas menos la 14 presentan sus medidas por debajo de la salida esperada. Las sondas 2, 4, 6, 7 y 15 presentan sus medidas más allá del 0,5% de 30 mV. La dispersión de las medidas es considerablemente baja en todas las sondas ensayadas. Las sondas más precisas son 13 y la 14. Nótese que, como se ha mencionado anteriormente en el punto *4.1.2. Datos obtenidos*, la sonda 7 no aparece representada al tratarse de valores atípicos.

Figura 23: Diagrama de caja y bigotes para la medida de 900 amperios

En la *Figura* 23, se ve que todas las sondas menos la 14 y la 15 presentan sus medidas por debajo del valor de salida esperado. Además, las sondas 14 y 15 presentan exactamente la misma dispersión. Las sondas 3, 4, 5, 7 y 13 presentan una dispersión muy pequeña. Las sondas 2, 4 y 6 se encuentran más allá del 0,5% de la salida esperada, mientras que las sondas 13, 14 y 15 son las que más se aproximan a los 45 mV.

Figura 24: Diagrama de caja y bigotes para la medida de 1000 amperios

En la *Figura 24*, se aprecia que todas las sondas menos la 14 presentan sus medidas por debajo de la salida esperada. Las sondas 2, 4, 6 y 15 presentan sus medidas más allá del 0,5% de la salida esperada. Las dispersiones más altas se dan en las sondas 3, 8, 10, 11 y 14. Por otro lado, las sondas que más se aproximan a los 50 mV son las sondas 13 y 14.

En vista de todos estos resultados se considera que las sondas son adecuadas para su utilización en el equipo de medida al no sobrepasar el 1% (en valor absoluto) de la salida esperada.

4.1.3.2. Estimación del error introducido por la sonda en el cálculo de la potencia aparente

En este apartado se pretende estimar el error introducido en el cálculo de la potencia debido únicamente a las sondas Rogowski. Aunque sería interesante evaluar este error en las potencias activas y reactivas, no se disponen de datos del desfase entre tensión y corriente (sólo se tienen valores eficaces), por lo que se va a estimar el error introducido en la potencia aparente. Para ello, suponemos que se tiene un equipo conectado a una línea trifásica equilibrada. Además, consideramos que el equipo de medida es capaz de leer la señal de tensión sin introducir ningún tipo de error. Lógicamente la señal de intensidad se corresponde con los valores medidos en los ensayos de LACECAL.

Gracias a la característica de linealidad que poseen las sondas Rogowski y a la información proporcionada por el fabricante, se puede calcular la intensidad que circula por el conductor a partir de la salida proporcionada por las sondas en mV. Conociendo que la sonda suministra una salida igual a 50 mV/kA, se define la relación entre la intensidad medida y el voltaje de salida del modo que muestra la *ecuación (20)*.

Intensidad medida =
$$\frac{1000}{50} \cdot Voltaje \, de \, salida$$
 (20)

En el anexo 2 (*Tabla 27*) se exponen los valores promedio de las intensidades obtenidos a partir de aplicar la expresión (20) a las salidas medidas promedio (expuestas en la *Tabla 12* a *Tabla 26* del anexo 1) para las diferentes sondas.

Ahora se calcular la potencia que desarrollaría el equipo de estar conectado a una línea de 400 V (*ecuación* (25)).

$$S = V \cdot I = \sqrt{3} \cdot 400 \cdot I_{medida} \tag{21}$$

De este modo, se calculan las potencias reales que se deberían medir en la situación comentada (*Tabla 3*).

Intensidad real (A)	Potencia aparente real (VA)
0	0
100	69.282,03
200	138.564,06
300	207.846,10
400	277.128,13
500	346.410,16

600	415.692,19
700	484.974,23
800	554.256,26
900	623.538,29
1000	692.820,32

Tabla 3: Potencias medidas para un caso de sistema trifásico equilibrado

De forma análoga se pueden calcular las potencias resultantes con las medidas de las diferentes sondas Rogowski. Esta información se encuentra recogida en el anexo 2 (*Tabla 27*). A modo de resumen, en la Tabla 4 se muestran, para cada medida de intensidad, las potencias aparentes calculadas a partir del promedio de todas las sondas.

Medida de intensidad (A)	Potencia aparente promedio que se estima medir (VA)			
0	313,08			
100	69.093,10			
200	138.237,89			
300	207.199,70			
400	276.202,39			
500	345.157,58			
600	414.091,62			
700	483.125,05			
800	551.979,41			
900	621.620,01			
1000	690.170.10			

Tabla 4: Potencias medidas promedio para las sondas considerando un sistema trifásico equilibrado

Con estos datos se puede definir el error absoluto como sigue (ecuación (22).

$$error absoluto = Potencia real - Potencia medida$$
 (22)

Los datos correspondientes a este cálculo se encuentran recogidos en la *Tabla* 28 del anexo 2.

Y finalmente se calcula el error relativo como muestra la ecuación (23).

$$error \ relativo \ (\%) = \frac{error \ absoluto}{Potencia \ real} \cdot 100$$
(23)

Aplicando esta última fórmula se obtienen los datos mostrados en el anexo 2 (*Tabla 29*). A modo de resumen, en la *Tabla 5* se muestran los errores relativos estimados calculados a partir del promedio de todas las sondas para cada escalón de intensidad.

Medida de intensidad (A)	Error relativo estimado promedio de las sondas (%)
0	-
100	0,2727

200	0,2354
300	0,3110
400	0,3340
500	0,3616
600	0,3850
700	0,3813
800	0,4108
900	0,3076
1000	0,3825

Tabla 5: Errores promedio de todas las sondas

El error más alto se da para la medida de 800 amperios. Se puede comprobar que ninguno de los errores relativos supera el 0,5%, por lo que de nuevo se concluye que estas sondas son adecuadas para su uso en el sistema de submetering.

4.1.3.3. Interpolación lineal. Relación entre Ireal y Imedida

Ahora se realiza una recta de ajuste mediante la interpolación lineal de los datos para intentar disminuir el error que presentan las sondas en la medida. Para ello, primero se calcula el promedio de la intensidad medida de todas las sondas para cada escalón de intensidad. Los resultados se muestran en la *Tabla* 6. Asimismo, en esta tabla se muestran los errores absoluto y relativo de las medidas.

Intensidad real que circula (A)	Promedio de la intensidad medida de todas las sondas (A)	Error absoluto (A)	Error relativo (%)
0	0,4519	-0,4519	-
100	99,7273	0,2727	0,2727
200	199,5292	0,4708	0,2354
300	299,0670	0,9330	0,3110
400	398,6638	1,3362	0,3340
500	498,1921	1,8079	0,3616
600	597,6898	2,3102	0,3850
700	697,3309	2,6691	0,3813
800	796,7137	3,2863	0,4108
900	897,2312	2,7688	0,3076
1000	996,1747	3,8253	0,3825

Tabla 6: Intensidades promedio medidas con sus correspondientes errores

A partir de los datos de intensidades reales y medidas, expuestos en la *Tabla* 6, se realiza una recta de regresión lineal con ayuda de la herramienta Excel (*Figura 25*).

Figura 25: Recta de regresión lineal

Se aprecia que la ecuación de la recta obtenida toma la forma y = 0.996x + 0.2639, o lo que es lo mismo:

$$I_{real} = 0,996 \cdot I_{medida} + 0,2639 \tag{24}$$

Esta recta se ha obtenido utilizando el método de mínimos cuadrados. Para calcular la pendiente (m) se aplica la *fórmula* (25).

$$m = \frac{s_{xy}}{s_x^2} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}} = \frac{109.557,369}{110.000} = 0,996$$
 (25)

Siendo s_{xy} la covarianza de las dos variables, s_x^2 la varianza de la variable intensidad real y *n* el número total de puntos.

Y para calcular la ordenada en el origen (n) se aplica la fórmula (26):

$$n = \bar{y} - m\bar{x} = 498,252 - 0,996 \cdot 500 = 0,2639 \tag{26}$$

Por otro lado, se calcula el coeficiente de correlación (denotado como R² en la *Figura 25*) tal como se muestra a continuación:

$$Correl(x,y) = \frac{\sum (x-\bar{x})(y-\bar{y})}{\sqrt{\sum (x-\bar{x})^2 \sum (y-\bar{y})^2}} = 0,99999974 \approx 1$$
(27)

Analizando este coeficiente se puede determinar la dependencia lineal de las dos variables. Como es prácticamente igual a 1, indica que cuando una de las

variables aumenta, la otra también lo hace en igual medida por lo que la linealidad es casi perfecta. [29]

Despejando la ecuación (24), se puede calcular una nueva variable que denotamos como promedio linealizado. Este valor no es más que coger el punto que nos da la nueva recta, en lugar de utilizar el dato de intensidad medido, es decir:

$$Promedio\ linealizado = \frac{I_{medida\ promedio} - 0,2639}{0,996}$$
(28)

Aplicando esta ecuación se obtienen los datos mostrados en la Tabla 7. En esta tabla también se muestran los errores relativos y absolutos asociados a cada intensidad.

Intensidad	Intensidad Promedio	Error absoluto	Error relativo		
real (A)	linealizado (A)	(A)	(%)		
0	0,1877	-0,1877	-		
100	99,8818	0,1182	0,1182		
200	200,1047	-0,1047	-0,0523		
300	300,0622	-0,0623	-0,0208		
400	400,0791	-0,0791	-0,0198		
500	500,0272	-0,0272	-0,0054		
600	599,9445	0,0555	0,0092		
700	700,0060	-0,0060	-0,0009		
800	799,8079	0,1921	0,0240		
900	900,7493	-0,7493	-0,0833		
1000	1000,1102	-0,1102	-0,0110		

Tabla 7: Valor de la nueva intensidad aplicando la recta de regresión

Comparando los errores mostrados en la *Tabla* 6 con los de la *Tabla* 7, se aprecia que éstos se reducen de forma notable. Esta ecuación se puede programar en el prototipo del equipo de medida para conseguir reducir los errores cometidos.

4.2. Ensayos con el prototipo del equipo de medida

Una vez comprobada la idoneidad de las sondas Rogowski en el apartado anterior, *4.1. Ensayos en LACECAL*, se procede a calcular el error que se tiene en el prototipo de medida usando como sensores de intensidad la muestra de sondas de la que se dispone. Para ello, se necesita disponer de una fuente de corriente en orden a poder realizar los ensayos pertinentes.

4.2.1. Diseño y construcción de la fuente de corriente

Primeramente, es necesario contar con una fuente de corriente para poder realizar los ensayos necesarios. El rango de medida buscado es de 0 a 50 amperios. En la *Figura 26* se muestra el esquema de la fuente diseñada.

Figura 26: Esquema del generador de corrientes diseñado

Los equipos utilizados para realizar este generador de corrientes se muestran en la Tabla 8. En esta tabla se muestran también los precios unitarios de cada elemento, así como el precio total.

Elemento	Modelo	Fabricante	Cantidad	€⁄u³	Precio (€)		
Transformador toroidal	TST 600/001	INDEL	1	59,22	59,22		
Transformador intermedio	TSZS 70/011M	INDEL	1	27,75	27,75		
Autotransformador	OIEA1	BREVE TUFVASSONS	1	54,37	54,37		
Conmutador tipo Rocker	18.353.102	Marquardt	1	2,99	2,99		
Conector IEC	47.210.000	SCHURTER	1	2,01	2,01		
Cables de	60.030.215	SCHURTER	1	4,30	4,30		
alimentación	1600097	LAPP	5	1,31	6,55		
Conectores de banana 4 mm	POL 8760 L/RT	SCHÜTZINGER	2	15,48	30,96		
Enchufes de banana 4 mm	BU- 3110410-2	MUELLER ELECTRIC	2	4,03	8,06		
Conectores de banana 2 mm	4773-6	POMONA	2	3,44	6,88		
Maletín	NB-45-5-B	NEWBRAND	1	53,47	53,47		
TOTAL							

Tabla 8: Elementos necesarios para la construcción de la fuente de corriente y precios asociados

Se observa que el precio total de la fuente de corriente asciende a 256,56 €.

³ Precios a fecha 12 de abril de 2021.

El generador finalizado se muestra en la Figura 27.

Figura 27: Generador de corrientes

Ahora se procede a explicar el dimensionamiento de este instrumento. Se parte de que se conoce la intensidad de salida deseada (50 A) y la tensión de entrada, que se corresponde con la tensión de la red (230 V). Se fijan las características del cable de salida de tal modo que pueda soportar los 50 amperios que lo van a atravesar: L = 4 m (este valor incluye la ida y la vuelta del cable); $\rho = 0,0172 \ \frac{\Omega \cdot mm^2}{m}$; $S = 4 mm^2$. A partir de estos datos se puede calcular la resistencia del cable:

$$R_{cable} = \rho \cdot \frac{L}{S} = 0,0172 \cdot \frac{4}{4} = 0,0172 \,\Omega \tag{29}$$

Conocido este dato, se calcula la potencia necesaria del transformador:

$$P = R_{cable} \cdot I_s^2 = 0,0172 \cdot 50^2 = 43 \, VA \tag{30}$$

Con esto se calcula la tensión de salida. Nótese que en este cálculo se tiene en cuenta la caída de tensión que se produce en las bornas, dato proporcionado por el fabricante:

$$V_s = \frac{P}{I_s} + V_{bornas} = 0.9 V \tag{31}$$

Ahora se pasa a analizar el **transformador toroidal**, cuyo esquema para el análisis se muestra en la *Figura 28*. En este esquema se muestran en la parte inferior las tensiones nominales del primario y del secundario ($V_{primario}/V_{secundario}$).

Estudio de sondas de corriente Rogowski para su empleo en sistemas de monitorización de eficiencia energética

Figura 28: Esquema del transformador toroidal

Conocida la relación de transformación (r_t), que se recuerda que es la relación entre las tensiones asignadas del primario y del secundario [32], se calcula la tensión necesaria en el primario, como se muestra en la ecuación (32).

$$r_t = \frac{V_{secundario}}{V_{primario}} \to V_{P_T} = \frac{V_{S_T}}{r_t} = 0.9 \cdot \frac{230}{12} = 17,25 V$$
 (32)

Asimismo, se puede calcular la intensidad que circula por el primario:

$$I_{P_{Tideal}} = r_t \cdot I_{S_T} = \frac{12}{230} \cdot 50 = 2,61 \, A \tag{33}$$

Si se considera que se va a tener alrededor de un 4% de pérdidas, la intensidad que se necesita que circule por el primario para conseguir mantener tanto la tensión como la intensidad en el secundario es la que muestra la *ecuación* (34).

$$I_{P_T} = 1,04 \cdot I_{P_{Tideal}} = 1,04 \cdot 2,61 = 2,71 A \tag{34}$$

Finalmente, se calcula la potencia necesaria del transformador:

$$P_T = V_{P_T} \cdot I_{P_T} = 46,8 \, VA \tag{35}$$

Ahora se estudia el **transformador intermedio**, cuyo esquema se representa en la *Figura 29*. Se procede de forma análoga a como se ha hecho con el transformador toroidal. Cabe decir que, lógicamente, la tensión e intensidad de salida del transformador intermedio se corresponde con la tensión e intensidad de entrada del transformador toroidal ($V_{STM} = V_{P_T}$ y $I_{STM} = I_{P_T}$).

Figura 29: Esquema del transformador intermedio

Lo primero que se calcula es la tensión del primario:

$$V_{P_{TM}} = \frac{V_{S_{TM}}}{r_t} = 17,25 \cdot \frac{230}{24} = 165,31 \, V \tag{36}$$

Y la intensidad primaria, considerando que se produce un 4% de pérdidas es:

$$I_{P_{TM}} = 1,04 \cdot \left(r_t \cdot I_{S_{TM}}\right) = 1,04 \cdot \left(\frac{24}{230} \cdot 2,71\right) = 0,29 A \tag{37}$$

Finalmente, la potencia necesaria del transformador es:

$$P_{TM} = V_{P_{TM}} \cdot I_{P_{TM}} = 48,672 \, VA \tag{38}$$

Por último, se analiza el **autotransformador** (*Figura 29*). En este tipo de dispositivos se puede fijar la relación de transformación a conveniencia, por lo tanto, se elige $V_{nominal \ secundario} = V_{P_{TM}}$. La tensión en el primario se corresponde con la tensión de la red ($V_{P_{Au}} = 230 \ V$) y se tiene que $I_{S_{Au}} = I_{P_{TM}}$.

Figura 30: Autotransformador

Se puede calcular la intensidad que se tiene en el primario, como es habitual suponiendo un 4% de pérdidas:

$$I_{P_{Au}} = 1,04 \cdot r_t \cdot I_{S_{Au}} = 1,04 \cdot \frac{165,31}{230} \cdot 0,29 = 0,22 A$$
(39)

Y la potencia necesaria es:

$$P_{Au} = V_{P_{Au}} \cdot I_{P_{Au}} = 50,618 \, VA \tag{40}$$

El montaje de la fuente de corriente ha sido realizado por parte de la empresa. Hay que destacar que finalmente se consigue una salida máxima en torno a 32 amperios. Esto puede ser debido a que las soldaduras realizadas no están hechas del mejor modo o se producen más pérdidas de las inicialmente supuestas.

En orden a aumentar la corriente, una solución es aumentar la sección del cable para disminuir su resistencia. De todas formas, haciendo pasar el hilo varias veces por la sonda, a modo de enrollamiento tipo bobina, por cada vez que se pase el cable por la sonda, se aumenta la corriente a medir en esa cantidad. Es decir, si pasamos dos veces por la sonda, con la situación actual podríamos medir $2 \cdot 32 A = 64 A$.

4.2.2. Equipamiento utilizado y montaje del sistema de ensayo

Para la realización de los ensayos hemos utilizado, para generar la señal de intensidad, la fuente de corriente explicada en el apartado anterior (4.2.1. *Diseño y construcción de la fuente de corriente*). Como equipo de medida se ha empleado el prototipo del equipo de submetering diseñado y fabricado por la empresa Termia Auditores Energéticos S.L., que se muestra en la *Figura 31*.

Figura 31: Prototipo del equipo de submetering

Dentro de este equipo de medida, los sensores utilizados para realizar la medida de corriente son la muestra de sondas Rogowski de la que se dispone. A su vez, la medida de tensión se conecta directamente a la red eléctrica.

Por otra parte, se tiene una pinza amperimétrica calibrada (modelo F201 de Chauvin Arnoux, cuyo certificado de calibración se muestra en el *Anexo* 5) que se usa para medir la corriente que realmente circula por el conductor (patrón). El montaje final del sistema de ensayo se muestra en las *Figura* 32 y *Figura* 33.

Figura 32: Montaje del sistema de ensayo (I)

Figura 33: Montaje del sistema de ensayo (II)

Retomando el análisis del prototipo, en la *Figura 31* se observa que en la parte superior se conectan las señales de tensión e intensidad que se quieren medir. Además, posee un display donde, cada 5 segundos, se muestran los valores eficaces de corriente y tensión medidos, así como las potencias activas, reactiva y aparentes calculadas en ese intervalo. Estos datos se pueden visualizar en un ordenador a través del puerto serie gracias a la herramienta IDE (Integrated Development Environment) de Arduino. Basta con conectar el prototipo al ordenador mediante USB, elegir el puerto adecuado y se visualizará algo similar a lo que muestra la *Figura 34*. Además, con el fin de poder comprobar que el chip de medida funciona correctamente, en el display se muestran la frecuencia de la red y la temperatura del chip.

o con 	v114																					
Vrms	239	239	239	Irms	53	53	53	Pactive	11440	11480	11540	Qreactive	0	0) Sapparent:	10	10	10	PFactor	0	0	a
Vrms	239	239	239	Irms	53	53	53	Pactive	11450	11490	11540	Qreactive	0	0) Sapparent:	10	10	10	PFactor	0	0	0
Vrms	239	239	239	Irms	53	53	53	Pactive	11440	11470	11530	Qreactive	0	0) Sapparent:	10	10	10	PFactor	0	0	0
Vrms	239	239	239	Irms	53	53	53	Pactive	11430	11470	11520	Qreactive	0	0) Sapparent:	10	10	10	PFactor	0	0	0
Vrms	239	239	239	Irms	52	53	53	Pactive	11430	11460	11520	Qreactive	0	0) Sapparent:	10	10	10	PFactor	0	0	0
Vrms	239	239	239	Irms	53	53	53	Pactive	11440	11480	11540	Qreactive	0	0	Sapparent:	10	10	10	PFactor	0	0	0

Figura 34: Visualización de los datos mediante puerto serie

A la hora de realizar los ensayos, se pueden probar 3 bobinas al mismo tiempo al tratarse de un contador trifásico. Las intensidades que se van a medir se corresponden con puntos iguales a 0, 5, 10, 20, 30, 40, 50, 60, 70, 80 y 90 amperios. A partir de 30 A, la medida de intensidad se consigue dando varias

vueltas al conductor de salida del generador de corrientes para alcanzar la intensidad deseada. Por ejemplo, para el punto de 40 A se dan 2 vueltas (como se muestra en la *Figura 35*) haciendo circular una corriente de 20 A. Para las medidas comprendidas entre 60 y 90 A será necesario hacer pasar tres veces el conductor por la sonda.

Figura 35: Arrollamiento del cable para medidas comprendidas entre 30 y 60 A

Hay que decir que en la fase actual en la que se encuentra el prototipo del equipo de submetering sólo se encuentra calibrado el canal de intensidad eficaz por lo que no se va a poder realizar un análisis de las potencias.

4.2.3. Condiciones de ensayo

Es imprescindible definir las condiciones bajo las cuales se van a realizar los ensayos. Primeramente, se define un tiempo de calentamiento igual a una hora de todos los aparatos que intervienen en la medida. Además, se asegura que la humedad se mantiene constante y la temperatura ambiente se conserva en un rango de 20±2 °C durante todo el ensayo.

Por otro lado, hay que garantizar que la medida se mantiene estable y no cambia. Para ello se toman 5 lecturas de cada medida para, posteriormente, poder calcular su media.

4.2.4. Resultado de los ensayos

En el Anexo 3: Datos obtenidos en los ensayos en las inmediaciones de la empresa se encuentran recogidos todos los datos obtenidos tras la realización de los ensayos (Tabla 30 a Tabla 33).

Hay que decir que, a partir del punto de medida de 10 amperios, la salida proporcionada por el prototipo se mantiene estable en el tiempo por lo que sólo es necesario anotar una medición.

4.2.5. Caracterización del equipo de medida

4.2.5.1. Cálculo del error y su incertidumbre asociada

A partir de los datos medidos, se procede a calcular el error que se da en el cálculo de la intensidad eficaz, tal como muestra la *fórmula (41)*.

$Error = lectura \ del \ prototipo - lectura \ del \ patrón$ (41)

Se recuerda que el sistema de ensayo que se tiene consta de una fuente de corriente y un conductor de salida. La intensidad que circula por el conductor se está midiendo al mismo tiempo con el equipo patrón y con prototipo del equipo de medida. Por lo tanto, se puede determinar que el error lleva asociado una incertidumbre debida:

- La tolerancia del equipo patrón (Tipo B).
- La resolución del display del prototipo (Tipo B).
- La repetibilidad de tomar las lecturas que proporciona el prototipo (Tipo A).

Se recuerda el concepto asociado a cada tipo de incertidumbre [33]:

- Incertidumbre tipo A: Evaluación de la incertidumbre mediante el análisis estadístico de una serie de mediciones.
- Incertidumbre tipo B: Evaluación de la incertidumbre mediante un procedimiento diferente al análisis estadístico de una serie de observaciones.

Como todas las fuentes de incertidumbre son aditivas, la incertidumbre total del error se estima tal como muestra la *ecuación (42)*.

$$u(error)^{2} = u(x_{1})^{2} + u(x_{2})^{2} + u(x_{3})^{2}$$
(42)

Donde x_1 se refiere a la incertidumbre tipo B debida a la tolerancia del patrón, x_2 se refiere a la incertidumbre tipo B debida a la resolución del display y x_3 se refiere a la incertidumbre tipo A debida a la repetibilidad de las medidas.

Ahora se procede a explicar cómo se calcula cada una de estas incertidumbres. La incertidumbre asociada a la **tolerancia del patrón** se calcula de acuerdo con las especificaciones del fabricante [34], que se muestran en la *Tabla* 9.

Rango de medida	0,15 A hasta 59,99 A	60,0 A hasta 599,9 A
Incertidumbre	\pm (1% de la lectura + 0,1) A	$\pm(1\%$ de la lectura + 0,3) A

Tabla 9: Incertidumbres del patrón

Aplicando esta fórmula de la manera que corresponda para cada punto de medida, se obtiene $u(x_1)$. Estas incertidumbres se encuentran recogidas en el *Anexo 4*, *Tabla 35*.

A continuación, se calcula la incertidumbre debida a la **resolución del display**, que sigue una distribución cuadrada, tal como muestra la *ecuación (43)*:

$$u(x_2) = \frac{resolución/2}{\sqrt{3}}$$
(43)

Esta incertidumbre es la misma para todos los puntos de medida y tiene un valor igual a $u(x_2) = \frac{0.1/2}{\sqrt{3}} = 0,028868.$

Finalmente, se calcula la incertidumbre tipo A asociada a la **repetibilidad de las medidas** para cada punto de medida del modo que muestra la *ecuación (44)*.

$$u(x_3) = \frac{desviación estándar}{\sqrt{n}}$$
(44)

Donde *n* representa el número de mediciones. Nótese que esta incertidumbre sólo se va a dar para las medidas de 0 y 5 A, ya que a partir de los 10 A la salida que aporta el prototipo se mantiene estable. Los valores calculados para incertidumbre se encuentran recogidos en el *Anexo 4*, *Tabla 36*.

Una vez halladas estas incertidumbres, finalmente se puede calcular la incertidumbre total que presenta el error. Para ello se despeja la ecuación (42) del modo que sigue:

$$u(error) = \sqrt{u(x_1)^2 + u(x_2)^2 + u(x_3)^2}$$
(45)

Todos los errores calculados junto con sus correspondientes incertidumbres se muestran en el *Anexo 4, Tabla 34*.

4.2.5.2. Análisis y representación gráfica del error

A partir de los datos recogidos en la *Tabla 34*, se pueden calcular los rangos en los que se va a encontrar el error. Mediante la suma del error más su incertidumbre, se obtiene el valor máximo que se puede llegar a dar en la medida de la intensidad eficaz. Análogamente, el valor mínimo se obtiene restando el error menos la incertidumbre. Los datos calculados se encuentran recogidos en la *Tabla 37* y *Tabla 38*, respectivamente. Con esta información se realizan los gráficos que se muestran en la *Figura 36* a *Figura 47*. En estos gráficos se ha representado el valor mínimo esperable del error en azul, el valor máximo esperable del error en naranja y el error con marcadores grises en forma de cruz.

Analizando los errores expuestos en las gráficas, se ve que a medida que aumenta la corriente, el error y su incertidumbre asociada también aumentan. Para medidas superiores a 30 A, hay que tener en cuenta que se está introduciendo un error sistemático al hacer pasar el conductor varias veces a través de la sonda para conseguir la corriente deseada. También existe un error asociado a la posición del conductor dentro de la bobina, aunque se ha intentado minimizar mediante la correcta colocación de las sondas durante la realización de los ensayos.

El máximo error registrado se da para la sonda 5 a los 90 A y es igual a $-4\pm1,202$ A. Es muy importante destacar que el máximo error para todas las sondas se produce a los 90 A, que es el máximo valor de lectura en la escala que se está usando (fondo de escala). Por lo tanto, el error de fondo de escala se corresponde con el error a los 90 A para todos los casos. Considerando esto, se puede concluir que el prototipo del equipo de submetering presenta unos errores aceptables ya que cumple el requerimiento impuesto de que el error debe ser inferior al $\pm10\%$ del fondo de escala.

Además, se observa que las medidas más precisa y exacta se dan a los 5 A, independientemente del número de sonda ensayada.

Figura 36: Errores e incetidumbres del prototipo con la sonda 1

Si se analizan los errores que se dan en las sondas correspondientes a las medidas de 30 A, 60 A y 90 A, se ve que para los 60 A se tiene un error que es ligeramente superior al doble del que se da en 30 A. Análogamente, a los 90 A se tiene un error ligeramente superior al triple que a los 30 A. Esto ocurre en todas las sondas ensayadas.

Figura 37: Errores e incetidumbres del prototipo con la sonda 2

En las sondas 1, 2 y 5 se observa que el error va aumentando de manera aproximadamente lineal, excepto para las medidas de 30 y 70 A, donde se mantiene próximo a las medidas que lo preceden.

Figura 38: Errores e incetidumbres del prototipo con la sonda 5

Como se aprecia, el comportamiento de la sonda 5 (*Figura 38*) es similar a las anteriores, sólo que en este caso los errores son ligeramente superiores, pudiéndose alcanzar un error en 90 A igual a -5,202 A.

Figura 39: Errores e incetidumbres del prototipo con la sonda 6

En el caso de la sonda 6 (*Figura* 39) el error máximo que se puede esperar en la medida de los 90 A es igual a -5,002 A.

Figura 40: Errores e incetidumbres del prototipo con la sonda 7

Es muy común en las sondas que los valores de los errores aumentan de forma aproximadamente lineal a lo largo de todo el rango de intensidades.

Figura 41: Errores e incetidumbres del prototipo con la sonda 8

Se puede apreciar que para la sonda 8 (*Figura 41*) se produce un ligero descenso de la incertidumbre en la medida de los 70 A.

Figura 42: Errores e incetidumbres del prototipo con la sonda 9

Figura 43: Errores e incetidumbres del prototipo con la sonda 10

Algo similar a lo que pasaba en las sondas 1, 2 y 5 ocurre en las sondas 10, 12 y 13 donde los errores van aumentando linealmente con la corriente excepto en los 80 A, que se mantienen en un valor parecido al que se da en los 70 A.

Figura 44: Errores e incetidumbres del prototipo con la sonda 11

Nuevamente, se puede verificar que el menor error se da en la medida de los 5 A y el mayor en la medida de 90 A.

Figura 45: Errores e incetidumbres del prototipo con la sonda 12

Figura 47: Errores e incetidumbres del prototipo con la sonda 14

Por otro lado, se puede analizar la medida que se da a los 0 A. Se ve claramente que todas las sondas presentan una medida superior a la real y que por lo general está comprendida entre 0,2 y 1 amperios. Considerando el caso promedio de todas las sondas, es decir, cuando se da una medida promedio igual a 0,66 amperios, y suponiendo un circuito resistivo puro ($\cos \varphi = 1$), esto representa una potencia igual a $P = V \cdot I \cdot \cos \varphi = 400 \cdot \sqrt{3} \cdot 0,66 \cdot 1 = 457,26 W$. Dicha potencia en algunas ocasiones se va a poder considerar despreciable, pero hay que tener en cuenta que se produce este error.

4.2.5.3. Intensidad real frente a intensidad medida.

Ahora se procede a realizar un análisis similar al efectuado en el apartado 4.1.3.3. Interpolación lineal. Relación entre Ireal y Imedida. Con intención de reducir los errores que se producen en el cálculo de la intensidad eficaz en el prototipo, se realiza una recta de ajuste a partir de las intensidades promedio medidas. Los valores de estas intensidades se muestran en la Tabla 10.

Intensidad patrón (A)	Intensidad promedio medida con el prototipo (A)	Error (A)
0,00	0,48	0,48
5,00	4,96	-0,04
10,01	9,73	-0,28
20,02	19,38	-0,64
30,02	29,08	-0,94
40,08	38,64	-1,43
50,10	48,24	-1,86
60,18	57,88	-2,29
70,25	67,68	-2,58
80,30	77,33	-2,97
90,13	86,63	-3,50

Tabla 10: Intensidades promedio de todas las sondas

A partir de estos datos, se representa en la *Figura 48* la intensidad real que hemos medido con el patrón frente a la intensidad medida a partir del prototipo.

Figura 48: Recta de ajuste para la intensidad eficaz

En la gráfica arriba expuesta (*Figura 48*) también se muestra la recta de ajuste a partir de la interpolación lineal y el coeficiente de correlación. Esta recta de interpolación, que se calcula a partir de las ecuaciones (25) y (26) mostradas con anterioridad, puede ser de utilidad en un futuro para aquellos casos en los que se sepa de antemano que se va a trabajar con bajas intensidades (\leq 90 A). La recta calculada toma la forma que muestra la ecuación (46).

$$I_{medida} = (0.9588 \cdot I_{real} + 0.2476) \pm 5.22\% FS$$
(46)

Como se puede apreciar, en la *ecuación (46)* también se muestra la incertidumbre asociada a la medida como porcentaje del fondo de escala (FS). Para calcular este valor, primero se calcula la incertidumbre asociada a cada

escalón de intensidad a partir del promedio cuadrático de las incertidumbres del error de cada medida recogidas en la *Tabla 34*. Los resultados de este cálculo se muestran en la *Tabla 11*. Asimismo, se muestran los errores máximos esperados, resultado de sumar el error expuesto en la *Tabla 10* más la incertidumbre promedio de la *Tabla 11*.

Punto	Incertidumbre promedio (A)	Error máximo (A)
0	0,154	0,634
5	0,154	-0,188
10	0,202	-0,481
20	0,302	-0,941
30	0,401	-1,338
40	0,502	-1,935
50	0,602	-2,460
60	0,902	-3,194
70	1,003	-3,578
80	1,103	-4,070
90	1,202	-4,702

Tabla 11: Incertidumbre promedio

A partir del máximo error de todos los mostrados en la *Tabla 11*, se calcula el error a fondo de escala (*ecuación (47)*) teniendo en cuenta que el máximo valor de lectura es igual a 90 A.

Incertidumbre
$$FS = \frac{-4,702}{90} \cdot 100 = \pm 5,22\%$$
 (47)

Si en vez de tomar la lectura de intensidad que indica el prototipo, se programa que tome el punto de la recta de ajuste, se tiene una nueva variable que es nuestra nueva medida de intensidad, y que denotamos como *Intensidad linealizada*. Despejando la ecuación (46) se tiene que la nueva variable es:

$$I_{linealizada} = \frac{I_{medida} - 0,2476}{0,9588} \pm 5,22\% FS$$
(48)

5. Conclusiones

5.1. Conclusiones

A través de la realización de este proyecto he podido adquirir un amplio conocimiento sobre el tema tratado, logrando cumplir de manera satisfactoria todos los objetivos expuestos en el primer capítulo.

Primero, se realizó un estudio de las características de las sondas tipo Rogowski disponibles actualmente en el mercado. Con ello, se seleccionó el modelo que más se ajustaba a los requerimientos impuestos por parte de la empresa Termia, para comprobar si era viable su utilización como sensor de intensidad en el equipo de submetering.

Posteriormente, se analizó cómo funcionan las bobinas Rogowski, de forma teórica, a partir de la aplicación directa de las leyes de Faraday y Ampère. Además, se mostraron los factores de influencia en las medidas proporcionadas por la bobina, así como el tipo de señal de salida que proporcionan estos sensores.

Una vez superado este paso, se diseñó y construyó una fuente de corriente, necesaria para poder realizar los ensayos en las instalaciones de la empresa, a la vez que se llevó a ensayar una muestra de sondas al Laboratorio de Calibración Eléctrica de Castilla y León.

A partir de los ensayos realizados, expuestos en el cuarto capítulo, se ha podido determinar la idoneidad de las sondas seleccionadas. A la vista de los resultados obtenidos, tras el análisis de los datos obtenidos en LACECAL, se confirma que las sondas seleccionadas son aptas para su utilización en el equipo de medida previsto, al cumplir con el requerimiento de precisión impuesto por Termia.

Por último, se ha caracterizado el equipo de medida completo mediante ensayos realizados en la empresa. Para ello se ha calculado el error y la incertidumbre que se comete con el prototipo del equipo de submetering en la medida de la intensidad eficaz y se ha verificado que dicho error se encuentra siempre por debajo del 10% del valor de fondo de escala.

5.2. Líneas futuras de trabajo

La primera línea futura de trabajo que se plantea es comprobar la bondad de las medidas de potencia activa, reactiva y aparente que proporciona el prototipo, una vez se hayan calibrado los canales de potencia. Asimismo, será necesario comprobar que el error del prototipo se encuentra dentro del requerimiento de precisión establecido en todo el rango de funcionamiento, ya que esto sólo se ha comprobado para el rango de 0 a 90 A.

Otra línea de trabajo interesante es implementar todo el sistema de almacenamiento y comunicación inalámbrica de los datos. Actualmente los datos se pueden visualizar a través del ordenador, pero no se transmiten. Una vez implementadas las comunicaciones, habrá que realizar los tests oportunos para comprobar su correcto funcionamiento. Continuando con esta línea, se deberá diseñar una plataforma que vaya procesando todos los datos que se envían.

Por otra parte, dentro de la fuente de corriente se puede incluir un módulo que sirva para desfasar la tensión de la red. De este modo, se pueden simular cargas inductivas o capacitivas con el fin de poder realizar ensayos más completos fijando el factor de potencia que se desee.

Bibliografía

Universidad deValladolid

- [1] A. Madrid, Manual para la transición energética : con el Real Decreto de medidas urgentes para la transición energética y la protección de los consumidores : comentado e ilustrado, 1ª ed. Madrid: AMV, 2019.
- [2] Instituto Vasco de Competitividad Fundación Deusto and J. Fernández Gómez, "Eficiencia Energética En El Sector Industrial," p. 118, 2021, [Online]. Disponible en: http://earchivo.uc3m.es/bitstream/handle/10016/13678/PFC_Diego_Sevillej a.pdf;jsessionid=F1B8AF45E8F848D991166382555597C4?sequence =1.
- [3] Naciones Unidas, "PROTOCOLO DE KYOTO DE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE EL CAMBIO CLIMÁTICO," 1998.
- [4] European Union, "2020 climate & energy package." .
- [5] European Union, "Paris Agreement | Climate Action." https://ec.europa.eu/clima/eu-action/international-action-climatechange/climate-negotiations/paris-agreement_en (Fecha de último acceso: Sep. 12, 2021).
- [6] United Nations, "Paris Agreement," 2015.
- [7] Ministerio para la transición ecológica y reto demográfico, "Plan Nacional Integrado de Energía y Clima 2021-2030," 2020.
- [8] IDAE, "Plan Nacional Integrado de Energía y Clima (PNIEC) 2021-2030." https://www.idae.es/informacion-y-publicaciones/plan-nacionalintegrado-de-energia-y-clima-pniec-2021-2030 (Fecha de último acceso: Sep. 13, 2021).
- [9] Endef Solar Solution, "Monitorización: Eficiencia energética para principiantes." https://endef.com/monitorizacion-ee-para-principantes/ (Fecha de último acceso: Sep. 15, 2021).
- [10] F. Gruffaz, "Guide to using the IEC 61557-12 standard to simplify the setup of an energy measurement plan," no. 998, pp. 1–12.
- [11] Arteche, "Acercamiento a los transformadores de medida," p. 36.
- [12] J. López de Benito, "EnergyNews ¿Qué son los transformadores de corriente de núcleo partido?," 2019. https://www.energynews.es/transformadores-de-corriente-de-nucleopartido/ (Fecha de último acceso: Sep. 16, 2021).
- [13] Circutor, "TD, TQ y TQR Gama de Transformadores para la medida de corriente," pp. 1–12.
- [14] MEATROL, "Meatrol catalogue." .
- [15] J. D. Ramboz, "Machinable rogowski coil, design, and calibration," *IEEE Trans. Instrum. Meas.*, vol. 45, no. 2, pp. 511–515, 1996.

- [16] D. Seuret and S. Oseguera, "Diseño y construcción de bobinas de Rogowski modificadas de bajo costo y alto desempeño," *Rev. Electrónica Nov. Sci.*, 2014.
- [17] D. A. Ward and J. L. T. Exon, "Using Rogowski coils for transient current measurements," *Eng. Sci. Educ. J.*, vol. 2, no. 3, p. 105, 1993.
- [18] P. A. Tipler, Física para la ciencia y la tecnología. 2, Electricidad y magnetismo, Luz, 6ª ed. Barcelona: Reverté, 2013.
- [19] "CBSE SCIENCE." https://cbsescience.in/2017/09/27/magnetic-fieldthrough-a-current-carrying-conductor/ (Fecha de último acceso: Sep. 01, 2021).
- [20] G. Zhang and Y. Liu, "Positional error analysis of PCB rogowski coil for high accuracy current measurement," *Adv. Mech. Eng.*, no. 1, 2013.
- [21] E. García Aznar, "Diseño de una sonda Rogowski. Análisis y optimización." 2017, [Online]. Disponible en: http://zaguan.unizar.es/TAZ/EUCS/2014/14180/TAZ-TFG-2014-408.pdf.
- [22] M. Argüeso Montero, "Estudio de una bobina de Rogowski como sonda detectora de pulsos de alta frecuencia," 2005.
- [23] S. A. C. Montiel, "Bobina Rogowski como sensor de corriente para monitoreo de transformadores de distribución," no. 1, pp. 1–7, 2009.
- [24] T. L. Floyd, *Dispositivos electrónicos*, 8ª ed. México [etc: Pearson Prentice-Hall, 2008.
- [25] R. L. Boylestad, *Electrónica*: teoría de circuitos y dispositivos electrónicos, 10^a ed. México: Pearson Prentice Hall, 2009.
- [26] W. Koon, "Current sensing for energy metering, William Koon, Analog Devices, Inc.," *Conf. Exhib. Embed. Syst. Conf.*, 2002, [Online]. Disponible en: http://www.analog.com/en/technical-articles/current-sensing-for-energy-metering.html.
- [27] Atmel, "Atmel-46004-SE-M90E36A-Datasheet."
- [28] Microchip, "MCP39F511 Power-Monitoring IC with Calculation and Energy Accumulation," p. 62, 2015.
- [29] W. Mendenhall, Introducción a la Probabilidad y la Estadística, 13ª ed. Cengage Learning, 2010.
- [30] J. L. Devore, *Probabilidad y estadística para ingeniería y ciencias*, Novena edi. México: Cengage Learning, 2016.
- [31] Ó. Moreno Díaz, "Exactitud y Precisión." http://formacion.intef.es/pluginfile.php/246707/mod_resource/conte nt/1/exactitud_y_precisin.html (Fecha de último acceso: Oct. 13, 2021).
- [32] M. Á. Rodríguez Pozueta, *Transformadores*. 2011.

- [33] Ó. Delgado and SGC LAB, "Cómo evaluar la incertidumbre de medición sin necesidad de ser un experto en matemáticas." https://sgc-lab.com/guia-para-estimar-la-incertidumbre-de-la-medicion-hecha-para-personas-normales/ (Fecha de último acceso: Nov. 15, 2021).
- [34] Chauvin Arnoux Group, "Clamp Multimeter F201 User's manual." .

Anexos

Anexo 1: Resultado de los ensayos en LACECAL

						SONDA 1								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV)											
0	0	0,0147 0,0118 0,0103 0,0112 0,0141 0,0137 0,0131 0,0142 0,0125 0,01										0,01256		
100	5	5,0037	5	4,997	4,9923	4,9875	4,9822	4,9779	4,9735	4,9673	4,9641	4,98455		
200	10	9,9834	9,9813	9,9811	9,9809	9,9794	9,9789	9,9773	9,9762	9,9751	9,9729	9,97865		
300	15	14,9223	14,9218	14,9211	14,9223	14,921	14,9219	14,9215	14,9221	14,9226	14,9233	14,92199		
400	20	19,9086	19,9098	19,9098	19,9113	19,9121	19,9139	19,9125	19,9151	19,9155	19,9153	19,91239		
500	25	24,9186	24,9226	24,9257	24,9295	24,9309	24,9311	24,9303	24,9266	24,9227	24,9175	24,92555		
600	30	29,863	29,8673	29,8707	29,8725	29,8767	29,8798	29,8832	29,8866	29,8912	29,894	29,8785		
700	35	34,8451	34,8393	34,8398	34,8397	34,8389	34,8388	34,8401	34,8405	34,8425	34,8441	34,84088		
800	40	39,8543	39,8552	39,8583	39,8608	39,8626	39,8641	39,8657	39,8662	39,8671	39,8664	39,86207		
900	45	44,794	44,7961	44,7974	44,7991	44,801	44,8025	44,8046	44,8051	44,8065	44,8105	44,80168		
1000	50	49,7736	49,7733	49,7721	49,7722	49,7703	49,7704	49,7701	49,7697	49,7691	49,7697	49,77105		

Tabla 12: Medidas realizadas con la sonda 1 (ensayos LACECAL)

Salida medida promedio (mV)

0,02277

4,94582

9,92755

14,92726

19,85462

24,85881

29,80181

34,7773

39,75139

44,71807

49,64261

0,0228

4,9458

9,9302

14,9277

19,8507

24,8605

29,7979

34,7831

39,7522

44,7139

49,6402

0,0232

4,9455

9,9319

14,9278

19,8506

24,8613

29,7963

34,7845

39,7517

44,7106

49,6404

						SONDA 2			
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	didas (mV)	1	
0	0	0,0236	0,0222	0,021	0,0211	0,0237	0,0229	0,0243	0,0229
100	5	4,9463	4,9457	4,9457	4,9452	4,9453	4,9464	4,946	4,9463
200	10	9,9243	9,9248	9,9252	9,9272	9,9264	9,9272	9,9285	9,9298
300	15	14,9269	14,927	14,927	14,9271	14,9272	14,9276	14,9275	14,9268
400	20	19,8632	19,861	19,8585	19,8554	19,8534	19,8518	19,8514	19,8502
500	25	24,8558	24,856	24,8564	24,859	24,8592	24,8599	24,8601	24,8599
600	30	29,8079	29,8052	29,8048	29,8037	29,8018	29,8011	29,7998	29,7996
700	35	34,7695	34,7714	34,7712	34,7747	34,7769	34,779	34,7804	34,7823

39,7513

44,7211

49,6442

39,7517

44,7207

49,6433

39,7519

44,7222

49,6461

39,7487

44,7225

49,6454

40

45

50

800

900

1000

49,6428 Tabla 13: Medidas realizadas con la sonda 2 (ensayos LACECAL)

44,7191

39,7522 39,7513

44,7179

49,641

39,7512

44,717

49,641

39,7517

44,7157

49,6417

						SONDA 3								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0241 0,0124 0,0346 0,0194 0,0408 0,042 0 0 0,0022											
0	0	0,0241 0,0371 0,0124 0,0346 0,0194 0,0408 0,042 0 0 0,0022 5,004 4,9988 4,9935 4,9886 4,9852 4,9806 4,977 4,9739 4,972 4,9708										0,02126		
100	5	5,004	4,9988	4,9935	4,9886	4,9852	4,9806	4,977	4,9739	4,972	4,9708	4,98444		
200	10	10,0005	10,0005 10,0001 9,9993 10,0003 10,0002 9,9986 9,9968 9,9967 9,9954 9,9944											
300	15	14,938	14,941	14,9435	14,9465	14,9502	14,9535	14,9565	14,9604	14,9646	14,9682	14,95224		
400	20	19,9856	19,9817	19,9812	19,9791	19,9759	19,9739	19,9694	19,9676	19,9627	19,9599	19,9737		
500	25	24,9237	24,9221	24,9223	24,9219	24,921	24,9205	24,9201	24,92	24,9207	24,92	24,92123		
600	30	29,9131	29,9125	29,9133	29,9134	29,9141	29,9141	29,9145	29,9157	29,916	29,9168	29,91435		
700	35	34,9458	34,9458	34,946	34,9463	34,9462	34,9441	34,9433	34,9413	34,9379	34,9342	34,94309		
800	40	39,8809	39,8816	39,8827	39,8845	39,8855	39,8882	39,8901	39,8946	39,898	39,9019	39,8888		
900	45	44,9197	44,9202	44,92	44,9189	44,9191	44,9192	44,9185	44,9185	44,9187	44,9188	44,91916		
1000	50	49,906	49,9052	49,9016	49,8989	49,8964	49,8933	49,8879	49,8848	49,8806	49,8751	49,89298		

Tabla 14: Medidas realizadas con la sonda 3 (ensayos LACECAL)

						SONDA 4								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0174 0,0191 0,0227 0,0231 0,0221 0,0212 0,0238 0,0165											
0	0	0,0174	0,0174 0,0191 0,0135 0,0227 0,0231 0,022 0,0231 0,0212 0,0238 0,0165 4.9663 4.9685 4.9725 4.9749 4.9787 4.9834 4.9868 4.9882 4.9918 4.9947											
100	5	4,9663	4,9685	4,9725	4,9749	4,9787	4,9834	4,9868	4,9882	4,9918	4,9947	4,98058		
200	10	9,964 9,9667 9,969 9,9699 9,9714 9,9722 9,973 9,9733 9,9747 9,9734										9,97076		
300	15	14,9008	14,8984	14,8986	14,8985	14,8982	14,8976	14,8989	14,8978	14,8984	14,8979	14,89851		
400	20	19,8874	19,89	19,8911	19,8926	19,8943	19,8976	19,9002	19,9031	19,9075	19,9098	19,89736		
500	25	24,8471	24,8447	24,8438	24,8428	24,8428	24,8423	24,843	24,8437	24,8437	24,845	24,84389		
600	30	29,8481	29,8459	29,8458	29,844	29,8424	29,842	29,8418	29,8393	29,8376	29,8355	29,84224		
700	35	34,785	34,7838	34,784	34,7839	34,785	34,7853	34,7865	34,7871	34,788	34,7906	34,78592		
800	40	39,7562	39,7577	39,7593	39,7616	39,765	39,7675	39,7705	39,7723	39,7747	39,7764	39,76612		
900	45	44,7724 44,7693 44,7681 44,7663 44,765 44,7623 44,7602 44,7583 44,7574 44,755												
1000	50	49,7039	49,7023	49,7013	49,6992	49,6993	49,698	49,699	49,6979	49,6982	49,697	49,69961		

Tabla 15: Medidas realizadas con la sonda 4 (ensayos LACECAL)

						SONDA 5								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0254 0,0261 0,0319 0,0302 0,0263 0,0276 0,0364 0,0344 0,0327											
0	0	0,0254	0,0254 0,0241 0,0261 0,0319 0,0302 0,0263 0,0276 0,0364 0,0344 0,0327 4,9673 4,967 4,9668 4,9664 4,9632 4,9627 4,9604 4,9592 4,9591											
100	5	4,9673	4,9673 4,967 4,9668 4,966 4,9644 4,9632 4,9627 4,9604 4,9592 4,9591 9,9384 9,9384 9,9384 9,9385 9,9422 9,9438 9,9457 9,9464 9,9464											
200	10	9,9384 9,9384 9,9381 9,9388 9,9395 9,942 9,9438 9,9457 9,9464 9,9469										9,9418		
300	15	14,9452	14,9463	14,9461	14,9464	14,9469	14,9482	14,9474	14,9481	14,9475	14,9483	14,94704		
400	20	19,8955	19,8968	19,8992	19,8999	19,9038	19,9061	19,9104	19,9137	19,9188	19,9245	19,90687		
500	25	24,9188	24,9179	24,9173	24,9172	24,9152	24,9141	24,9117	24,9097	24,907	24,9058	24,91347		
600	30	29,8513	29,8511	29,8511	29,8513	29,8507	29,8511	29,8507	29,8515	29,851	29,852	29,85118		
700	35	34,8395	34,8403	34,8429	34,8438	34,8441	34,8427	34,8435	34,8445	34,8436	34,8451	34,843		
800	40	39,8176 39,8195 39,8204 39,8223 39,8253 39,8284 39,831 39,8357 39,839 39,8427 3									39,82819			
900	45	44,8422 44,8424 44,8428 44,8426 44,8424 44,8419 44,8426 44,8429 44,8427 44,8422												
1000	50	49,7977	49,7962	49,7943	49,7947	49,7958	49,7952	49,7953	49,7946	49,7937	49,7924	49,79499		

Tabla 16: Medidas realizadas con la sonda 5 (ensayos LACECAL)

						SONDA 6								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0275 0,0218 0,0207 0,0205 0,0211 0,0208 0,0194 0,02 0,019											
0	0	0,0275 0,0218 0,0207 0,0205 0,0205 0,0211 0,0208 0,0194 0,02 0,019 4,992 4,9919 4,9917 4,9913 4,991 4,9908 4,9905 4,9897 4,9888										0,02113		
100	5	4,992	4,9919	4,9917	4,9913	4,991	4,9908	4,9908	4,9905	4,9897	4,9888	4,99085		
200	10	9,9507	9,9526	9,9545	9,9569	9,958	9,9586	9,9602	9,9601	9,9584	9,9583	9,95683		
300	15	14,9254	14,9262	14,9234	14,9223	14,9211	14,9258	14,926	14,9221	14,918	14,9261	14,92364		
400	20	19,8589	19,8571	19,856	19,8563	19,8545	19,8522	19,8524	19,8503	19,8493	19,849	19,8536		
500	25	24,8108	24,8107	24,8105	24,8109	24,8117	24,8139	24,8148	24,8161	24,8175	24,8193	24,81362		
600	30	29,7731	29,7762	29,7755	29,7763	29,7757	29,7751	29,7753	29,7759	29,7757	29,7764	29,77552		
700	35	34,7604	34,7602	34,7618	34,7638	34,7655	34,7639	34,7633	34,7632	34,7628	34,7626	34,76275		
800	40	39,7002 39,6995 39,6993 39,6991 39,7003 39,7025 39,7041 39,7067 39,7097 39,7143									39,70357			
900	45	44,6783 44,6718 44,667 44,6616 44,6581 44,6568 44,6546 44,6536 44,6541 44,6549												
1000	50	49,6497	49,6463	49,6437	49,6408	49,639	49,6352	49,6319	49,6316	49,628	49,6281	49,63743		

Tabla 17: Medidas realizadas con la sonda 6 (ensayos LACECAL)

						SONDA 7									
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0286 0,0283 0,0288 0,0285 0,0287 0,0276 0,0278 0,0284 0,0281												
0	0	0,0286 0,0283 0,029 0,0288 0,0285 0,0287 0,0276 0,0278 0,0284 0,0281 5,0234 5,023 5,0219 5,0226 5,0224 5,0221 5,0229 5,023 5,0224 5,0227										0,02838			
100	5	5,0234	5,023	5,0219	5,0226	5,0224	5,0221	5,0229	5,023	5,0224	5,0227	5,02264			
200	10	9,9838	9,9815	9,9794	9,9773	9,9764	9,9747	9,9753	9,9734	9,9745	9,9747	9,9771			
300	15	14,992	14,9917	14,9919	14,9936	14,9927	14,994	14,9949	14,9947	14,9956	14,9971	14,99382			
400	20	20,0007	19,9975	19,9957	20,0006	20,0006	20,0008	20,0005	20,0008	20,0013	20,0032	20,00017			
500	25	24,9678	24,9703	24,9729	24,9748	24,9759	24,9775	24,9792	24,9805	24,9812	24,9816	24,97617			
600	30	29,9181	29,9202	29,9231	29,927	29,9305	29,936	29,941	29,9466	29,9521	29,9582	29,93528			
700	35	34,947	34,942	34,9363	34,932	34,9256	34,92	34,915	34,9118	34,9078	34,907	34,92445			
800	40	34,946 34,9481 34,9496 34,9514 34,9509 34,9513 34,9516 34,9527 34,9532 34,9531 34,9531									34,95079				
900	45	44,9205 44,9189 44,918 44,9174 44,9158 44,9144 44,9113 44,9106 44,91 44,9088													
1000	50	49,8785	49,8768	49,877	49,8765	49,8762	49,8754	49,8741	49,8729	49,8716	49,8701	49,87491			

Tabla 18: Medidas realizadas con la sonda 7 (ensayos LACECAL)

Nótese que en este caso para una entrada aplicada igual a 800 amperios, se obtiene una salida promedio igual a 34,95079 milivoltios. Esto es lo que se denomina un valor atípico o outlier, por lo que este dato no se tendrá en cuenta en el tratamiento de datos. Es probable que las medidas correspondientes a 800 amperios se hayan realizado con una intensidad igual a 700 amperios.

						SONDA 8								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0237 0,0216 0,0234 0,0237 0,0221 0,0232 0,023 0,0226 0,0233 0,0229											
0	0	0,0237 0,0216 0,0234 0,0237 0,0221 0,0232 0,023 0,0226 0,0233 0,0229 5.001 5.0032 5.0057 5.0074 5.0089 5.0101 5.0106 5.0111 5.0107 5.0098										0,02295		
100	5	5,001	5,001 5,0032 5,0057 5,0074 5,0089 5,0101 5,0106 5,0111 5,0107 5,0098 0,0015 0,0007 0,0001 0,0007 0,0001 0,0007 0,0001 0,0007 0,0001 0,0007 0,0001 0,0007 0,00001 0,0007 0,00001 0,0											
200	10	9,9915	9,9907	9,9891	9,9885	9,9874	9,9872	9,9851	9,9823	9,9791	9,976	9,98569		
300	15	14,9644	14,9618	14,96	14,9555	14,9511	14,9464	14,9407	14,9337	14,9274	14,9224	14,94634		
400	20	19,9537	19,9557	19,9553	19,9577	19,9578	19,9553	19,9544	19,9514	19,9477	19,9425	19,95315		
500	25	24,8541	24,8509	24,8488	24,8478	24,8465	24,8457	24,8456	24,8456	24,8467	24,8491	24,84808		
600	30	29,8688	29,8622	29,8572	29,8442	29,8375	29,8314	29,8247	29,8204	29,8161	29,8134	29,83759		
700	35	34,8447	34,8433	34,845	34,8445	34,8426	34,8403	34,8349	34,8297	34,8241	34,8175	34,83666		
800	40	39,7895 39,7918 39,7946 39,7945 39,7957 39,7971 39,7981 39,7972 39,7973 39,7939 3									39,79497			
900	45	44,8006 44,8052 44,8094 44,8127 44,8144 44,816 44,8163 44,815 44,811 44,8077												
1000	50	49,7985	49,7967	49,7929	49,7896	49,7846	49,7794	49,773	49,7652	49,7558	49,7487	49,77844		

Tabla 19: Medidas realizadas con la sonda 8 (ensayos LACECAL)

						SONDA 9								
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0285 0,0277 0,0276 0,0278 0,0281 0,0287 0,0275 0,0282 0,0293 0,0283											
0	0	0,0285	0,0285 0,0277 0,0276 0,0278 0,0281 0,0287 0,0275 0,0282 0,0293 0,0283 4,9951 4,9945 4,9944 4,9938 4,993 4,9918 4,9904 4,9892 4,9864 4,9837											
100	5	4,9951	4,9951 4,9945 4,9944 4,9938 4,993 4,9918 4,9904 4,9892 4,9864 4,9837 0,0601 0,0704 0,0712 0,0703 0,060 0,0707 0,071 0,0703 0,071											
200	10	9,9691	9,9704	9,9712	9,9703	9,969	9,9707	9,971	9,9703	9,97	9,971	9,9703		
300	15	14,9511	14,9535	14,9559	14,9588	14,962	14,9649	14,9671	14,9705	14,973	14,976	14,96328		
400	20	19,9571	19,9552	19,9522	19,9493	19,9463	19,9448	19,9407	19,9371	19,9342	19,9309	19,94478		
500	25	24,946	24,9442	24,9446	24,9459	24,9455	24,9458	24,9462	24,9468	24,9473	24,947	24,94593		
600	30	29,9314	29,9315	29,9314	29,9316	29,9312	29,9319	29,932	29,9318	29,9321	29,9321	29,9317		
700	35	34,8618	34,8604	34,8601	34,8593	34,8595	34,8602	34,86	34,8615	34,8618	34,8628	34,86074		
800	40	39,8423 39,8428 39,8438 39,8459 39,8492 39,8512 39,8551 39,8585 39,863 39,8672										39,8519		
900	45	44,8754 44,8744 44,8732 44,872 44,8718 44,8706 44,8696 44,8673 44,8668 44,8653												
1000	50	49,8101	49,8072	49,8095	49,8122	49,8147	49,818	49,8207	49,823	49,8262	49,8297	49,81713		

Tabla 20: Medidas realizadas con la sonda 9 (ensayos LACECAL)

	SONDA 10														
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	edidas (mV))				Salida medida promedio (mV)			
0	0	0,0194 0,018 0,0176 0,0151 0,0187 0,0178 0,0181 0,0166 0,0181 0,0174 0 5,0035 5,0037 5,0032 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032 5,0037 5,0032													
100	5	5,0035	5,0037	5,0032	5,0032	5,0027	5,0015	5,0019	5,0022	5,0015	4,9994	5,00228			
200	10	9,9703	9,9735	9,9758	9,9774	9,9789	9,9808	9,9799	9,9791	9,978	9,9764	9,97701			
300	15	14,9842	14,9834	14,9857	14,9877	14,9886	14,9915	14,9933	14,9944	14,995	14,9984	14,99022			
400	20	19,9756	19,9723	19,9715	19,97	19,9693	19,9686	19,9666	19,9663	19,9665	19,9665	19,96932			
500	25	24,9446	24,9429	24,9406	24,9371	24,9324	24,929	24,9257	24,9227	24,92	24,9159	24,93109			
600	30	29,8947	29,8975	29,8988	29,9001	29,9013	29,9021	29,904	29,9049	29,9082	29,9082	29,90198			
700	35	34,8852	34,8853	34,8847	34,8855	34,8843	34,8845	34,8852	34,8845	34,8845	34,8855	34,88492			
800	40	39,8735 39,8743 39,8759 39,8779 39,8805 39,8834 39,886 39,8891 39,8933 39,8951										39,8829			
900	45	44,8845 44,8775 44,8724 44,8695 44,8645 44,8621 44,859 44,858 44,8565 44,8554													
1000	50	49,8467	49,849	49,8531	49,8589	49,8629	49,8682	49,8728	49,8776	49,8791	49,8831	49,86514			

Tabla 21: Medidas realizadas con la sonda 10 (ensayos LACECAL)

					:	SONDA 11	-							
Entrada aplicada (A)	Salida esperada (mV)		Salidas medidas (mV) 0,0257 0,0276 0,0264 0,0262 0,0263 0,0245 0,0252 0,0267 0,0262 0,0253											
0	0	0,0257	0,0257 0,0276 0,0264 0,0262 0,0263 0,0245 0,0252 0,0267 0,0262 0,0253 4,9999 4,9964 4,9944 4,9913 4,9897 4,987 4,9853 4,983 4,981 4,9782											
100	5	4,9999	4,9999 4,9964 4,9944 4,9913 4,9897 4,987 4,9853 4,983 4,981 4,9782 0,0024 0,0025 0,0042 0,0026 0,0027 0,0021 0,0025 0,0022 0,0024											
200	10	9,9934 9,9925 9,9942 9,994 9,9926 9,9937 9,9921 9,9925 9,9902 9,9894										9,99246		
300	15	14,9559	14,9579	14,9585	14,9581	14,9602	14,9625	14,9648	14,9654	14,9672	14,9679	14,96184		
400	20	19,9162	19,9145	19,9138	19,9094	19,9066	19,9033	19,9007	19,8971	19,895	19,8923	19,90489		
500	25	24,9325	24,9296	24,9297	24,9293	24,927	24,9245	24,9217	24,9178	24,915	24,9089	24,9236		
600	30	29,8943	29,8977	29,9027	29,9042	29,9067	29,9082	29,9092	29,9074	29,9074	29,9061	29,90439		
700	35	34,8346	34,8395	34,8464	34,8521	34,8594	34,8671	34,8741	34,8793	34,8832	34,8868	34,86225		
800	40	39,8101 39,8035 39,8046 39,8074 39,8114 39,8142 39,8167 39,8205 39,8229 39,826 30,826 <t< td=""><td>39,81373</td></t<>									39,81373			
900	45	44,8455	44,8434	44,8407	44,8387	44,8347	44,8309	44,8262	44,8223	44,8177	44,8132	44,83133		
1000	50	49,7698	49,7721	49,7766	49,7824	49,7895	49,7944	49,8	49,8054	49,8104	49,8148	49,79154		

Tabla 22: Medidas realizadas con la sonda 11 (ensayos LACECAL)

	SONDA 12														
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	edidas (mV)					Salida medida promedio (mV)			
0	0	0,0236	0,0226	0,0222	0,0239	0,0238	0,0232	0,0239	0,024	0,0245	0,0246	0,02363			
100	5	4,9884	4,9908	4,9934	4,9964	4,9984	5,003	5,0053	5,0094	5,011	5,0147	5,00108			
200	10	10,007	10,0095	10,0119	10,0114	10,0107	10,0096	10,0073	10,0037	10,0003	9,9977	10,00691			
300	15	14,9961	14,9975	14,9969	14,9956	14,9933	14,9896	14,9858	14,9808	14,9741	14,9691	14,98788			
400	20	19,9663	19,9639	19,9612	19,9573	19,9541	19,9514	19,9481	19,9458	19,9426	19,9395	19,95302			
500	25	24,9142	24,9142	24,9152	24,9172	24,9195	24,9214	24,9244	24,9277	24,9323	24,9359	24,9222			
600	30	29,9541	29,9517	29,9505	29,9489	29,9483	29,9459	29,9423	29,9387	29,935	29,933	29,94484			
700	35	34,8894	34,8933	34,8952	34,8988	34,9034	34,9071	34,9104	34,915	34,9194	34,9231	34,90551			
800	40	39,8709	39,8692	39,8709	39,8694	39,8703	39,8714	39,8726	39,8732	39,8749	39,8779	39,87207			
900	45	44,8983	44,9004	44,9026	44,9037	44,9047	44,9073	44,9088	44,9093	44,9112	44,9106	44,90569			
1000	50	49,8936	49,8933	49,8931	49,8923	49,8938	49,895	49,8952	49,8956	49,8959	49,8958	49,89436			

Tabla 23: Medidas realizadas con la sonda 12 (ensayos LACECAL)

SONDA 13													
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	edidas (mV))				Salida medida promedio (mV)	
0	0	0,0212	0212 0,0217 0,0206 0,0199 0,0187 0,0189 0,019 0,0192 0,0202 0,0188										
100	5	4,9951	4,9916	4,9887	4,9865	4,9815	4,9797	4,9759	4,9742	4,9706	4,9684	4,98122	
200	10	9,9947	9,9962	9,9974	9,9988	9,9999	10,0002	10,0014	10,0024	10,0021	10,0028	9,99959	
300	15	14,9908	14,99	14,9885	14,9878	14,9873	14,9868	14,9855	14,9869	14,986	14,985	14,98746	
400	20	20,0023	20,0021	20,0032	20,0019	20,0017	19,9997	19,9978	19,997	19,9949	19,9942	19,99948	
500	25	24,9441	24,9455	24,9447	24,9441	24,9436	24,9436	24,943	24,9437	24,9441	24,9443	24,94407	
600	30	29,945	29,9455	29,9453	29,9462	29,9475	29,9474	29,9477	29,9482	29,9488	29,9497	29,94713	
700	35	34,9777	34,9771	34,9777	34,9758	34,9738	34,9746	34,9733	34,972	34,9705	34,9697	34,97422	
800	40	39,9453	39,9434	39,9446	39,945	39,9455	39,9464	39,9481	39,9488	39,9494	39,9508	39,94673	
900	45	44,9651	44,9661	44,9661	44,9659	44,965	44,9633	44,9639	44,9635	44,9638	44,9618	44,96445	
1000	50	49,9321	49,9316	49,9317	49,9319	49,934	49,9364	49,9366	49,9384	49,9407	49,9414	49,93548	

Tabla 24: Medidas realizadas con la sonda 13 (ensayos LACECAL)

SONDA 14													
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	didas (mV))				Salida medida promedio (mV)	
0	0	0,0198	,0198 0,0203 0,0209 0,0204 0,0205 0,0198 0,0198 0,0187 0,0208 0,0203										
100	5	4,9821	4,982	4,9811	4,981	4,9818	4,9816	4,9825	4,9839	4,9849	4,9852	4,98261	
200	10	10,0203	10,019	10,017	10,0155	10,0121	10,0093	10,0058	10,0037	10,0002	9,9966	10,00995	
300	15	15,0082	15,0066	15,0061	15,0025	14,9989	14,9953	14,9911	14,9884	14,9857	14,9822	14,9965	
400	20	20,0113	20,0119	20,0157	20,0191	20,0219	20,0243	20,0259	20,029	20,0307	20,0328	20,02226	
500	25	25,0428	25,0419	25,0425	25,0406	25,0392	25,0385	25,0367	25,0339	25,0325	25,0314	25,038	
600	30	29,9924	29,9927	29,9921	29,9925	29,9909	29,9912	29,9924	29,9918	29,9922	29,9916	29,99198	
700	35	35,0139	35,0134	35,0122	35,012	35,0117	35,0121	35,0114	35,0102	35,0098	35,0074	35,01141	
800	40	40,0095	40,0112	40,0127	40,0154	40,019	40,0226	40,0246	40,0278	40,0321	40,0357	40,02106	
900	45	45,0398	45,0397	45,0359	45,0333	45,0295	45,0269	45,0216	45,0186	45,0152	45,0098	45,02703	
1000	50	50,0262	50,0305	50,0361	50,0413	50,047	50,0498	50,0529	50,0553	50,0572	50,0593	50,04556	

Tabla 25: Medidas realizadas con la sonda 14 (ensayos LACECAL)

SONDA 15													
Entrada aplicada (A)	Salida esperada (mV)					Salidas me	didas (mV))				Salida medida promedio (mV)	
0	0	0,0266	0,0229	0,0232	0,0234	0,0252	0,0236	0,0249	0,0253	0,0243	0,0274	0,02468	
100	5	4,9562	4,9599	4,9622	4,9653	4,967	4,9696	4,9717	4,9741	4,9764	4,9786	4,9681	
200	10	9,959	9,9577	9,957	9,9566	9,9555	9,9553	9,9529	9,9519	9,949	9,9459	9,95408	
300	15	14,8846	14,8899	14,8928	14,8975	14,9014	14,9051	14,9093	14,9118	14,9139	14,9161	14,90224	
400	20	19,8703	19,8662	19,8626	19,8589	19,854	19,851	19,8458	19,8417	19,8379	19,8341	19,85225	
500	25	24,8287	24,833	24,8353	24,8386	24,8413	24,842	24,8437	24,8428	24,8405	24,8374	24,83833	
600	30	29,8083	29,8091	29,8102	29,8122	29,8118	29,8112	29,8101	29,8081	29,8054	29,802	29,80884	
700	35	34,7732	34,7769	34,7804	34,7854	34,7874	34,7877	34,7891	34,7899	34,7903	34,7908	34,78511	
800	40	39,7084	39,7098	39,7112	39,7121	39,7135	39,7151	39,7186	39,7217	39,7242	39,726	39,71606	
900	45	45,0398	45,0397	45,0359	45,0333	45,0295	45,0269	45,0216	45,0186	45,0152	45,0098	45,02703	
1000	50	49,6909	49,691	49,69	49,6892	49,6893	49,6883	49,6897	49,6893	49,6893	49,6912	49,68982	

Tabla 26: Medidas realizadas con la sonda 15 (ensayos LACECAL)

Anexo 2: Datos promedio de intensidades y errores de las sondas ensayadas

En la Tabla 27 se muestran las intensidades promedio medidas con las sondas Rogowski, resultado de aplicar la ecuación (20).

			Inten	sidades	promed	lio medi	das con	las sono	das ensa	ayadas L	ACECAL	(A)			
Intensidad real (A)	Sonda 1	Sonda 2	Sonda 3	Sonda 4	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14	Sonda 15
0	0,25	0,46	0,43	0,40	0,59	0,42	0,57	0,46	0,56	0,35	0,52	0,47	0,40	0,40	0,49
100	99,69	98,92	99,69	99,61	99,27	99,82	100,45	100,16	99,82	100,05	99,77	100,02	99,62	99,65	99,36
200	199,57	198,55	199,96	199,42	198,84	199,14	199,54	199,71	199,41	199,54	199,85	200,14	199,99	200,20	199,08
300	298,44	298,55	299,04	297,97	298,94	298,47	299,88	298,93	299,27	299,80	299,24	299,76	299,75	299,93	298,04
400	398,25	397,09	399,47	397,95	398,14	397,07	400,00	399,06	398,90	399,39	398,10	399,06	399,99	400,45	397,05
500	498,51	497,18	498,42	496,88	498,27	496,27	499,52	496,96	498,92	498,62	498,47	498,44	498,88	500,76	496,77
600	597,57	596,04	598,29	596,84	597,02	595,51	598,71	596,75	598,63	598,04	598,09	598,90	598,94	599,84	596,18
700	696,82	695,55	698,86	695,72	696,86	695,26	698,49	696,73	697,21	697,70	697,25	698,11	699,48	700,23	695,70
800	797,24	795,03	797,78	795,32	796,56	794,07	-	795,90	797,04	797,66	796,27	797,44	798,93	800,42	794,32
900	896,03	894,36	898,38	895,27	896,85	893,22	898,29	896,22	897,41	897,32	896,63	898,11	899,29	900,54	900,54
1000	995,42	992,85	997,86	993,99	995,90	992,75	997,50	995,57	996,34	997,30	995,83	997,89	998,71	1.000,91	993,80

Tabla 27: Intensidades promedio medidas con las sondas ensayadas en LACECAL

				Error a	absoluto	estimad	do en la	medida	de la po	tencia (\	/A)				
Intensidad real (A)	Sonda 1	Sonda 2	Sonda 3	Sonda 4	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14	Sonda 15
0	-174,0	-315,5	-294,6	-280,5	-408,9	-292,8	-393,2	-318,0	-390,3	-245,0	-360,4	-327,4	-274,6	-278,9	-342,0
100	214,1	750,7	215,6	269,1	504,2	126,8	-313,7	-108,8	121,5	-31,6	157,7	-15,0	260,2	241,0	442,0
200	295,8	1.003,9	24,5	405,2	806,4	598,2	317,3	198,3	411,5	318,6	104,5	-95,7	5,7	-137,9	636,3
300	1.080,9	1.007,9	661,8	1.406,3	733,8	1.058,1	85,6	743,5	508,8	135,5	528,8	167,9	173,8	48,5	1.354,6
400	1.214,0	2.014,4	364,4	1.422,2	1.290,4	2.028,6	-2,4	649,2	765,2	425,1	1.317,9	651,0	7,2	-308,4	2.047,3
500	1.031,6	1.956,4	1.091,5	2.163,1	1.199,0	2.582,6	330,2	2.105,1	749,2	954,8	1.058,6	1.078,0	775,0	-526,5	2.240,2
600	1.683,6	2.746,2	1.186,8	2.186,0	2.062,1	3.110,5	896,8	2.250,4	946,4	1.358,2	1.324,8	764,3	732,6	111,1	2.648,8
700	2.204,8	3.085,8	788,6	2.966,4	2.175,5	3.287,4	1.046,9	2.263,3	1.929,6	1.594,6	1.908,7	1.309,3	357,2	-158,1	2.977,6
800	1.911,2	3.444,8	1.540,8	3.240,7	2.380,7	4.107,5	-	2.841,0	2.052,1	1.622,6	2.581,0	1.772,7	738,1	-291,8	3.934,4
900	2.748,0	3.906,5	1.120,2	3.278,0	2.182,8	4.696,2	1.183,8	2.621,2	1.792,5	1.857,6	2.337,2	1.306,8	492,6	-374,5	-374,5
1000	3.172,4	4.952,1	1.482,9	4.162,3	2.840,7	5.023,9	1.733,3	3.070,0	2.533,9	1.868,7	2.888,5	1.463,8	894,0	-631,3	4.298,0

Ahora se muestran los errores absolutos estimados en VA de las medidas promedio de la potencia aparente (Tabla 28).

Tabla 28: Errores absolutos promedio de la potencia aparente

En la Tabla 29 se recogen los errores relativos estimados en tanto por ciento de las medidas promedio de la potencia aparente. Nótese que estos errores relativos calculados se corresponden con los errores relativos que se dan para la intensidad ya que se ha puesto que es la única variable que introduce un error en el cálculo de la potencia aparente.

	Error relativo estimado en la medida de la potencia aparente (%)														
Intensidad real (A)	Sonda 1	Sonda 2	Sonda 3	Sonda 4	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14	Sonda 15
0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
100	0,309	1,084	0,311	0,388	0,728	0,183	-0,453	-0,157	0,175	-0,046	0,228	-0,022	0,376	0,348	0,638
200	0,214	0,724	0,018	0,292	0,582	0,432	0,229	0,143	0,297	0,230	0,075	-0,069	0,004	-0,100	0,459
300	0,520	0,485	0,318	0,677	0,353	0,509	0,041	0,358	0,245	0,065	0,254	0,081	0,084	0,023	0,652
400	0,438	0,727	0,131	0,513	0,466	0,732	-0,001	0,234	0,276	0,153	0,476	0,235	0,003	-0,111	0,739
500	0,298	0,565	0,315	0,624	0,346	0,746	0,095	0,608	0,216	0,276	0,306	0,311	0,224	-0,152	0,647
600	0,405	0,661	0,285	0,526	0,496	0,748	0,216	0,541	0,228	0,327	0,319	0,184	0,176	0,027	0,637
700	0,455	0,636	0,163	0,612	0,449	0,678	0,216	0,467	0,398	0,329	0,394	0,270	0,074	-0,033	0,614
800	0,345	0,622	0,278	0,585	0,430	0,741	-	0,513	0,370	0,293	0,466	0,320	0,133	-0,053	0,710
900	0,441	0,627	0,180	0,526	0,350	0,753	0,190	0,420	0,287	0,298	0,375	0,210	0,079	-0,060	-0,060
1000	0,458	0,715	0,214	0,601	0,410	0,725	0,250	0,443	0,366	0,270	0,417	0,211	0,129	-0,091	0,620

Tabla 29: Errores relativos promedio de la potencia aparente

Anexo 3: Datos obtenidos en los ensayos en las inmediaciones de la empresa

Se muestran los resultados obtenidos en los ensayos realizados con el prototipo del equipo de medida (Tabla 30 a Tabla 33). Las medidas promedio que aparecen en cursiva se han calculado a partir de las mediciones tomadas en ese punto de medida.

Punto de medida (A)	Intensidad natrón (A)	Intensidad medida	Intensidad medida	Intensidad medida
	Intensidad patron (A)	sonda 1 (A)	sonda 2 (A)	sonda 5 (A)
0	0	0,4	0,2	0,8
0	0	0,3	0,6	0,3
0	0	0,6	0,4	0,9
0	0	0,4	0,2	0,4
0	0	0,5	0,5	0,5
0 (medida promedio)	0	0,44	0,38	0,58
5	4,98	4,9	4,9	4,9
5	4,96	4,9	4,9	4,9
5	4,98	5	4,9	4,9
5	4,99	5	4,9	5
5	5,01	5	4,9	4,9
5 (medida promedio)	4,984	4,96	4,9	4,92
10	10,01	9,7	9,7	9,7
20	20,01	19,3	19,3	19,2
30	30,1	29,4	29,5	29,3
40	40,2	38,9	38,8	38,6
50	50,1	48,4	48,3	48,1
60	60,4	58	58	57,8
70	70,5	68,1	68,2	67,7
80	80,7	77,6	77,7	77,1
90	90,2	86,7	86,8	86,2

Tabla 30: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 1, 2 y 5

Punto de medida (A)	Intensidad natrón (A)	Intensidad medida	Intensidad medida	Intensidad medida
Funto de medida (A)	Intensidad patron (A)	sonda 6 (A)	sonda 7 (A)	sonda 8 (A)
0	0	0,3	0,2	0,3
0	0	0,5	0,5	0,3
0	0	0,2	0,3	0,5
0	0	0,5	0,4	0,4
0	0	1,2	0,3	0,4
0 (medida promedio)	0	0,54	0,34	0,38
5	4,99	5	4,9	5
5	5	4,9	5	5
5	5	5	4,9	5
5	5,01	5	5	5
5	5,01	5	5	5
5 (medida promedio)	5,002	4,98	4,96	5
10	10,04	9,8	9,8	9,8
20	20,03	19,5	19,5	19,4
30	29,93	29	29	28,9
40	40,1	38,6	38,8	38,7
50	50,1	48,2	48,4	48,2
60	60,1	57,8	58,1	57,9
70	70,3	67,6	67,9	67,8
80	80,1	77	77,4	77,3
90	90,2	86,4	86,8	86,7

Tabla 31: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 6, 7 y 8

Dunto do modido (A)	Intensided petrón (A)	Intensidad medida	Intensidad medida	Intensidad medida
Punto de medida (A)	Intensidad patron (A)	sonda 9 (A)	sonda 10 (A)	sonda 11 (A)
0	0	0,7	0,5	0,4
0	0	0,5	0,9	0,3
0	0	0,4	0,7	1,4
0	0	0,3	0,2	0,7
0	0	0,7	0,3	0,5
0 (medida promedio)	0	0,52	0,52	0,66
5	5	5	5	5
5	5,01	4,9	5	5
5	5,01	5	5	5
5	5,02	4,9	5	5
5	5,01	5	5	5
5 (medida promedio)	5,01	4,96	5	5
10	9,98	9,6	9,7	9,7
20	20	19,3	19,4	19,4
30	30,01	28,9	29	29
40	39,9	38,4	38,5	38,5
50	50,1	48,1	48,2	48,3
60	60,1	57,7	57,8	57,8
70	70,1	67,3	67,7	67,5
80	80,2	76,9	77,5	77,2
90	89,9	86,2	86,8	86,5

Tabla 32: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 9, 10 y 11

Punto de medida (A)	Intensidad patrón (A)	Intensidad medida sonda 12 (A)	Intensidad medida sonda 13 (A)	Intensidad medida sonda 14 (A)
0	0	0,5	0,4	0,8
0	0	0,3	0,7	0,3
0	0	0,8	0,3	0,5
0	0	0,5	0,6	0,2
0	0	0,3	0,7	0,3
0 (medida promedio)	0	0,48	0,54	0,42
5	4,98	4,9	4,9	5
5	4,99	5	4,9	4,9
5	4,99	5	5,1	5
5	4,99	4,9	5	4,9
5	4,98	4,9	4,9	5
5 (medida promedio)	4,986	4,94	4,96	4,96
10	10,02	9,8	9,7	9,8
20	20,05	19,5	19,4	19,4
30	30,04	29,1	29	28,9
40	40,1	38,7	38,6	38,6
50	50,1	48,3	48,2	48,2
60	60,1	58	57,9	57,8
70	70,1	67,4	67,5	67,4
80	80,2	77,5	77,5	77,3
90	90,2	86,9	86,8	86,7

Tabla 33: Medidas obtenidas en los ensayos realizados en la empresa para las sondas 12, 13 y 14

Anexo 4: Errores e incertidumbres de los ensayos realizados en las inmediaciones de la empresa

En la Tabla 34 se exponen los errores que se dan en los ensayos realizados con el prototipo del equipo de submetering así como su incertidumbre asociada.

	Error e incertidumbre en el cálculo de la intensidad eficaz (A)													
Punto de medida (A)	Sonda 1	Sonda 2	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14		
0	0,44	0,38	0,58	0,50	0,34	0,38	0,52	0,52	0,66	0,48	0,54	0,42		
0	±0,116	±0,131	±0,156	±0,223	±0,116	±0,111	±0,131	±0,165	±0,222	±0,139	±0,132	±0,149		
5	-0,02	-0,08	-0,06	-0,02	-0,04	-0,002	-0,05	-0,01	-0,01	-0,05	-0,03	-0,03		
5	±0,155	±0,153	±0,154	±0,154	±0,155	±0,153	±0,155	±0,153	±0,153	±0,155	±0,158	±0,155		
10	-0,31	-0,31	-0,31	-0,24	-0,24	-0,24	-0,38	-0,28	-0,28	-0,22	-0,32	-0,22		
10	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202	±0,202		
20	-0,71	-0,71	-0,81	-0,53	-0,53	-0,63	-0,70	-0,60	-0,60	-0,55	-0,65	-0,65		
20	±0,301	±0,301	±0,301	±0,302	±0,302	±0,302	±0,301	±0,301	±0,301	±0,302	±0,302	±0,302		
20	-0,70	-0,60	-0,80	-0,93	-0,93	-1,03	-1,11	-1,01	-1,01	-0,94	-1,04	-1,14		
	±0,402	±0,402	±0,402	±0,400	±0,400	±0,400	±0,402	±0,402	±0,402	±0,401	±0,401	±0,401		
10	-1,30	-1,40	-1,60	-1,50	-1,30	-1,40	-1,50	-1,40	-1,40	-1,40	-1,50	-1,50		
40	±0,503	±0,503	±0,503	±0,502	±0,502	±0,502	±0,500	±0,500	±0,500	±0,502	±0,502	±0,502		
50	-1,70	-1,80	-2,00	-1,90	-1,70	-1,90	-2,00	-1,90	-1,80	-1,80	-1,90	-1,90		
50	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602	±0,602		
60	-2,40	-2,40	-2,6	-2,30	-2,00	-2,20	-2,40	-2,30	-2,30	-2,10	-2,20	-2,30		
00	±0,904	±0,904	±0,904	±0,901	±0,901	±0,901	±0,901	±0,901	±0,901	±0,901	±0,901	±0,901		
70	-2,40	-2,30	-2,80	-2,70	-2,40	-2,50	-2,80	-2,40	-2,60	-2,70	-2,60	-2,70		
10	±1,005	±1,005	±1,005	±1,003	±1,003	±1,003	±1,001	±1,001	±1,001	±1,001	±1,001	±1,001		
00	-3,10	-3,00	-3,60	-3,10	-2,70	-2,80	-3,30	-2,70	-3,00	-2,70	-2,70	-2,90		
00	±1,107	±1,107	±1,107	±1,101	±1,101	±1,101	±1,102	±1,102	±1,102	±1,102	±1,102	±1,102		
00	-3,50	-3,40	-4,00	-3,80	-3,40	-3,50	-3,70	-3,10	-3,40	-3,30	-3,40	-3,50		
90	±1,202	±1,202	±1,202	±1,202	±1,202	±1,202	±1,199	±1,199	±1,199	±1,202	±1,202	±1,202		

Tabla 34: Errores e incertidumbres calculados a partir de los ensayos en la empresa

En la Tabla 35 se encuentran recogidas todas las incertidumbres asociadas a la tolerancia que presenta el equipo patrón.

				Incertidun	nbre debid	a a la tole	rancia del	patrón (A)				
Punto de medida (A)	Sonda 1	Sonda 2	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14
0	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000	0,1000
5	0,1498	0,1498	0,1498	0,1500	0,1500	0,1500	0,1501	0,1501	0,1501	0,1499	0,1499	0,1499
10	0,2001	0,2001	0,2001	0,2004	0,2004	0,2004	0,1998	0,1998	0,1998	0,2002	0,2002	0,2002
20	0,3001	0,3001	0,3001	0,3003	0,3003	0,3003	0,3000	0,3000	0,3000	0,3005	0,3005	0,3005
30	0,4010	0,4010	0,4010	0,3993	0,3993	0,3993	0,4001	0,4001	0,4001	0,4004	0,4004	0,4004
40	0,5020	0,5020	0,5020	0,5010	0,5010	0,5010	0,4990	0,4990	0,4990	0,5010	0,5010	0,5010
50	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010	0,6010
60	0,9040	0,9040	0,9040	0,9010	0,9010	0,9010	0,9010	0,9010	0,9010	0,9010	0,9010	0,9010
70	1,0050	1,0050	1,0050	1,0030	1,0030	1,0030	1,0010	1,0010	1,0010	1,0010	1,0010	1,0010
80	1,1070	1,1070	1,1070	1,1010	1,1010	1,1010	1,1020	1,1020	1,1020	1,1020	1,1020	1,1020
90	1,2020	1,2020	1,2020	1,2020	1,2020	1,2020	1,1990	1,1990	1,1990	1,2020	1,2020	1,2020

Tabla 35: Incertidumbres asociadas a la tolerancia del patrón

En la *Tabla* 36 se muestran las incertidumbres de tipo A debidas a la repetibilidad de las medidas.

Incertidumbre debida a la repetibilidad de las medidas (A)												
Punto de medida (A)	Sonda 1	Sonda 2	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14
0	0,0510	0,0800	0,1158	0,1975	0,0510	0,0374	0,0800	0,1281	0,1965	0,0917	0,0812	0,1068
5	0,0245	0,0000	0,0200	0,0200	0,0245	0,0000	0,0245	0,0000	0,0000	0,0245	0,0400	0,0245
10	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
20	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
30	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
40	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
50	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
60	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
70	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
80	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
90	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Tabla 36: Incertidumbres debidas a la repetibilidad de las medidas

En la *Tabla 37* se recogen los valores máximos que se pueden llegar a dar en el cálculo de la intensidad eficaz a partir del prototipo del equipo de submetering.

Errores máximos en la intensidad eficaz del prototipo (A)												
Punto de medida (A)	Sonda 1	Sonda 2	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14
0	0,324	0,249	0,424	0,277	0,224	0,269	0,389	0,355	0,438	0,341	0,408	0,271
5	-0,179	-0,237	-0,218	-0,176	-0,197	-0,155	-0,205	-0,163	-0,163	-0,201	-0,184	-0,181
10	-0,512	-0,512	-0,512	-0,442	-0,442	-0,442	-0,582	-0,482	-0,482	-0,422	-0,522	-0,422
20	-1,011	-1,011	-1,111	-0,832	-0,832	-0,932	-1,001	-0,901	-0,901	-0,852	-0,952	-0,952
30	-1,102	-1,002	-1,202	-1,330	-1,330	-1,430	-1,511	-1,411	-1,411	-1,341	-1,441	-1,541
40	-1,803	-1,903	-2,103	-2,002	-1,802	-1,902	-2,000	-1,900	-1,900	-1,902	-2,002	-2,002
50	-2,302	-2,402	-2,602	-2,502	-2,302	-2,502	-2,602	-2,502	-2,402	-2,402	-2,502	-2,502
60	-3,304	-3,304	-3,504	-3,201	-2,901	-3,101	-3,301	-3,201	-3,201	-3,001	-3,101	-3,201
70	-3,405	-3,305	-3,805	-3,703	-3,403	-3,503	-3,801	-3,401	-3,601	-3,701	-3,601	-3,701
80	-4,207	-4,107	-4,707	-4,201	-3,801	-3,901	-4,402	-3,802	-4,102	-3,802	-3,802	-4,002
90	-4,702	-4,602	-5,202	-5,002	-4,602	-4,702	-4,899	-4,299	-4,599	-4,502	-4,602	-4,702

Tabla 37: Valores máximos del error del prototipo en el cálculo de la intensidad eficaz

En la *Tabla 38* se muestran los valores mínimos que se pueden llegar a dar en el cálculo de la intensidad eficaz a partir del prototipo del equipo de submetering.

Errores mínimos en la intensidad eficaz del prototipo (A)												
Punto de medida (A)	Sonda 1	Sonda 2	Sonda 5	Sonda 6	Sonda 7	Sonda 8	Sonda 9	Sonda 10	Sonda 11	Sonda 12	Sonda 13	Sonda 14
0	0,556	0,511	0,736	0,723	0,456	0,491	0,651	0,685	0,882	0,619	0,672	0,569
5	0,131	0,069	0,090	0,132	0,113	0,151	0,105	0,143	0,143	0,109	0,132	0,129
10	-0,108	-0,108	-0,108	-0,038	-0,038	-0,038	-0,178	-0,078	-0,078	-0,018	-0,118	-0,018
20	-0,409	-0,409	-0,509	-0,228	-0,228	-0,328	-0,399	-0,299	-0,299	-0,248	-0,348	-0,348
30	-0,298	-0,198	-0,398	-0,530	-0,530	-0,630	-0,709	-0,609	-0,609	-0,539	-0,639	-0,739
40	-0,797	-0,897	-1,097	-0,998	-0,798	-0,898	-1,000	-0,900	-0,900	-0,898	-0,998	-0,998
50	-1,098	-1,198	-1,398	-1,298	-1,098	-1,298	-1,398	-1,298	-1,198	-1,198	-1,298	-1,298
60	-1,496	-1,496	-1,696	-1,399	-1,099	-1,299	-1,499	-1,399	-1,399	-1,199	-1,299	-1,399
70	-1,395	-1,295	-1,795	-1,697	-1,397	-1,497	-1,799	-1,399	-1,599	-1,699	-1,599	-1,699
80	-1,993	-1,893	-2,493	-1,999	-1,599	-1,699	-2,198	-1,598	-1,898	-1,598	-1,598	-1,798
90	-2,298	-2,198	-2,798	-2,598	-2,198	-2,298	-2,501	-1,901	-2,201	-2,098	-2,198	-2,298

Tabla 38: Valores mínimos del error del prototipo en el cálculo de la intensidad eficaz

Anexo 5: Certificado de calibración de la pinza amperimétrica

CROUP	TEST REF	PORT	
Temperature 23+/-2*C			-
Instrument Namber			
Subbaasie			
is substituted.			
natrument :			
Model :	F201 clamp		
Serial number 1	610935		
Acosurement Standards :			-
Calibrator i	Metrix CX1651		
Every test or measuring equipme	rs' used to verify this instrument is related to netional a	end Anternational standards through	uph our
	and a second data in the second s	A success an other canaled and	oracory.
Aptes :			
- Please refer to User's Manual f	or instrument's accuracies.		
- Aesolts are instrument's reading	gr,		
The instrument comp	lies with acceptance conditions defined in the	e procedure.	
Tested by	Signaturei —		
Jack	lone		
1	-		
ests :			
Test description	Nominal Value	Results	
Range +LV DC	0.9	0,9	FASS
Range -1V DC	-0,9	-0,9	PASS
Renge + LOV D.C	9	9	PASS
here store be			
earge -ouv loc	20	20	PASS
kange +60V DC	50	20 49.99	PA35
Range +60V bC Range +500V bC	20 50 100	20 49,99 800,08	PA30 PA30 PA35
kange +60V DC Range +60V DC Range +600V DC	20 50 100	20 49,99 300,01 499,9	PA33 PA33 PA50
kange +60V bC kange +60V bC kange +600V bC kange +600V bC	50 50 100 500	20 49,99 100,01 499,9	PASS PASS
kanga HOV DC kanga HOV DC kanga HOOV DC kanga IV/SOHz AC	50 50 100 500 0,5	20 49,99 800,08 499,9 0,5	PA33 PA35 PA55 PA55 PA35
kanga HOV SC kanga HOV DC kanga HOV DC kanga IV/SOH2 AC kanga IV/SOH2 AC	20 50 100 500 0.5 5	20 49,99 800,08 499,9 0,5 5	PASS PASS PASS PASS PASS
kange +60V DC kange +60V DC kange +600V DC kange +600V DC kange IV/50Hz AC kange 60V/50Hz AC	50 50 100 500 0.5 5 30	20 49,99 100,01 499,9 0,5 5 30	PA35 PA35 PA35 PA35 PA35 PA35 PA35
kange +60V DC kange +600V DC kange +600V DC kange 10V/50Hz AC kange 10V/50Hz AC kange 60V/50Hz AC	50 100 500 0.5 5 30 230	20 49,99 100,08 499,9 0,5 5 30 230	PASS PASS PASS PASS PASS PASS PASS
kange +600 DC kange +600V DC kange +600V DC kange 10//50Hz AC kange 10//50Hz AC kange 60V/50Hz AC kange 600V/50Hz AC	50 50 100 50 0,5 5 30 230 500	20 49,99 100,08 499,9 0,5 5 30 230 230 900,1	PASS PASS PASS PASS PASS PASS PASS PASS
kanga Hold Sc Kanga Hold Sc Kanga Hold Sc Kanga IV/50Hz AC Kanga IV/50Hz AC Kanga 60V/50Hz AC Kanga 60V/50Hz AC Kanga 60V/50Hz AC	50 50 100 50 0,5 5 30 230 500 50	20 49,99 100,01 499,9 0,5 5 30 230 230 900,1 50	PASS PASS PASS PASS PASS PASS PASS PASS
kanga Hold Sc Kanga Hold Sc Kanga Hold Sc Kanga HV/50Hz AC Kanga DV/50Hz AC Kanga 60V/50Hz AC Kanga 600V/50Hz AC Prequency 60V/50Hz Kanga 60V/50Hz	20 50 100 50 0.5 5 30 230 500 50 20	20 49,99 100,08 499,9 0,5 5 30 230 230 900,1 50 20	PASS PASS PASS PASS PASS PASS PASS PASS
kanga Hol V SC kanga Hol V SC kanga Hol V SC kanga HV/50Hz AC kanga E0V/50Hz AC kanga 60V/50Hz AC kanga 600V/50Hz AC mequancy 60V/50Hz kanga 60V/50Hz	20 50 100 50 0.5 5 30 230 500 50 80 20 500	20 49,99 100,08 499,9 0,5 5 30 230 230 500,1 50 20 500	PASS PASS PASS PASS PASS PASS PASS PASS
kanga Hol V SC kanga Hol V SC kanga Hol V SC kanga HV/50Hz AC kanga IV/50Hz AC kanga 60V/50Hz AC kanga 600V/50Hz AC honga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz	20 50 100 50 0.5 5 30 230 500 50 20 500 20 20	20 49,99 100,01 499,9 0,5 5 30 230 500,1 50 20 500 19,96	PASS PASS PASS PASS PASS PASS PASS PASS
Ange Hold Sc Ange Hold Sc Ange Hold Sc Ange Hold Sc Ange HV/50Hz AC Ange DV/50Hz AC Ange 60V/50Hz AC Ange 60V/50Hz AC Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz Ange 60V/50Hz	20 50 100 500 0.5 5 30 230 500 80 80 20 500 20 500 20 3000	20 49,99 100,08 499,9 0,5 5 30 230 500,1 50 20 500 19,96 3000	PASS PASS PASS PASS PASS PASS PASS PASS
kanga Hov Sc kanga Hov Sc kanga Hov DC kanga HV/50Hz AC kanga IV/50Hz AC kanga 60V/50Hz AC kanga 60V/50Hz AC kanga 60V/50Hz AC inequency 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz kanga 60V/50Hz	20 50 100 500 0.5 5 30 230 500 80 80 20 500 20 500 20 3000 20 3000 20	20 49,99 800,08 499,9 0,5 5 30 230 500,1 50 20 500 19,96 3000 18,69	PASS PASS PASS PASS PASS PASS PASS PASS
Ange Hourd Sc Ange Hourd Sc Ange Hourd Sc Ange Hourd Sc Ange 10//50Hz AC Ange 50//50Hz AC Ange 60//50Hz AC Ange 60//50Hz AC Ange 60//50Hz Ange 60//50Hz	20 50 100 500 0.5 5 30 230 500 80 80 20 500 20 500 20 3000 20 3000 20 3000 20	20 49,99 800,08 499,9 0,5 5 30 230 500,1 50 20 900 19,96 3000 18,69 14994	PASS PASS PASS PASS PASS PASS PASS PASS
Ange Hov Sc Ange Hov Sc Ange Hov Sc Ange Hov Sc Ange Hov Sc Ange Hov Sch AC Ange 60V/ScHz AC Ange 60V/ScHz AC Ange 60V/ScHz AC Ange 60V/ScHz AC Ange 60V/ScHz AC Ange 60V/ScHz Ange 60V/ScHz	20 50 100 500 0.5 5 30 230 500 80 20 500 20 500 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000	20 49,99 800,08 499,9 0,5 5 30 220 500,1 50 20 500 19,96 3000 19,96 3000 18,69 14994 10,02	PASS PASS PASS PASS PASS PASS PASS PASS
Range Hourd SL Range GOV/SOHz AC Range GOV/SOHz AC Range GOV/SOHz AC Range GOV/SOHz Range	20 50 100 500 0.5 5 30 230 500 80 80 80 20 500 20 500 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 3000 20 300 20 300 20 300 20 5 30 20 5 5 30 20 5 5 5 30 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 49,99 800,08 499,9 0,5 5 30 220 500,1 50 20 500 19,96 3000 19,96 3000 18,69 14994 10,02 99,93	PASS PASS PASS PASS PASS PASS PASS PASS

Estudio de sondas de corriente Rogowski para su empleo en sistemas de monitorización de eficiencia energética

Universidad deValladolid

Range 600 Ohm	500	499,9	PASS
Ronge 6k Ohm	1000	1000.5	PASS
Range úk Ohm	3000	3002	PASS
Range &k Ohm	5000	5001	PASS
Ronge 60k Ohm	30000	10001	PASS
Ronge 60k Ohm	30000	30003	PASS
Range 60k Ohm	50000	49997	PASS
Diode test	0,5	0,51	PASS
K Thermocouple Range 600°C	-40	-41,52	PASS
K thermocouple Range 500°C	100	98,77	PASS
K thermocouple Range 500°C	500	499.5	PADD
K thermocouple Range 1000°C	950	948,7	PASS
Ronge 60A/30Hz AC	30	9,93	PASS
Range 60A/90Hz AC	40	39,95	PASS
Range 600A/50Hz AC	80	79,71	FASS.
Range 600A/SOHz AC	300	299.9	PASS
Range 600A/50Hz AC	560	560,1	PASS
Range 60A/1kHz AC	30	29,54	PASS
Prequency 6GA/1kHz	8000	999.9	P485
Range 600A/500Hz AC	120	118,3	PASS
Frequency 600A/500Hz	800	500	PASS