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a b s t r a c t 

AMURA (Apparent Measures Using Reduced Acquisitions) was originally proposed as a method to infer 

micro-structural information from single-shell acquisitions in diffusion MRI. It reduces the number of 

samples needed and the computational complexity of the estimation of diffusion properties of tissues 

by assuming the diffusion anisotropy is roughly independent on the b-value. This simplification allows 

the computation of simplified expressions and makes it compatible with standard acquisition protocols 

commonly used even in clinical practice. The present work proposes an extension of AMURA that allows 

the calculation of general moments of the diffusion signals that can be applied to describe the diffusion 

process with higher accuracy. We provide simplified expressions to analytically compute a set of scalar 

indices as moments of arbitrary orders over either the whole 3-D space, particular directions, or particu- 

lar planes. The existing metrics previously proposed for AMURA (RTOP, RTPP and RTAP) are now special 

cases of this generalization. An extensive set of experiments is performed on public data and a clinical 

clase acquired with a standard type acquisition. The new metrics provide additional information about 

the diffusion processes inside the brain. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

s

o

a

t

s  

t

t

n

w

i

(

a

d

2

2

f

i

i

f

t

b

2

s

R

b

h

1

. Introduction 

The name Diffusion Magnetic Resonance Imaging (DMRI) de- 

cribes a set of diverse MRI imaging techniques with the ability 

f extracting in vivo relevant information regarding the random, 

nisotropic diffusion of water molecules that underlie the struc- 

ured nature of different living tissues ( Tournier et al., 2011; As- 

emlal et al., 2011; De Luca et al., 2021 ). It has attracted an ex-

raordinary interest among the scientific community over the last 

wo decades due to the relationships found between a number of 

eurological and neurosurgical pathologies and alterations in the 

hite matter as revealed by an increasing number of DMRI stud- 

es ( Rovaris and Filippi, 2007; Bester et al., 2015; Pasternak et al., 
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020 ). 

In practice, in order to estimate the properties of the diffusion 

rom the acquired data, different techniques can be adopted, be- 

ng the diffusion tensor ( Basser et al., 1994 , DT) the most common 

n clinical studies. However, the diffusion mechanisms cannot be 

ully described by DT because of the oversimplified Gaussian fit- 

ing. More evolved techniques with more degrees-of-freedom have 

een proposed, such as Diffusion Kurtosis Imaging ( Jensen et al., 

005 , DKI) or methods based on High Angular Resolution Diffu- 

ion Imaging ( Tuch et al., 2003; Özarslan et al., 2006; Canales- 

odríguez et al., 2010 , HARDI). The trend over the last decade has 

een to acquire a large number of diffusion-weighted images dis- 

ributed over several shells (i.e. with several gradient strengths) 

nd with moderate-to-high b-values to estimate more advanced 

iffusion descriptors, such as the Ensemble Average diffusion Prop- 

gator ( Descoteaux et al., 2011; Özarslan et al., 2013; Ning et al., 

015; Haije et al., 2020 , EAP). This estimation relies on model-free, 

on parametric approaches that can accurately describe most of 

he relevant diffusion phenomena. 
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Regardless of the method selected for estimating the diffusion 

roperties, in order to be used in clinical studies, the informa- 

ion provided is usually translated into a set of scalar metrics such 

s: the Fractional Anisotropy (FA) or Mean Diffusivity (MD) ( Basser 

nd Pierpaoli, 1996; Westin et al., 2002 ) for the DT approach, the 

urtosis coefficient for DKI ( Jensen et al., 2005; Lu et al., 2006 ) or

he return-to-origin (RTOP), the return-to-plane (RTPP), return-to- 

xis probabilities (RTAP) and mean-squared-displacement (MSD) 

 Wu et al., 2008; Descoteaux et al., 2011; Özarslan et al., 2013; 

osseinbor et al., 2013; Ning et al., 2015 ), or the Propagator 

nisotropy (PA) ( Özarslan et al., 2013 ) for EAP imaging. 

There are two main limitations with those techniques that rely 

n the estimation of the EAP: (1) the need of acquiring very 

arge data sets with many q –space samples in different shells; and 

2) the estimation of the EAP involves important computational 

urdens with very long processing times. These two issues have 

lowed down the generalization of this methodology among the 

linical community, despite the relevance of its scalar measures 

n the description of the brain micro-structure, see for instance 

 Boscolo Galazzo et al., 2018; Brusini et al., 2016; Ma et al., 2020;

e et al., 2020 ). In order to overcome these problems, in ( Aja-

ernández et al., 2020; 2021 ) authors proposed a new technique 

alled “Apparent Measures Using Reduced Acquisitions” (AMURA) 

or the computation of EAP imaging-related markers, namely RTOP, 

TPP, RTAP and PA without explicitly calculating the EAP. AMURA 

an mimic the sensitivity of EAP-based measures to microstruc- 

ural changes when a reduced amount of data distributed in a few 

hells (even one) is available. In order to do so, AMURA assumes 

 prior model for the behavior of the radial q –space instead of 

rying to numerically describe it, yielding simplified expressions 

hat can be computed easily even from single-shell acquisitions. 

t has proved its potential in some preliminary studies with clini- 

al data (Parkinson and Mild Cognitive Impairment Aja-Fernández 

t al., 2020; Aja-Fernández et al., 2021 ) and recently in real clinical 

tudies in migraine and headache ( Planchuelo-Gómez et al., 2020b; 

021 ). 

The present work proposes a generic formulation of AMURA 

hat allows the calculation of generalized moments that can 

e better suited to describe certain anatomies, both healthy 

nd pathological. The existing metrics (RTOP, RTPP and RTAP) 

an be seen as special cases of this generalization. To that 

nd, the same constrained model for radial diffusion used by 

ja-Fernández et al. (2020) is adopted here, i.e., the diffusion 

nisotropy is assumed to be independent of the actual b-value of 

he measured shells. We use this simplification to derive alterna- 

ive simplified expressions for the moments of the acquired mag- 

itude signal and the EAP from single-shell acquisitions. 

Our hypothesis is that the new metrics based on moments rep- 

esentation provide extra information about the diffusion that can 

ighlight additional interesting properties of certain brain struc- 

ures compared to AMURA. In order to evaluate whether the calcu- 

ation of general moments can be used as an alternative approach 

o standard AMURA in the analysis of specific brain regions, an ex- 

ensive set of experiments was performed on data acquired with a 

ypical acquisition protocol employed in a clinical context. 

. Background 

.1. The diffusion signal 

The EAP, P (R ) , is the three dimensional Probability Density 

unction (PDF) of the water molecules inside a voxel moving an 

ffective distance R in an effective time τ . It is related to the nor- 

alized magnitude image provided by the MRI scanner, E(q ) , by 
2 
he Fourier transform ( Callaghan et al., 1988 ): 

 (R ) = 

∫ 
R 3 

E(q ) exp (−2 π j q 

T R ) d q . (1)

he inference of exact information on the R –space would require 

he sampling of the whole q –space to use the Fourier relationship 

etween both spaces. 

In order to obtain an analytical solution from a reduced num- 

er of acquired images, a model for the diffusion behavior must be 

dopted. The most common techniques rely on the assumption of 

 Gaussian diffusion profile and a steady state regime of the dif- 

usion process that yields to the well-known Diffusion Tensor (DT) 

pproach. Alternatively, a more general expression for E(q ) can be 

sed ( Özarslan et al., 2006; Aja-Fernández et al., 2020 ): 

(q ) = exp 

(
−4 π2 τq 2 D (q ) 

)
= exp ( −b · D (q ) ) , (2) 

here the positive function D (q ) = D (q, θ, φ) > 0 is the Apparent

iffusion Coefficient (ADC), b = 4 π2 τ‖ q ‖ 2 is the so-called b-value 

nd q = ‖ q ‖ , θ ∈ [0 , 2 π) , and φ ∈ [0 , π ] are the angular coordi-

ates in the spherical system. According to Basser (2002) , in the 

ammalian brain this mono-exponential model is predominant for 

alues of b up to 20 0 0 s / mm 

2 and it can be extended to higher

alues (up to 30 0 0 s / mm 

2 ) if appropriate multi-compartment 

odels of diffusion are used. 

.2. Advanced diffusion measures from single shell acquisitions: 

MURA 

Despite the advantages of the EAP-based measures, the calcu- 

ation of these scalars usually requires long execution and acquisi- 

ion times, together with very large b-values and a large number 

f diffusion gradients, not always available in commercial scanners 

nd generally discarded in the clinical routine. To solve these prob- 

ems, AMURA has been developed in Aja-Fernández et al. (2020, 

021) . This approach allows the estimation of simplified versions 

f EAP-related scalars without the explicit calculation of the EAP, 

sing a lower number of samples, even with a single-shell acqui- 

ition scheme. AMURA considers that, if the amount of data is 

educed, a restricted diffusion model consistent with single-shell 

cquisitions must be assumed: the ADC does not depend on the 

agnitude of q (i.e., it is roughly independent on the b-value) 

ithin the range of b-values probed, so that D (q ) = D (u ) , where

 ∈ S is a unit direction in space where || u || = 1 and q = q u . This

ay Eq. (2) becomes: 

(q ) = E(q u ) = exp 

(
−4 π2 τq 2 D (u ) 

)
. (3) 

his methodology allows shorter MRI acquisitions and very fast 

alculation of scalars. From Eq. (3) , AMURA proposed a particular 

mplementation of scalar measures. Since the mono-exponential 

odel only holds within a limited range around the measured b- 

alue, the measures derived this way must be seen as apparent val- 

es at a given b-value, related to the original ones but dependent 

n the selected shell. The main metrics defined in AMURA are: 

1. Return-to-origin probability (RTOP): also known as probabil- 

ity of zero displacement, it is related to the probability density 

of water molecules that minimally diffuse within the diffusion 

time τ ( Assaf et al., 20 0 0; Wu et al., 2008; Hosseinbor et al.,

2012 ). It is defined as the value of P (R ) at the origin, related to

the volume of the signal E(q ) : 

RTOP = 

∫ 
R 3 

E(q ) dq 

= 

1 
(4 π) 2 τ 3 / 2 C 0 , 0 

{
D (u ) −3 / 2 

}
. 

(4) 

where C 0 , 0 { H(u ) } is the zeroth-order coefficient of a spherical 

harmonics (SH) expansion of signal H(u ) , defined as: 

C 0 , 0 { H(u ) } = 

1 √ 

4 π

∫ 
S 

H(u ) du , (5) 
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where S denotes the surface of a sphere of radius one. 

2. Return-to-plane probability (RTPP) : defined as 

RTPP = 

∫ 
R 

E(q r || ) dq = 

√ 

π

4 π2 τ

√ 

1 

D (r || ) 
(6) 

where r || denotes the direction of maximal diffusion. This 

measure is known to be a good indicator of restrictive bar- 

riers in the axial orientation, and it is related to the mean 

pore length ( Özarslan et al., 2013; Brusini et al., 2015; Bos- 

colo Galazzo et al., 2018 ). 

3. Return-to-axis probability (RTAP) : 

RTAP = 

∫ 
q ⊥ r || E(q ) dq 

= 

1 
2 ·4 π2 τ

G 
{

D (u ) −1 
}
(r || ) 

(7) 

where q ⊥ r || is the set of directions perpendicular to r || and 

G 
{

D (u ) −1 
}
(r || ) is the Funk-Radon Transform (FRT) ( Tuch, 2004 ) 

of D (u ) −1 
evaluated at r || , the direction of maximum diffusion. 

The RTAP is an indicator of restrictive barriers in the radial ori- 

entation ( Özarslan et al., 2013; Zucchelli et al., 2016; Karma- 

charya et al., 2018 ). 

4. Apparent Propagator Anisotropy (APA) : quantifies how much 

the propagator diverges from the closest isotropic one. For 

AMURA, we can define: 

APA 0 = 

√ 

1 − 4 √ 

π

[ C 0 , 0 { (D (u ) + D AV ) −3 / 2 } ] 2 
C 0 , 0 { D (u ) −3 / 2 } · D 

−3 / 2 
AV 

, (8) 

where D AV = 

1 √ 

4 π
C 0 , 0 { D (u ) } . To better distribute the output val- 

ues in the range [0,1], the APA is transformed by a contrast en- 

hancement function as described in Özarslan et al. (2013) . 

. Methods 

As previously stated, the information provided by the EAP is 

xpressed in terms of scalar indices or metrics to be usable in 

ractice. In Özarslan et al. (2013) , Ning et al. (2015) , the au-

hors suggest the use of radial moments, i.e. integrals computed 

ver P (R ) and weighted by powers of the radial coordinate. Fol- 

owing a similar rationale, the authors in Tristán-Vega and Aja- 

ernández (2021) propose the computation of similar moments 

ver E(q ) . Indices like RTAP and RTPP can be computed as ei-

her line or plane integrals over R which translate to either 

lane or line integrals over q . Thus, in Tristán-Vega and Aja- 

ernández (2021) the diffusion is characterized in a multishell 

pproach through the computation of moments on either the R 

r the q domain. In this work, we will restrict ourselves to the 

ssumptions of AMURA, specifically the simplified diffusion in 

q. (3) and considering only one acquired shell, i.e., only one b- 

alue is available for the computation of the metrics. 

.1. Generalized moments of E(q ) 

First, we consider those moments over the signal defined in the 

 domain. 

1. Full moments: We define the full moments of E(q ) as those 

computed by integration in the whole 3-D space: 

ϒ p = 

∫ 
R 

3 
q p E ( q ) dq . (9) 

Note that, with this definition, RTOP = Y 0 and qMSD = Y 2 ( q –

space mean-squared-displacement Ning et al., 2015 ). By using 

the simplification in Eq. (3) , we can write Eq. (9) in spherical 
3 
coordinates and integrate with respect to the radial component 

q : 

Y p = 

∫ ∞ 

0 

∫ 
S 

q 2+ p exp (−4 π2 τq 2 · D (u )) du dq 

= 

1 

2 

�
(

3 + p 

2 

)
1 

(4 π2 τ ) 
3+ p 

2 

∫ 
S 

D (u ) −
3+ p 

2 du , (10) 

the integral being convergent only if p > −3 . Using the zeroth- 

order coefficient of a SH expansion to calculate the integral over 

the surface of the unit sphere S , we can write: 

Y p = �
(

3 + p 

2 

) √ 

π

(4 π2 τ ) 
3+ p 

2 

C 0 , 0 

{ 

D (u ) −
3+ p 

2 

} 

, p > −3 . (11) 

The units of the full moment Y p are [ mm 

−p−3 ] . 

2. Axial moments: We define the axial moments as those com- 

puted as a line integral along a given direction: 

Y p || = 

∫ 
R 

q p E(q r || ) dq, (12) 

where r || denotes the direction of maximal diffusion. With this 

definition, RTPP = Y 0 || . Once more, we can use the simplification 

in Eq. (3) and therefore: 

Y p || = 

∫ ∞ 

−∞ 

q p exp (−4 π2 τq 2 D (r || )) dq 

= 

1 

(4 π2 τ ) 
1+ p 

2 

�
(

1 + p 

2 

)
D (r || ) −

1+ p 
2 , p > −1 , (13) 

where D (r || ) is the value of the diffusion signal D (q ) at the

maximum diffusion direction r || . Again, the condition p > −1 

ensures the convergence of the integral. The axial moment Y 
p 
|| 

is measured in [ mm 

−p−1 ] . 

3. Planar moments: We define the planar moments as those 

computed as surface integrals in a plane perpendicular to a de- 

sired direction containing the origin: 

Y p ⊥ = 

∫ 
q ⊥ r || 

q p E(q ) dq , (14) 

where q ⊥ r || is the set of directions perpendicular to r || (the 

one with maximal diffusion). With this definition, RTAP = Y 0 ⊥ . 
In order to simplify the equation, we use again the sim- 

plification in Eq. (3) . Let θ be the angle that parameterizes 

the equator perpendicular to the maximum diffusion direction, 

{ u ⊥ (θ ) , θ ∈ [0 , 2 π) } ≡ { u : u ⊥ r || , ‖ u ‖ = 1 } , and D (u ⊥ (θ )) the

diffusion signal at that equator. Since D (u ⊥ (θ )) does not de- 

pend on the radial component, the previous integral can be de- 

veloped into: 

Y p ⊥ = 

∫ ∞ 

0 

∫ 2 π

0 

exp (−4 π2 τq 2 D (u ⊥ (θ ))) q p+1 d θ d q 

= 

1 

2 

1 

(4 π2 τ ) 
p+2 

2 

�
(

2 + p 

2 

)∫ 2 π

0 

D (u ⊥ (θ )) −
2+ p 

2 dθ . (15) 

By assuming p > −2 we can guarantee the integral is conver- 

gent. The FRT operator allows a more compact notation: 

Y p ⊥ = 

1 

2 

1 

(4 π2 τ ) 
p+2 

2 

�
(

2 + p 

2 

)
G 
{ 

D (u ) −
2+ p 

2 

} 

(r || ) , p > −2 . 

(16) 

The units of the planar moment Y 
p 
⊥ are [ mm 

−p−2 ] . 

.2. Generalized (full) moments of P (R ) 

A closed form expression of P (R ) cannot be attained in the 

eneral case from the mono-exponential model of E(q ) . Even so, 
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Table 1 

Survey of the moments of E(q ) and P(R ) calculated with AMURA. 

Measure Numerical Implementation 

Full moments of E(q ) Y p = �
(

3+ p 
2 

) √ 
π

(4 π2 τ ) 
3+ p 

2 

C 0 , 0 

{ 
D (u ) −

3+ p 
2 

} 
, p > −3 

Axial moments of E(q ) Y p || = 

1 

(4 π2 τ ) 
1+ p 

2 

�
(

1+ p 
2 

)
D (r || ) −

1+ p 
2 , p > −1 

Planar moments of E(q ) Y p ⊥ = 

1 
2 

1 

(4 π2 τ ) 
p+2 

2 

�
(

2+ p 
2 

)
G 
{ 

D (u ) −
2+ p 

2 

} 
(r || ) , p > −2 

Full moments of P(R ) υ p = 

�( p+3 
2 ) 

q p π p+1 C 0 , 0 
{

D 
p 
2 (u ) 

}
, p > −3 

f

c

a

υ

w

υ

w

R  

E

υ

F

c

o

υ

T

3

t

p

o

4

w

u

M

s

G

R

I

o

B

s

 

 

 

 

 

 

 

 

ull moments analogous to those defined for E(q ) can be explicitly 

omputed. In precise terms, we define the pth full moment of P (R ) 

s: 

p = 

∫ 
R 3 

R 

p P (R ) dR . (17) 

here R = | R | . Using spherical coordinates, we can rewrite it to: 

p = 

∫ 
S 

(∫ ∞ 

0 

R 

p+2 P (R r ) dR 

)
dr , p > −3 , (18) 

here r ∈ S is a unitary direction in space and, therefore, R = 

 r and | r | = 1 . If we consider the mono-exponential model in

q. (3) we can solve the integral, see Appendix A : 

p = 

�
(

p+3 
2 

)
2 q p π p+ 3 2 

∫ 
S 

D 

p 
2 (u ) du , p > −3 . (19) 

ollowing the Eq. (19) , MSD = υ2 . Using the zeroth-order coeffi- 

ient of a SH expansion to calculate the integral over the surface 

f the unit sphere S , we can write: 

p = 

�
(

p+3 
2 

)
q p π p+1 

C 0 , 0 
{

D 

p 
2 (u ) 

}
. (20) 

he full moment υ p is given in [ mm 

p ] . 

.3. Survey 

An overview of the different moments proposed in this sec- 

ion, together with their specific numerical implementations, is 

resented in Table 1 . In addition, Appendix B provides the anal- 

gous expressions for DT representation. 

. Materials 

In order to test the proposed measures the following datasets 

ere used: 

• Human Connectome Project (HCP) MGH database ( Fan et al., 

2016; Moeller et al., 2021 ) 1 : specifically volumes MGH1007, 

MGH1010, MGH1016, MGH1026 and MGH1030, acquired on a 

Siemens 3T Connectom scanner (Siemens, Erlangen, Germany) 

equipped with a custom-made 64-channel head coil and gra- 

dient coil capable of producing a maximum gradient strength 

at 300 mT/m. The data were acquired with a mono-polar 

Stejskal–Tanner pulsed gradient spin-echo echo planar imag- 

ing (EPI) with (repetition time/time echo) TR / TE = 8800 / 57 
1 Data obtained from the Human Connectome Project (HCP) database ( ida.loni. 

sc.edu/login.jsp ). The HCP project (Principal Investigators: Bruce Rosen, M.D., Ph.D., 

artinos Center at Massachusetts General Hospital; Arthur W. Toga, Ph.D., Univer- 

ity of Southern California, Van J. Weeden, MD, Martinos Center at Massachusetts 

eneral Hospital) is supported by the National Institute of Dental and Craniofacial 

esearch (NIDCR), the National Institute of Mental Health (NIMH) and the National 

nstitute of Neurological Disorders and Stroke (NINDS). HCP is the result of effort s 

f co-investigators from the University of Southern California, Martinos Center for 

iomedical Imaging at Massachusetts General Hospital (MGH), Washington Univer- 

ity, and the University of Minnesota. p

4 
ms and accelerated with the Generalized Autocalibrating Par- 

tially Parallel Acquisition (GRAPPA) protocol at phase partial 

Fourier 6/8. The acquisition protocol included four b-values 

at { 10 0 0 , 30 0 0 , 50 0 0 , 10 , 0 0 0 } s / mm 

2 sampled at 6 4, 6 4, 128

and 256 directions respectively, 40 non-diffusion acquisitions 

at b = 0 , voxel resolution 1 . 5 × 1 . 5 × 1 . 5 mm 

3 , pixel bandwidth

1984 Hz/pixel, acquisition matrix 140 × 140 with 96 slices cov- 

ering each volume, and pulse separation time/diffusion gradi- 

ents length 	/δ = 21 . 8 / 12 . 9 ms. 
• Human Connectome Project (HCP) WU-Minn test-retest 

database: ( Van Essen et al., 2013; Moeller et al., 2021 ): 

Thirty-seven subjects were used after excluding seven cases 

from the database due to incompatibilities between test and 

retest acquisitions (excluded volumes: 135528, 137128, 151526, 

169343, 179548, 192439, 601127, 660951). All subjects were 

scanned with a customized Siemens 3T Connectome Skyra 

scanner (Siemens, Erlangen, Germany) equipped with a 32- 

channel head coil and gradient coil with a maximum gradi- 

ent strength at 100 mT/m. The data were acquired using the 

multiband approach with a multiband factor of 3, TR / TE = 

5520 / 89 . 5 ms. The acquisition protocol included three b-values 

at { 10 0 0 , 20 0 0 , 30 0 0 } s / mm 

2 , each shell sampled in 90 non-

collinear directions, 18 repetitions of the baseline acquisition 

( b = 0 ), voxel resolution 1 . 25 × 1 . 25 × 1 . 25 mm 

3 , pixel band-

width 1490 Hz/pixel, 140 slices covering each volume, and 

pulse separation time/diffusion gradients length 	/δ = 43 / 10 . 6 

ms. 
• Multishell data acquired at CUBRIC (CBR) 2 : 14 healthy vol- 

unteers scanned on a 3T Siemens Prisma scanner (maxi- 

mum gradient strength at 80 mT/m) with a pulsed-gradient 

spin-echo (PGSE) sequence. Three shells were acquired at b = 

{ 120 0 , 30 0 0 , 50 0 0 } s/mm 

2 with 60 directions per value. The

voxel resolution is 1.5 × 1.5 × 1.5 mm. Other acquisition param- 

eters are: TE = 80 ms, TR = 4500 ms, 	/δ = 38 . 3 / 19 . 5 ms, parallel

imaging acquisition (GRAPPA2) with sum of squares combina- 

tion and 32 channels. 
• Episodic Migraine Database (EMDb) : as described 

in Planchuelo-Gómez et al. (2020a) , Planchuelo- 

Gomez et al. (2020) . For this paper we will consider a 

total of 50 healthy controls (HCs) at the age of 36.1 ± 13.2 

(39F, 11M) and 51 patients with Episodic Migraine (EM) at the 

age of 36.6 ± 7.9 (44F, 7M) and duration of migraine 13.1y ±
10.5y. The study was approved by the Ethics Committee of the 

Hospital Clínico Universitario de Valladolid (PI: 14–197). The 

inclusion criteria of EM follow the International Classification 

of Headache Disorders guidelines ( Zhang et al., 2016 ). MRI 

acquisition was performed with a Philips Achieva 3 T MRI unit 

(Philips Healthcare, Best, The Netherlands), using a 32-channel 

head coil in the MRI facility at the Universidad de Valladolid 

(Valladolid, Spain). The parameters of the diffusion-weighted 

acquisition are as follows: TR / TE = 90 0 0 / 86 ms, flip angle =
90 ◦, single-shell acquisition with 61 gradient directions and 

b = 10 0 0 s / mm 

2 , one baseline volume, 128 × 128 matrix size,

spatial resolution of 2 × 2 × 2 mm 

3 and 66 slices that cover 

the whole brain. Both T1 and diffusion-weighted data were 

collected between May 2014 and July 2018 in a unique MRI 

session, starting with the T1 scan. For a single subject, the 

time for both scans was approximately 18 min. The data were 

preprocessed following a standard pipeline: denoising, correc- 

tion for eddy currents and motion and correction for B1 field 

inhomogeneity, and Gibbs ringing artifact. The MRtrix software 

( Tournier et al., 2019 ) was employed to carry out these steps. 
2 www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/ 

rojects/cross- scanner- and- cross- protocol- diffusion- MRI- data- harmonisation 

http://www.ida.loni.usc.edu/login.jsp
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
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Fig. 1. Moments of different kinds for different orders p computed over the com- 

posite attenuation signal over subject HCP MGH1007. Each moment has been nor- 

malized to its own range for visualization purposes. Top to bottom: full moments 

( Y p ); axial moments for the maximum diffusion direction ( Y p || ); planar moments for 

the maximum diffusion direction ( Y p ⊥ ) and full moments of the EAP ( υ p ). These in- 

dices include RTOP, qMSD, RTPP, RTAP and MSD. 
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A whole brain mask for each subject was also calculated from 

data. 

. Experiments and results 

.1. Setting-up of the experiments 

AMURA and MiSFIT measures were calculated using the dMRI- 

ab 3 toolbox and MATLAB 2020a. As explained above, AMURA 

easures rely on the expansion of spherical functions at a given 

hell in the basis of SH. Even SH orders up to 6 were fit- 

ed with a Laplace-Beltrami penalty λ = 0 . 006 . The direction of 

aximum diffusion r || was computed as the principal eigenvec- 

or of the diffusion tensor calculated from the same data set 

s the AMURA. The FRT was numerically computed as described 

n Descoteaux et al. (2007) : the spherical function –D (u ) – was first

panned in the basis of SH up to the desired order L ; then, we

xploited the property of SH being eigenfunctions for the FRT by 

pplying constant factors –FRT eigenvalues– to the SH coefficients. 

s a result, we got the SH coefficients of the analytically computed 

RT of the original signal, which could now be evaluated for any 

rientation at will (and, in particular, for r || ). 

.2. Behavior of moments for varying orders 

A preliminary visual assessment of the different metrics was 

erformed using one single slice from the HCP volume MGH1007. 

he proposed measures were calculated using a single shell at 

 = 30 0 0 s / mm 

2 . Figure 1 provides a qualitative insight in the be-

avior of moments computed in the q and R domains. Each kind 
3 www.lpi.tel.uva.es/dmrilab 

p

t

t

5 
f moment (full, axial, or planar) admits a different range of varia- 

ion for its order depending on the convergence of the correspond- 

ng integral. Accordingly, we have probed a range including inverse 

negative), positive and fractional orders in all cases. Since their 

anges of variation are very different from each other depending 

n the order and the kind of moment, all the slices shown have 

een min-max normalized. 

First of all, note that the popular RTOP, RTPP and RTAP could be 

lready calculated with the original formulation of AMURA. Here, 

e can see them as special values of the considered moments. 

ull moments Y p , for instance, show a different range of quantifi- 

ation of the variation of the white matter as a function of the 

rder p. Axial moments Y 
p 

|| result in very noisy maps with a re- 

uced anatomical coherence, an effect that can also be seen in 

TPP, even when calculated with more shells and more advanced 

ethods ( Tristán-Vega and Aja-Fernández, 2021 ). These moments 

re especially sensitive to the signal-to-noise ratio (SNR). Planar 

oments Y 
p 
⊥ , on the other hand, exhibit a behavior very similar to 

he full moments. Anatomical structures in white matter are distin- 

uishable even for negative and not even orders. Finally, moments 

f P (R ) , υ p , show a behavior different to the previous ones. Note

hat υ0 = 1 since it is the integral of the whole EAP, which repre- 

ents a PDF. On the other hand, note that, from an implementation 

oint of view, υ p are defined as positive powers of D (u ) , while

he moments of E(q ) are defined over negative powers, hence the 

isual differences. 

Next, we will focus in the values of the different moments in 

ne particular area of the brain, the CC. Different AMURA met- 

ics were calculated on HCP volumes MGH1016, MGH1026 and 

GH1030 using a single shell at b = 50 0 0 s / mm 

2 for higher con-

rast. The CC was extracted using the registration of the subject’s 

A (calculated at b = 10 0 0 s / mm 

2 ) to a common template using

he FSL 6.0.4 (Analysis Group, FMRIB, Oxford, UK.; https://fsl.fmrib. 

x.ac.uk/fsl/fslwiki ; Smith et al., 2004 ), applying the JHU WM at- 

as ( Mori et al., 2005 ) and then averaging the measures over three

ubjects. Specifically, we linearly registered the FA to the template 

MRIB58 (a high-resolution FA average over 58 subjects) with a 

oxel resolution of 1 × 1 × 1 mm 

3 ( Jenkinson and Smith, 2001; 

enkinson et al., 2002 ) using twelve degrees of freedom and nor- 

alized correlation as the cost function. We then applied a non- 

inear registration procedure to correct the matching of the sub- 

ect’s FA to the template. Once the FAs were registered to the com- 

on space, we warped the AMURA based measures to the stan- 

ard space using trilinear interpolation. The values of the different 

etrics over the CC are depicted in Fig. 2 for a single sagittal view.

nce more, the metrics have been min-max normalized in order to 

how a similar range of values. A 3D rendering of the CC is shown 

or reference. 

According to previous analyses ( Aboitiz et al., 1992; 2003 ), the 

C presents different fiber structure configurations for the three 

ifferent parts: the genu CC (GCC), the body CC (BCC) and the 

plenium CC (SCC). The different regions have a wide variety of 

iffusion properties, distributed in an uneven manner along this 

tructure, as reflected in the scheme in Fig. 2 -left, extracted from 

boitiz et al. (2003) . In Fig. 2 , those moments based on E(q ) reflect

he differences in the diffusion properties for the different parts of 

he CC. This difference is more noticeable with higher order mo- 

ents, like Y 2 , Y 2 || and Y 2 ⊥ . On the contrary, this effect is not re-

ected on the moments of P (R ) . 

.3. DT vs. AMURA 

Some of the moments presented in this study can also be im- 

lemented using the DT approach, as described in Appendix B . In 

his section we will show how AMURA provides distinct represen- 

ations than DT does, which will potentially lead to markers more 

http://www.lpi.tel.uva.es/dmrilab
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 2. Values of different moments calculated with AMURA on the CC for the average of volumes MGH1016, MGH1026 and MGH1030 using a single-shell at b = 50 0 0 s / mm 

2 

in the standard space, sagittal view. The values of the measures are displayed over the FA for reference. Scheme of the fiber distribution in the corpus callosum extracted 

from Aboitiz et al. (2003) with marked regions: the genu corpus callosum (GCC), the body corpus callosum (BCC) and the splenium corpus callosum (SCC). 

Fig. 3. Comparison of scalar measurements computed with either the DT (left) or AMURA (right) over subject HCP MGH1007 at b = 30 0 0 s / mm 

2 . The same scale is used 

for both two approaches in all cases. Joint 2-D histograms for the comparison at b = 30 0 0 s / mm 

2 and b = 10 0 0 s / mm 

2 are shown in each case. Arrows highlight prominent 

differences between the DT and AMURA: (1) genu of corpus callosum, (2) centrum semiovale and (3) splenium of the corpus callosum. 

s

l

b  

v

m

w

g

e

s

c

a

(

u

t

a

a

p

2

b

m

m

e

e

h

c

c

ensitive to anatomical changes. Different measures were calcu- 

ated on volume MGH1007 using a single shell at two different 

-values: b = 10 0 0 s / mm 

2 and b = 30 0 0 s / mm 

2 . For the sake of

isual comparison, Fig. 3 shows respective slices of different mo- 

ents calculated with DT and with AMURA for b = 30 0 0 s / mm 

2 

ith identical scaling, so that they can be directly compared, to- 

ether with the voxel-wise joint 2-D histograms for both consid- 

red shells. While the structure of the anatomical maps look quite 

imilar with the two approaches, and their ends of scale are also 

oherent, AMURA systematically shows greater values than the DT 

t the corpus callosum (CC, 1 and 3) and the centrum semiovale 

2). 

The centrum semiovale is a region with a complex fiber config- 

ration in terms of crossing fibers: there is a conjunction of struc- 
6 
ures with different alignment, like anterior-posterior (cingulum 

nd superior longitudinal fasciculus), left-right (corpus callosum) 

nd superior-inferior (corticospinal tract). It is known to be an area 

rone to produce false positives in tractography ( Knösche et al., 

015 ). Thus, the adjustment of a Gaussian model (like the DT) will 

e subject to underestimation of the diffusion in this region. A 

ore general model like AMURA, despite also being based on an 

ono-exponential decay, will produce higher values, more coher- 

nt with actual structures. 

The divergence of values in the CC is explained by a different 

ffect. In that area, the fibers follow a similar main direction, with 

igh anisotropy. However, the underlying structure is a bit more 

omplex than most tracts in white matter, since it shows a greater 

urvature. The resolution of the DMRI data is not enough to dis- 
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Fig. 4. Comparison of the moments of E(q ) computed with AMURA and MiSFIT. A joint 2-D histogram is shown in each case, together with the respective Pearson’s 

correlation coefficient, for quantitative assessment. AMURA is calculated using a single shell with the b-value specified on the left side of each row. MiSFIT is calculated 

using three shells. 
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riminate this subvoxel curvature, especially in approaches like DT, 

here only one predominant direction is considered. Actually, in 

nösche et al. (2015) , the authors report analogous problems with 

ractography in the CC due to this same effect. In addition, full 

nd planar moments calculated with the DT are an inverse func- 

ion of the smallest eigenvalues (see Appendix B ). In those areas 

ith higher anisotropy, like the CC, where the second and third 

igenvalues are particularly low, the effect of noise could bias them 

o higher values, a well-known effect in the DT when estimated 

sing a least-squares approach ( Farrell et al., 2007; Aja-Fernández 

t al., 2008; Tristán-Vega et al., 2012 ). As a consequence, metrics 

ike RTOP and RTAP will show lower values in those areas when 

alculated with the DT. 

On the other hand, note that the moments based on P (R ) show 

lmost no difference between both implementations. 

Paying attention to the voxel-wise joint 2-D histograms, the DT 

pproach consistently shows an underestimation of the greater val- 

es when compared to AMURA, specifically in the full and pla- 

ar moments of E(q ) . This mismatch is more significant at b = 

0 0 0 s / mm 

2 , whereas for b = 10 0 0 s / mm 

2 the differences remain,

ut to a smaller degree. The histograms show that DT and AMURA 

iverge when the b-value grows. On the other hand, values for the 

oments of P (R ) are almost the same for both implementations. 

his effect, once again, could be easily explained by the fact that 
p is calculated over positive powers of D (u ) . 

.4. Comparison with multishell metrics 

The apparent moments calculated with AMURA are now com- 

ared to the same actual moments calculated with a multishell 

pproach where the radial information of q is taken into account, 

pecifically Micro-Structure-adaptive convolution kernels and dual 

ourier domains Integral Transforms (MiSFIT) ( Tristán-Vega and 

ja-Fernández, 2021 ). For both methods, volume MGH1010 is con- 

idered. AMURA is calculated independently for three separated 

hells at b = { 10 0 0 , 30 0 0 , 50 0 0 } s / mm 

2 while MiSFIT is calculated

sing the three available shells at once. Figure 4 shows the voxel- 

ise joint 2-D histogram for the moments of E(q ) . For each mo- 
7 
ent, Pearson’s correlation coefficient between both methods is 

alculated. There are clearly differences, since both methods are 

ased on very different initial assumptions. However, for higher b- 

alues, full and planar moments of the E(q ) show a very strong 

orrelation between the estimation with AMURA using only one 

hell and the multishell calculation given by MiSFIT. In some cases, 

hat correlation exceeds the 90%, which basically means that those 

ethods are measuring very similar information. However, the 

apping of both methods is not linear, with AMURA showing a re- 

uced contrast when compared to MiSFIT, especially for the high- 

st values. Axial moments are the ones showing more differences 

ith greater dispersion. 

All the measures show a low correlation when AMURA is calcu- 

ated at b = 10 0 0 s / mm 

2 , which is expected, since the underlying

eatures measured by the estimated moments are better visible at 

igher b-values. This experiment shows that the best performance 

f AMURA is achieved for higher b-values, where the correlation 

ith multishell methods is stronger. In addition, the correlation 

eems weaker when higher order moments are considered. 

Figure 5 shows the voxel-wise joint 2-D histogram for the mo- 

ents of P (R ) . Results here are weaker than the previous case. 

his, once more, shows the inability of AMURA to properly esti- 

ate the moments of P (R ) . While the moments of E(q ) could pro-

ide equivalent information when calculated from a single shell, 

or a proper estimation of the moments of P (R ) experimental re- 

ults points to the need of multishell information. 

.5. Variability of measures depending on the b-value 

Next, since AMURA provides apparent measures at a given shell, 

e tested the dependency of different moments on the b-value. To 

ut this to the test, the variability with the b-value is probed us- 

ng five whole volumes from the CBR data with the following pro- 

edure: Each AMURA moment was calculated at b = 30 0 0 s / mm 

2 

n the white matter and outliers are removed. Then, that moment 

as clustered in fivedifferent groups inside using k-means algo- 

ithm. Each voxel in the white matter was assigned to the closest 

luster using the minimum distance. As a result, the whole volume 
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Fig. 5. Comparison of the moments of P(R ) computed with AMURA and MiSFIT. 

A joint 2-D histogram is shown in each case, together with the respective Pear- 

son’s correlation coefficient, for quantitative assessment. AMURA is calculated using 

a single shell with the b-value specified on the left side of each row. MiSFIT is cal- 

culated using three shells. 
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as divided into six different region-of-interests (ROIs) of simi- 

ar value of the moment at b = 30 0 0 s / mm 

2 . Then, the variability

ith the b-value was probed by computing the different AMURA 

easures with each of the available shells at b = 1200 s / mm 

2 ,

 = 30 0 0 s / mm 

2 , or b = 50 0 0 s / mm 

2 . All the proposed measures

ere computed for each considered case, and the median value in- 

ide each of the six clusters was calculated and depicted in Fig. 6 . 

All the considered measures show an indubitable dependence 

n the b-value. There is a monotonical behavior of each cluster for 

ull and planar moments where the value grows with b. However, 

he separation between clusters remains for different b-values. This 

uggests that differences detected by these measures can be de- 

ected when using different shells This is not exactly the case for 

xial moments, where the cluster with lowest value shows a dif- 

erent behavior, decreasing for b = 30 0 0 s / mm 

2 . This is motivated

y the very noisy nature of this cluster, see for instance Fig. 1 . The

owest values of the axial moments are prone to more variability 

han higher values. 

.6. Test-retest reproducibility analysis 

Next, we evaluate the variability of the moments of AMURA 

sing the HCP WU-Minn test-retest database. This database fa- 

ilitates subsampling of the data by choosing the first k ( k < N)

iffusion gradient directions out of N samples, so that we sub- 

ampled the original data (90 directions) to 45, 30 and 15 gra- 

ients subsets per single-shell. To improve the SNR of the base- 

ine (i.e. the non-diffusion weighted data), we averaged all together 

8 non-diffusion weighted volumes. We estimated then AMURA 

easures for each subject, b-value and all four different numbers 

f gradient directions (i.e. 90, 45, 30 and 15 samples per each 

hell). We also estimated DTs from b = 10 0 0 s / mm 

2 data using

he FSL ( Smith et al., 2004 ). Hither, the same sampling coverage 

as employed as the one used for AMURA measures. We retrieved 

hen the FA, full/axial/planar moments of E(q ) and full moments 

f the diffusion propagator P (R ) directly from tensor eigenvalues 

stimated at each data subsampling level. The FA calculated from 

ully-sampled data served for the two-step registration process of 

ach subject to the common space as mentioned before. Similarly, 

e warped all AMURA and DTI based measures to the standard 

pace using trilinear interpolation. The coefficient of variation (CV) 
8 
s defined in the standard space for each subject, measure and sub- 

ampling ratio as the sample standard deviation across two ses- 

ions (i.e. test and retest) divided by the sample mean across ses- 

ions, and eventually multiplied by 100 to get the percentage score 

V s (x ) = 

sample std . dev s ( x ) 

sample mean s ( x ) 
· 100 [%] for s = 1 , . . . , S, (21) 

here CV s (x ) is a position dependent ( x -dependent) CV of a mea- 

ure under a specified acquistion scenario (i.e. b-value, number 

f gradient directions) for subject s and S is the number of sub- 

ects used for the experiment (i.e. S = 37 for the HCP WuMinn 

atabase). The final CV is aggregated across all subjects using me- 

ian operation for each measure, acquisition scenario and spatial 

osition x separately: 

V (x ) = median 

s =1 , ... ,S 
CV s (x ) . (22) 

Results of two reproducibility experiments are depicted in 

igs. 7 , 8 and 9 . In the former experiment, we compare me- 

ian CV maps of the moments of E(q ) and diffusion propaga- 

or P (R ) retrieved from a single-shell diffusion MR data with 

he DT at b = 10 0 0 s / mm 

2 and AMURA separately for b =
0 0 0 , 20 0 0 and 30 0 0 s / mm 

2 , all using 30 gradient directions.

igure 7 presents the median CV, CV (x ) , calculated over all thirty- 

even subjects from the HCP WU-Minn test-retest database in the 

tandard space (slice 85), including both the DT and AMURA. The 

mallest CV amongst all cases is observed for the zeroth-order ax- 

al moment of E(q ) (RTPP) and the second-order full moment of 

iffusion propagator P (R ) (MSD), while the highest one is notice- 

ble for the second-order full and planar moments (qMSD, Y 2 ⊥ ), es- 

ecially in highly anisotropic regions such as the corpus callosum 

genu and splenium), fornix and anterior/posterior limb of the in- 

ernal capsule (see the arrows in Fig. 7 ). The CVs for the AMURA 

t b = 10 0 0 s / mm 

2 are comparable to those obtained from the DT,

ut in the former case, the CV is decreased with the higher b-value 

egime. Importantly, the CV increases with the positive moment’s 

rder consistently for all types of moments of E(q ) and P (R ) . 

The latter reproducibility experiment matches the median CV 

aps and their histograms determined with the DT and AMURA 

nder the varying number of diffusion gradients used to calculate 

he moments of E(q ) and P (R ) starting from fully-sampled vol- 

mes (90 directions per shell) and then subsampled data to 45 

nd 15 directions, respectively. Here, we contrast AMURA mea- 

ures calculated at b = 30 0 0 s / mm 

2 to DT-based ones from b =
0 0 0 s / mm 

2 (see Fig. 8 ). Generally, both the AMURA and DT ex-

ibit robustness due to a decreasing number of diffusion gradient 

irections. However, we can observe an increase in the CV obtained 

rom the DT with 15 gradient directions, which is notably promi- 

ent in the region of the SCC, including full Y p and planar Y 
p 
⊥ mo-

ents. Notice we modified the scale in Fig. 8 to delineate the dif- 

erences between the methods across varying number of gradients. 

ext, for each measure retrieved with DTI at b = 10 0 0 s / mm 

2 and

MURA at b = 10 0 0 and 30 0 0 s / mm 

2 , we calculated the histogram

rom the median CV map aggregated from 37 subjects, CV (x ) , over 

he brain area of a representative slice (slice 85). We applied then 

 kernel density estimation method with a bandwidth selection us- 

ng Scott’s Rule to generate smoothly varying curves and put them 

ogether for each measure in Fig. 9 . In both the AMURA and DT, we

bserve shifts in histogram peaks towards higher median CV value, 

specially once the number of gradients reduce to 15. Nonethe- 

ess, the changes in estimated density plots are consistent across 

ll evaluated measures and acquisition scenarios with the advan- 

age of AMURA-based measures under a higher b-value. 
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Fig. 6. Evolution of the proposed measures with the b-value using data acquired with a 3T Prisma scanner (CBR dataset). The volume has been clustered in five different 

sets (for each metric at b = 30 0 0 s / mm 

2 ) and the median of each set is shown. Each color represents the median value inside each ROI (1 to 5). 

Fig. 7. Median CV maps (defined in %), CV (x ) , of the moments of E(q ) and P(R ) in the standard space calculated across thirty-seven subjects from the HCP WU-Minn 

test-retest database. The moments were retrieved from single-shell data at b = 10 0 0 s / mm 

2 (DT; top) and separately for b = 10 0 0 , 20 0 0 and 30 0 0 s / mm 

2 under the AMURA 

framework, all using 30 gradient directions per a single-shell. The arrows show the following WM regions: (1) genu of corpus callosum, (2) fornix, (3) splenium of the corpus 

callosum, (4) left anterior limb of the internal capsule and (5) left posterior limb of the internal capsule. 

5

u

t

h

a

a

2

p

e

2

s

(

d

p

2

t

2

w

s  

v

I

c

s

t

t  

u

p

t

a

s  

v

c

a

.7. Clinical data: Episodic migraine 

Finally, in order to test the capability of the new measures to be 

sed in clinical studies, we have selected a very specific pathology, 

he EM, in which differences in the white matter are particularly 

ard to find, compared to other frequently assessed disorders such 

s Alzheimer’s disease or schizophrenia. Details about the nature 

nd etiology of migraine can be found elsewhere ( Katsarava et al., 

012; Zhang et al., 2016 ). To better understand migraine patho- 

hysiology, diverse modalities of MRI have been employed in lit- 

rature, being especially relevant those based on DMRI ( Li et al., 

011; Yu et al., 2013; Chong and Schwedt, 2015 ). One particular 

tudy, carried out with the same database we will use in this work 

 Planchuelo-Gómez et al., 2020a ), found significantly lower axial 

iffusivity (AD = λ1 ) and MD values in chronic migraine (CM) com- 

ared to EM using tract-based spatial statistics (TBSS) ( Smith et al., 

006 ), but no statistically significant differences were found be- 

ween EM and HCs. In a recent study ( Planchuelo-Gómez et al., 
9 
020b ) significant differences between patients with EM and HC 

ere found using the RTOP calculated with AMURA over a single 

hell of b = 10 0 0 s / mm 

2 . Patients with EM showed lower RTOP

alues than HC in 24 out of 48 the assessed regions from the 

CBM-DTI-81 White Matter Atlas ( Mori et al., 2008 ). 

Hence, to test the moments with a different order, we will 

arry out a region-oriented analysis of the database in order to 

earch for differences between EM and HC. For all the volumes, 

he FA was calculated using MRtrix ( Tournier et al., 2019 ) from 

he data collected at b = 10 0 0 s / mm 

2 . The FA maps of all the vol-

mes were warped to a common template using the standard TBSS 

ipeline ( Smith et al., 2006 ). The same transformation was applied 

o all the metrics considered for the experiment. A ROIs-based 

nalysis was carried out: 48 different ROIs were identified on the 

ubjects using the JHU WM atlas ( Mori et al., 2005 ). The average

alue of the metrics on the FA-skeleton inside each ROI was cal- 

ulated within the 2% and 98% percentiles. Note that the measures 

re only calculated over the skeleton to obtain a more robust mea- 
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Fig. 8. Comparison of median CV maps, CV (x ) , obtained from the HCP WU-Minn test-retest database under different number of diffusion gradient directions employed to 

calculate the moments of E(q ) and P(R ) , i.e. 90 (fully-sampled data), 45 and 15. The DT-based moments were obtained from a single-shell at b = 10 0 0 s / mm 

2 , while the 

AMURA framework was applied to the data at b = 30 0 0 s / mm 

2 . 
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ure. Then we carried out a two-sample-two-tailed, pooled vari- 

nce t-test between HC and EM patients for each of the mea- 

ures considered at each of the 48 ROIs. We corrected these re- 

ults for multiple comparisons for each diffusion descriptor fol- 

owing the Benjamini-Hochberg False Discovery Rate (FDR) proce- 

ure. Note that our purpose is not to carry out a complete clini- 

al study but to analyze the behavior of each measure separately. 

hus, results may vary with those reported in literature, especially 

onsidering that the statistical comparisons are distinct in the 

resent study, and they should not be roughly interpreted to deter- 

ine clinical differences (which have already been validated else- 

here Planchuelo-Gómez et al., 2020a; Planchuelo-Gómez et al., 

020b ). 

Fourteen different measures were considered for the analysis: 

hree DT-based measures (FA, AD, MD) and 11 AMURA-based (APA, 

 

0 (RTOP), Y 2 (qMSD), Y 1 / 2 , Y 0 || (RTPP), Y 1 || , Y 0 ⊥ (RTAP), Y 2 ⊥ , υ
1 , υ2 

MSD) and υ−1 ). Figure 10 shows a p-value scheme for the 48 ROIs 

onsidered for each of the measures. Those ROIs that exhibit dif- 

erences with statistical significance (before multiple comparison 

orrection and FDR) above 95% ( p < 0 . 05 ) are highlighted in green,

bove 99% ( p < 0 . 01 ) in amber, and above 99.9% ( p < 0 . 001 ) in yel-

ow. Those ROIs that exhibit differences with statistical significance 
10 
fter multiple comparison correction and FDR are marked by a star 

 

∗). In the bottom of the figure the number of regions of each kind

or every measure are also shown. 

Basic metrics based on the DT show a limited amount of differ- 

nces, with only one ROI with statistically significant differences 

or the MD and none for the FA and AD after the FDR correction. 

his result is consistent with the literature in which, after proper 

tatistical corrections, none are found. For the sake of compari- 

on, another anisotropy metric has been added, PA calculated with 

MURA, which can be seen as an alternative to the FA. In this par- 

icular experiment PA proves to be more sensitive to changes than 

A, coherently with results reported in ( Aja-Fernández et al., 2021 ). 

On the other hand, AMURA-based RTOP shows differences in 

ine regions after the correction for multiple comparisons. Once 

ore, this is totally compatible with what we have seen in previ- 

us studies ( Planchuelo-Gómez et al., 2020a ): AMURA can detect 

hanges between EM and HC where DTI cannot. In addition, qMSD 

 Y 2 ) shows a behavior similar to RTOP but, in this particular case, it

rovides a higher number of statistically significant differences (23 

OIs vs. 9, respectively, after the FDR correction), which is related 

o the higher number of statistically significant results for lower 

p-values set as threshold for statistical significance (see Full E(q ) , 
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Fig. 9. The histograms of median CV maps for DT- and AMURA-based moments obtained from randomly three subjects from the HCP WU-Minn test-retest database under 

different numbers of diffusion gradient directions employed to calculate the moments of E(q ) and P(R ) , i.e. 90 (fully-sampled data), 45 and 15. The DT-based moments 

were obtained from a single-shell at b = 10 0 0 s / mm 

2 , while the AMURA framework was applied to the data at b = 10 0 0 s / mm 

2 and b = 30 0 0 s / mm 

2 . Each curve presents 

a kernel density estimated plot for the histogram of the CV map of the measure under a specified method and the number of gradient directions used to calculate the 

parameter. 
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rst two columns of Fig. 10 ). All the ROIs in qMSD show consis-

ently smaller p-values than those in RTOP. Otherwise, the use of 

 non even moment like Y 1 / 2 does not seem particularly advanta- 

eous within this study. 

RTAP and RTPP show a limited number of regions with differ- 

nces after the FDR correction, in line with the findings in the lit- 

rature. These two metrics would require a higher b-value in order 

o be more discriminant. However, in the planar case, note that 

hen the order of the moments increases the number of statis- 

ically significant differences also increases, considering the unad- 

usted and the corrected results. For teh axial case, this effect is 

nly visible in the unadjusted case. 

Finally, the moments of the P (R ) exhibit a behavior very sim- 

lar to the DT indices, with only one region with statistically sig- 

ificant differences after the FDR correction, considering simulta- 

eously the three measures. Actually, υ2 can be seen as a version 

f the MD with different weighting. 

. Discussion and conclusions 

AMURA was originally proposed as a method to infer micro- 

tructural information from single-shell acquisitions, with no need 

o specifically calculate the whole EAP. As stated in the origi- 

al paper ( Aja-Fernández et al., 2020 ), the metrics provided by 

his method must be seen as apparent versions of the original 

etrics for a specific shell. The method was initially intended to 

e used for high b-values (over 20 0 0 s/mm 

2 ), since that is the

egime in which measures like RTOP, RTPP and RTAP are better 

escribed. However, recent studies, like the one in Planchuelo- 
11 
ómez et al. (2020b) , have shown its good performance even for 

TI-like acquisitions with b-values around 10 0 0 s/mm 

2 . In its orig- 

nal formulation, AMURA provided only a small amount of met- 

ics: RTOP, RTPP, RTAP and APA. In this work, we have general- 

zed them in order to provide a greater set of measures based on 

he moments of E(q ) and P (R ) . The original AMURA metrics can

e seen as particular cases of the new proposal calculating new 

eneric moments. 

In this sense, AMURA aims at generically describing the diffu- 

ion signal through the computation of arbitrary order moments, 

nalogously to the proposal in Zucchelli et al. (2020) . There, the 

uthors propose a framework to generate rotationally-invariant 

eatures from the SH coefficients fitted to the diffusion signal. 

hese features are directly linked with the MD, FA, or the volume 

f the spherical signal, and can be directly derived from single- 

hell acquisitions as well. AMURA is not directly defined over the 

H coefficients, but this mathematical formalism is only used for 

he purpose of efficient numerical calculus. Moreover, AMURA at- 

ains an alternative description beyond rotation invariants through 

he computation of planar and axial (i.e. directional) moments. 

These generalizations are not just a simple mathematical ef- 

ort to provide a theoretical framework to AMURA. On the con- 

rary, the new measures allow to better quantify different aspects 

f the diffusion in the brain, dealing with different features of the 

iffusion process and being particularly sensitive to the restricted 

omponents of such diffusion and better suited to deal with mul- 

iple meso-structure diffusion components than DT-based metrics. 

s we have shown in Fig. 10 , different ponderations of the same 

ignal will yield to different results and, in the case of clinical 
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Fig. 10. Episodic migraine (EM) vs. healthy controls (HC): two-sample t-tests for 

different measures calculated for EMDb database at b = 10 0 0 s / mm 

2 and at each 

of 48 ROIs defined by the ICBM-DTI-81 atlas (the lower the better). The p-values 

represent the probability that the measure has identical means for both controls 

and patients. Differences with statistical significance above 95% are highlighted in 

green, above 99% in amber and above 99.9% in yellow. At the bottom, the number 

of regions showing significant differences between EM and HC for each measure. 

We have carried out the correction for multiple comparisons for each measure fol- 

lowing the Benjamini-Hochberg false discovery rate (FDR) procedure. Regions with 

statistically significant differences between both groups after correction are marked 

with a star ( ∗). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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tudies, could yield to discover new variability patterns in some 

athologies, as we have illustrated in the case of migraine. 

Although AMURA only needs one shell in order to calculate the 

ifferent measures, the information provided is not the same ob- 

ained from the DT. Differences can be clearly seen in Fig. 3 and 

he test-retest experiment. The use of the DT assumes not only 
12 
 Gaussian decay, but also a single-bundle meso-structure, while 

MURA uses a generic D (u ) that could take into account arbitrary 

ber bundles orientations. In the experiment carried out, we could 

ee that the DT approach underestimates the values of the mo- 

ents in those regions in which there is a complex fiber structure, 

ike the centrum semiovale and the corpus callosum. In the for- 

er, different alignments and crossing-fiber structures cannot be 

roperly described by the DT, while in the latter, the source of er- 

or is the high sub-voxel curvature of the fibers. Nevertheless, ac- 

ording to this particular experiment, moments calculated over the 

(q ) are better estimated using a non-parametric orientation dis- 

ribution, especially those moments of higher order. Results in this 

xperiment are coherent with those obtained using more complex 

chemes, like MiSFIT (see Figs. 4 and 5 in Tristán-Vega and Aja- 

ernández, 2021 ). 

These results are also confirmed when we compared the appar- 

nt moments provided by AMURA with the actual moments esti- 

ated by a multishell approach, specifically MiSFIT. Although there 

re some clear differences in Fig. 4 , for higher b-values, full and 

lanar moments of the E(q ) show high correlation between both 

echniques. AMURA scalars present a reduced contrast when com- 

ared to MiSFIT, especially for the highest values of each moment. 

n the other hand, axial moments are the least robust ones, since 

hey are computed over the q -space samples along the maximum 

iffusion direction, for which the attenuation is maximal and the 

NR dramatically decreases. We can conclude that AMURA does 

ot produce totally analogous values to EAP-based approaches, one 

ssue already raised in Aja-Fernández et al. (2020) . However, the 

arge correlations between both methods suggest that these mea- 

ures are not considering totally different diffusion features, but 

ery close ones. Once again, the goal of AMURA is not estimat- 

ng the exact same values as EAP-based methods. Nevertheless, a 

hifted version of a given moment as the ones provided, could also 

e equally valuable when studying diffusion. 

The reproducibility study showed, in general, a good agreement 

etween test and retest acquisitions verified over 37 subjects. The 

MURA measures retrieved at b = 10 0 0 s / mm 

2 presented a simi-

ar behavior to the DT but with a smaller variation in those areas 

ith higher FA, coherently with the previous experiment. In ad- 

ition, once the b-value increases, starting from b = 20 0 0 s / mm 

2 ,

ur results suggest that AMURA outperforms the DT equivalents 

n terms of CV. These results seem promising once applying the 

on-zeroth-order moments of E(q ) and P (R ) to clinical studies 

nder the higher b-value regime, like those studies where the 

rimary zeroth-order EAP-based moments have already been im- 

lemented and showed an advantage over the standard protocols 

 Brusini et al., 2016; Boscolo Galazzo et al., 2018; Ma et al., 2020; 

e et al., 2020; Moody et al., 2021 ). One can observe amplified 

V values for highly anisotropic brain regions, principally for the 

T based measures, i.e. corpus callosum, fornix and limb of the 

nternal capsule (see Fig. 7 ). The exaggerated values are remark- 

bly noticeable with the full Y p and planar Y 
p 
⊥ moments, espe- 

ially the second-order ones. This effect can be explained on the 

round of the tensor equations in Appendix B , as in the case of 

rolate tensors, we observe a positive/negative bias on the sec- 

nd/third eigenvalue, while in oblate tensors, representing cross- 

ng fibers, the second and third eigenvalues are generally under- 

stimated ( Whitcher et al., 2008 ). Therefore, special care must be 

aken once using higher-order moments, especially under the low 

-value regime, as it might introduce a potential bias in the cohort 

tudies. Nevertheless, the AMURA framework exhibits the robust- 

ess to a greatly limited number of the samples in the q –space 

omain (e.g. only 15 samples per shell), allowing to significantly 

horten the acquisition time while preserving the same amount 

f information. Notice that using only 15 gradient directions, the 

T-based moments show intensified CV once compared to fully- 



S. Aja-Fernández, T. Pieciak, C. Martín-Martín et al. Medical Image Analysis 77 (2022) 102356 

s

i

b

t

p

t

F

s

i

r

e

A

a

l

p

c

f

i

(

d

f

t

d

o  

o

fi

t

b

l

m

t

t

l

w

o

i

O

t

d

t

w

i

a

 

t

e

b

p

W

m

t

m

s

n

m  

e

m

t

j

d

o

F

t

p

b

c

c

o

p

t

fi

s

b

e

i

o

d

c

t

c

i

s

t

p

r

S

o

(

u

d

D

r

p

s

C

w

n

i

a

e

t

e

m

W

V

A

V

W

A

n

T

d

p

(

(

ampled data with 90 directions (see Fig. 8 ). Although no stud- 

es were performed on the influence of confounding factors on DT- 

ased moments, one can presume that at least 30 gradient direc- 

ions are suggested for robust estimation, like in the case of FA 

arameter ( Jones, 2004 ). 

The robustness of AMURA-based moments has been quanti- 

atively confirmed using the histogram-based study presented in 

ig. 9 . The peak values of kernel density estimated curves are only 

lightly shifted towards increased median CV value once reduc- 

ng the number of gradients to only 15 directions. Overall, the 

eproducibility and robustness to a reduced acquisition scenario 

xperiments allowed recognizing the potential application of the 

MURA approach in studies concerning the variability of the brain 

natomy, such as longitudinal or lifespan studies, in which a high 

evel of reproducibility is a must. 

Finally, in the migraine experiment, AMURA shows a better 

erformance than DT metrics, although we must clarify that this 

ould not be the case for every other study. We have selected one 

or which, according to the literature, AMURA succeeds in find- 

ng differences where the DT could not. But in the same study 

 Planchuelo-Gómez et al., 2020b ), AMURA could find almost no 

ifferences between EM and CM, while the DT succeeds. This ef- 

ect talks about complementary measures, rather than competi- 

ive. On the other hand, this experiment allows us to better un- 

erstand the behavior of different orders and kinds of moments 

f AMURA. According to the results in Fig. 10 , the use of higher

rder moments in q –space provides smaller p-values and allows 

nding a higher number of statistically significant differences be- 

ween groups. This could be motivated by the fact that differences 

etween EM and HC are subtle and these moments precisely high- 

ight them. In general, the use of different moments could provide 

eaningful insight to different phenomenons of diffusion in the 

issues, though further validation of AMURA moments is required 

o postulate them as clinical biomarker candidates. 

Furthermore, metrics derived with AMURA have also shown 

arger correlation with multishell moments when higher b-values 

here considered. The acquisition of one single shell at b-values 

ver 20 0 0 s/mm 

2 is not totally compatible with DT estimation, but 

t is consistent with single-shell HARDI techniques, in which the 

DF is estimated and then some metrics could be derived, such as 

he ADC, the MD, the generalized FA (GFA) or the apparent fiber 

ensity (AFD) ( Descoteaux, 1999 ). Once more, scalars derived from 

he ODF and moments from AMURA can be calculated together 

ithout extra-cost and be used complementarily in practical stud- 

es. The complementary nature of GFA and APA, for instance, was 

lready shown in Aja-Fernández et al. (2021) . 

With regard to those moments based on the P (R ) , they showed

hemselves not particularly interesting for clinical studies to the 

xtent of the present paper: Fig. 3 shows a very high correlation 

etween these indices calculated with either AMURA or the DT, 

utting at stake the added value of AMURA over DT in this case. 

hen compared with a multishell approach like MiSFIT, these mo- 

ents calculated with AMURA present a very low correlation with 

he actual values. In addition, the results of the migraine experi- 

ent also show a discriminant power similar to the DT-based mea- 

ures and no added value. Thus, we must conclude that AMURA is 

ot able to properly estimate the moments of P (R ) . Unlike mo- 

ents based on E(q ) , for which a unique value of ‖ q ‖ allows to

xtrapolate an apparent behavior for the entire q -space through 

odeling, a unique ‖ q ‖ sample does not allow a proper descrip- 

ion of the bandwidth of the dual domain R : results obtained with 

ust one shell, although feasible from a theoretical point of view, 

o not provide significant information. 

The computation of moments as proposed in this paper is based 

n the same implementation as in the original AMURA paper ( Aja- 

ernández et al., 2020 ), hence it shares similar pros and cons: since 
13 
he reconstruction of the EAP is not explicitly required, the com- 

utation of scalar measurements will not impose a computational 

urden to the standard protocols; an entire volume can be pro- 

essed in minutes or even seconds, so that a whole database for a 

linical study can be processed in the order of few hours. On the 

ther hand, one major drawback of these measures is the same 

ointed out in Aja-Fernández et al. (2020) : the explicit assump- 

ion of a specific radial behavior for the diffusion, which cannot 

t the whole q –space. As a consequence, the selection of a single 

hell will make the anatomical features dependent on the selected 

-value and, consequently, they must be considered apparent . This 

ffect was confirmed by experiment in Fig. 6 and it implies that, 

n clinical studies, the results can be compared against each other 

nly if the same b-value is preserved across data sets. However, 

espite the dependence with the b-value, the apparent moments 

alculated with AMURA have also shown a great correlation with 

he actual moments calculated with a multishell approach, espe- 

ially for higher b-values. 

All in all, the newly introduced AMURA moments can be easily 

ntegrated into the processing pipeline of currently existing single- 

hell DMRI protocols and databases to unveil anatomical details 

hat may remain hidden in traditional DT-based studies. Their sim- 

licity and fast calculation make them proper complementary met- 

ics for clinical studies. 

oftware 

The full implementation of the methods here included are part 

f the dMRI-Lab toolbox and it may be downloaded for MATLAB 

c ©
The MathWorks, Inc., Natick, MA) and GNU Octave, together with 

se-case examples and test data, from: http://www.lpi.tel.uva.es/ 

mrilab . 
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ppendix A. Calculation of full moments of P (R) 

1. Fourier transform in spherical coordinates 

Let D (u ) > 0 be the diffusivity for a given shell q = q 0 . Using the

ono-exponential model, the diffusion signal can be defined as: 

(q ) = E(q u ) = exp 

(
−q 2 

q 2 
0 

D (u ) 

)
, (A.1) 

here u ∈ S is a unit direction in space. Since both E(q ) and P (R )

re real signals, the Eq. (1) may as well be established in terms 

f cosine functions instead of complex exponentials. Besides, it is 

onvenient to represent the integrals in spherical coordinates: 

 (R ) = P (R r ) = 

∫ 
S 

(∫ ∞ 

0 

q 2 E(q u ) cos 
(
2 πqR u 

T r 
)
dq 

)
du 

= 

∫ 
S 

(∫ ∞ 

0 

q 2 exp 

(
−q 2 

q 2 
0 

D (u ) 

)
cos 

(
2 πqR u 

T r 
)
dq 

)
du ,

(A.2)

here r ∈ S is a unit direction independent on u . The inner inte- 

ral in the variable q can be explicitly solved to yield (see Section 

.952, Eq. (4) in Gradshteyn and Ryzhik, 2014 ): 

 (R r ) = 

√ 

πq 3 0 

4 

∫ 
S 

D 

− 3 
2 (u ) 

( 

1 −
2 

(
πq 0 R u 

T r 
)2 

D (u ) 

) 

exp 

( 

−
(
πq 0 R u 

T r 
)2 

D (u ) 

) 

du . (A.3) 

2. Explicit computation of full moments 

The pth full moment of the diffusion propagator is defined as: 

p 	= 

∫ 
R 3 

R 

p P (R ) dR = 

∫ 
S 

(∫ ∞ 

0 

R 

p+2 P (R r ) dR 

)
dr , (A.4) 

here the integral is already represented in spherical coordinates. 

y casting Eq. (A.3) into the previous expression, the order of the 

ntegrals can be exchanged at convenience to obtain: 

p = 

√ 

πq 3 0 

4 

∫ 
S 

D 

− 3 
2 (u ) 

∫ ∞ 

0 

R 

p+2 

∫ 
S 

( 

1 −
2 

(
πq 0 R u 

T r 
)2 

D (u ) 

) 

exp 

( 

−
(
πq 0 R u 

T r 
)2 

D (u ) 

) 

d r d R d u . (A.5) 

he innermost integral in the variable r can then be computed 

sing regular spherical coordinates by just aligning their ‘z’ axis 
14 
i.e. the origin of the polar angle θ = 0 ) with each u , so that

 

T r = cos θ : 

∫ 
S 

( 

1 −
2 
(
πq 0 R u 

T r 
)2 

D (u ) 

) 

exp 

( 

−
(
πq 0 R u 

T r 
)2 

D (u ) 

) 

dr 

= 

∫ 2 π

0 

∫ π
0 

(
1 − 2 ( πq 0 R cos θ ) 

2 

D (u ) 

)
exp 

(
− ( πq 0 R cos θ ) 

2 

D (u ) 

)
sin θ d φ d θ

= 2 π

∫ 1 

−1 

(
1 − 2 ( πq 0 Rs ) 

2 

D (u ) 

)
exp 

(
− ( πq 0 Rs ) 

2 

D (u ) 

)
ds 

= 4 π exp 

(
− ( πq 0 R ) 

2 

D (u ) 

)
, (A.6)

here the last integral is solved with the change of variable s = 

os (θ ) . This result is casted into Eq. (A.5) to obtain: 

p = π
3 
2 q 3 0 

∫ 
S 

D 

− 3 
2 (u ) 

∫ ∞ 

0 

R 

p+2 exp 

(
− ( πq 0 R ) 

2 

D (u ) 

)
dR 

u = 

�
(

p+3 
2 

)
2 q p 

0 
π p+ 3 2 

∫ 
S 

D 

p 
2 (u ) du , (A.7) 

hose convergence is assured if p > −3 . The latter integral has to 

e numerically computed for each acquired signal, which can be 

rivially attained by expanding D 

p 
2 over S using SHs. This way, the 

ntegral becomes a scaled version of the DC component, C 0 , 0 , of 

uch expansion: 

p = 

�
(

p+3 
2 

)
2 q p 

0 
π p+ 3 2 

∫ 
S 

D 

p 
2 (u ) du = 

�
(

p+3 
2 

)
2 q p 

0 
π p+ 3 2 

2 

√ 

πC 0 , 0 
{

D 

p 
2 (u ) 

}

= 

�
(

p+3 
2 

)
q p 

0 
π p+1 

C 0 , 0 
{

D 

p 
2 (u ) 

}
. (A.8) 

ppendix B. Calculation of the moments using the diffusion 

ensor 

If a Gaussian diffusion propagator is assumed, P (R ) is a mix- 

ure of independent and (nearly) identically distributed bounded 

ylinder statistics and, by virtue of the central limit theorem, their 

uperposition is Gaussian distributed. The measured signal in the 

 –space is the (inverse) Fourier transform of the PDF and it can be 

xpressed as: 

(q ) = F 

−1 { P (R ) } (q ) = exp 

(
−4 π2 τq 

T Dq 

)
, (B.1) 

hich represents the well-known Stejskal–Tanner equation 

 Stejskal and Tanner, 1965 ). The diffusion tensor D is the 

nisotropic covariance matrix of the Gaussian PDF P (R ) , and 

herefore it is a symmetric, positive–definite matrix with real, 

ositive eigenvalues ( λ1 ≥ λ2 ≥ λ3 ) and orthonormal eigenvectors. 

We can use this model to estimate the generalized moments 

f E(q ) and P (R ) defined in Sections 3.1 and 3.2 . For the sake of

implicity, only the even moments are calculated (the only ones 

ith closed-form expressions): 

1. Full moments of E(q ) : 

Y p = 

1 

(4 π2 τ ) 
3+ p 

2 

p/ 2 ∑ 

k =0 

k ∑ 

m =0 

(
p/ 2 

k 

)(
k 

m 

)

×
�
(

1 
2 

+ k − m 

)
�
(

1 
2 

+ m 

)
�
(

1 
2 

+ 

p 
2 

− k 
)

λ
p 
2 + 1 2 −k 

1 
λ

k −m + 1 2 

2 
λ

m + 1 2 

3 

. (B.2) 

This solution is valid for p ≥ 0 and only for p integer and even. 

Some specific values are: 

Y 0 = 

π3 / 2 

(4 π2 τ ) 3 / 2 
1 √ 

λ1 λ2 λ3 

(RTOP) ;
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C

C
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D

D  

D  
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F  

G

H

H  

H  

J  

J  

J  

J

K  

K  

K  

L  

 

L  

L  

M  

M  

 

Y 2 = 

π3 / 2 

2(4 π2 τ ) 5 / 2 
λ1 λ2 + λ2 λ3 + λ1 λ3 

(λ1 λ2 λ3 ) 3 / 2 
(qMSD) . 

2. Axial moments of E(q ) : 

Y p || = 

�
(

1+ p 
2 

)
(4 π2 τ ) 

1+ p 
2 λ

1+ p 
2 

1 

. (B.3) 

This solution is valid for p > −1 . For example: 

Y 0 || = 

√ 

π√ 

4 π2 τ

1 √ 

λ1 

(RTPP) ;

Y 2 || = 

√ 

π

2(4 π2 τ ) 3 / 2 
1 

λ3 / 2 
1 

. 

3. Planar moments of E(q ) : 

Y p ⊥ = 

1 

(4 π2 τ ) 
p 
2 +1 

p/ 2 ∑ 

k =0 

(
p/ 2 

k 

)
�
(

1 
2 

+ k 
)
�
(

1 
2 

+ 

p 
2 

− k 
)

λ
−k + p 2 + 1 2 

2 
λ

k + 1 2 

3 

. (B.4) 

This solution is valid for p ≥ 0 and only for p integer and even. 

Some specific values are 

Y 0 ⊥ = 

π
4 π2 τ

1 √ 

λ2 λ3 

(RTAP) ;

Y 2 ⊥ = 

π
2(4 π2 τ ) 2 

λ2 + λ3 

(λ2 λ3 ) 3 / 2 
. 

4. Full moments of P (R ) : 

υ p = 

1 

q p 
0 
π3+ p 

p/ 2 ∑ 

k =0 

k ∑ 

m =0 

φυ
pkm 

λ
p 
2 −k 

1 
λk −m 

2 λm 

3 ; (B.5)

φυ
pkm 

= 

(
p/ 2 

k 

)(
k 

m 

)
�
(

1 

2 

+ k − m 

)
�
(

1 

2 

+ m 

)
�
(

1 

2 

+ 

p 

2 

− k 

)
.

This solution is valid for p ≥ 0 and only for p integer and even. 

Some specific values are: 

υ0 = 1 ;
υ2 = 

1 
2 π2 q 2 

0 

(λ1 + λ2 + λ3 ) (MSD) ;
υ4 = 

1 
4 π4 q 4 

0 

[
2(λ2 

1 + λ2 
2 + λ2 

3 ) + (λ1 + λ2 + λ3 ) 
2 
]
. 
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