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Abstract: Chitosan and chitosan oligomers are receiving increasing attention due to their
antimicrobial properties. In the present study, they were assayed as a preventive treatment against
white-rot decay of Populus wood (very important in economic and environmental terms), caused
by Trametes versicolor fungus. Their capacity to incorporate different chemical species into the
polymer structure with a view to improving their anti-fungal activity was also assessed by mixing
oligo-chitosan with propolis and silver nanoparticles. The minimum inhibitory concentration of
medium-molecular weight chitosan (MMWC), chitosan oligomers (CO), propolis (P), nanosilver
(nAg), and their binary and ternary composites against T. versicolor was determined in vitro. Although
all products exhibited anti-fungal properties, composites showed an enhanced effect as compared
to the individual products: 100% mycelial growth inhibition was attained for concentrations of 2.0
and 0.2 mg·mL−1 for the CO-P binary mixture, respectively; and 2 µg·mL−1 for nAg in the ternary
mixture. Subsequently, MMWC, CO, CO-P and CO-P-nAg composites were tested on poplar wood
blocks as surface protectors. Wood decay caused by the fungus was monitored by microscopy and
vibrational spectroscopy, evidencing the limitations of the CO-based coatings in comparison with
MMWC, which has a higher viscosity and better adhesion properties. The usage of MMWC holds
promise for poplar wood protection, with potential industrial applications.

Keywords: chitosan composites; FTIR; natural protectors; poplar wood; white-rot fungus

1. Introduction

In the field of wood protection, significant efforts have been devoted over the last decades to
the assessment of natural products that can pose an alternative to other traditionally used chemical
compounds, which have toxic effects on human beings and the environment [1]. In this sense,
renewable polymers have attracted intense industrial interest, and, amongst them, chitosan has
particularly promising application perspectives [2]. This natural polysaccharide derived from chitin is
the second most abundant polymer in nature. Chitosan consists of chains of N-acetyl-D-glucosamine
and D-glucosamine, and features a cationic character, which confers unique properties on it [3]. Among
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its main characteristics, such as its bioactivity, non-toxicity or biodegradability, its antimicrobial effect is
especially relevant [4–6]. Its activity against different fungi, gram positive and gram negative bacteria,
is ascribed to the positive charge of amino group (NH3

+), which interacts electrostatically with the
surface of the cellular membrane, destabilizing it. As a consequence, the presence of chitosan inside
the cell can lead to intracellular responses such as inactivation or blocking of enzymes activities, and
of DNA transcription and translation [7,8].

The antifungal activity of chitosan not only depends on the fungus species, but also on its
molecular weight (MW), polymerization degree (PD) or deacetylation degree (DD). For instance,
chito-oligosaccharides with low MW, PD and DD have been reported to be more effective on
phytopathogenic fungi than chitosan with higher MW, PD or DD [9–11].

Another known advantage from chitosan and its oligomers is associated with their sorption
and chelating properties. The cationic nature of the polymer allows it to bind to different chemicals
species, ranging from organic macromolecules to metal nanoparticles [12–14]. Natural oils or extracts
of natural products can be incorporated into the chitosan matrix, for example, by cross-linking,
producing solutions, films or beads [15–17]. In the particular case of propolis, its polyphenols have
been reported to form hydrogen bonds and covalent bonds with the functional groups in chitosan [18].
This results in a stabilization of the propolis components in the polymer and in an enhancement of the
antimicrobial activity due to a synergistic behaviour [19,20]. In the case of nanometals, for example,
silver nanoparticles, chitosan and its derivatives can also be used in their synthesis, provided that
chitosan can act as reducer as well as a stabilizer: the polymer matrix facilitates the nanoparticles
preparation in one-step process, resulting in nanosilver with an ideal particle size [21]. Further,
the resulting chitosan-nanosilver composites present a higher antimicrobial effect [22].

Chitosan-based composites have been successfully applied to the preservation of wood against
mould fungi, as well as brown-rot and white-rot fungi [23–26], both in vitro and over beech and fir [27],
Monterrey pine [28], Scot pine [29] and other hardwood and softwood species. Nonetheless, to the best
of the authors’ knowledge, to date no studies have focused on chitosan applications in order to protect
poplar species. Populus spp., belonging to the Salicaceae family, are one of the most cultivated woody
plants for industrial purposes. Its wood is one of the least expensive hardwoods and, although rarely
used in the production of fine furniture, it is extensively used for pulp, panel productions and many
other commercial applications [30,31]. These fast-growing trees therefore have a large economic impact
worldwide, together with a significant importance from an environmental perspective [32]. According
to EN 350:2016 rule, poplar wood is a non-durable species [33], and some studies have evidenced
that it is highly susceptible to Trametes versicolor [34,35]. Therefore, chitosan-based composites can be
applied as a potential tool to avoid the white-rot decay of Populus spp. wood, improving its natural
durability and increasing its technological uses.

The first objective of the study was to investigate the in vitro antifungal activity against T. versicolor
of two different molecular weight chitosan treatments: medium molecular weight chitosan (MMWC)
and chitosan oligomers (CO); the latter—which resulted in a better minimum inhibitory concentration
(MIC) value—was also tested in binary and ternary combinations with propolis (P) and nanosilver
(nAg). In a second stage, once the MIC values had been determined, the best treatments were
evaluated on poplar wood blocks as surface protectors to prevent wood decay, with a view to their
practical application. Wood biodegradation was monitored by microscopy and by tracking chemical
alterations. For this latter purpose, Fourier-transform infrared spectroscopy (FTIR) technique was
chosen, provided that it is quickly consolidating as an easy-technique to characterize and evaluate the
decay of wood [36–38].
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2. Materials and Methods

2.1. Reagents, Fungal Isolate and Wood

Medium molecular weight chitosan (CAS No. 9012-76-4), with 60–130 kDa and 90% deacetylation,
was acquired from Hangzhou Simit Chemical Technology Co. (Hangzhou, China). Propolis, with
a content of ca. 10% w/v of polyphenols and flavonoids, came from the Duero river basin region
(Burgos, Spain). Silver nitrate (CAS number 7761-88-8) was supplied by Merck Millipore (Darmstadt,
Germany). All the other reagents used to synthetize or prepare the solutions were of analytical grade.

The isolate of T. versicolor (L.) Lloyd 1920 (DSM 3086 strain, CECT 20804) was supplied by the
Spanish Type Culture Collection (Valencia, Spain) and was cultivated on potato dextrose agar (PDA)
(supplied by Scharlau, Barcelona, Spain) for all assays.

The wood blocks were supplied by the Wood Technology Laboratory at Universidad de Valladolid
from P. euroamericana I-214 clone.

2.2. Chitosan-Based Solutions

The solutions of MMWC, CO, P, nAg and the CO-based binary and ternary mixtures—tested
in vitro for the inhibition of T. versicolor mycelial growth and as wood coatings—were prepared
starting from commercial medium MW chitosan, which was dissolved in acetic acid (1%) under
constant stirring at 60 ◦C for 2 h. The pH value was then adjusted from 4.5 to 6.5 with potassium
methoxide. Subsequently, oligo-chitosan was prepared by oxidative degradation of the solubilized
MMWC by addition of hydrogen peroxide (0.3 M), obtaining a MW of 2 kDa [39]. Propolis constituents
soluble in ethanol were extracted by grinding the resin and adding it to a hydroalcoholic solution
(ethanol 30%), followed by stirring for 72 h at room temperature, and by filtration with a stainless steel
220 mesh to remove insoluble particles [40]. Silver nanoparticles were synthetized by a sonication
method: 50 mL of silver nitrate (50 mM) were first mixed with 50 mL of sodium citrate (30 mM) as a
reducing agent, and the solution was heated up to 90 ◦C until it turned from colourless to pale yellow,
which then became more intense. The yellowish solution was sonicated for 3–5 min and allowed to
stabilize for at least 24 h in a refrigerator at 5 ◦C [41].

The binary and ternary solutions were prepared according to Martín-Gil et al. [42], by mixing of
the solutions described above at the desired concentrations (Table 1), followed by sonication for 1 min
with a probe-type UIP1000hdT ultrasonicator (Hielscher, Teltow, Germany; 1000 W, 20 kHz).

Table 1. Concentrations used in the in vitro experiments (medium molecular weight chitosan (MMWC),
COs and P are given in mg·mL−1, and that of nAg in µg·mL−1).

Treatment Concentration

Control 0.0
MMWC 1.0 2.0 4.0 7.0 10.0

CO 1.0 1.5 2.0 2.5 3.0
P 0.1 0.2 0.3 0.4 0.5

nAg 1.0 1.5 2.0 2.5 3.0
CO-P 0.5–0.05 1.0–0.1 2.0–0.2

CO-nAg 0.5–0.5 1.0–1.0 2.0–2.0
P-nAg 0.05–0.5 0.1–1.0 0.2–2.0

CO-P-nAg 0.5–0.05–0.5 1.0–0.1–1.0 2.0–0.2–2.0

2.3. In Vitro Assays

Each solution was incorporated into PDA at a ratio of 1:10 (v/v). PDA had been sterilized for
20 min at 121 ◦C and had been cooled down to 50 ◦C before the addition of the treatments (or of
distilled and sterilized water in the case of control). 20 mL of the medium were then spread in Petri
dishes and, once they had solidified, 5 mm in diameter discs of young mycelia of T. versicolor were
placed on the center of each Petri dish, followed by incubation in the dark at 25 ◦C and 65% HR. Three
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replicates were performed for each treatment. Finally, radial growth was measured on a daily basis
until the mycelium reached the edges of the control Petri dish (8 days), and the inhibition growth
percentage was calculated.

2.4. Wood Coating Assays

On the basis of the in vitro study results, the best treatments (either individual, binary or ternary
mixtures) were assayed as a coating over poplar wood in order to prevent its degradation against
T. versicolor fungus.

Small poplar wood blocks (5 × 5 × 20 mm3), previously dried at 103 ± 2 ◦C to determinate their
initial dry weight, were soaked in the different solutions: water (control), MMWC, CO, CO-P and
CO-P-nAg (36 blocks per treatment) for 12 h at room temperature. A concentration of 20 mg·mL−1

for MMWC, 20 mg·mL−1 for CO, 2 mg·mL−1 for P, and 20 µg·mL−1 for nAg were used. These doses,
which were ten times higher than the obtained MIC values from binary and ternary mixtures, were
chosen on the basis of adsorption, penetration and fixation tests, so as to compensate for the influence
of the dipping time on the uptake of the preservative solution and to minimize wood swelling, as
reported by Eikenes et al. [29] and Larnoy et al. [43]. Excess of liquid was then removed and the wood
blocks were dried in a chamber for 24 h at 45 ◦C. The coated blocks were placed on Petri dishes—six
per plate—newly covered until the edges by T. versicolor mycelia, which were again incubated at 27 ◦C
and 70% of relative humidity (RH) for 30 days.

One Petri dish, with six blocks, of each treatment was removed every 5 days for analysis. The
mycelia on the wood surface were carefully cleaned, the small blocks were then dried at 103 ± 2 ◦C to
quantify their dry weight after fungal attack, and the mass loss was determined by subtracting it from
the initial weight according to EN 113:1996 [44].

2.5. Microscopy and FTIR Studies

In order to monitor wood degradation, a Leica (Wetzlar, Germany) microtome was used to
cut thin wood sections (30 µm), which were analyzed by optical microscopy (with a Leica DMLM
Transmission Optical Microscope). Thin cut sections were also grinded and mixed with KBr (in 1:300
ratio) to prepare pellets to study the FTIR spectrum by direct transmittance technique, using a Thermo
Scientific (Waltham, MA, USA) Nicolet iS50 FTIR spectrometer. The spectra were collected in the
400–4000 cm−1 region at room temperature with a 1 cm−1 spectral resolution; a total of 64 scans were
co-added and the resulting interferogram was averaged. The obtained spectra were corrected using the
advanced ATR correction algorithm available in OMNIC software suite (Thermo Scientific, Waltham,
MA, USA), and were normalize using the 1048 cm−1 band, assigned to CO stretching, in agreement
with Colom et al. [36].

2.6. Statistical Analyses

All the statistical analyses were performed using R software (v. 3.4.4) (R Development Core Team,
2018). A total of 216 data, corresponding to 15 different individual groups (6 samples × 3 preservative
agents × 5 concentration levels), 1 control group (6 samples), 3 binary groups (6 samples × 3 groups ×
3 concentration levels) and 1 ternary group (6 samples × 3 levels) were analysed. Prior to the analyses,
the assumptions of independence, normality and homoscedasticity were checked for all groups. Since
the data structure did not meet the normality requirement, checked with Shapiro-Wilks test, or the
homoscedasticity requirement, checked with Bartlett’s test, the usual comparative analysis (ANOVA)
could not be used. Bootstrapping, Welch’s test and robust homogenous groups were used instead.
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3. Results and Discussion

3.1. Minimum Inhibitory Concentration

The antifungal activity of the chitosan-based composites against T. versicolor was evaluated in a
typical in vitro inhibition growth experiment. The results, collected after seven days of incubation, are
shown in Table 2. MMWC presented a moderate activity against mycelial growth, with significant
differences in comparison with the control treatment. However, low doses resulted in a low inhibition
and higher concentrations (up to 10 mg·mL−1) were needed to approach 100% mycelial growth
inhibition. In contrast, CO exhibited a high inhibitory activity even at the lowest doses; for example,
1 mg·mL−1 of CO inhibited 79% of mycelial growth. As expected, the increase in CO concentration
resulted in an increase of T. versicolor mycelial growth inhibition, attaining 100% inhibition (MIC) at a
concentration of 3 mg·mL−1.

Table 2. Effect of treatment concentration on the mycelial growth of T. versicolor (in vitro) seven days
after incubation. The concentrations of MMWC, COs and P are given in mg·mL−1, and that of nAg in
µg·mL−1.

Treatment Concentration
Inhibition Percentage (%)
Mean-Confidence Interval
and Homogeneous Groups

Shapiro Wilk
p-Value

Levene’s Test
p-Value

Welch’s Test
p-Value

Control 0.0 0.000 ± 0.000 C 0.000 − −

MMWC

1.0 22.708 ± 2.027 a 0.324

0.08629 0.0000
2.0 42.083 ± 1.429 b 0.505
4.0 75.375 ± 1.970 e 0.377
7.0 90.250 ± 1.846 i 0.988

10.0 95.542 ± 1.331 j k 0.001

CO

1.0 78.750 ± 1.094 f 0.110

0.0417 0.0000
1.5 87.708 ± 0.857 h 0.035
2.0 92.333 ± 0.991 i j 0.433
2.5 97.000 ± 0.992 k 0.680
3.0 99.997 ± 0.004 l 0.001

P

0.1 84.541 ± 1.135 g 0.836

0.0207 0.0000
0.2 88.333 ± 1.173 i 0.911
0.3 93.333 ± 1.148 j 0.850
0.4 97.500 ± 0.909 k 0.421
0.5 99.997 ± 0.004 l 0.001

nAg

1.0 85.000 ± 1.270 g 0.960

0.0214 0.0000
1.5 91.333 ± 1.221 h 0.843
2.0 94.217 ± 1.177 j 0.473
2.5 97.333 ± 0.753 k 0.725
3.0 99.997 ± 0.004 l 0.001

CO-P
0.5–0.05 51.458 ± 2.472 c 0.540

0.0037 0.00001.0–0.1 89.167 ± 0.451 h 0.001
2.0–0.2 99.997 ± 0.003 l 0.001

CO-nAg
0.5–0.5 64.583 ± 0.427 d 0.001

0.0281 0.00001.0–1.0 84.583 ± 0.740 g 0.091
2.0–2.0 99.996 ± 0.003 l 0.001

P-nAg
0.05–0.5 47.292 ± 1.673 c 0.212

0.1652 0.00000.1–1.0 84.167 ± 0.639 g 0.001
0.2–2.0 99.997 ± 0.004 l 0.001

CO-P-nAg
0.5–0.05–0.5 77.500 ± 1.081 f 0.110

0.0190 0.00001.0–0.1–1.0 85.208 ± 1.348 g 0.804
2.0–0.2–2.0 99.997 ± 0.004 l 0.001

As regards the differences observed between the activities of MMWC and CO, the results obtained
in this study would agree with other in vitro assays reported in the literature, such as those mentioned
in the introduction or those by Matei et al. [41] and Rahman et al. [9], who found a better antifungal
activity for low MW (less than 20 kDa) chitosan than for medium or high MW (more than 140 kDa)
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chitosan. Nonetheless, it should be clarified that this behaviour may not be extrapolated to all
fungi: for instance, Younes et al. [10] found that fungal growth decreased with increasing MW for
Fusarium oxysporum, thus pointing at the need to evaluate the optimum MW for each species.

In relation to the MIC, Stössel and Leuba [45] reported that—for native chitosan—MIC values
could vary from 0.001 to 2.5 mg·mL−1, depending on the phytopathogenic fungus. According to
Rabea et al. [46], the MIC value depends on factors such as the type of chitosan, the fungus under study,
the chemical or nutrient composition of the substrate and the environmental conditions. Another work
on Sphaeropsis sapinea and Trichoderma harzianum wood-degrading fungi suggested that the application
of 1 mg·mL−1 of low-molecular weight chitosan reduced growth rate by a factor of 3 with respect to
the control [47], in line with the results reported by Silva-Castro et al. [40], who found that 1 mg·mL−1

of CO inhibited 86% of the mycelial growth of Heterobasidium annosum basidiomycete fungus. Thus, in
view of aforementioned MIC values, it may be inferred that T. versicolor would show an intermediate
sensitivity (i.e., would be moderately sensitive) to chitosan/CO alone, albeit such resistance would not
be as high as that of, for example, Macrophomina phaseolina (for which MIC values of water-soluble
chitosan as high as 12.5 mg·mL−1 were found [48]). Consequently, it seemed necessary to explore
binary or ternary combinations with other compounds with antifungal activity in order to search for
synergies and to attain lower MIC values.

Propolis exhibited a higher antifungal activity against T. versicolor than CO: in propolis-based
treatments, 85% growth inhibition was attained with 0.1 mg·mL−1, with a MIC value of 0.5 mg·mL−1

(six times lower than MIC of CO). The use of propolis as an antifungal agent is well-known,
and its effectiveness has been proved against Candida spp. and other human pathogens [49–51].
This has promoted its use in the production of films to control foodborne fungi [52,53]. With
regard to phytopathogenic oomycetes (Phytophthora alni and Phytophthora plurivora), 0.1 mg·mL−1

of propolis ethanolic extract resulted in 100% inhibition [40]. Although there is no data concerning
propolis action against white-rot fungi (a thorough search of the relevant literature did not yield
any reports on the antifungal activity of propolis ethanolic extracts to control T. versicolor growth),
other natural products were assessed by Zhang et al. [54], who evaluated the activity against
white-rot fungi of 41 monoterpenes (which are part of the composition of propolis). They found
that carvacrol at a concentration of 0.4 mg·mL−1 led to 100% growth inhibition against Trametes hirsuta,
Schizphylhls commune, and Pycnoporus sanguineus, that is, its MIC value was similar to that reported
herein for P.

Regarding nAg treatments, just 1 µg·mL−1 led to 85% mycelial growth inhibition, which increased
up to 100% at a concentration of 3 µg·mL−1 (MIC value). It should be clarified that the remarkable
ability of nanosilver to inhibit fungal growth depends not only on the fungal species, but on the
nanoparticles characteristics—shape, size, synthesis method, stabilization, and so forth [55], which
makes direct comparisons difficult. For instance, a study was carried out to test three types of
nanosilver against eighteen plant pathogenic fungi, and while no variation was detected at relatively
low doses (10 µg·mL−1), at higher concentrations (100 µg·mL−1) the maximum inhibition for most
fungi was shown by dark brown colloid nanoparticles [56]. Apropos of wood-degrading fungi, silver
nanoparticles synthesized using turnip leaf extract were assayed against four fungi, showing slight
to moderate growth inhibition (with 2 and 4 mg of nanosilver on paper discs) [57]. Although in both
studies the nanoparticles presented a reasonably good activity, the MIC value found in the present
study indicates that T. versicolor would be very sensitive to nAg.

Since the antifungal activity of CO was noticeably higher than that of MMWC, only composites of
CO, P and nAg, in binary and ternary mixtures, were assessed. These composites presented significant
differences in comparison with the same concentrations of individual products. The CO-P binary
composites inhibited 100% of mycelial growth with 2 and 0.2 mg·mL−1, respectively (vs. MIC values
of 3 mg·mL−1 and 0.5 mg·mL−1 for individual treatments with CO and P, respectively), suggesting
that the mixture of both natural products would enhance the antifungal activity against T. versicolor. A
similar behaviour has also been reported by other authors, who observed that the addition of propolis
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to chitosan films enhanced their in vitro antimicrobial effect [18]. However, it is worth noting that this
synergistic behaviour cannot be extrapolated to all pathogens, provided that Mascheroni et al. [58]
reported disparate results for different foodborne fungi, with lower MICs for propolis-only treatments
than for chitosan-propolis beads in some cases. Likewise, Silva-Castro et al. [40] found no statistically
significant differences between CO-P composites and propolis-only treatments against P. alni and
P. plurivora.

Apropos of the binary CO-nAg composite, it resulted in 100% growth inhibition (MIC value) for a
concentration of 2 mg·mL−1 and 2 µg·mL−1, respectively (lower than the MICs of the corresponding
individual products too). However, a different behaviour was observed at lower doses of the mixture,
provided that significant differences between CO-nAg and nAg-only treatments were not found
at 0.1 µg·mL−1, suggesting that the nAg dose in the composite would be crucial (as noted above,
T. versicolor showed a much higher sensitivity to nAg than to chitosan). The results at a higher
concentration would be in good agreement with other studies in which it has been demonstrated that
the composites of both products have a greater antifungal activity [59], while the behaviour found
at lower nAg doses would be in line with the findings of Velmurugan et al. [60], who reported that
chitosan with silver nanosized particles exhibited a similar antifungal effect than the nanoparticles
alone against wood staining fungi, given the remarkable antifungal activity of the latter.

The third binary mixture, P-nAg, presented a MIC value of 0.2 mg·mL−1 and 2 µg·mL−1 for P and
nAg, respectively, which was also lower than MICs found for the treatments based on the individual
products. However, at lower concentrations (0.1 mg·mL−1 and 0.1 µg·mL−1) of P-nAg, again there
were not significant differences in comparison with the nAg individual solutions, resulting in similar
inhibition percentages (around 85%). This would reinforce the interpretation discussed above, in
which nAg would play a key role in T. versicolor inhibition, given the high sensitivity of the fungus
to this component. The dependence of the behaviour on the particular pathogen is evidenced by the
different results reported for the control of other forest pathogens: Silva-Castro et al. [40] found that
P-nAg composites showed a similar effect to that of CO against Fusarium circinatum, a lower effect
than that of CO against Diplodia pinea, and an enhanced behaviour versus CO-only treatments for the
control of Phytophthora cambivora.

Finally, the ternary mixture reached full mycelial growth inhibition at a MIC value of 2 mg·mL−1

of CO, 0.2 mg·mL−1 of P and 0.2 µg mL−1 of nAg, so it would not present an advantageous behaviour
as compared to the binary composites. This same CO-P-nAg ternary composite has been tested against
Diplodia seriata [41], Bipolaris oryzae [61] and eight forest phytopathogenic fungi [40], attaining a higher
inhibition than the individual or binary products at concentrations of 20–25 mg·mL−1, but leading
to a similar effect than that of binary solutions at lower concentrations, as it happens in the present
study. Paradoxically, at the lowest dose assayed herein (0.5 mg·mL−1 of CO, 0.05 mg·mL−1 of P and
0.5 µg·mL−1 of nAg), CO-P-nAg showed a noticeable higher antifungal effect against T. versicolor
(79% inhibition) than the binary mixtures (51%, 64% and 47% inhibition for CO-P, CO-nAg and
P-nAg, respectively).

3.2. Wood Preservation Assays

3.2.1. Weight Loss

Surface treatments with the chitosan-based composites were applied to mini-blocks of poplar
wood in order to prevent white-rot decay. Weight loss was recorded every 5 days (see Table 3).
The non-treated mini-blocks (control) and those treated with chitosan oligomers-based treatments
(CO, CO-P and CO-P-nAg) started losing weight from second sampling (10 days), in contrast with
those treated with MMWC. In the third sampling (after 15 days), degradation caused by T. versicolor
increased for all treatments, although with significant differences among the control and all the other
treatments. Non-covered blocks exhibited a weight loss of up to 27.3%, followed by those treated with
CO-P-nAg (22.8%), CO-P (14.7%), CO (7%) and MMWC (3%). The differences between coated and



Coatings 2018, 8, 415 8 of 15

non-coated samples further increased in the fourth sampling (after 20 days), in which the weight loss
only increased slightly for the treated blocks, while degradation reached 32.9% for the control. 25 days
after the exposure to fungus, the wood treated with MMWC still exhibited the lowest weight loss
(7.7%), while weight loss for the CO-based treatments increased, albeit still with significant differences
as compared to the control (39.8%). In the last sampling (after 30 days), the wood blocks treated with
the ternary composite reached a similar degradation level to that of the control—without significant
differences, in contrast with MMWC-treated samples, for which the weight loss (10.8%) remained
well-below that of the control (42.3%).

Table 3. Effect of coating treatments and time on weight loss for Populus spp. wood-blocks exposed to
white-rot fungus T. versicolor.

Treatment Time (days)
Weight Loss (%)

Mean-Confidence Interval
and Homogeneous Groups

Shapiro Wilk
p-Value

Levene’s Test
p-Value

Welch’s Test
p-Value

Control

5 0.138 ± 0.155 a 0.004

0.1973 0.0000

10 5.352 ± 1.315 b c 0.079
15 27.261 ± 3.037 i j 0.127
20 32.888 ± 4.233 j k 0.073
25 39.774 ± 2.036 l 0.949
30 42.353 ± 1.866 l 0.470

MMWC

5 0.000 ± 0.000 a 0.000

0.1132 0.0000

10 0.000 ± 0.000 a 0.000
15 3.478 ± 0.541 b 0.534
20 7.177 ± 0.570 c 0.900
25 10.157 ± 1.095 d 0.955
30 11.455 ± 1.171 d 0.412

CO

5 0.000 ± 0.000 a 0.000

0.0001 0.0000

10 4.311 ± 0.883 b 0.825
15 6.570 ± 1.226 c 0.759
20 13.524 ± 0.937 e 0.999
25 22.190 ± 0.890 h 0.961
30 26.871 ± 1.164 i 0.373

CO-P

5 0.000 ± 0.000 a 0.000

0.0254 0.0000

10 7.567 ± 0.889 c 0.610
15 13.578 ± 1.084 e 0.996
20 17.276 ± 1.154 f 0.869
25 29.662 ± 1.174 j 0.340
30 32.856 ± 1.039 k 0.289

CO-P-Ag

5 0.000 ± 0.000 a 0.000

0.0342 0.0000

10 10.615 ± 1.071 d 0.138
15 20.150 ± 1.185 g 0.660
20 26.864 ± 1.154 i 0.971
25 35.074 ± 1.341 k 0.762
30 39.943 ± 2.357 l 0.882

The poplar wood mini-blocks from the control treatment presented a higher degradation rate
than those of beech wood exposed to T. versicolor in the study carried out by Mohebby [38]: in the
latter, a weight loss of ca. 20% was recorded on the 28th day of the experiment, half of the one recorded
in this study after 30 days (42%). This can be readily ascribed to the high susceptibility of Populus spp.
wood to this fungus [32,34].

With regard to the differences in the weight loss rates for the treated samples, although most
treatments resulted in a slower degradation than that of the control, MMWC was clearly the most
effective protective agent (Figure 1). This should be ascribed to its higher viscosity and better adhesive
properties, adhesion is directly related to the DD of chitosan: if chitosan DD increases, the number
of positive charges also increases, which leads to improved adhesive properties [62], which would
result in a better coating on the surface of wood blocks. This would agree with Eikenes et al. [29],
who demonstrated that medium MW chitosan (at a concentration of 50 mg·mL−1) was able to avoid
the decay caused by brown-rot fungi on Scots pine, performing better than low MW chitosan, as
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it also happened in this study. Low doses of this type of chitosan (lower than 10 mg·mL−1) were
also found to be effective against white-rot fungi, according to Nowrouzi et al. [27]. Of course, the
wood preservation effect would largely depend on the concentration of chitosan, as demonstrated by
El-gamal et al. [23] in relation to the growth of fungi on treated wood samples from historic artefacts
(fungal growth decreased with the increase in chitosan concentration).
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(b) sample treated with medium molecular weight chitosan.

Concerning the effectiveness as wood protecting agents of the composites, it was lower than that
of the chitosan-only treatments (especially in comparison with MMWC), in contrast with the results
from the in vitro assays. This unexpected result may be explained by their low viscosity and poor
adhesion properties [63], which may be enhanced by adding thickening agents to chitosan oligomers,
such as natural gums, starches, pectins, alginate and carrageenan [64]; by preparing CO–clay based
composite materials [65]; or by using other impregnation procedures (involving vacuum and pressure).

In view of aforementioned results, MMWC would be the preferred choice for industrial
applications, not only due to its higher effectiveness, but also because of its fast and facile
preparation process.

3.2.2. Wood Degradation Monitoring

The decay of the wood-blocks was tracked using microscopy techniques. In the control sample,
changes such as cavities in the cell wall and a quick development of fungal hyphae were easily
recognized, the change between undecayed control wood and the last sampling (after 30 days) can be
observed by comparing Figure 2a,b, respectively. The hyphae progressively increased over the 30 days,
resulting in a strong structure interconnected with the wood one, as well as in holes in the cell walls and
in a general degradation of the vessels and fibres of the poplar wood, confirming the high susceptibility
of Populus spp. wood to T. versicolor [32]. Analogous effects were identified with SEM microscopy
on uncovered blocks of the softwood from Paulownia fortune attacked by T. versicolor [66], providing
evidence that the fungus can tunnel along the cellulose microfibrils, resulting in the formation of holes
in transverse sections. Changes in the samples impregnated with MMWC were much less evident,
even 30 days after exposure, with an associated weigh loss of 10% (Figure 2c).

FTIR spectroscopy was also used to follow the decay—by tracking chemical changes—of the
poplar wood mini-blocks. The infrared spectrum of undecayed control wood (Figure 3) was almost
identical to that of Fagus sylvatica [37], featuring a broad band at around 3400 cm−1 (corresponding
to a convolution of O–H and N–H stretching vibration bands, at 3480 and 3270 cm−1, respectively)
and a band at around 2997 cm−1 (C–H stretching), which was also observed in the control and
MMWC-coated wood samples 30 days after the exposure to T. versicolor. In view of the very small
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shifts observed in the first band for the MMWC coating, a low interaction of the solution with the
wood may be inferred. When such interaction occurs, hydrogen bonds suffer a redistribution and the
N–H band disappears [67].Coatings 2018, 8, x FOR PEER REVIEW  10 of 15 
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Figure 2. Optical micrographs (at 500× magnification) of the surface of poplar wood samples:
(a) undecayed control wood sample prior to exposure to T. versicolor; (b) control wood sample 30 days
after exposure to T. versicolor; and (c) sample treated with medium molecular weight chitosan 30 days
after exposure to T. versicolor.
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Figure 3. Normalized Fourier transform infrared (FTIR) spectra of poplar wood samples: (a) undecayed
control wood sample prior to exposure to T. versicolor; (b) control 30 days after exposure to T. versicolor;
and (c) sample treated with medium molecular weight chitosan 30 days after exposure to T. versicolor.
A deconvolution of O–H (dashed lines) and N–H (dotted lines) bands, together with the cumulative
peak fit (short dash-dot lines), is shown.

Many well-defined bands could also be observed in the fingerprint region, between 1800 and
600 cm−1: at 1740 cm−1 (unconjugated C=O from xylans in hemicellulose and/or C–O carbonyl
band); at 1650 cm−1 (conjugated C–O in aromatic ring and O–H in absorbed water); at 1606 cm−1

and 1510 cm−1 (C=C aromatic skeletal vibrations in lignin); at 1465 cm−1 (CH3 asymmetric bending
in lignin); at 1425 cm−1 (CH2 bending in cellulose); at 1380 cm-1 (C–H deformation in cellulose and
hemicellulose); at 1327 cm−1 (C–O in syringyl and guaiacyl rings and/or O–H in plane bending in
cellulose); at 1247 cm−1 (syringyl ring and/or C–O stretching in lignin and xylan); at 1165 cm−1 (C–O–C
symmetric stretching in cellulose); at 1117 cm−1 (aromatic skeletal and C–O stretching vibrations); at
1044 cm−1 (C–O stretching in cellulose and hemicellulose); and at 903 cm−1 (C–H out of phase ring
stretching in cellulose) [36–38,68,69].

Upon comparison of the spectra of the undecayed control sample and the control block at the end
of the experiment, a decrease in the intensity of the band at 1606 and 1510 cm−1, associated with lignin,
and an increase in the intensity of the band at 1650 cm−1 (conjugated C–O from aromatic ring of xylans
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in hemicellulose) could be observed, suggesting a preference of the fungus for lignin [37]. In relation
with the MMWC-treated wood blocks, only some slight changes in the chemical structure of the poplar
wood were found, for example, a decrease in the intensity of carbonyl band at 1740 cm−1 (probably
due to the opening of conjugated bonds and formation of new linkages with other groups in the
hemicellulose), in good agreement with the study conducted by Nowrouzi et al. [27] on beech wood.

4. Conclusions

The effectiveness of chitosan and the chitosan-based composites as wood preservatives against
white-rot fungus T. versicolor was assessed, both in vitro and as surface protection treatments. The
minimum inhibitory concentration (MIC) against mycelial growth was determined for the individual
components (MMWC, CO, P and nAg) and their binary (CO-P, CO-nAg, P-nAg) and ternary
(CO-P-nAg) mixtures. A higher in vitro antifungal activity of CO versus MMWC was observed,
as well as a better performance of the binary mixtures in comparison with the individual products (full
mycelium growth inhibition was attained at concentrations of 2 mg·mL−1 for CO, 0.2 mg·mL−1 for P
and 2 µg·mL−1 for nAg when any two of the products were combined). Nonetheless, no significant
improvements associated with the ternary composite over its binary counterparts were found for this
fungus. The protective effect of the composites as coatings of poplar wood blocks was then evaluated,
monitoring the wood decay over a 30-day period after exposure to the fungus in terms of weight loss
and by microscopy and vibrational spectroscopy techniques. MMWC was found to be best protective
agent, probably due to its higher viscosity and adhesion properties. Although a remarkable potential
of the all treatments was evidenced by the in vitro tests, the medium molecular weight chitosan was
the best considering commercial applications.
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