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Metabolomics study of COVID‑19 
patients in four different clinical 
stages
Alberto Valdés1, Lorena Ortega Moreno2,3,4, Silvia Rojo Rello5, Antonio Orduña5,6, 
David Bernardo4,7 & Alejandro Cifuentes 1*

SARS‑CoV‑2 (severe acute respiratory syndrome coronavirus 2) is the coronavirus strain causing the 
respiratory pandemic COVID‑19 (coronavirus disease 2019). To understand the pathobiology of SARS‑
CoV‑2 in humans it is necessary to unravel the metabolic changes that are produced in the individuals 
once the infection has taken place. The goal of this work is to provide new information about the 
altered biomolecule profile and with that the altered biological pathways of patients in different 
clinical situations due to SARS‑CoV‑2 infection. This is done via metabolomics using HPLC–QTOF–MS 
analysis of plasma samples at COVID‑diagnose from a total of 145 adult patients, divided into different 
clinical stages based on their subsequent clinical outcome (25 negative controls (non‑COVID); 28 
positive patients with asymptomatic disease not requiring hospitalization; 27 positive patients with 
mild disease defined by a total time in hospital lower than 10 days; 36 positive patients with severe 
disease defined by a total time in hospital over 20 days and/or admission at the ICU; and 29 positive 
patients with fatal outcome or deceased). Moreover, follow up samples between 2 and 3 months 
after hospital discharge were also obtained from the hospitalized patients with mild prognosis. The 
final goal of this work is to provide biomarkers that can help to better understand how the COVID‑19 
illness evolves and to predict how a patient could progress based on the metabolites profile of plasma 
obtained at an early stage of the infection. In the present work, several metabolites were found as 
potential biomarkers to distinguish between the end‑stage and the early‑stage (or non‑COVID) disease 
groups. These metabolites are mainly involved in the metabolism of carnitines, ketone bodies, fatty 
acids, lysophosphatidylcholines/phosphatidylcholines, tryptophan, bile acids and purines, but also 
omeprazole. In addition, the levels of several of these metabolites decreased to “normal” values at 
hospital discharge, suggesting some of them as early prognosis biomarkers in COVID‑19 at diagnose.

SARS-COV-2 (severe acute respiratory syndrome coronavirus 2) is extremely infectious and has triggered a 
global pandemic. Infection of the lungs and human respiratory tract by this coronavirus leads to fever, myalgia 
and cough, and in some patients to acute respiratory distress syndrome (ARDS). While most patients experi-
ence very mild-to-moderate symptoms, around one in five patients develop pneumonia coupled with severe 
respiratory distress. These patients require treatment in hospital intensive care units (ICU), where infection 
can lead to multi-organ dysfunction, failure, and sometimes death. The COVID-19 (coronavirus disease 2019) 
pandemic has led to urgent and intense investigations of this disease, its causative agent, and its interaction with 
the human host. However, there are still many difficulties for an accurate SARS-CoV-2 patient’s risk categoriza-
tion, which are consequences of COVID-19 complexity since coronavirus infection reflects a broad spectrum of 
patient symptoms, and as a result, diverse pathophysiological pathways are perturbed during the disease course. 
This complexity has taken to many groups to investigate this exciting topic using metabolomics, given that the 
circulating metabolome provides a snapshot of the physiological state of the  organism1,2.

Although nuclear magnetic resonance (NMR) has been employed in a few metabolomics  works3, mass spec-
trometry (MS)-based metabolomics has been the technique of choice to seek potential diagnostics biomarker 
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candidates in COVID-19 disease. Although many of these works have been done using MS coupled to liquid 
chromatography (LC), the use of gas chromatography coupled to MS has also shown to provide interesting results 
about the illness  evolution4. Many topics have been addressed regarding COVID-19 disease using metabolomics, 
for instance, metabolomics has displayed sex-specific metabolic shifts in non-severe COVID-19 patients during 
recovery process, showing that the major plasma metabolic changes were fatty acids in men and glycerophospho-
cholines and carbohydrates in  women5. Metabolomics has also shown that it is possible to differentiate plasma 
metabolite profiles of COVID-19 survivors with abnormal pulmonary function from those of healthy donors or 
subjects with normal pulmonary function. These alterations mainly involved amino acid and glycerophospho-
lipid metabolic pathways, increased levels of triacylglycerols (TG), phosphatidylcholines (PC), prostaglandin E2, 
arginine, and decreased levels of betain and  adenosine6. Since many issues regarding the immune, both innate 
and adaptive, response remains unclear, they are subject to ongoing multi-omic  investigations1, as well as compre-
hensive meta-analysis of global metabolomics datasets of COVID-192. Metabolomics also showed that more than 
100 lipids including glycerophospholipid, sphingolipids, and fatty acids (FA) were downregulated in COVID-19 
patient sera, probably because of damage to the liver, which is also reflected in aberrancy in bilirubin and bile 
 acids7. Significant differences were also determined between COVID-19 patients and healthy controls in terms 
of purine, glutamine, leukotriene D4 (LTD4), and glutathione metabolisms. Decrease levels were determined in 
R‐S lactoglutathione and glutamine, and increase levels were detected for hypoxanthine, inosine, and  LTD48).

As mentioned above, there are still many difficulties for an adequate categorization of SARS-COV-2 patients 
through the use of potential metabolic markers of clinical severity identified at the beginning of the COVID-19 
disease, reason why many different works have addressed this challenging topic. Thus, using high-throughput 
omics, the dynamic changes in the metabolome (and proteome) profile of non/severe to severe disease cohorts 
were studied, and they could be used to predict the disease development: for example, the simultaneous decline 
in the levels of malic acid and glycerol 3-phosphate in healthy to mild to fatal  groups9. On the other hand, the 
level of guanosine monophosphate was found to be modulated along with carbamoyl phosphate in mild to severe 
patients, suggesting the role of immune dysfunction and nucleotide metabolism in the progression of non/severe 
COVID-19 to severe  condition9.

Danlos et al. also reported alterations in the plasma metabolome reflecting the clinical presentation of 
COVID-19 patients with mild (ambulatory) diseases, moderate disease (radiologically confirmed pneumonitis, 
hospitalization and oxygen therapy), and critical disease (in intensive care)10; and altered tryptophan metabolism 
into the kynurenine pathway has been related to inflammation and immunity in critical COVID-19 patients in 
comparison to mild disease  patients10. Increased levels of kynurenine and decreased levels of arginine, sarcosine 
and LPC were also observed as the top-performing metabolites for identifying COVID-19 positive patients from 
healthy control  subjects11. The role of the tryptophan-nicotinamide pathway, linked to inflammatory signals and 
microbiota, and the involvement of cytosine were also described as possible markers to discriminate and predict 
the disease  evolution12.

Xiao et al. characterized the globally dysregulated metabolic pathways and cytokine/chemokine levels in 
COVID-19 patients compared to healthy controls. They identified the escalated correlations between circulat-
ing metabolites and cytokines/chemokines from mild to severe patients, and revealed the disturbed metabolic 
pathways linked to hyper-inflammation in severe COVID-19, demonstrating that arginine, tryptophan, or purine 
metabolism modulates the inflammatory cytokine  release13.

As can be deduced from above and other  works14–16, the biological mechanisms involved in SARS-CoV-2 
infection are only partially understood. Thus in the current work we have explored the plasma metabolome of 
non-COVID controls as well as 145 COVID patients at diagnose through reverse phase liquid chromatography 
coupled to quadrupole-time of flight mass spectrometry (RP/HPLC-qTOF MS/MS) analysis. Moreover, patients 
were stratified based on their clinical evolution in asymptomatic (not requiring hospitalization), patients with 
mild disease (defined by a total time in hospital lower than 10 days), patients with severe disease (defined by a 
total time in hospital over 20 days and/or admission at the ICU) and patients with fatal outcome or deceased. In 
addition, follow up samples between 2 and 3 months after hospital discharge were also obtained from the hospi-
talized patients with mild prognosis to investigate the disease sequels in the metabolome and how the recovery 
is reflected in the altered biological pathways. The final goal of the currents work is to find biomarkers that will 
increase our understanding about how the COVID-19 illness evolves and will improve our prediction about how 
a patient could progress based on the metabolites profile of plasma obtained at an early stage of the infection.

Results
Metabolite identification. To yield a wider view of the metabolomics changes during the course of disease 
in COVID-19 patients, an untargeted metabolomics analysis based on RP/HPLC-qTOF MS/MS analysis using 
two different ionization modes (ESI (+) and ESI (−)) was applied to increase the coverage of identified metabo-
lites. Data obtained from each ESI ionization mode were processed independently to avoid intensity-bias. After 
data post-processing, the RP/HPLC-qTOF MS/MS analysis resulted in the annotation of 203 metabolites: 117 in 
ESI (+), 70 in ESI (−) and 16 in both ionization modes. The full list of identified metabolites for each ionization 
mode together with the statistical values for the different analyses (ANOVA, U test and PLS-DA) is shown in 
Supplementary Tables S1 and S2.

Analysis of samples at hospital admission. The PCA analysis from both ESI (+) and ESI (−) ionization 
modes of samples collected at hospital admission showed no differences between the non-COVID control and/
or the different COVID-19 positive groups (Supplementary Fig. S1A,B). On the other hand, and even though 
that the “Leave-one-out” cross-validation method indicated that the percentage of variation explained and the 
predictive ability of the models was rather low  (R2Y = 0.591 and  Q2 = 0.327 for ESI (+);  R2Y = 0.540 and  Q2 = 0.325 
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for ESI (−)), the PLS-DA analysis suggested that asymptomatic and mild disease groups were closer to the non-
COVID control group; and patients with severe disease were closer to the deceased group (Fig.  1A,B). This 
analysis also showed 17 and 11 metabolites with VIP score > 1.5 in ESI (+) and ESI (−) modes, respectively (Sup-
plementary Tables S1 and S2). It is important to note that the abundance of most of these compounds increased 
with the COVID-19 severity stage (Supplementary Fig. S2).

The Kruskal–Wallis ANOVA test of ESI (+) data showed 35 metabolites which abundance was significantly 
altered, whereas 30 metabolites were altered in ESI (−) mode (Supplementary Tables S1 and S2). The heatmap 
representation of these altered metabolites showed similar results as those obtained in the PLS-DA analysis: 
the asymptomatic and mild disease COVID-19 patients were closer to the non-COVID control group; and the 
severe disease patients were closer to the deceased group (Supplementary Fig. S3A,B). Most of the significantly 
altered metabolites after the ANOVA analysis already presented a VIP score > 1.5 in the PLS-DA analysis, and 
a few more were obtained.

The correlation analysis showed different sets of metabolites with similar abundancy among the analyzed 
groups. In ESI (+), several acylcarnitines (3-hydroxybutyrylcarnitine, hexanoyl-l-carnitine, decanoyl-l-carnitine, 
octanoyl-l-carnitine, arachidonoyl-l-carnitine, linoleoylcarnitine, acetyl-l-carnitine, lauroylcarnitine, oleoyl-
l-carnitine and palmitoyl-l-carnitine), PC/LPC compounds (2-lysophosphatidylcholine, PC (p-16:0/0:0), LPC 
(o-16:0), LPC (20:2), PC (18:1/16:0), LPC (16:0), LPC (p-18:0), LPC (17:0), PC (18:2e) PC (18:1e) and PC 
(20:4e)), and amino acids (tryptophan, L-valine, L-isoleucine, L-methionine and L-tyrosine), were grouped 
together; whereas in ESI (−), the most relevant sets were composed by LPC, FA derivatives or bile acids (glyco-
deoxycholic acid, taurodeoxycholic acid, glycocholic acid, glycoursodeoxycholic acid and taurocholic acid). The 
Pearson correlation (r) values and the respective p-values are presented in Supplementary Tables S3 and S4 for 
ESI (+), and Supplementary Tables S5 and S6 for ESI (−).

The Mann–Whitney U test between the different COVID-19 positive groups and the non-COVID control 
group showed 8 metabolites altered in the asymptomatic group (5 of them with increased values and 3 with 
decreased values). The number of significantly altered metabolites increased to 26 in the mild disease group, 14 
and 12 with increased and decreased values, respectively. Some of them were already observed as altered in the 
asymptomatic group, such as S-methyl-3-thioacetaminophen and nicotinamide riboside cation, which values 
increased more in the mild disease group; and N-methyl-2-pyrrolidone, trimethoprim and L-methionine, which 
values continued to decrease in the mild disease group. In the severe disease group, the number of significantly 
altered metabolites rose to 45 (32 with increased and 13 with decreased values); and for the deceased group, the 
total number of altered metabolites was 35 (23 with increased values and 12 with decreased values). Many of 
these metabolites were already observed as significant in the previous PLS-DA and ANOVA analyses.

The further analysis of the fold change ratio patterns obtained in the previous comparisons suggested 8 main 
clusters to be formed (Fig. 2, the MFuzz membership value and cluster composition are shown in Supplementary 
Tables S7 and S8).

This analysis provides is a general overview of groups of metabolites with similar alteration patterns between 
the different groups of samples (after normalization by the non-COVID control group) and allows the combina-
tion of ESI (+) and ESI (−) data together since the normalization using the non-COVID control group eliminates 
the bias derived from the use of different ESI ionization modes. It has to be noted that this analysis does not take 
into account the statistical differences after a non-parametric Mann–Whitney U test between the COVID-19 
positive samples and the control group, as it only clusters the metabolites according to their fold change ratio 

Figure 1.  PLS-DA score plots of data obtained by RP/HPLC-qTOF MS/MS ESI (+) (A) and RP/HPLC-qTOF 
MS/MS ESI (–) (B) from plasma of patients collected at hospital admission.
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similarity. Among the identified clusters, cluster 1 represented those metabolites which abundance continuously 
increased from the asymptomatic to the deceased group, and included 3-hydroxybutyrylcarnitine, glycocholic 
acid, LPE (22:6), nervonic acid and palmitic acid, among others. On the other hand, cluster 7 represented those 
metabolites which abundance continuously decreased from the asymptomatic to the deceased group, and was 
composed by three PC (PC (16:0/20:4), PC (20:4e) and PC (20:5e)) and tryptophan. Based on the previous PLS-
DA and ANOVA results, metabolites of cluster 6 were of special interest because their abundance was highest 
in the severe disease and the deceased groups. This cluster included 2-lysophosphatidylcholine, alpha-linolenic 
acid, linoleic acid or L-isoleucine, methyl ester. Finally, cluster 8 was the most crowded (24 metabolites) and was 
composed by metabolites which abundance mainly increased in the deceased group. Some of these metabolites 
were adipoyl-l-carnitine, glycodeoxycholic acid and taurodeoxycholic acid.

In order to provide the chemical classes significantly altered in the different group comparisons, a chemical 
enrichment analysis using ChemRICH was performed. No chemical classes were significantly altered in the com-
parison between the asymptomatic and the non-COVID control group; but the chemical class “carnitines” was 
increased, and the “unsaturated lysophosphatidylcholines” was altered (some species increased, others decreased) 
in the mild disease group. In the case of the severe disease group, “androstenols” were significantly decreased 
(considering 3 metabolites); xanthines were significantly altered with some species increased, others decreased; 
and 2-pyridinylmethylsulfinylbenzimidazoles, pyridines and unsaturated fatty acids were significantly increased. 
This last chemical class was also increased in the deceased group, based on the abundance of nervonic acid, 
linoleic acid, alpha-linolenic acid, trans-vaccenic acid and palmitoleic acid. The whole list of chemical classes 
and the respective p-values obtained for each comparison is presented in Supplementary Tables S9–S11, and 
the representations of all the annotated metabolites onto biochemical networks, constructed using chemical and 
biochemical similarities from MetaMapp, is shown in Supplementary Figs. S4–S7.

Finally, metabolite set enrichment analysis using the significantly altered metabolites in each comparison 
was performed using MBROLE 2.0 (Table 1). It has to be noted that only 5, 17, 28 and 16 altered metabolites in 
the asymptomatic, mild disease, severe disease and deceased groups, respectively, could be mapped with valid 
KEGG IDs (many carnitines and omeprazole derivatives could not be mapped).

This analysis showed that the Phenylalanine metabolism and the Biosynthesis of unsaturated fatty acids were 
enriched in the severe disease and deceased groups. In the case of Phenylalanine metabolism, 3-hydroxyphe-
nylacetic acid had increased levels and hippuric acid had decreased levels in both comparisons. In the case of 
Biosynthesis of unsaturated fatty acids, alpha-linolenic acid, nervonic acid and linoleic acid had increased values 
in both groups. Another enriched pathway in the mild and severe disease groups was the Purine metabolism. 
Three metabolites were found altered that matched this pathway (urea, inosine and xanthine), all of them with 

Figure 2.  Fuzzy c-means clustering patterns of metabolite ratios between COVID-19 positive patients 
(asymptomatic, mild, severe and deceased) and non-COVID-19 control patients (Ctrl). Each trace is colour 
coded according to its membership value for the respective cluster (see colour bar).
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increased values in both COVID-19 positive groups. Finally, the Caffeine metabolism pathway was enriched in 
the severe disease group, based on the abundance of xanthine and caffeine (with increased values) and theophyl-
line (with decreased values).

Follow up study of mild disease patients at hospital discharge. The second statistical approach 
consisted on the comparison of plasma metabolites from patients belonging to the mild disease group: at 
hospital admission and after 2–3  months of hospital discharge. The PCA and PLS-DA analyses could sepa-
rate between the two groups of samples (Supplementary Figs. S8 and S9), but the PLS-DA analysis was more 
informative (Supplementary Tables  S12 and S13). In ESI (+) data, 13 compounds had VIP scores > 1.5, 6 of 
them with increased values (kelevan, LPC (14:0), phenylacetyl-l-glutamine, bilirubin, L-methionine and LPC 
(16:1)), and 7 with decreased values (hypoxanthine, inosine, LPC (p-18:0), acetaminophen sulfate, myclobutanil, 
1-methyladenosine and L-tryptophanamide). In the case of ESI (−), 11 compounds had a VIP score > 1.5, 2 of 
them with increased values (methylsuccinic acid and LPC 18:2) and 9 with lower values (hypoxanthine, xan-
thine, 3-hydroxybutyric acid, 3-hydroxybenzaldehyde, S-methyl-3-thioacetaminophen, acetaminophen sulfate, 
octadecanedioic acid, nervonic acid and LPE (20:4)). The graphical representation of these metabolites, together 
with the values of the control samples, indicated that the intensity of some of these metabolites got back to “nor-
mal” values at hospital discharge (Supplementary Fig. S10). However, it has to be noticed that these patients may 
have unique metabolic signatures that could be related to good or poor quality of life. In this regard, the medical 
history indicates that none of the patients had any symptoms of bad quality of life when the samples were taken 
after hospital discharge, and no sequels of the disease have been reported since then.

Moreover, the paired non-parametric U test showed 43 metabolites which abundance was significantly altered 
(19 of them with increased values and 24 with decreased values) in ESI (+); and in ESI (−), 35 metabolites were 
altered (13 and 22 were more and less abundant, respectively) at hospital discharge, confirming that all the 
metabolites with VIP scores > 1.5 after PLS-DA analysis were statistically significant between the two groups.

The chemical class analysis and the biochemical overrepresentations of the metabolomics changes indicated 
that aromatic amino acids, carnitines, saturated laurates, and pyrrolidines were significantly decreased, while 
benzamides were significantly increased (Fig. 3 and Supplementary Table S14). Other chemical classes, such as 
unsaturated LPC were highly represented (7 metabolites), with some species increased and others decreased.

The metabolite set enrichment analysis of the significantly altered metabolites showed again that the Phe-
nylalanine metabolism and the Purine metabolism (among others) were enriched in the mild disease group at 
hospital discharge as compared to the levels at hospital admission (Supplementary Table S15). It is interesting to 
note that all the considered metabolites (phenylalanine, hippuric acid, phenylacety-l-glutamine for the Pheny-
lalanine metabolism; hypoxanthine, inosine, uric acid and xanthine for the Purine metabolism) had the opposite 
direction as when the mild disease group at hospital admission was compared to the non-COVID control group.

Discussion
Since the COVID-19 pandemic took place in 2019, several studies have been published with the aim of investi-
gating the metabolomics changes in serum from COVID-19 positive  patients1,2. In most of those manuscripts, 
metabolomics and/or lipidomics approaches have been applied to different cohorts of patients, but only a few 
have included four different COVID-19 positive groups based on the total time of hospitalization (asymptomatic, 

Table 1.  Significantly enriched KEGG human metabolic pathways (in dark shade) from the analysis of 
significantly altered metabolites (after Mann–Whitney U test with p-value < 0.05) in asymptomatic, mild 
disease, severe disease and deceased COVID-19 positive groups as compared to non-COVID control patients.

Pathway name

Asymptomatic/non-
COVID Mild disease/non-COVID Severe disease/non-COVID Deceased/non-COVID

P-value Metabolites P-value Metabolites P-value Metabolites P-value Metabolites

Phenylalanine metabolism 0.0566 Salicylic acid 0.2197 Phenylacetyl-l-glutamine 0.0488 Hippuric acid
3-Hydroxyphenylacetate 0.0236 Hippuric acid

3-Hydroxyphenylacetic acid

Epithelial cell signaling in Heli-
cobacter pylori infection 0.0265 Urea 0.038 Urea 0.0258 Urea

Synthesis and degradation of 
ketone bodies 0.0317 3-Hydroxybutyric acid 0.0308 3-Hydroxybutyric acid

Biosynthesis of unsaturated 
fatty acids 0.0082

Linoleic acid
alpha-Linolenic acid
Nervonic acid

0.0317 Alpha-linolenic acid
Nervonic acid

Purine metabolism 0.0128
Urea
Inosine
Xanthine

0.0337
Urea
Inosine
Xanthine

0.0822 Urea
Xanthine

Caffeine metabolism 0.1069 Xanthine 0.0005
Xanthine
Theophylline
Caffeine

0.1039 Xanthine

Alpha-Linolenic acid metabo-
lism 0.194 PC (18:1/16:1) 0.0378 PC (18:1/16:1)

alpha-Linolenic acid 0.1888 alpha-linolenic acid

Linoleic acid metabolism 0.1307 PC (18:1/16:1) 0.0169 PC (18:1/16:1)
Linoleic acid
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less than 10 days, more than 20 days, and deceased), combined with a follow up study of COVID-19 mild disease 
patients at hospital discharge.

In the present work, and after the different statistical analyses, several metabolites could distinguish between 
the end-stage and the early-stage (or non-COVID) disease groups. These metabolites were mainly involved in the 
metabolism of carnitines, ketone bodies, fatty acids, LPC/PC, tryptophan, bile acids, purines and omeprazole. 
In addition, the levels of several of these metabolites decreased to “normal” values at hospital discharge, sug-
gesting some of them as early prognosis biomarkers in COVID-19 at diagnose. The alteration of some of these 
metabolites have been already observed in previous studies, but there still exist some discrepancies between them.

One group of metabolites observed with a good Pearson correlation among the different analysed samples 
are acylcarnitines. Acylcarnitines are involved in the entrance of FAs to the mitochondria for β-oxidation and 
energy production. These metabolites are translocated across the inner mitochondrial membrane and the carni-
tine palmitoyl transferase 2 removes carnitine from acylcarnitines regenerating acyl-coAs. In the liver, acyl-CoA 
participates in β-oxidation with the final production of acetyl-CoA, and carnitine returns to the cytoplasm for 
another  cycle17. Our results indicate that some of these metabolites were significantly increased in COVID-19 
positive patients (such as carnitines with long-chain fatty acyl groups in the mild disease group, and medium-
chain acylcarnitines in the deceased group). These results are in good agreement with previous results where 
the levels of acylcarnitines were  increased18, but they are also contradictory to others, where acylcarnitines were 
decreased in COVID-19  patients19. Another study has reported that respiratory viruses, such as the influenza 
virus, promotes the accumulation of  acylcarnitines20, and this might be the case for SARS-CoV-2, as we observed 
that the levels of most acylcarnitines decreased to “normal” values at hospital discharge. Moreover, during the 
β-oxidation process, ketone bodies such as 3-hydroxybutyric acid are produced. Ketone bodies provide an alter-
native fuel during fasting, post-exercise or pregnancy, but they also play roles as modulators of inflammation, 
immune cells function and oxidative  stress21. We observed this metabolite as significantly increased in mild 
disease (p-val = 0.021) and deceased (p-val = 0.001) groups, and almost significantly increased in the severe dis-
ease group (p-val = 0.057). It has been reported that COVID-19 infection caused ketosis that increases the days 
of hospitalization and  mortality22, and that abnormally levels of acetoacetic acid, 3-hydroxybutyric acid, and 
acetone are found in COVID-19  patients23. On the other hand, 3-hydroxybutyric acid, together with nicotinic 
acid, has shown to confer anti-inflammatory effects in TNF-α by decreasing the level of pro-inflammatory pro-
teins (iNOS, COX-2) or secreted cytokines (IL-6 and IL-1β)24, which might explain the continuously increased 
levels of 3-hydroxybutyric acid observed in the different COVID-19 positive groups.

Our results also demonstrate that the levels of several UFAs (nervonic acid, linoleic acid, alpha-linolenic acid, 
trans-vaccenic acid and palmitoleic acid) correlated with worse prognosis of COVID-19; and the levels of these 
metabolites decreased in mild disease patients at hospital discharge. Among these FAs, linoleic acid has been 
involved in the inactivation of enveloped viruses, such as influenza; and the exogenous supplementation of it has 
demonstrated to suppress replication of the Middle East Respiratory Syndrome coronavirus (MERS-CoV)25. Even 

Figure 3.  MetaMapp visualization of metabolomic data highlighting the differential metabolic regulation 
in mild disease COVID-19 positive patients at hospital discharge compared to the same patients at hospital 
admission. Red edges denote KEGG reactant pair links and light blue edges symbolize Tanimoto chemical 
similarity at T > 700. Node sizes reflect fold change. Metabolites found significantly increased are given as red 
nodes, and blue nodes denotes decreased metabolites (significance determined using Mann–Whitney U test 
with p-value < 0.05). Metabolites not significantly altered are given as yellow nodes.
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more, other studies focused on HCoV-229E coronavirus have also demonstrated that the host lipid metabolic 
remodelling, specially linoleic acid, was associated with the coronavirus  propagation26. Specifically in SARS-
CoV-2, linoleic acid can reduce the interaction of the virus spike protein with the ACE2  receptor27. In fact, it 
might stabilize the spike protein in a closed conformation blocking its interaction with  ACE228. Other polyun-
saturated fatty acids (PUFAs) can also modify host membrane fluidity and inactivate viruses by disrupting their 
 envelopes29. The changes in the membrane fluidity may distress the conformation of host and viral proteins and 
be determining for the SARS-CoV-227. The mechanisms of how PUFAs inhibit the virus entry might be explained 
by the inhibition of endosomal proteases of the host. FAs adopt a flat conformation or spherical liposomal inter-
face that could interrupt the contact between the host membrane and the viral envelope inhibiting SARS-CoV-2 
 attachment27. Therefore, in our results, a higher level of unsaturated fatty acids during the coronavirus infection 
might be explained by the PUFAs’ inhibitory effect on viral binding.

Another set of metabolites with a good Pearson correlation between analysed samples were LPC/PC com-
pounds. Among these compounds, LPC (14:0 and 0:0/16:2(omega-6)) had a VIP score > 1.5 and their abundancy 
decreased with the worst prognosis of the infection; LPC (16:1) was significantly decreased in the mild disease 
group; LPC (18:2) was decreased in the mild disease and the deceased groups; and LPC (22:6) was decreased in 
the severe disease group. On the other hand, we observed that the levels of different LPEs (16:0 and 22:6) were 
increased in the end-stage disease groups. Previous studies have reported that separation of SARS-CoV-2 disease 
from healthy patients is marked by changes in lysophospholipids (LPs) and  glycerophospholipids30, and the 
diminishment of several LPC (16:0, 18:0, 18:1 and 18:2) have been identified in COVID-19 positive  patients31. 
The decrease of these molecules has been related to ARDS and sepsis in severely ill patients. However, other 
studies have shown an increase in the levels of LPC and  LPE18. The alteration in lipid homeostasis of host cells 
is considered as a virus´ strategy for creating a good environment for replication. In this sense, PLA2 (a group 
of enzymes that hydrolyze phospholipids to yield FA and LPs) has been suggested as involved in coronavirus 
replication for the production of lysophospholipids that are required to form the membrane structure for the 
viral RNA  synthesis32.

Previous studies have also demonstrated that tryptophan metabolism is altered in patients with COVID-
1910,15,33. One important metabolite of the tryptophan metabolism is kynurenic acid. This metabolite was dramati-
cally increased in patients in the end-stages of the infection, while tryptophan was significantly decreased in the 
same group of patients. Results from Danlos et al. (2021) have showed a decreased in tryptophan in COVID-19 
severity stages, while its immunosuppressive metabolite kynurenine was increased in critical  patients10. The 
decrease of tryptophan in critical patients compared to controls suggests a consume of tryptophan 2,3-dioxy-
genase and indoleamine 2,3-dioxygenase that produce the kynurenic acid precursor kynurenine. Other studies 
have showed that the increase of kynurenine is involved in inflammation and organ injury in SARS-CoV-233,34. 
In addition, the increased ratio between kynurenine and trypthophan has been positively correlated with pro-
inflammatory cytokines and poor prognosis of the COVID-19  infection11,34–36.

Another group of metabolites found altered in our study are related to the bile acid metabolism (taurocholic 
acid, taurodeoxycholic acid, glycodeoxycholic acid, glycocholic, and glycoursodeoxycholic acid). The levels of 
these metabolites mainly increased with the severity of the disease, and some of them got back to “normal” values 
at hospital discharge in the mild disease group. Increase levels of bile acids have been found in previous  studies7,15. 
The main function of bile acids is to eliminate cholesterol and to facilitate the absorption of fat-soluble nutrients, 
but they can also act as signalling molecules to promote or inhibit virus  replication37. It has been demonstrated 
that bile acids can limit in vitro replication of herpes simplex  virus38 or influenza A  virus39, or that they can 
promote in vitro replication of hepatitis B and C  viruses40. Our results suggest that the last option might be the 
case for SARS-CoV-2, but it remains unclear the specific effects and molecular mechanisms.

Other metabolites that might be involved in SARS-CoV-2 replication are related with the purine metabolism, 
and it has been suggested that SARS-CoV-2 remodels host folate and one-carbon metabolism to support de novo 
purine  synthesis41. However, purine metabolites have been also related with the inflammation process induced 
by SARS-CoV-213,15. In the last study, the levels of xanthines correlated with pro-inflammatory cytokines, such 
as IL-6, in severe patients corroborating the link between the disturbances in metabolic pathways and hyper-
inflammation in COVID-19. Our results demonstrate that different metabolites involved in the purine metabo-
lism (urea and xanthine) increased with the severity stage, but others do not follow a clear trend (inosine). In 
any case, most of them got back to “normal” values at hospital discharge.

Apart from the endogenous metabolites, several xenobiotics and xenobiotic derivatives were observed as 
altered between the different groups of samples, but most of them were discarded because the clinical history 
of the patients was not considered when the sample cohort was selected. However, it is interesting to note that 
the levels of omeprazole and its derivatives were higher in patients with severe infection, but also in those 
asymptomatic patients infected by COVID-19, pointing to this xenobiotic as a possible marker in SARS-CoV-2 
infection. This is of interest given that, although proton pump inhibitors do not make patients more susceptible 
to SARS-CoV-2 infections, recent observational studies have suggested that patients taking them may have an 
increased risk for severe COVID-1942, as we have here confirmed.

Conclusion
In conclusion, COVID-19 positive patients display an alteration in the metabolism of carnitines, ketone bodies, 
fatty acids, LPC/PC, tryptophan, bile acids, purines and omeprazole, suggesting metabolites as 3-hydroxibutirate, 
linoleic acid, LPC (14:0 and 18:2), LPE (22:6), kynurenic acid and tryptophan as potential biomarkers of clini-
cal severity. This work also shows that metabolomics is a highly valuable resource for a better understanding of 
the host metabolic responses associated with COVID-19, to expand our knowledge about the pathogenesis of 
patients under different symptomatic conditions, and to assist in the identification of disease biomarkers and 
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the development of diagnostic assays, as well as possible therapeutic  strategies9. The metabolomic strategies 
used to combat the pandemic could lay the foundation for a long-term plan for future outbreaks. Moreover, 
novel breakthroughs achieved through this omics (and multi-omics) approaches will not only aid to combat this 
pandemic but also propel wider adoption of these technologies by the scientific community and governmental 
institutions. Nevertheless, many questions regarding COVID-19 remain to be answered.

Methods
Patient recruitment and sample obtention. A total of 145 adult patients, over 18 years, who attended 
the A&E unit at “Hospital Clínico Universitario de Valladolid” (Valladolid, Spain) during the COVID-19 out-
break between March and April 2020 were recruited following ethics approval by the local ethics committee 
(Comité ético de investigación con medicamento -CEIm- de Valladolid este; PI20-1716). All research was per-
formed in accordance with relevant guidelines/regulations. Informed consent was obtained from all partici-
pants. Samples from all patients were taken at hospital admission (without any standard of care) and, based on 
the medical history, none of the patients were treated with any drug for COVID-19-related symptoms.

Patients included 25 negative controls (non-COVID) who attended the hospital for non-COVID related 
issues (52% males, mean age 66.4 ± 9.6 years) and 120 COVID-19 patients as confirmed by a positive result 
for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by polymerase chain reaction 
on a nasopharyngeal sample. Of them, 28 were asymptomatic and did not require hospital admission (50% 
male, 65.2 ± 15.2 years); 27 had mild disease defined by a total time in hospital lower than 10 days (44% male, 
65.3 ± 11.5 years); 36 had severe disease, defined by a total time in hospital over 25 days and/or admission at the 
ICU (66.7% male, 65.3 ± 11.5 years); and 29 patients with fatal outcome or deceased (45% male, 71.6 ± 8.4 years). 
Last, follow up samples between 2 and 3 months after hospital discharge were also obtained from the hospital-
ized patients with mild prognosis. Detailed demographics, co-morbidities and treatments of these patients can 
be found in Supplementary Table S16.

Chemicals and reagents. LC–MS-grade acetonitrile (ACN) and methanol were obtained from VWR 
Chemicals (Barcelona, Spain), whereas ultrapure water was obtained from a Millipore system (Billerica, MA, 
USA). Formic acid was purchased from Fisher Scientific (Waltham, MA, USA).

In all cases, a blood sample (in heparin vacutainer blood tubes) was immediately acquired when the patients 
arrived at the A&E. Blood was preserved at 4 °C and processed within 24 h by performing a density gradient 
centrifugation over ficoll. Plasma was collected, aliquoted and preserved at − 80 °C until used.

Metabolite extraction. Plasma samples from all patients were thaw on ice and vortex for 30 s. Thereafter, 
100 µL of each sample was taken, 400 µL of methanol at -20 °C was added, and the mixture was vortexed for 
1 min and incubated on ice for 10 min. Samples were then centrifuged at 14, 8000 rpm for 20 min at 4 °C, and 
300 µL of the supernatant was collected and evaporated using SpeedVac (Savant SPD1030, Thermo Scientific, 
USA). Dried samples were reconstituted in 100 µL of 80% methanol, mixed for 1 min, and centrifuged again at 
14, 8000 rpm for 5 min at 4 °C. 80 µL of the new supernatant was collected and stored at − 80 °C until HPLC–
MS/MS analysis.

Reverse phase liquid chromatography‑quadrupole‑time of flight mass spectrometry (RP/
HPLC‑qTOF MS/MS) analysis. Aliquots of 2 μL (for both ESI (+) and ESI (−) modes) were injected into a 
LC–MS/MS system consisting of a quadrupole Q-TOF series 6540 coupled to a HPLC (model 1290) both from 
Agilent Technologies (Germany), equipped with an Agilent Jet Stream (AJS) thermal orthogonal ESI source. MS 
control, data acquisition, and data analysis were carried out using the Agilent Mass Hunter Qualitative Analysis 
software (B.10.0). For the chromatographic separation, an Eclipe Plus C18 analytical column (100 × 2.1 mm, 
particle size 1.8 μm) with a C18 guard column (0.5 cm × 2.1 mm, particle size 1.8 μm), both from Agilent (Ger-
many) were employed. The column temperature was held at 40 °C and the flow rate was set to 0.5 mL/min. Both 
ESI (+) and ESI (−) modes used water (LC–MS grade) as mobile phase (A) and ACN as mobile phase (B), and 
formic acid was used as mobile phase modifier (0.1% for ESI (+) and 0.01% for ESI (−)). The gradient started at 
0 min with 0% (B), 0–30% (B) in 7 min, 30–80% (B) in 2 min, 80–100% (B) in 2 min, 100% (B) in 2 min, and 
3 min of post-time to come back to initial conditions. The mass spectrometer was operated using the following 
parameters: capillary voltage of 3000 V (+) or − 3000 V (−), and with a m/z range from 25 to 1100. Nebulizer 
pressure was set at 40 psig and the drying gas flow rate was fixed to 8 L/min and 300 °C. The sheath gas flow was 
11 L/min at 350 °C. 110 V was chosen for the fragmentor voltage, whereas the skimmer and octapole voltage 
were 45 V and 750 V, respectively. MS/MS analyses were performed employing the auto MS/MS mode using 5 
precursor per cycle, dynamic exclusion after two spectra (released after 0.5 min), and collision energies of 20 
and 40 V. For proper mass accuracy, spectra were corrected using ions m/z 121.0509  (C5H4N4) and 922.0098 
 (C18H18O6N3P3F24) in ESI (+), and m/z 119.0363  (C5H4N4) and 966.0007  (C18H18O6N3P3F24 + formate) in ESI (−), 
simultaneously pumped into the ionization source.

Quality control. Quality control was assured by: i) randomization of the sequence; ii) procedure blank 
analysis; iii) injection of pool samples to equilibrate the LC–MS system before and after of the different sequence 
of samples; and iv) injection of standard mixture for checking the retention time, peak shape, intensity and mass 
accuracy.
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Data processing. LC–MS raw data files were firstly converted to ABF format using Reifycs Abf (Analy-
sis Base File) Converter (accessible at: http:// www. reify cs. com/ AbfCo nvert er/). Data processing was then per-
formed using MS-DIAL (v. 4.12) software for deconvolution, peak picking, alignment, and  identification43 using 
the following parameters: retention time begin, 0 min; retention time end, 14 min; mass range begin, 0 Da; mass 
range end, 1100 Da; MS1 tolerance, 0.01 Da; smoothing level, 3 scans; minimum peak width, 5 scans; minimum 
peak height, 1000 amplitude; mass slice width, 0.1 Da; sigma window value for deconvolution, 0.1; accurate mass 
tolerance for MSP library, 0.01 Da; identification score cut off for MSP library, 80%; retention time tolerance for 
alignment, 0.1 min; MS1 tolerance for alignment, 0.015 Da. Peak height calculation was performed by combin-
ing data for different detected molecular species for each particular compound ([M+H]+, [M+NH4]+, [M+Na]+, 
[M+K]+, [2M+H]+, [2M+NH4]+, [2M+Na]+, [2M+K]+ adducts in positive mode, and [M−H]−, [2M−H]−, 
[M+Cl]−, [M+FA-H]− adducts in negative mode). The MSP file used for annotation was generated by combin-
ing MS/MS spectra from NIST20 MS/MS database, the LipidBLAST mass spectral  library44, and the MassBank 
of NorthAmerica database (MoNA, available at https:// mona. fiehn lab. ucdav is. edu/ downl oads). All metabolite 
were annotated following the Metabolomics Standard Initiative (MSI)  guidelines45,46 as MSI level 2a (metabolites 
with precursor m/z and MS/MS spectral library matching).

Data post‑processing and statistical analysis. The list of metabolites obtained on each ESI ionization 
mode was filtered removing unknown metabolites, metabolites with a maximum height below 1000 units or 
metabolites with a maximum height below three times the average height in the extraction blanks, the Vacu-
tainer® blood collection tube blanks, the Ficoll-Hypaque blanks. Metabolites present in more than 50% of the 
samples for at least one group were retained. Missing values were imputed by half of the minimum height value, 
and the data were processed using the bioinformatic tool MS-FLO (https:// msflo. fiehn lab. ucdav is. edu/#/)47. 
Duplicated metabolites and isotopes were removed, the height of the different adducts from the same compound 
was combined, and Systematic Error Removal using Random Forest  normalization48 using the pool samples as 
reference samples was applied.

The statistical analysis was performed according to two different experimental designs. In the first one, sam-
ples collected from patients at hospital admission were analysed together to search for metabolic biomarkers 
of prognosis. Multivariate analysis (PCA and PLS-DA) of these samples were performed after “Auto scaling” 
normalization by using MetaboAnalyst 5.0 web-based  software49. PLS-DA models were evaluated according to 
the “Leave-one-out” cross-validation method of  R2 and  Q2, and variable importance in projection (VIP) scores 
were obtained and considered significant when VIP scores > 1.5. Correlation analyses were evaluated by the Pear-
son’s correlation coefficient (r), heat map representation were obtained, and all groups were compared by using 
the non-parametric ANOVA (Kruskal Wallis) test. In addition, fold changes between the different COVID-19 
positive groups (asymptomatic, mild disease, severe disease, deceased) and the negative control group (non-
COVID) were calculated and evaluated by using the non-parametric Mann–Whitney U test. Metabolites were 
considered significantly altered when raw p-value < 0.05. Patterns of metabolite fold change ratios between the 
different COVID-19 positive groups and the negative control group (non-COVID) were also investigated using 
the fuzzy c-means clustering  algorithm50. For this analysis, different combinations of cluster sizes and fuzzifi-
cation parameters were explored, and found optimal partitioning with c = 8 and m = 2. These values avoid the 
appearance of empty clusters and reduced the minimum distance to cluster centroid. Moreover, a threshold for 
membership values was set to 0.7 for cluster assignation.

The second experimental design consisted on the analysis and comparison of plasma samples from patients 
belonging to the mild disease group at two different time points (at hospital admission and after 2–3 months of 
hospital discharge) with the aim of searching for metabolic biomarkers of illness recovery. For this comparison, 
PCA, PLS-DA, and the paired non-parametric Mann–Whitney U test were applied.

Data visualization, enrichment and pathway analysis. Data matrices obtained after the comparison 
of COVID-19 positive samples against the negative controls were combined to generate a joint dataset. For those 
metabolites detected in both ESI (+) and ESI (−) modes, data with the highest similarity score (from the MSP 
file), highest peak intensity, and/or better peak shape were retained.

For metabolic network mapping, the InChiKey or compound names were imported into the web-based Chem-
ical Translation Service (http:// cts. fiehn lab. ucdav is. edu/ batch)51 to obtain the PubChem Compound Identifiers 
(CID) and the Kyoto Encyclopedia of Genes and Genomes identifiers (KEGG ID). Simplified molecular-input 
line-entry system (SMILES) codes were obtained from the MSP file or from the PubChem Compound Identi-
fier Exchange service (https:// pubch em. ncbi. nlm. nih. gov/ idexc hange/ idexc hange. cgi), and chemical similarity 
enrichment calculations were done using  ChemRICH52. KEGG reactant pairs and Tanimoto similarity calcu-
lations (using a threshold of 0.7) were done using  MetaMapp53. The final network graph was imported into 
Cytoscape 3.7.254, as well as the results generated in MetaboAnalyst. The graphs were visualized using a yED 
organic layout algorithm in Cytoscape. Metabolite enrichment analysis was performed using the MBROLE 2.0. 
web-based  software55. Significantly altered metabolites matching the KEGG database were imported and over-
representation analysis against the KEGG pathway module, and using Homo sapiens as the background set, was 
performed. Annotations with p-values lower than 0.05 were considered significantly enriched.
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