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Doctor por la Universidad de Valladolid

Dirigida por:

Ana Pérez Espartero y Mercedes Prieto Alaiz



Acknowledgements

First and foremost I am extremely grateful to my supervisors, Dr. Ana Pérez Espartero and Dr.
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Resumen

Actualmente, está ampliamente aceptado el carácter multidimensional de la pobreza, que in-

volucra no solo la renta, sino también otros aspectos como la educación o la salud. En este

entorno multidimensional, es importante analizar la dependencia entre las dimensiones, ya que

un alto grado de dependencia podŕıa exacerbar la pobreza. De hecho, esta dependencia inter-

dimensional es el aspecto clave de cualquier análisis multivariante y, por lo tanto, cualquier

evaluación certera de la pobreza multidimensional debe tener en cuenta la asociación mul-

tivariante entre las dimensiones. Sin embargo, tradicionalmente, la literatura sobre pobreza

multidimensional no ha tenido suficientemente en cuenta este crucial aspecto. De hecho, la

mayoŕıa de los ı́ndices de pobreza multidimensional propuestos hasta ahora, especialmente los

más ampliamente utilizados, no son suficientemente sensibles al grado de asociación multivari-

ante entre las diferentes dimensiones de la pobreza.

En esta tesis, proponemos utilizar la metodoloǵıa basada en cópulas para analizar la dependen-

cia entre las dimensiones de la pobreza. Este enfoque, que ha sido recientemente introducido

en el ámbito de la Economı́a del Bienestar, se centra en las posiciones de los individuos en las

dimensiones, en lugar de en los valores espećıficos que esas dimensiones toman para tales indi-

viduos, y es particularmente útil cuando se mide la dependencia en contextos multivariantes,

posiblemente no gaussianos y posiblemente no lineales, como los que solemos encontrar en los

análisis multidimensionales de pobreza o bienestar. En particular, consideramos varios concep-

tos de dependencia multivariante basados en cópulas que son especialmente adecuados para el

estudio de la pobreza multidimensional, a saber, los conceptos de concordancia multivariante,

orthant dependence (dependencia en el ortante) y tail dependence (dependencia en las colas)

multivariante.

En primer lugar, consideramos varias extensiones multivariantes del coeficiente rho de Spear-

man, basadas en los conceptos de orthant dependence y concordancia multivariante. Entre estas

extensiones, el coeficiente de average lower orthant dependence, que mide, por término medio,
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el nivel de dependencia en el ortante inferior, es especialmente relevante cuando se analiza la

pobreza multidimensional, ya que captura la probabilidad media de estar simultáneamente mal

posicionado en todas las dimensiones de la pobreza. A continuación, nos centramos en el con-

cepto de tail dependence multivariante, con especial énfasis en la dependencia multivariante en

la cola inferior, que es particularmente importante en un análisis de pobreza multidimensional,

ya que captura la probabilidad de que un individuo que está extremadamente mal posicionado

(es extremadamente ”pobre”) en una dimensión también lo esté en las otras dimensiones con-

sideradas. A pesar de su atractivo teórico a la hora de analizar la pobreza desde un punto de

vista multidimensional, el concepto de tail dependence multivariante nunca ha sido aplicado,

hasta donde sabemos, en este campo. Por lo tanto, esta tesis proporciona una contribución

pionera. En particular, proponemos, por primera vez, la tail concentration function (TCF)

multivariante, una herramienta gráfica que permite analizar el grado de dependencia multivari-

ante entre las dimensiones de la pobreza en las colas de la distribución conjunta y permite, al

mismo tiempo, representar dicha dependencia en un plano cartesiano, independientemente del

número de dimensiones de la pobreza considerado.

En la aplicación emṕırica de esta tesis, utilizamos estos conceptos de dependencia basados en

cópulas para cuantificar el grado de dependencia multivariante entre las tres dimensiones de

la tasa AROPE en los páıses de la Unión Europea (UE) y su evolución durante el peŕıodo

2008-2018. Del análisis de orthant dependence podemos concluir que, en la UE, valores bajos

(altos) de la renta tienden a ocurrir simultáneamente con valores bajos (altos) de las otras

dos dimensiones de la pobreza consideradas. Además, en la gran mayoŕıa de los páıses de la

UE, la probabilidad media de estar simultáneamente mal posicionado en todas las dimensiones

de la pobreza tiende a ser más alta que la probabilidad media de estar simultáneamente bien

posicionado en todas las dimensiones. También encontramos, para la mayoŕıa de los páıses, un

aumento de la dependencia entre las dimensiones de la pobreza durante el peŕıodo 2008-2014,

tras la Gran Recesión. Es decir, la probabilidad de tener un ranking bajo (alto) simultáneamente
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en todas las dimensiones de la pobreza era mayor en 2014 que en 2008. Por el contrario, durante

el peŕıodo de recuperación (2014-2018) observamos que, en muchos páıses de la UE, el grado

de dependencia multivariante entre las dimensiones de la pobreza se mantuvo bastante estable,

con indicios de una disminución en algunos páıses. Sin embargo, en la mayoŕıa de los páıses de

la UE, la dependencia multivariante entre las dimensiones de la pobreza era todav́ıa mayor en

2018 que en 2008.

A partir del análisis de tail dependence multivariante, podemos concluir que existe dependencia

multivariante tanto en la cola inferior como en la superior de la distribución conjunta. Además,

en la gran mayoŕıa de los páıses de la UE, la dependencia en la cola inferior tiende a ser mayor

que en la cola superior. También encontramos que, entre 2008 y 2014, en la mayoŕıa de los

páıses de la UE hubo un aumento de la dependencia multivariante en la cola inferior de la

distribución conjunta de las dimensiones de la pobreza. Por el contrario, en el peŕıodo 2014-

2018 encontramos que, en la mayoŕıa de los páıses, dicha dependencia se mantuvo bastante

estable. Además, si consideramos todo el peŕıodo analizado, únicamente en tres de los páıses

de la UE la dependencia multivariante entre las dimensiones de la pobreza en la cola inferior

de su distribución conjunta parece ser claramente más baja en 2018 que en 2008.
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Summary

It is widely recognized that poverty is a multidimensional phenomenon involving not only in-

come, but also other aspects such as education or health. In this multidimensional setting,

analysing the dependence between dimensions becomes an important issue, since a high de-

gree of dependence could exacerbate poverty. In fact, this interdimensional dependence is the

key aspect of any multivariate analysis and, therefore, any sound multidimensional poverty as-

sessment must appropriately account for the multivariate association between the dimensions.

However, the literature on multidimensional poverty has traditionally overlooked this crucial

aspect, to the point that most of the multidimensional poverty indices proposed so far, and

especially those most widely applied, are not sufficiently sensitive to the degree of multivariate

association between the different dimensions of poverty.

In this thesis, we propose to use the copula methodology to deal with the dependence between

the dimensions of poverty. This approach, which has recently gained attention in Welfare Eco-

nomics, focuses on the positions of the individuals across dimensions, rather than on the specific

values that those dimensions attain for such individuals, and is particularly useful when measur-

ing dependence in multivariate, possibly non-Gaussian and possibly non-linear contexts, such

as the ones we usually face in multidimensional poverty or welfare analyses. In particular, we

consider several copula-based concepts of multivariate dependence which are especially suitable

for the study of multidimensional poverty, namely the concepts of multivariate concordance,

orthant dependence and multivariate tail dependence.

We first consider several multivariate extensions of Spearman’s rho, based on the concepts of

orthant dependence and multivariate concordance. Among these extensions, the coefficient of

average lower orthant dependence becomes especially relevant when analysing multidimensional

poverty, as it captures the average probability of being simultaneously low-ranked in all dimen-

sions of poverty. After that, we focus on the concept of multivariate tail dependence, with

especial emphasis on multivariate lower tail dependence, which is particularly important in a
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multidimensional poverty analysis, since it captures the probability that an individual who is

extremely low-ranked (extremely “poor”) in one dimension is also extremely poor in the other

dimensions considered. Despite its theoretical appeal when it comes to analysing poverty from

a multidimensional point of view, the concept of multivariate tail dependence has never been

applied, to the best of our knowledge, in this field. Hence, this thesis provides a pioneering

contribution. In particular, we propose, for the first time, the multivariate tail concentration

function (TCF), a graphical tool that allows to analyse the degree of multivariate dependence

between the dimensions of poverty in the tails of the joint distribution and allows, at the

same time, to represent such dependence in a unit square, regardless of the poverty dimensions

considered.

In the empirical application of this thesis, we apply these copula-based dependence concepts to

quantify the degree of multivariate dependence between the three dimensions of the AROPE

rate in the European Union (EU) countries and its evolution over the period 2008-2018. From

the orthant dependence analysis, we can conclude that in the EU, low (high) values of income

tend to occur simultaneously with low (high) values of the other two dimensions of poverty

considered. Furthermore, in the vast majority of the EU countries, the average probability of

being simultaneously low-ranked in all poverty dimensions tends to be higher than the average

probability of being simultaneously high-ranked in all dimensions. We also find, for most

countries, an increase in orthant dependence between poverty dimensions over the period 2008-

2014. That is, the probability to be simultaneously low (high) ranked in all poverty dimensions

was higher in 2014 than in 2008. By contrary, over the post-crisis period of 2014-2018, we

observe that in many EU countries the degree of multivariate orthant dependence between

poverty dimensions remained rather stable, with evidence of a decrease in some countries.

Nevertheless, in the majority of the EU countries, multivariate orthant dependence between

the dimensions of poverty was still higher in 2018 than in 2008.

From the multivariate tail dependence analysis, we can conclude that there is multivariate tail
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dependence both in the lower and in the upper joint tails of the distribution. Moreover, in the

vast majority of the EU countries dependence in the lower tail tends to be higher than in the

upper tail. We also find that, between 2008 and 2014, in most ot the EU countries there was an

increase in multivariate lower tail dependence. By contrary, in the post-crisis period of 2014-

2018 we find that, in most of the countries, the degree of multivariate lower tail dependence

between poverty dimensions remained rather stable. Moreover, if we consider the whole period

analysed, only in three of the EU countries multivariate lower tail dependence between poverty

dimensions seems to be clearly lower in 2018 than in 2008.
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Introduction

Eradicating poverty remains one of the main objectives of public policy. In fact, one of the

Sustainable Development Goals adopted by the United Nations in 2015 is precisely “to end

poverty in all its forms by 2030”. In this context, how we measure poverty can determine how

we analyse it and therefore how we implement public policies to reduce it. Over the last years,

a consensus has emerged on the multidimensional nature of poverty. That is, it is now widely

accepted that it does not depend only on income, but also on other non-monetary aspects such

as health, education or labour status, for instance. This has given rise to a large and still

growing literature on the measurement of poverty from a multidimensional perspective; see

Alkire et al. (2015), Aaberge and Brandolini (2015) or Chakravarty (2018) for comprehensive

reviews.

This literature has been mainly focused on the construction of multidimensional poverty indices,

whose aim is to summarise in one figure the level of multidimensional poverty that exists in

a given society. For instance, the United Nation Development Program (UNDP) adopted, in

2010, the Multidimensional Poverty Index (MPI), which considers three dimensions: education,

health and standard of living. Furthermore, the European Union (EU) monitors poverty in

Europe through the AROPE (At Risk Of Poverty or social Exclusion) rate, which also considers

three poverty dimensions (income, work intensity and material deprivation). However, this

approach has traditionally overlooked an important aspect of multidimensional poverty, namely

the degree of dependence between the dimensions. In fact, as it has been argued by Duclos
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Introduction

and Tiberti (2016) or Seth and Santos (2019), most of the multidimensional poverty indices

proposed so far, and especially those most widely applied, are not sufficiently sensitive to this

crucial aspect.

To understand the importance of multivariate dependence when analysing multidimensional

poverty or well-being, consider the example put forward by Decancq (2014) and imagine a

society in which there is one individual who is top-ranked in all dimensions of well-being,

another individual who is second-ranked in all dimensions, and so on. As Decancq (2014)

argues, “this society, reminiscent of a feudal or caste system, is arguably less equitable than

another society with exactly the same distributional profile in each dimension but where some

individuals are performing relatively well on some dimensions and other individuals on others”.

In other words, for two different societies, the marginal distributions of the achievements may be

the same but the joint distributions may differ, leading to different degrees of interdimensional

association, which, as Chakravarty (2018, ch. 1) points out, is an intrinsic characteristic of the

notion of multivariate analysis. Hence, in order to appropriately account for the multivariate

association between the poverty dimensions, the analysis must be fully sensitive to the joint

distribution of dimensional achievements.

One way to account for the association between dimensions when analysing multidimensional

poverty is the use of the multivariate stochastic dominance techniques proposed, for instance,

by Duclos et al. (2006) or Bourguignon and Chakravarty (2009), which were conceived to obtain

robust multidimensional poverty orderings to address the multiplicity poverty index problem.

However, and despite their theoretical appeal, the empirical implementation of these techniques

can become extremely difficult, especially when the number of dimensions considered is high.

Accordingly, multivariate stochastic dominance techniques have been scarcely applied in the

multidimensional poverty literature.

An alternative methodology to deal with the dependence between the dimensions of poverty or

welfare has recently gained attention, namely the copula methodology. This approach focuses on
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Introduction

the positions of the individuals across dimensions, rather than on the specific values that those

dimensions attain for such individuals, and has several advantages when it comes to measuring

the multivariate association between poverty dimensions. First, it enables the decomposition of

the joint distribution function of all dimensions into its univariate marginals and the dependence

structure, which is captured by the copula. Second, the copula methodology allows to study

well-known scale-free measures of bivariate association that capture other types of dependence

beyond linear correlation, which is only appropriate for measuring bivariate linear relationships

in the context of elliptical distributions. And third, this approach also permits the construction

of multivariate generalisations of these bivariate measures. Hence, the copula methodology is

particularly useful when measuring dependence in multivariate, possibly non-Gaussian and

possibly non-linear contexts, such as the ones we usually face in multidimensional poverty or

welfare analyses.

Despite these advantages, the application of copula-based approaches in Welfare Economics is

still scarce. Early contributions by Dardanoni and Lambert (2001), Quinn (2007) and Bø et al.

(2012) were limited to the bidimensional case; see also Aaberge et al. (2018) for a more recent

contribution also in the bidimensional framework. The first application of the copula-based

methodology in a fully multidimensional setting is that of Decancq (2014), who analysed the

multivariate dependence between income, health and education in Russia. A similar approach

was followed by Pérez and Prieto (2015) to analyse, for Spain, the multivariate dependence

between the three dimensions (income, work intensity and material deprivation) of the AROPE

rate, which is the measure of reference to monitor poverty in Europe. This analysis was recently

extended by Garćıa-Gómez et al. (2021) for 28 EU countries between 2008 and 2014. Also,

Pérez and Prieto-Alaiz (2016a) used three copula-based measures of multivariate association to

analyse the dependence between the three dimensions of the Human Development Index using

data from 187 countries. Other recent examples of the application of copula-based methods

in Welfare Economics can be found in Decancq (2020), Matkovskyy (2020), Terzi and Moroni
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(2020) and Tkach and Gigliarano (2020).

In this thesis, we contribute to this growing literature by applying copula-based methods to

measure multivariate dependence between the different dimensions of poverty in the EU. Our

contribution is twofold. First, from a theoretical point of view, we consider several copula-

based concepts of multivariate dependence which are especially suitable for the study of mul-

tidimensional poverty. In particular, in addition to the measures of orthant dependence used

by Garćıa-Gómez et al. (2021), we also consider the concept of multivariate tail dependence.

This concept, which has not been previously applied in the literature on multidimensional well-

being, is very appealing, since it captures the probability that an individual who is extremely

poor (rich) in one dimension is also extremely poor (rich) in the other dimensions considered.

The second contribution of this thesis is empirical, as we apply these copula-based dependence

concepts to quantify the degree of multivariate dependence between the dimensions of poverty

in the EU countries and its evolution over the period 2008-2018. In doing so, we can gain a

better insight into the effects of the Great Recession and the subsequent recovery period on the

poverty structure in the EU.

The thesis is structured as follows. First, in Chapter 1 we provide an extensive review of the

literature on both unidimensional and multidimensional poverty measurement. In both cases,

we will first review the different axioms and indices proposed to measure poverty. After that,

the stochastic dominance techniques and their application to obtain robust poverty orderings

will be reviewed. As we previously pointed out, multivariate stochastic dominance techniques

account for the association between dimensions when analysing multidimensional poverty, since

they are based on the joint distribution of the achievements. However, as we will see, this ap-

proach is not exempt of limitations, since its empirical implementation can become extremely

difficult, especially when the number of dimensions considered is high. Moreover, the multivari-

ate stochastic dominance techniques does not allow us to quantify the degree of multivariate

dependence. To do so, in this thesis we propose the use of copula-based methods.
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Chapter 2 is precisely devoted to the copula methodology and its application to study multi-

variate dependence. We begin reviewing the concept of copula and its main properties. After

that, we will focus on the concepts of multivariate dependence that are specially valuable when

analysing multidimensional poverty. Thus, we will first review the concepts of multivariate

concordance and orthant dependence, discussing several copula-based measures of multivariate

association which stem from those dependence concepts, namely several multivariate exten-

sions of the well-known Spearman’s rank correlation coefficient. Among these extensions, the

coefficient of average lower orthant dependence becomes especially relevant when analysing

multidimensional poverty, as it measures multivariate dependence from a “downward” perspec-

tive and captures the average probability of being simultaneously low-ranked in all dimensions

of poverty as compared to what this would be were the dimensions independent. Then, we will

turn the attention to the concept of tail dependence, which focuses on the extreme values of

the poverty dimensions. We will analyse different proposals to measure it both in the bivariate

and in the multivariate case. In particular, we put especial emphasis on multivariate lower tail

dependence, which is particularly important in a multidimensional poverty analysis, since it

captures the probability that an individual who is extremely low-ranked (extremely “poor”)

in one dimension is also extremely poor in the other dimensions considered. The concept of

multivariate tail dependence, although very appealing when it comes to analysing poverty from

a multidimensional point of view, has never been applied, to the best of our knowledge, in this

field. Indeed, this thesis provides a pioneering contribution by proposing, for the first time,

the multivariate tail concentration function (TCF), a graphical tool that allows to analyse the

degree of multivariate dependence between the dimensions of poverty in the tails of the joint

distribution. As we will see, this function has an important advantage because, in spite of

its multivariate nature, it allows to represent in a unit square the degree of multivariate de-

pendence in the joint tails of a distribution, regardless of the number of poverty dimensions

considered.
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In Chapter 3 we perform an application of the copula-based dependence concepts introduced

in Chapter 2 to analyse the evolution of multivariate dependence between the dimensions of

poverty in the EU over the period 2008-2018, using data from the EU-Statistics on Income

and Living Conditions (EU-SILC) survey. In particular, we analyse the multivariate depen-

dence between the three dimensions of the AROPE rate, namely income, work intensity and

material needs. We begin by applying the multivariate extensions of Spearman’s rho based on

orthant dependence concepts. We find that, in the EU, low (high) values of income tend to

occur simultaneously with low (high) values of the other two dimensions of poverty considered.

Furthermore, in the vast majority of the EU countries, the average probability of being simulta-

neously low-ranked in all poverty dimensions tends to be higher than the average probability of

being simultaneously high-ranked in all dimensions. We also find that, between 2008 and 2014

there was, in most of the EU countries, an increase in both average lower orthant dependence

and average upper orthant dependence between dimensions of poverty. By contrary, over the

post-crisis period of 2014-2018, we observe that in many EU countries the degree of multivari-

ate orthant dependence between poverty dimensions remained rather stable, with evidence of

a decrease in some countries. Nevertheless, in the majority of the EU countries, multivariate

orthant dependence between the dimensions of poverty was still higher in 2018 than in 2008.

Also in Chapter 3, we complement this analysis based on the multivariate extensions of Spear-

man’s rho by focusing on the concept of multivariate tail dependence. In particular, we use the

multivariate TCF proposed in Chapter 2 to analyse the evolution of multivariate tail depen-

dence between the three dimensions of the AROPE rate in the EU over the period 2008-2018,

putting special emphasis on the evolution of multivariate lower tail dependence. As we argued

above, to the best of our knowledge, this constitutes the first application of multivariate tail

dependence in Welfare Economics. With this analysis, we find that there is multivariate tail

dependence both in the lower and in the upper joint tails of the distribution. That is, there is a

positive probability that a household that is poor (rich) in one of the dimensions of the AROPE

6



Introduction

rate is also simultaneously poor (rich) in the other two dimensions. Moreover, in the vast ma-

jority of the EU countries dependence in the lower tail tends to be higher than in the upper

tail, which means that the probability that a household that is poor in one of the dimensions is

also poor in the other two dimensions tends to be higher than the probability that a household

that is rich in one of the dimensions is also rich in the other two dimensions. We also find

that, between 2008 and 2014, in most ot the EU countries there was an increase in multivariate

lower tail dependence, that is, the probability that a household that is poor in one dimension

is also simultaneously poor in the other two dimensions of poverty was higher in 2014 than in

2008. By contrary, in the post-crisis period of 2014-2018 we find that, in most of the countries,

the degree of multivariate lower tail dependence between poverty dimensions remained rather

stable. Nonetheless, if we compare the situation in 2018 with that in 2008 we find that, in the

vast majority of the countries, the degree of multivariate lower tail dependence between the

dimensions of poverty was either higher in 2018 than in 2008 or the situation in both years was

similar. In fact, only in three of the EU countries multivariate lower tail dependence between

poverty dimensions seems to be clearly lower in 2018 than in 2008.

Finally, we conclude this thesis with a summary of the main conclusions and with some ideas

for further research.
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Chapter 1

The measurement of poverty: a

literature review

1.1 Introduction

In order to analyse a phenomenon such as poverty, it is first necessary to understand its meaning.

As Gordon (2006) points out, poverty does not have a single meaning. In fact, Spicker (1999)

proposes twelve alternative concepts of poverty, and diverse institutions and authors consider a

different definition of the phenomenon. The World Bank, for example, considers that “poverty

is pronounced deprivation in well-being”, a definition which is in line with that proposed by

Ravallion (1992):

“Poverty can be said to exist in a given society when one or more persons do not

attain a level of material well-being deemed to constitute a reasonable minimum by

the standards of that society.”

The question that immediately arises is which is the appropriate way to measure well-being.

It is in the answer to this question where two concepts of poverty can be distinguished. The
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first concept has been called “monetary poverty” or “unidimensional poverty”. This has been

the concept traditionally applied in the economic literature and entails comparing the level of

income, consumption or wealth of individuals with a minimum threshold (a poverty line). If

income, consumption or wealth is below this threshold, then the individual is considered poor.

The International Labour Organization suggests a definition of poverty which is consistent with

this unidimensional concept (ILO, 1995):

“At the simplest level, individuals or families are considered poor when their level of

living, measured in terms of income or consumption, is below a particular standard.”

The second concept considers that poverty, like other phenomena such as well-being or in-

equality, has a multidimensional character; see, for example, the seminal contributions of Kolm

(1977) and Sen (1985, 1987). This concept of poverty goes beyond the monetary approach

and analyses whether individuals are also deprived in other dimensions of welfare such as

health, education, shelter or working conditions, among others. Based on this conception, the

United Nations (1995) sees poverty as:

“a condition characterized by severe deprivation of basic human needs, including

food, safe drinking water, sanitation facilities, health, shelter, education and infor-

mation. It depends not only on income but also on access to services.”

Similarly, in the European Union the concept of social exclusion has become prominent when

analysing poverty. In fact, the European Community (1985) argues that

“The poor shall be taken as to mean persons, families and groups of persons whose

resources (material, cultural and social) are so limited as to exclude them from the

minimum acceptable way of life in the Member State in which they live.”

Accordingly, Eurostat provides the AROPE (At Risk of Poverty and Social Exclusion) rate,

which identifies individuals as poor taking into consideration their income, material deprivation
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and work intensity status, and which is nowadays the measure of reference to monitor poverty

in Europe.

Over the last decades, the multidimensional approach to poverty measurement has gained

more and more attention in the literature and a consensus has emerged that sees poverty as

a multidimensional phenomenon. In this context, an important number of both theoretical

and empirical contributions has emerged trying to set the basis for a correct measurement of

poverty.

In this chapter, a review of the literature on both unidimensional and multidimensional poverty

measurement will be performed. Section 1.2 focuses on unidimensional or monetary poverty,

reviewing its main methodological aspects for its measurement. Section 1.3, in turn, reviews the

different approaches and methods proposed for the measurement of multidimensional poverty.

In both cases, we will put special attention to the different axioms and measures proposed

to measure poverty and also to the application of stochastic dominance techniques to obtain

poverty orderings.

1.2 Unidimensional poverty

As we previously argued, to analyse poverty, the concept traditionally applied in the economic

literature has been that of unidimensional or monetary poverty. To measure poverty in this

unidimensional setting, Sen (1976) distinguishes two steps: the identification step, which con-

sists of identifying who is poor; and the aggregation step, in which the information about the

poverty status of the individuals is used to obtain an aggregate figure that reflects the level

of poverty in the society. But before the identification and aggregation are performed, some

methodological issues must be taken into account.

It is first necessary to choose a variable that captures the level of well-being of the individ-

uals. Several variables can be used but, in empirical applications, income, consumption and
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wealth have called the attention of economists. However, and due to the difficulties that the

measurement of wealth poses, the majority of poverty analyses relies on household surveys

data that provide information on consumption and/or income at the household level. Thus,

poverty of an individual or household is usually defined as a lack of income or as a shortfall

in consumption. However, income and consumption are different concepts. In periods of low

income, it is possible for some people to borrow or make use of savings. Also, in periods with

high income individuals can opt for saving part of it. In both cases, income and consumption

will differ. Advantages and disadvantages of each of these variables as measures of well-being

can be found in the literature and the debate about which of them is more adequate for poverty

measurement is still open; see Gradin et al. (2008).1

Once the variable used to identify the poor is defined, the unit of analysis must be established.

In this respect, poverty can be measured for individuals or for households. In most surveys,

income and consumption data are collected at a household level. In this case, one possibility is to

calculate household income or expenditure per capita, dividing the total income or consumption

of the household by the number of its members. However, this method has been criticised

because it does not take into account that adults and children have different needs and that

there can be economies of scale within the household. Thus, it is essential to account for

differences in household composition, for which it is a common practice to use equivalence

scales, obtaining the income or consumption per equivalent adult. Coulter et al. (1992) and

Deaton and Zaidi (2002) provide an insightful discussion on equivalence scales; see also Morelli

et al. (2015) for a review of different equivalence scales proposed in the literature.

1This debate goes beyond the scope of this work. For detailed discussions on these issues see Deaton and
Zaidi (2002) and Morelli et al. (2015).
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1.2.1 The identification of the poor

The identification of individuals or households as poor or non-poor relies on the determination

of a poverty line, that is, a minimum threshold of welfare below which they are considered to be

poor; see Duclos and Araar (2006) for a detailed discussion on poverty lines and their estimation.

Different types of poverty lines have been considered in the literature. First, it is possible to

distinguish between objective and subjective poverty lines. The subjective approach consists of

asking individuals in a survey which income level they consider minimal to satisfy their basic

needs. Then a subjective poverty line can be estimated with the information provided by the

survey. Although subjective poverty lines have not been widely used in applied research, some

examples can be found in Hagenaars and de Vos (1988), Pradhan and Ravallion (2000) and

Lokshin et al. (2006).

Objective poverty lines are the most widely used in empirical studies, and two main types have

been traditionally distinguished: absolute and relative poverty lines; see Callan and Nolan

(1991) and Jäntti and Danziger (2000). An absolute poverty line is independent of the welfare

indicator and can be defined in different ways. The standard one consists in defining a bundle

of goods regarded necessary to reach a minimum level of welfare and determining its cost. For

instance, the 1 $/day line used by the World Bank is an example of this type of lines. Obviously,

absolute poverty lines must be updated in order to account for changes in the cost of living.

In this respect, it is possible to calculate the cost of the same basket of goods in the different

periods, but a more common method is to update the poverty line by using an appropriate

price index, adjusting for inflation.

Alternatively, a relative poverty line is based on a “relativist” approach that sees poverty in

terms of the shortfall of the individuals with respect to the standard of living of the society; see

Sen (1983) or Townsend (1985) for the main theoretical arguments in favour of and against this

relative conception. Relative poverty lines are generally set as a function of the distribution

of income or consumption, usually as a proportion of the median or the mean. As Ruiz-
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Castillo (2009) points out, the absolute approach to poverty measurement is widely used in

the developing world, whereas in developed countries the common practice has been the use

of relative poverty lines, with the exception of the United States. In the European Union, for

example, the poverty line is defined as 60 % of the median income level.

Furthermore, Ravallion and Chen (2011) have defined the relative concept of poverty as “strongly

relative”, and have proposed a new approach called “weakly relative poverty” in which the elas-

ticity of the poverty line to mean or median income is less than unity but at the same time

rises with the income level of the country. Similarly, Foster (1998) puts forward the concept of

“hybrid” poverty lines, which would have an absolute and a relative component and incorporate

explicitly the elasticity of the poverty line with respect to income, which could be estimated.

Previously, Hagenaars and van Praag (1985) had also proposed a parametrised definition of the

poverty line that includes both absolute and relative definitions and depends on the perception

of poverty in the population.

Finally, when the interest lies on observing the poverty trends within a given society, the idea

of an “anchored” poverty line has been proposed and gained recognition. With this method, a

relative poverty line is applied in the first year and then the trend in relative poverty is observed

updating the value of the initial poverty line in order to account for price trends.

Once the poverty line is established, it is possible to identify the poor as those individuals whose

income or consumption is below this threshold. Then, this information is usually aggregated

by means of a poverty measure to give a figure representing the level of deprivation in a society.

The most popular unidimensional poverty measures as well as the axioms characterising them

are reviewed in the next section.
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1.2.2 The aggregation of unidimensional poverty

The proposal of poverty measures has been traditionally based on the axiomatic approach

introduced by Sen (1976). Following this approach, the axioms that a desirable measure should

fulfil are established and then the researcher proposes a poverty measure consistent with these

axioms. Moreover, since the seminal contribution of Sen (1976), it has been assumed that the

measurement of poverty involves the analysis of three different aspects: incidence, intensity and

inequality, known as “the three I’s of poverty” (Jenkins and Lambert, 1997; Villar, 2017). The

incidence of poverty refers to the number of individuals that are identified as poor in a society.

The intensity captures the degree of deprivation of these individuals, that is, how poor they

are. Finally, the inequality aspect of poverty captures the degree of income disparities that

exists among the poor. In the literature, many poverty measures have been proposed and the

axioms that these measures fulfil determine whether they capture each of these three aspects

or not.

As preliminary notation, let x = (x1, x2, . . . , xn) be the income distribution in a population,

being n the population size, and let z be the poverty line. Then, the ith individual is identified

as poor if xi < z. That is, the poor are defined in the weak sense; see Donaldson and Wey-

mark (1986) and Zheng (1997). A poverty measure P (x; z) indicates the level of poverty in a

population with income distribution x for a given poverty line z.

1.2.2.1 Axioms

Next, we present those unidimensional poverty axioms that have been considered in the litera-

ture as the most relevant ones; see Zheng (1997), Foster (2006) and Chakravarty (2009) for a

more detailed discussion.

A1. Symmetry. This axiom is also known as the anonymity principle, as it establishes that, for

the measurement of poverty, it does not matter the identity of the individuals, but only their
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level of income. Formally, whenever x′ is obtained from x by a permutation of incomes between

two individuals, that is, x′i = xj and x′j = xi, then P (x′; z) = P (x; z).

A2. Population Replication Invariance. This axiom establishes that, when the population is

replicated, then the value of the poverty measure will remain unchanged. That is, given two

income distributions x and x′, if x′ is obtained from x by a replication of the population in such

a way that n′ = k ∗n, being n and n′ the population sizes of distributions x and x′ respectively,

for some positive integer k, then P (x′; z) = P (x; z).

With a poverty measure satisfying A1 and A2, two income distributions with the same cumu-

lative distribution function would present the same level of poverty (Foster, 2006).

A3. Focus. The fulfilment of this axiom implies that the poverty measure is independent of

the income distribution of the non-poor individuals. Formally, given two income distributions

x′ and x, if x′i = xi for all i 6= j and x′j > xj being the jth individual non-poor (xj ≥ z), then

P (x′; z) = P (x; z).

A4. Scale Invariance. This axiom establishes that, if all incomes and the poverty line are

scaled by the same factor (λ), then the value of the poverty measure does not change. That is,

P (λx;λz) = P (x; z).

As Chakravarty (2009) and Zheng (1997) point out, all relative indices traditionally used in

poverty analyses satisfy this axiom. By contrary, absolute poverty indices satisfy a different

axiom, called translation invariance (Blackorby and Donaldson, 1980; Zheng, 1994), which

requires that the poverty index does not change after equal absolute changes in all the incomes

and the poverty line.2

A5. Continuity. This axiom requires that P (x; z) is continuous as a function of x for any given

z.

A6. Monotonicity axioms.

2Although in this review we will focus on relative poverty indices, proposals of absolute poverty indices can
be found in Blackorby and Donaldson (1980), Chakravarty (1983a) and Vaughan (1987).
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Following Zheng (1997), we can distinguish between two monotonicity axioms, namely:

• A6.1. Weak Monotonicity. It was proposed by Sen (1976) and requires that a decrease in

the level of income of a poor individual, with the rest of the incomes remaining unchanged,

increases the level of poverty. That is, if x′ is obtained from x in such a way that x′i = xi

for all i 6= j and x′j < xj, being the jth individual poor (xj < z), then P (x′; z) > P (x; z).

• A6.2. Strong Monotonicity. This version of the monotonicity axiom requires that, if x′ is

obtained from x in such a way that x′i = xi for all i 6= j and x′j > xj, with xj < z, then

P (x′; z) < P (x; z).

Noticeably, as Zheng (1997) points out, strong monotonicity implies weak monotonicity, but

the reverse is not always true.

A7. Transfer axioms.

The original version of the transfer axiom, introduced by Sen (1976), requires that, given other

things, the poverty measure increases after a transfer of income from a poor individual to

anyone who is richer. However, different versions of this axiom can be found in the literature;

see, for example, Donaldson and Weymark (1986) and Zheng (1997). We focus on two particular

transfer axioms, denoted by Zheng (1997) as weak transfer and regressive transfer, the latter

being a stronger version of the former.

Before discussing these two axioms, it is first necessary to introduce the concept of regressive

transfer. In particular, an income distribution x′ is obtained from x by a regressive transfer if,

for some i and j with xi ≤ xj, we have x′i < xi ≤ xj < x′j while x′k = xk for all k 6= i, j. Then,

the weak and regressive transfer axioms are as follows:

• A7.1. Weak Transfer. This axiom establishes that, if x′ is obtained from x by a regressive

transfer with at least the donor being poor and with no one crossing the poverty line as

a result of the transfer, then the poverty measure should increase (P (x′; z) > P (x; z)).
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• A7.2. Regressive Transfer. This is the original transfer axiom introduced by Sen (1976)

and requires that P (x′; z) > P (x; z) whenever x′ is obtained from x by a regressive transfer

with at least the donor being poor. Notice that, in this case, individuals can cross the

poverty line as a result of the transfer. As Zheng (1997) points out, regressive transfer

implies weak transfer, but the reverse is not necessary true.

A8. Subgroup consistency. When the population is divided in subgroups, and if the sizes of

these subgroups are fixed, an increase of poverty in one subgroup without a fall in any of the

rest should produce an increase in the value of the poverty measure; see Foster and Shorrocks

(1991) for a detailed discussion on this axiom.

A9. Additive decomposability. The overall level of poverty of a society is a population-weighted

average of poverty in the subgroups.

1.2.2.2 Measures of unidimensional poverty

There is an extensive literature related to the characteristics, advantages and disadvantages of

different poverty measures. Over the next lines, a review of the most widely used measures of

aggregate poverty is provided. A summary of the measures discussed and the axioms that they

fulfil is included in Table 1.1 in page 24; see Zheng (1997) or Foster (2006), among others, for

more detailed discussions on poverty measures.

Probably the most widely used measure of poverty is the Headcount Ratio, which, given an

income distribution x and a poverty line z, gives the proportion of poor in a given population

of size n:

H(x; z) =
q

n
, (1.1)

where q = q(x; z) gives the number of poor individuals, that is, the number of individuals whose

income falls below the poverty line z. This measure is not continuous and does not take into

account neither the intensity of poverty nor the level of inequality among the poor, as it assigns
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the same value to every poor, regardless of how poor they are. In axiomatic terms, it does

not satisfy neither the monotonicity nor the transfer axioms; see Sen (1976). However, and

despite its shortcomings, the Headcount Ratio is still one of the most widely reported measures

of poverty. It is used, for example, by institutions such as The World Bank for monitoring

poverty in the developing world.

Another poverty measure is the Income Gap Ratio, which gives the average shortfall of the

income of the poor with respect to the poverty line, and it is defined as:

I(x; z) = 1− µq(x; z)

z
, (1.2)

where µq(x; z) is the average income of those individuals identified as poor. This measure fulfils

the weak monotonicity axiom, but it does not satisfy strong monotonicity. Furthermore, it does

not fulfil the transfer axioms, being insensitive to inequality among the poor. Moreover, it is

not decomposable.

Another proposal to measure poverty is the Poverty Gap Ratio, defined as:

HI(x; z) =
1

n

n∑
i=1

gi, (1.3)

where gi is the censored gap ratio of individual i, defined as:

gi = max
{z − xi

z
, 0
}
. (1.4)

Thus, for the non-poor gi = 0. The Poverty Gap Ratio quantifies the per capita differences

between the poverty line and the income of the poor. This measure satisfies weak and strong

monotonicity, since the poorer the individual the higher the weight that he has. However, it

violates the transfer axioms, since a regressive transfer does not change the value of the index.

Thus, the Poverty Gap Ratio does not take into account the level of inequality among the poor,
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being insensitive to redistribution. As Zheng (1997), Chakravarty (2009) and Villar (2017)

point out, the Poverty Gap Ratio can be calculated as the product of the Headcount Ratio and

the Income Gap Ratio.

The first distribution-sensitive poverty measure that was proposed in the literature is the Watts

Index, introduced by Watts (1968) and defined as:

W (x; z) =
1

n

n∑
i=1

[ln z − ln x̃i], (1.5)

where x̃i is the censored income, defined as

x̃i = min(xi, z). (1.6)

That is, for all poor individuals (xi < z), x̃i = xi, whereas for all non-poor persons (xi ≥ z),

x̃i = z. The Watts index satisfies all the axioms reviewed above; see Zheng (1997). Furthermore,

this index can also be rewritten in terms of the Mean Logarithmic Deviation Index of inequality

proposed by Theil (1967); see Blackburn (1989).

In order to jointly consider the effects of the incidence, depth and inequality of poverty, Sen

(1976) also proposed a measure that is sensitive to inequality among the poor. In particular,

the Sen Index can be expressed as

S(x; z) =
2

(q + 1)n

n∑
i=1

gi(q + 1− i), (1.7)

where gi is the censored gap ratio in (1.4). This measure satisfies weak and strong monotonicity

and the weak transfer axiom. However, it does not fulfil neither replication invariance nor

continuity. Moreover, this index does not satisfy the regressive transfer axiom; see Shorrocks

(1995) and, more recently, Aristondo and Ciommi (2016) for a detailed discussion on this issue.

Finally, as Zheng (1997) points out, the Sen measure cannot be additively decomposed and
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does not satisfy the subgroup consistency axiom.

When n→∞, the Sen Index can be expressed in its approximate form, namely:

S ′(x; z) = H(x; z)[I(x; z) + (1− I(x; z))Gp], (1.8)

where H(x; z) is the Headcount Ratio in (1.1), I(x; z) is the Income Gap Ratio in (1.2) and

Gp is the Gini coefficient of the income distribution of the poor. It is important to notice that,

although this approximate version also fails to fulfil the regressive transfer axiom, continuity,

additive decomposability and subgroup consistency, it satisfies the replication invariance axiom;

see Shorrocks (1995), Zheng (1997) and Aristondo and Ciommi (2016). Other generalisations

and variations of the Sen Index can be found in Hamada and Takayama (1977), Takayama

(1979), Blackorby and Donaldson (1980), Kakwani (1980) and Giorgi and Crescenzi (2001); see

also Zheng (1997) and Chakravarty (2009) for a more extensive discussion on these proposals.

The Sen-Shorrocks-Thon (SST) Measure is also a modified version of the Sen Index based

on the works of Thon (1979) and Shorrocks (1995). This measure can be defined as

SST (x; z) =
1

n

n∑
i=1

2(n+ 0.5− i)
n

gi, (1.9)

where gi is the censored gap ratio in (1.4). Moreover, Osberg and Xu (2000) show that the SST

measure can also be expressed as

SST (x; z) = H(x; z)I(x; z)(1 +GPG), (1.10)

where H(x; z) is the Headcount Ratio in (1.1), I(x; z) is the Income Gap Ratio in (1.2) and

GPG is the Gini coefficient of the censored gap ratios gi defined in (1.4).

The SST measure satisfies weak and strong monotonicity and the transfer axioms, but it is

not decomposable in the usual way (across subgroups) and violates the subgroup consistency
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axiom. Nevertheless, the SST measure can be decomposed showing three different aspects of

poverty: the number of poor, the severity of poverty and the inequality among the poor; see

Osberg and Xu (2000).

In a very influential contribution, Foster et al. (1984) proposed a family of poverty measures,

known as the FGT family of poverty measures, with the following general expression:

FGTα(x; z) =
1

n

n∑
i=1

(gi)
α for α > 0 (1.11)

and FGT0(x; z) = H(x; z). The parameter α indicates the degree of poverty aversion and gi

are the normalised poverty gaps defined in (1.4). All the FGT poverty measures are additively

decomposable and fulfil the subgroup monotonicity axiom, which provides an important ad-

vantage for studying the poverty profile of a country or a region. Moreover, depending on the

value of α we have different measures of poverty. In particular, when α = 1, the FGT index

becomes the Poverty Gap Ratio in (1.3), i.e., FGT1(x; z) = HI(x; z). On the other hand, when

α = 2 we have the Squared Poverty Gap measure:

FGT2(x; z) =
1

n

n∑
i=1

(gi)
2. (1.12)

This measure satisfies both the monotonicity and transfer axioms. Therefore, it takes into

account the level of inequality among the poor. However, it has the disadvantage of being

difficult to interpret, so it is not very widely used in applied research.

Another proposal of a family of poverty measures can be found in Clark et al. (1981). In

particular, they first propose the following measure:

C1(x; z, α) =
q

nz

[
1

q

n∑
i=1

(z − x̃i)α
] 1
α

, (1.13)

where α ≥ 1 and x̃i is the censored income defined in (1.6). This measure satisfies weak and
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strong monotonicity and weak transfer. However, it does not fulfil the regressive transfer axiom.

Moreover, it is not continuous and does not satisfy subgroup consistency.

Clark et al. (1981) also proposed a subgroup consistent and continuous poverty measure, defined

as:

C2(x; z, β) = 1− 1

z

[
1

n

n∑
i=1

(x̃i)
β

] 1
β

, (1.14)

where β < 1 and x̃i is the censored income defined in (1.6). This second measure satisfies all the

axioms discussed above except for additive decomposability. Furthermore, Zheng (1997) shows

that this measure is related to another decomposable poverty measure proposed by Chakravarty

(1983b).

It is important to notice that none of the poverty measures is perfect. Each of them satis-

fies some particular axioms and has different characteristics, capturing diverse aspects of the

phenomenon. There is an extensive literature related to the characteristics, advantages and dis-

advantages of different poverty measures. Some authors such as Atkinson (1987) or Hagenaars

(1987) have provided an evaluation of different measures of poverty and their characteristics

when it comes to analysing this phenomenon. In the same line, Zheng (1997) evaluates the sat-

isfaction of the axioms by different poverty indices. Table 1.1 summarises the axioms satisfied

by each of the measures reviewed above.

To close this section, we want to point out that, in the analysis of poverty, researchers are

generally interested in comparing poverty levels in two situations, for example the poverty

levels of a country in two different periods or the level of poverty in two different countries.

As poverty measures are estimated based on sample data, it is necessary to test whether the

observed differences in poverty levels are statistically significant. Davidson and Flachaire (2007)

distinguish two statistical inference methods for poverty measures: asymptotic methods and

bootstrap methods. With respect to the first option, Kakwani (1993) derived the asymptotic

distribution of different poverty measures: the FGT family, the Watts Index and the family

23



Chapter 1. The measurement of poverty: a literature review

introduced by Clark et al. (1981). In the same line, Bishop et al. (1995) develop statistical

tests for decomposable poverty measures and Bishop et al. (1997) also derived the asymptotic

distribution for the Sen Index and provided consistent estimators for its components (Headcount

Ratio, Income Gap Ratio and the Gini coefficient of the poor). Alternatively, Biewen (2002)

proposes the use of the bootstrap method for the estimation of the FGT family of poverty

measures, and Davidson and Flachaire (2007) point out the good performance of standard

bootstrap procedures for these measures; see Efron and Tibshirani (1994) for a comprehensive

review of bootstrap methods.

H I HI W S SST FGT2 C1 C2

A1. Symmetry X X X X X X X X X

A2. Population Replication Invariance X X X X 7 X X X X

A3. Focus X X X X X X X X X

A4. Scale Invariance X X X X X X X X X

A5. Continuity 7 7 X X 7 X X 7 X

A6.1. Weak Monotonicity 7 X X X X X X X X

A6.2. Strong Monotonicity 7 7 X X X X X X X

A7.1. Weak Transfer 7 7 7 X X X X X X

A7.2. Regressive Transfer 7 7 7 X 7 X X 7 X

A8. Subgroup Consistency X X X X 7 7 X 7 X

A9. Additive Decomposability X 7 X X 7 7 X 7 7

X: the axiom is fulfilled

7: the axiom is not fulfilled

Table 1.1: Unidimensional poverty measures and axioms
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1.2.3 Stochastic dominance techniques and unidimensional poverty

So far our discussion has focused on the construction of poverty measures that are informative

of the level of deprivation that exists in a given society. However, as several authors point out,

specific choices on the functional form of the measure and the poverty line may lead to different

rankings of distributions in terms of poverty. Thus, when making poverty comparisons based

on particular poverty indices and specific poverty lines, some doubts about the robustness of

the results may arise; see Atkinson (1987), Foster and Shorrocks (1988) and Zheng (1997).

To overcome this drawback, some authors have proposed techniques that can be applied to

obtain robust poverty orderings. For instance, Atkinson (1987) and Foster and Shorrocks

(1988), among others, have proposed the use of stochastic dominance techniques. Alternatively,

other authors, such as Jenkins and Lambert (1997), have proposed the use of which they

denominate TIP (“Three I’s of Poverty”) Curves, which allow to analyse the three dimensions

of unidimensional poverty cited by Sen (1976): incidence, intensity and inequality. In this

section we will just focus on the first approach, that is, on the use of stochastic dominance

techniques to obtain robust poverty orderings.3 We refer those interested in the use of TIP

curves to Jenkins and Lambert (1997) and Del Ŕıo and Ruiz-Castillo (2001).

First, we focus on the concepts of first-order and higher order stochastic dominance. After

that, the relationship between the stochastic dominance conditions and poverty orderings is

reviewed.

1.2.3.1 The concept of stochastic dominance

We begin by briefly reviewing the concept of stochastic dominance.4 Let F and G be two

cumulative distribution functions (CDF) with support in the non-negative real line, for instance

3Dominance methods have also been proposed to study other aspects in the field of Welfare Economics, such
as inequality. See, for example, Butler and McDonald (1987) and the references therein.

4See Sriboonchitta et al. (2010) for an extensive treatment of stochastic dominance techniques both in the
univariate and multivariate cases.
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the income distributions of a country in two different periods or the income distributions of two

different countries. Then, it is said (Hadar and Russell, 1969) that G first-order stochastically

dominates F , denoted as G �1 F , if and only if

G(x) ≤ F (x) ∀x ∈ R, (1.15)

with strict inequality for at least one x. That is, if G is never above F ; see Figure 1.1.

Figure 1.1: First-order stochastic dominance of G over F

Intuitively, if x denotes an income level, this condition means that the proportion of “poor”

people (people with an income smaller than x) in distribution F is at least as great as the

proportion of “poor” people in distribution G for any x.

It is also possible to define first-order stochastic dominance in terms of survival functions. Let

F̄ be the survival function associated to F , defined as F̄ (x) = 1− F (x), and let Ḡ be defined

in a similar way. Then, the following condition holds:

G �1 F ⇔ G(x) ≤ F (x) ∀x ∈ R⇔ Ḡ(x) ≥ F̄ (x) ∀x ∈ R. (1.16)

Roughly speaking, if x denotes an income level, then this condition means that the proportion
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of “rich” people (people with an income greater than x) in distribution G is at least as great

as the proportion of “rich” people in distribution F for any x; see Figure 1.2.

Figure 1.2: First-order stochastic dominance of G over F

First-order dominance can also be written in terms of quantiles. Let F−1(l) be the quantile

function, defined as F−1(l) = inf{x : F (x) ≥ l} for a given l ∈ [0, 1], then: G �1 F ⇔

G−1(l) ≥ F−1(l) ∀l ∈ [0, 1], with strict inequality for at least one l. Actually, this definition

is equivalent to the concept of rank dominance introduced by Saposnik (1981).

When the cumulative distribution functions cross, it is not possible to establish a rank order

between them and it is necessary to resort to second-order dominance. Following Hadar and

Russell (1969), we say that G second-order stochastically dominates F , denoted as G �2 F , if

and only if ∫ x

t=0

G(t) dt ≤
∫ x

t=0

F (t) dt ∀x ∈ R, (1.17)

with strict inequality for at least one x. That is, when the area under G is smaller than

that under F . Shorrocks (1983) shows that this condition is equivalent to Generalised-Lorenz

dominance.

Second-order stochastic dominance can also be expressed in terms of quantiles. In particular,
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G �2 F if and only if
∫ l
t=0

G−1(t) dt ≥
∫ l
t=0

F−1(t) dt ∀l ∈ [0, 1], with strict inequality for at

least one l. That is, distribution G second-order stochastically dominates distribution F when

the area under G−1 is bigger than that under F−1.

Higher orders of stochastic dominance can be defined by means of the general notation used by

Davidson and Duclos (2000), which is based on the following functions:

D1(x) = F (x), Dα(x) =

∫ x

t=0

Dα−1(t) dt, for α = 2, 3, . . . (1.18)

As a general rule, G stochastically dominates F at order α, denoted as G �α F , if and only

if Dα
G(x) ≤ Dα

F (x) ∀x ∈ R, with strict inequality for at least one x. Thus, when α = 1 the

condition of stochastic dominance of first order in (1.15) comes up. In turn, when α = 2, the

concept of second-order stochastic dominance in (1.17) comes up, and so on.

The definition above makes it clear that first-order dominance is the strongest condition and

implies dominance of all higher orders. In particular, second-order dominance is implied by,

but does not imply, first-order dominance; third-order dominance is implied by, but does not

imply, first- and second-order dominance, and so on. Then, lower order dominance is a stronger

condition than higher order dominance.

1.2.3.2 Application of stochastic dominance to poverty analysis

Once we have reviewed the concept of stochastic dominance, we now focus on how it can be

applied in a poverty analysis. Let X be a measure of income with CDF F and let z be the

poverty line so that an individual is considered poor if her or his income is lower than z.

Atkinson (1987) considers a general class of poverty measures PF (z), with z > 0, defined as:

PF (z) =

∫ z

x=0

p(x; z) dF (x), (1.19)
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where p(x; z) is a differentiable individual poverty function such that p(x; z) = 0 for all x ≥ z.

Here onwards we assume that p(x; z) is differentiable with respect to x to the required degree.

The general class of poverty measures given by PF (z) includes several of the well-known indices

described in Section 1.2.2.2, such as those proposed by Watts (1968), Clark et al. (1981) and

Foster et al. (1984) defined in (1.5), (1.13) and (1.11), respectively.

In order to compare the level of poverty of two distributions F and G, the following difference

should be evaluated:

PG(z)− PF (z) =

∫ z

x=0

p(x; z)dG(x)−
∫ z

x=0

p(x; z)dF (x).

Integrating by parts above the following result comes up:

PG(z)− PF (z) = −
∫ z

x=0

px(x; z)[G(x)− F (x)] dx, (1.20)

where px(x; z) is the first derivative of the individual poverty function with respect to x. Then,

as Atkinson (1987) and Foster and Shorrocks (1988) showed, we have:

G �1 F ⇔ PG(z) ≤ PF (z) ∀p(x; z)|px(x; z) ≤ 0 ∀z. (1.21)

That is, the level of poverty in G is not higher than that in F for all individual poverty

measures that are decreasing in the level income (px(x; z) ≤ 0) and for all poverty lines if and

only if the proportion of people with an income smaller than x (“poor” people) is at least

as great in distribution F as in distribution G (G �1 F ). Therefore, first-order stochastic

dominance constitutes the condition under which all poverty measures satisfying px(x; z) ≤ 0

rank distributions equally in terms of poverty. In particular, this condition is satisfied by well-

known poverty measures such as the indices proposed by Watts (1968), Thon (1979), Clark

et al. (1981) and Chakravarty (1983a); see Atkinson (1987) and Zheng (1999, 2000).
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Despite its theoretical appeal, first-order stochastic dominance is a very demanding condition

that many distributions may fail to satisfy, making it difficult to check in empirical applications

and thus not leading to robust poverty orderings. To overcome this drawback, it is possible to

resort to second-order dominance. With this approach, establishing poverty orderings requires

an additional condition on the individual poverty function p(x; z) that fewer poverty measures

will be able to fulfil. In particular, Atkinson (1987) shows that:

G �2 F ⇔ PG(z) ≤ PF (z) ∀p(x; z)|px(x; z) ≤ 0, pxx(x; z) ≥ 0 ∀z, (1.22)

where pxx(x; z) is the second derivative of the individual poverty function with respect to x.

Then, G �2 F if and only if the level of poverty in G is not higher than that in F for all poverty

lines according to all poverty measures that are decreasing in the level of income (px(x; z) ≤ 0)

and convex (pxx(x; z) ≥ 0). This latter property implies that poverty must increase after a

regressive transfer between two poor individuals. Hence, as Atkinson (1970) and Zheng (1999,

2000) point out, the poverty ordering implied by second-order dominance will be respected by

well-known poverty measures such as the indices proposed by Watts (1968) and Thon (1979),

among others.

When dominance analysis is not conclusive for first and second order, it is possible to resort

to higher order dominance conditions based on expression (1.18), but such conditions require

more assumptions on p(x; z), reducing even more the number of poverty measures that will

respect the poverty orderings obtained. However, the measures fulfilling such conditions are

more sensitive to changes in the lower part of the income distribution, which some authors

regard as a desirable property; see, for instance, Zheng (1997).

On the other hand, as Foster and Shorrocks (1988) point out, the stochastic dominance or-

derings are equivalent to the poverty orderings based on the FGT family of poverty measures
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defined in equation (1.11). In particular, these measures can be expressed as:

FGTα−1(z) =
1

zα−1
(α− 1)!Dα(z) =

1

zα−1

∫ z

x=0

(z − x)α−1dF (x) for α = 1, 2, 3, . . . (1.23)

where the function Dα(z) above is the function defined in equation (1.18) evaluated at the

poverty line, which can be alternatively written as:

Dα(z) =
1

(α− 1)!

∫ z

x=0

(z − x)α−1dF (x) for α = 1, 2, 3, . . . (1.24)

Hence, in general, the following equivalences can be established:

G �α F ⇔ Dα
G(z) ≤ Dα

F (z) ∀z ⇔ FGTG,α−1(z) ≤ FGTF,α−1(z) ∀z. (1.25)

In particular, for α = 1, and taking into account that FGT0(z) is the headcount ratio, the

relationship in (1.25) implies that G �1 F if and only if the headcount ratio in population G

is unambiguously lower than in F for all possible values of the poverty line z. Similarly, taking

α = 2 in (1.23), FGT1(z) comes up. Then, as FGT1(z) is the poverty gap ratio, the relationship

in (1.25) implies that G �2 F if and only if the poverty gap ratio is lower in population G than

in population F for all poverty lines z.

So far we have presented the theoretical results regarding the relationship between stochastic

dominance conditions and robust poverty orderings. As it has been previously discussed, es-

tablishing poverty orderings amounts to comparing stochastic dominance for two distributions

of income (or any other variable representing the level of welfare). However, in empirical ap-

plications, such distributions are not available for the whole population and it is necessary to

work with sample data. Therefore, comparisons must be based on statistical functionals of the

empirical distribution functions and statistical inference must be applied to determine whether

the results of such comparisons are statistically significant. However, facing this task requires

overcoming a number of difficulties. The two main challenges are, first, to establish the null
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and alternative hypotheses of the test for stochastic dominance and second, to find an appro-

priate testing procedure, taking into account that dominance conditions involve the comparison

of distributions over a large number of points. The different approaches followed to overcome

these two challenges have led to the proposal of different tests for stochastic dominance. Among

them, we can highlight the proposals of McFadden (1989), Bishop et al. (1989), Bishop et al.

(1992), Davidson and Duclos (2000) or Barrett and Donald (2003). A detailed review of these

and other tests for univariate stochastic dominance and some relevant empirical applications

of them can be found in Maasoumi (2001) and, more recently, in Garćıa-Gómez et al. (2019).

1.3 Multidimensional poverty

Over the last decades, a consensus has emerged in the literature considering necessary to study

poverty from a multidimensional perspective, in the same way as other phenomena such as

well-being or inequality (Kolm, 1977; Stiglitz et al., 2009). The concept of multidimensional

poverty is strongly linked to the view that well-being does not only have a monetary dimension,

an idea that dates back to the contribution of Streeten et al. (1981). These authors founded

the theoretical arguments for the Basic Needs Approach, which considers that, for economic

development, the aim should be the fulfilment of a series of basic needs such as minimum

quantities of food, health, clothing or shelter, among others. Therefore, by this conception,

welfare (and hence poverty) is recognised as a multidimensional phenomenon.

An essential contribution on this area was made by Sen (1985, 1992), who considers poverty

not only as a deprivation in monetary terms but also as a deprivation of capabilities, which

he links to the capacity of individuals to choose freely what they want to be. In this sense,

the deprivation in terms of dimensions such as health or education is considered an essential

feature of poverty.

Nowadays, there is little discussion on the multidimensional nature of poverty. For instance,
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Ravallion (1996) argues that monetary variables do not provide a complete picture of the

phenomenon. Moreover, Tsui (2002) points out that, although an increase in income could

improve the capacity of a person to satisfy their needs, the existence of market imperfections

can be an impediment to the provision of basic goods. Thorbecke (2007) also considers that it

is possible that individuals with income above the poverty line fail to allocate these resources

to the purchasing of basic goods, being poor in other important dimensions.

In this multidimensional context, it is first necessary to select the dimensions to be considered,

as well as the relative importance given to each of them. These issues will be discussed in

Section 1.3.1. Once the dimensions are selected, the problem that arises is how to measure

multidimensional poverty based on these dimensions. Two approaches can be distinguished.

The first one consists of aggregating first, for each dimension, the information across individu-

als and then aggregating across dimensions. With this approach, individuals are not identified

as multidimensionally poor. Thus, it is possible that there are individuals deprived in many

different dimensions and this is not captured because the aggregation is performed for dimen-

sions and not for individuals. An example of this method can be found in Anand and Sen

(1997), who construct the Human Poverty Index (HPI). As Alkire et al. (2011) argue, this

approach, usually denominated “marginal approach”, does not reflect the joint distribution of

achievements. Moreover, Alkire and Foster (2011b) point out that this approach ignores the

information on the interrelations between dimensions, implying that, although the measure

can inform about the overall extent of deprivation in a country, it says nothing about how

deprivations are distributed among the population.

Alternatively, it is possible to aggregate first, for each individual, the information across di-

mensions and then aggregate across individuals. To do this, several possibilities come up. One

consists of aggregating the achievements of each individual in the different dimensions to obtain

an aggregate indicator of individual well-being. Then, the identification of multidimensionally

poor individuals is performed as in the unidimensional case, that is, comparing the level of
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well-being with a threshold, the minimum level of welfare necessary to be considered non-poor.

To aggregate the achievements of individuals, some multivariate statistical techniques such as

Principal Components Analysis, Multiple Correspondence Analysis or Factor Analysis can be

used; see Alkire et al. (2015) for an extensive review of these techniques. This approach has a

serious drawback, as the information on the shortfalls in the different dimensions is lost. In fact,

this approach resembles the unidimensional case and does not give importance to each depriva-

tion, losing valuable information for the analysis of multidimensional poverty. An alternative

is the widely used counting approach, which consists of counting the number of dimensions

in which an individual is deprived. In this case, individuals or households are first identified

as deprived or not in each of the dimensions using specific deprivation cut-offs. Then it is

possible to identify those individuals that can be considered as multidimensionally poor based

on the number of dimensions in which the person is deprived. Once the multidimensionally

poor individuals are identified, this information is aggregated by means of a multidimensional

poverty measure. This issues will be reviewed in Sections 1.3.2 and 1.3.3.

As expected, there is not an agreement on the appropriate method to measure multidimensional

poverty. Some authors (Ravallion, 1996) have supported the use of marginal methods, while

others (Alkire and Foster, 2011a; Bourguignon and Chakravarty, 2003) have proposed the use

of multidimensional poverty indices that aggregates first across dimensions and then across

individuals.

Moreover, Ferreira and Lugo (2013) point out that the key aspect of multidimensional poverty

analyses is the interdependence between the different dimensions. However, and despite its

importance, the measurement of the degree of association between poverty dimensions has been

traditionally overlooked in the literature. On one hand, the marginal methods explained above

only focus on the marginal distributions, thus not taking into consideration the dependency

structure. On the other hand, the multidimensional poverty measures mentioned above are

not fully sensitive to the degree of multivariate dependence between the different dimensions,
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thus not paying enough attention to this key aspect; see Duclos et al. (2006), Duclos and

Tiberti (2016) and Seth and Santos (2019). Given this, Ferreira and Lugo (2013) consider some

alternative methodologies that allow to focus on the structure of dependence.

For instance, multivariate stochastic dominance techniques have been proposed by Duclos et al.

(2006) and by Bourguignon and Chakravarty (2009) as a methodological option for analysing

poverty appropriately accounting for the correlation between dimensions. These techniques,

which are extensions of those univariate stochastic dominance methods assessed in Section

1.2.3, will be reviewed in Section 1.3.4. This method has also some drawbacks. First, it is

clearly constrained by the number of dimensions considered in the analysis. That is, multi-

variate stochastic dominance techniques are of limited use when the number of dimensions is

large. Another shortcoming of this approach is that, when there is no dominance, the researcher

cannot make unambiguous comparisons of poverty, which complicates its use in empirical ap-

plications. Furthermore, although multivariate stochastic dominance techniques can establish

multidimensional poverty orderings taking into account the interdependence between dimen-

sions, they do not allow to quantify the degree of multivariate dependence.

Another alternative to deal with the interdependence between the dimensions of poverty, also

mentioned by Ferreira and Lugo (2013), is the approach based on copulas, which is the one that

we will adopt in this thesis. With this method, which has been employed by Decancq (2014) and

Pérez and Prieto-Alaiz (2016b) for multidimensional welfare and by Pérez and Prieto (2015)

and, more recently, by Garćıa-Gómez et al. (2021), for multidimensional poverty, the joint dis-

tribution function of a set of dimensions is decomposed into the marginal distribution of each

of the dimensions and a copula function that gives the information on the degree of interdepen-

dence between dimensions. As we will see throughout Chapters 2 and 3, the measurement of

multidimensional poverty provides an interesting field for the application of copula-based meth-

ods for several reasons. First, these methods allow to quantify the interdependence between

dimensions of poverty, an important aspect that has not been traditionally taken into account
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when measuring this phenomenon from a multidimensional perspective. Second, copula-based

measures of dependence allow to handle concepts of dependence that go beyond linear cor-

relation, a concept that is only appropriate for linear relationships with normally distributed

data, which are not common when treating with welfare variables. Moreover, copula-based

measures of multivariate dependence allow for multivariate extensions of well-known bivariate

rank-based measures of dependence, such as the Spearman’s rank correlation coefficient. The

copula methodology will be extensively discussed in Chapter 2, where we will introduce several

copula-based measures of multivariate association that will be applied in Chapter 3 to analyse

the degree of multivariate dependence between the dimensions of poverty in the EU-28.

1.3.1 The selection of poverty dimensions

Given the multidimensional nature of poverty, there is a wide range of aspects that can be

thought to be important when it comes to measuring this phenomenon. Thus, any empirical

analysis requires the selection of a certain number of dimensions. Thorbecke (2007) considers

this as a key step and argues that it would be rational to consider those basic needs presented

by Streeten et al. (1981) as a point of departure. Additionally, he points out other potential

dimensions such as freedom of expression and religion, but acknowledges the difficulties in their

measurement. Alkire (2002) and Stiglitz et al. (2009) consider aspects such as material living

standards, health, education, job status, social connections and relationships and the quality

of natural environment to be important for personal well-being.

Ramos and Silber (2005) showed that the selection of the dimensions is not an irrelevant issue.

In particular, they perform an efficiency analysis considering some of these lists of dimensions

and argue that different groups of variables can lead to different multidimensional poverty

figures. Alkire (2007) provide a review of the different alternatives for selecting the dimensions

to be included in a multidimensional poverty analysis, pointing out that the selection can be

based on the available or existing data, public consensus (based on the existence of universal
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human rights, for instance), assumptions about the value people give to each aspect, deliberative

participatory processes or empirical evidence regarding people’s values.

Another aspect that requires the attention of the researcher is the weighting of the dimensions,

that is, the relative contribution of each of them to overall well-being. Decancq and Lugo

(2013) provide a detailed discussion on the importance of weights and distinguish three main

approaches to set them: data-driven procedures, normative weights and hybrid approaches.5

Next, we briefly summarise them.

• Data-driven weights. With this approach, the weights are selected based on the data

used by the researcher. One possibility is to assume that there is an inverse relationship

between the frequency of deprivation in a dimension and its weight. Hence, a weighting

scheme is set giving higher weights the smaller is the proportion of individuals with depri-

vation in that dimension; see, for instance, Desai and Shah (1988) and Deutsch and Silber

(2005). Another possibility is to use multivariate statistical techniques such as Princi-

pal Component Analysis or Factor Analysis (Klasen, 2000; Maasoumi and Nickelsburg,

1988). However, as Aaberge and Brandolini (2015) argue, with the application of these

techniques the independent meaning of the weights is lost. Decancq and Lugo (2013) also

point out the lack of transparency of these methods.

• Normative weights. In this case, the weighting scheme is not selected as a function

of the data, but in base of value judgements. One possibility is to weight dimensions

equally, as in the case of the Human Development Index calculated by the United Nations

Development Program. Alternatively, it is possible to give different relevance to each of

the dimensions; see Atkinson et al. (2002) and Marlier and Atkinson (2010). To avoid

arbitrariness when it comes to setting the different weights in a normative context, one

possibility consists of resorting to the opinion of experts, but in this case it should be

5Although we follow here this classification, a review of several methods to determine weights can also be
found in Aaberge and Brandolini (2015).
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ensured that these experts are selected in an unbiased way. Another alternative, although

not popular in the multidimensional poverty literature, is to use price-based weights

computing implicit prices for the variables reflecting the different dimensions of poverty.

• Hybrid weights. This approach is a combination of data-driven and normative methods.

In this framework it is possible to distinguish between stated preference weights and

hedonic weights. The first ones are based on the opinions, retrieved for a sample of

individuals, on the importance of the different dimensions; see, for example, Halleröd

(1995) and, more recently, Bossert et al. (2009). In a similar fashion, hedonic weights are

calculated by means of the information on the level of life satisfaction reported by the

individuals.

Therefore, there are several possibilities to provide weights to the different dimensions included

in a multidimensional poverty analysis, but none of these methods is exempt from flaws. It

should also be pointed out that the choice of the particular procedure is arbitrary and that

different weighting schemes may lead to different conclusions. In this respect, robustness checks

and sensitivity analyses can help to determine if the results are driven by the specific choice of

weights.

1.3.2 The identification of the multidimensionally poor

Once the poverty dimensions have been selected, the next question is how we can measure

multidimensional poverty. As in the case of unidimensional poverty measurement, two steps

can also be distinguished in the multidimensional case when the objective is to obtain a figure

reflecting the level of deprivation in a given society: first, the identification of multidimen-

sionally poor individuals and second, the aggregation of multidimensional poverty. However,

the identification step is more complex in the multidimensional case, since the researcher must

decide how many dimensions an individual should be deprived in to be considered poor.
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Following Alkire et al. (2015), two approaches can be distinguished for the identification of

multidimensionally poor individuals. The first one is the so-called “unidimensional approach”

or “aggregate achievement approach”, which consists of aggregating the achievements of the

individuals in the different dimensions and comparing this aggregated value with a threshold in

such a way that those individuals with a level of well-being below this threshold are considered

as multidimensionally poor.

The second procedure is the widely used “counting approach”, based on the calculation of

the number of dimensions in which an individual is deprived. A deprivation cut-off is defined

for each dimension and the dimensional achievement of the individuals is compared with this

threshold. The number of dimensions in which an individual is deprived is therefore obtained.

After this, the key question is to decide whether it is reasonable to consider as multidimension-

ally poor those individuals who are identified as deprived in any dimension (union approach)

or those who do not reach the minimum established threshold in all of them (intersection

approach), or, alternatively, to use an intermediate procedure.

The union and intersection criteria are reviewed by Bourguignon and Chakravarty (2003) and,

as Alkire and Foster (2011a) point out, both of them have drawbacks. In the case of the union

approach, it is possible that when the number of dimensions is high most of the population

is identified as poor, not being possible to concentrate on those individuals most extensively

deprived. All the contrary occurs when using the intersection criterion, not being possible

to identify as poor those who are extensive but not universally deprived. Given this, Alkire

and Foster (2011a) consider these extreme criteria as inadequate and call for the use of an

intermediate approach that can be seen as a generalization of them.

This intermediate approach is known as the dual cut-off method, and is one of the bases

of the Alkire-Foster (AF) methodology. This method consists of employing a dimensional

threshold to identify individuals deprived in each dimension and a poverty cut-off that states

the number of dimensions in which an individual must be deprived in order to be considered
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as multidimensionally poor. The notation will be as follows. Let X be the (n × d) matrix of

achievements in d dimensions in a population of size n, such that the element xij denotes the

achievement of the ith individual in the jth dimension, for all i = 1, . . . , n and j = 1, . . . , d. Let

z be the d-dimensional vector of deprivation cut-offs, that is, z = (z1, z2, . . . , zd), where zj is the

deprivation threshold for dimension j, so that a person i is identified as deprived in dimension

j whenever xij < zj.

Alkire and Foster (2011a) also consider the possibility of giving different importance to each

of the dimensions with the introduction of a vector of weights w in which wj is the weight of

dimension j and
∑d

j=1 wj = 1. The deprivation score (ci) gives the weighted sum of deprivations

of individual i, namely:

ci =
d∑
j=1

wjIij for i = 1, . . . , n, (1.26)

where Iij = I{xij<zj} is an indicator function that takes the value 1 if individual i is deprived

in dimension j and takes the value 0 otherwise.

The second cut-off (k) is employed to identify the set of multidimensionally poor individuals.

In particular, an individual i is considered multidimensionally poor if its weighted sum of

deprivations, ci, is at least k. This information is retrieved by the following indicator function:

Ii = I{ci≥k} =


1, if ci ≥ k,

0, otherwise.

(1.27)

That is, Ii takes the value 1 if individual i is deprived in at least k dimensions and takes the

value 0 otherwise.

One of the main advantages of the AF methodology is its flexibility. In this sense, any partic-

ular choice of weights is a particular application of this method. Of course, equally weighted

dimensions are another possibility within this framework. Furthermore, both the union and

intersection approaches can be seen as special cases of the poverty cut-off method employed
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by the AF methodology. In particular, when k = min(w1, w2, . . . , wd), the AF poverty cut-off

implies the use of the union approach, and when k =
∑d

j=1wj, the intersection approach comes

up.

1.3.3 The aggregation of multidimensional poverty

Once multidimensionally poor individuals are identified, it is possible to aggregate the infor-

mation into a single number that reflects the overall level of multidimensional poverty in the

society. Given the matrix of achievements X and the vector of deprivation cut-offs z previously

defined, let P (X; z) be a multidimensional poverty measure. In the literature, several measures

of multidimensional poverty have been proposed, each of them satisfying different axioms.

As we did in Section 1.2.2 for unidimensional poverty, we will present next the main multi-

dimensional poverty axioms, reviewing later some of the multidimensional poverty measures

proposed in the literature so far; see Aaberge and Brandolini (2015) and Alkire et al. (2015)

for an extensive treatment of multidimensional poverty axioms and indices.

1.3.3.1 Axioms

As in the case of monetary poverty, the literature on the axiomatic characteristics of multidi-

mensional poverty measures is extensive and has been highly influential. Some of the axioms

are simple extensions of those on unidimensional poverty already reviewed in Section 1.2.2.1,

but others are specific of the multidimensional case. Alkire et al. (2015), Datt (2013), Tsui

(2002) and Bourguignon and Chakravarty (2003) provide an extensive treatment of the differ-

ent axioms that have been proposed. Here we only review those that can be considered as the

most relevant ones.

AM1. Symmetry. Only deprivations matter and not the identity of the individual. This means

that permutations of the rows of the matrix X should not affect P (X, z). In other words,
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swapping achievement vectors across people should not result in a change in overall poverty.

AM2. Replication Invariance. The value of the poverty measure is insensitive to a replication

of the population. This ensures that the index does not depend on the size of the population.

Formally, if an achievement matrix X ′ is obtained from a finite number replication of the

achievement matrix X, then P (X ′; z) = P (X; z). This is a necessary property in order to

compare poverty across societies with different population sizes.

AM3. Scale Invariance. According to this axiom, P (X; z) should not vary if attributes and

thresholds are subjected to a scale transformation. That is, the level of poverty should not be

affected by a change in the scale of the indicators.

AM4. Continuity. This axiom requires that P (X; z) does not change abruptly with marginal

changes in the achievements. That is, a poverty measure should be continuous on the achieve-

ments.

AM5. Poverty Focus. The value of the poverty index is independent of the attribute level of any

non-poor individual. That is, for the measurement of poverty, only the achievements of poor

individuals are relevant. Formally, when an achievement matrix X ′ is obtained from another

one X such that x′lk > xlk, being l a non-poor individual and with x′ij = xij ∀(i, j) 6= (l, k),

then P (X ′; z) = P (X; z).

AM6. Deprivation Focus. It requires that an increase in the attainment in a dimension in

which a person is not considered to be deprived does not affect the level of poverty, even if that

individual is poor. Formally, if an achievement matrix X ′ is obtained from another one X such

that x′lk > xlk with xlk ≥ zk and x′ij = xij ∀(i, j) 6= (l, k), then P (X ′; z) = P (X; z).

Alkire and Foster (2011a) point out that there is a relationship between AM5 and AM6. In

particular, when the union identification is applied deprivation focus implies poverty focus and

when the intersection identification is used poverty focus implies deprivation focus.

AM7. Weak Monotonicity. According to this axiom, poverty should not increase with an in-
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crease in any person’s achievement. Formally, when X ′ is obtained from X in such a way that

x′lk > xlk and x′ij = xij ∀(i, j) 6= (l, k) , then P (X ′; z) ≤ P (X; z).

AM8. Strong Monotonicity. It requires that poverty decreases after an increase in the achieve-

ment of a poor person in a deprived dimension. Formally, if X ′ is obtained from X such that

x′lk > xlk being individual l poor and deprived in dimension k, and x′ij = xij ∀(i, j) 6= (l, k) ,

then P (X ′; z) < P (X; z)

Alkire and Foster (2011a) introduced an additional monotonicity axiom that is spectific to the

multidimensional context, namely dimensional monotonicity, which is defined as follows.

AM9. Weak Dimensional Monotonicity. This axiom states that, if a poor individual becomes

deprived in an additional dimension, then poverty should not decrease. In formal terms, when

X ′ is obtained from X such that x′lk < zk ≤ xlk being individual l poor, and x′ij = xij ∀(i, j) 6=

(l, k), then P (X ′; z) ≥ P (X; z). The strong version of this axiom requires that P (X ′; z) >

P (X; z).

A poverty measure that satisfies this axiom takes into consideration not only the number of poor

in a society but also the extent to which poor individuals are deprived in multiple dimensions.

Moreover, a measure that satisfies monotonicity also satisfies dimensional monotonicity.

AM10. Weak Transfer. According to this axiom, when achievements among the poor become

more equal, poverty should not increase. Formally, if X ′ is obtained from X by a reduction

of the inequality of the achievements of poor individuals that leaves the average achievement

among the poor unchanged, then P (X ′; z) ≤ P (X; z). The strong version of the transfer axiom

requires that P (X ′; z) < P (X; z).

It should also be noticed that deprivation focus and strong transfer cannot be simultaneously

satisfied; see Tsui (2002), Alkire et al. (2015) and Seth and Santos (2019).

AM11. Rearrangement Axioms. Let i and t be two poor individuals with xij > xtj ∀j =

1, 2, . . . , d. A matrix of achievements X ′ is obtained from X by an “association-decreasing
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rearrangement” among the poor if x′ij = xtj and x′tj = xij for at least one j, with x′ik = xik and

x′tk = xtk ∀k 6= j.

In other words, suppose that a poor individual i is at least as well off in all dimensions as other

poor individual t and that there is an exchange of the level in one or more dimensions, but

not in all of them, between these two individuals. Suppose also that, after this transformation,

individual i is no longer equal or better off in all the attributes than individual t, but his

achievements are equal to or higher than those of individual t only in some of the dimensions.

Note that we assume that the achievements of everybody else do not change at all. This is the

definition of an association-decreasing rearrangement, as the association between the level of

achievement in the different dimensions has decreased.

Should an association-decreasing rearrangement lead to an increase or a decrease in the level

of multidimensional poverty? Different positions can be distinguished in the literature in this

respect. Tsui (2002) argues that poverty should decrease because the transformation seems to

reduce inequality among the poor, as the number of deprivations in which a poor individual

is more deprived than another decreases. Bourguignon and Chakravarty (2003), by contrary,

argue that the answer to that question depends on the relationship between the dimensions.

That is, the change in the poverty index as a result of an association-decreasing rearrangement

depends on whether the dimensions are considered substitutes or complements; see also Atkin-

son and Bourguignon (1982). Two dimensions of poverty are considered ALEP substitutes

when a higher level in one of them allows individuals to compensate for a deprivation in the

other.6 That is, the increase in well-being that is consequence of an increment in one dimension

decreases with the value of the other. For example, an increase in the level of education gener-

ates more utility for a poor person (in terms of income) than for an individual whose income

is higher. By contrary, two dimensions of poverty are ALEP complements when the increase

6As Yalonetzky (2014) points out, the acronym ALEP comes from Auspitz-Lieben-Edgeworth-Pareto. ALEP
substitutability implies that the cross-partial derivative of the utility function with respect to a pair of goods is
negative, with this derivative being positive for ALEP complementarity. A detailed discussion on these concepts
can be found in Kannai (1980).
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in welfare derived from an increase in one of them increases with the level of the other, so that

a high level in one aspect of welfare complements a high level in other aspect. For example,

education can be thought to complement nutritional status because well-nourished children

take more advantage of the education opportunities than badly nourished children.

Depending on the relationship between the dimensions, Alkire et al. (2015) distinguish four

different rearrangement axioms, namely:

• AM11.1. Weak Rearrangement. When dimensions are considered ALEP substitutes, the

association-decreasing rearrangement would help individuals to compensate the low achieve-

ment in one dimension with a higher achievement in another. As a result, the level of

poverty should not increase. This axiom is also known as “non-decreasing poverty under

a correlation-increasing switch”, henceforth NDP (Silber, 2007), and implies that, when

dimensions are considered substitutes, an increase in the association between them must

not have as a consequence a decrease in the level of poverty.

• AM11.2. Strong Rearrangement. It is the strong version of AM11.1 and requires that

poverty decreases after an association-decreasing rearrangement.

• AM11.3. Converse Weak Rearrangement. When dimensions are ALEP complements,

poverty should not decrease under an association-decreasing rearrangement, as the ability

of one of the individuals to achieve a certain level of well-being by combining the achieve-

ment levels in the dimensions is reduced. This axiom is also known as “non-increasing

poverty under a correlation-increasing switch”, henceforth NIP (Silber, 2007).

• AM11.4. Converse Strong Rearrangement. It is the strong version of AM11.3 and requires

that poverty increases after an association-decreasing rearrangement.

The weak versions of the rearrangement axioms simply ensure that a measure should not move

to an undesired direction due to changes in association between dimensions. However, they do
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not guarantee that the measure will be strictly sensitive to these changes, as the strong versions

do. Noticeably, as Seth and Santos (2019) point out, there is an incompatibility between the

deprivation focus axiom and the strong versions of the rearrangement axioms. Thus, a measure

that satisfies the deprivation focus axiom cannot simultaneously satisfy the strong (converse)

rearrangement axiom.

As we will see later, and as it is also argued by Seth and Santos (2019), most of the measures

of multidimensional poverty proposed so far satisfy deprivation focus, thus failing to being

strictly sensitive to changes in the association between dimensions, a key aspect when it comes

to analysing multidimensional poverty.

Alkire et al. (2015, ch.2) define an alternative set of rearrangement properties that are consistent

with the deprivation focus principle. To do so, they consider rearrangement transformations

that occur only among the deprived dimensions of the poor.

AM12. Deprivation Rearrangement Axioms. An association-decreasing deprivation rearrange-

ment is defined as an association-decreasing rearrangement that occurs only among the deprived

dimensions of poor individuals (Alkire et al., 2015). As in the case of the rearrangement axioms,

four different versions of the deprivation rearrangement axiom can be distinguished:

• AM12.1. Weak Deprivation Rearrangement. When dimensions are considered ALEP sub-

stitutes, poverty should not increase after an association-decreasing deprivation rearrange-

ment.

• AM12.2. Strong Deprivation Rearrangement. It is the strong version of AM12.1 and

requires that poverty decreases after an association-decreasing deprivation rearrangement.

• AM12.3. Converse Weak Deprivation Rearrangement. If dimensions are considered ALEP

complements, then with an association-decreasing deprivation rearrangement poverty

should not decrease.

• AM12.4. Converse Strong Deprivation Rearrangement. It is the strong version of AM12.3
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and requires that poverty increases after an association-decreasing deprivation rearrange-

ment.

AM13. Subgroup Decomposability. Overall poverty is the population-share weighted average

of the level of poverty in different subgroups of the population. This is an important property

when it comes to analysing the determinants of poverty such as geography, gender, age, or work

status, among others. Formally, and denoting ζ as a given subgroup of the population and m

as the total number of subgroups:

P (X; z) =
m∑
ζ=1

(
nζ

n

)
P (Xζ ; z),

where nζ is the population in subgroup ζ, n is the total population and P (Xζ ; z) is the level of

poverty in subgroup ζ.

AM14. Subgroup Consistency. According to this axiom, if poverty increases in one subgroup

of the population remaining constant in the rest, overall poverty must increase. Formally, if

P (X ′ζ ; z) > P (Xζ ; z) for ζ = ζ1 and P (X ′ζ ; z) = P (Xζ ; z) for all ζ 6= ζ1, then P (X ′; z) >

P (X; z).

There is a relationship between AM13 and AM14, as any poverty measure that is subgroup

decomposable satisfies also subgroup consistency.

AM15. Dimensional Breakdown. Overall poverty can be expressed as a weighted sum of di-

mensional deprivations. With this property, it is possible to analyse the contribution of each

dimension to the overall level of multidimensional poverty.

1.3.3.2 Measures of multidimensional poverty

In the literature, several multidimensional poverty measures have been proposed. None of them

satisfies all the axioms previously discussed. Given this, in order to choose a particular measure,
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it is necessary to assess which of the properties are more relevant when it comes to measuring

multidimensional poverty. Here we review those multidimensional poverty indices that have

been considered as the most relevant ones.7 We also highlight some of the axioms that are

fulfilled by each of them, but we refer to Table 1.2 for a complete account of them.

Regardless of the identification method used, the Multidimensional Headcount Ratio is

the most basic measure, defined as:

Hd(X; z) =
qd
n
, (1.28)

where qd is the number of individuals that are considered to be multidimensionally poor by

means of any identification method, and n is the total number of individuals. The Multidimen-

sional Headcount Ratio reflects the incidence of multidimensional poverty. Alkire et al. (2015)

point out that this measure satisfies, among other axioms, weak dimensional monotonicity

(AM9), weak monotonicity (AM7), weak transfer (AM10), and weak rearrangement (AM11.1),

but the strong versions of these axioms are not fulfilled; see Table 1.2.

As we have previously pointed out, the Multidimensional Headcount Ratio can be calculated in-

dependently of the identification method used. However, most of the multidimensional poverty

measures proposed in the context of an axiomatic approach are designed to be implemented

after identifying the poor by means of the counting approach. We focus on these types of

indices over the rest of this section.

Let the normalised gap of individual i in dimension j be defined as

gij = max
{zj − xij

zj
, 0
}
, (1.29)

so that if individual i is poor in dimension j (xij < zj), gij =
zj−xij
zj

, whereas if he is non-poor

7See Maasoumi and Lugo (2008) and Chakravarty and D’Ambrosio (2013) for other measures not reviewed
in this work.
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(xij ≥ zj), gij = 0. Also, let x̃ij be the so-called censored achievements, defined as

x̃ij = min{xij, zj}, (1.30)

so that x̃ij = xij if individual i is poor in dimension j and x̃ij = zj if individual i is non-poor

in dimension j.

The first multidimensional poverty index that was presented in the literature was introduced

by Chakravarty et al. (1998), and can be expressed as:

PCMR(X; z) =
1

n

n∑
i=1

d∑
j=1

wjf(gij), (1.31)

where wj > 0 is the weight of dimension j, and f is a function that takes higher values the

higher is the level of deprivation. When an individual is not deprived in dimension j, then

gij = 0 and f(0) = 0. This measure satisfies strong monotonicity (AM8), strong dimensional

monotonicity, weak transfer (AM10), and weak deprivation rearrangement (AM12.1), among

other axioms; see Table 1.2.

Tsui (2002) proposed a measure that is a multidimensional generalization of the Watts

Index discussed in Section 1.2.2. Following Alkire et al. (2015), and given αj > 0, this measure

can be expressed as:

PT (X; z) =
1

n

n∑
i=1

d∑
j=1

αj ln
( zj
x̃ij

)
. (1.32)

In this case,
∑d

j=1 αj does not necessarily sum up to one, but
αj∑d
j=1 αj

can be seen as the relative

weight of each dimension. This index satisfies the same properties as the PCMR index in (1.31).

Bourguignon and Chakravarty (2003) propose a multidimensional extension of the FGT

measures of poverty reviewed in Section 1.2.2, which is based on the normalised gaps and can
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be expressed as:8

PBC1(X; z) =
1

n

n∑
i=1

d∑
j=1

wjg
θj
ij , (1.33)

with θj > 1 and where wj is the weight given to dimension j and gij is the normalised gap

defined in (1.29). The family of indices in (1.33) satisfies the same properties as the PCMR

index in (1.31); see Alkire et al. (2015) and Aaberge and Brandolini (2015).

Another proposal of Bourguignon and Chakravarty (2003), also based on the normalised gap

in (1.29), is a family of multidimensional poverty measures of the following form:

PBC2(X; z) =
1

n

n∑
i=1

[
d∑
j=1

wjg
β
ij

]α
β

, (1.34)

where β > 1 and α ≥ 0. These parameters β and α determine the type of relationship between

dimensions. As Alkire et al. (2015) point out, when dimensions are considered substitutes,

α > β and PBC2 satisfies weak rearrangement. On the other hand, when complementarity

between dimensions is assumed, α < β and PBC2 satisfies converse weak rearrangement.

In their influential contribution where they proposed the dual cut-off counting approach to

multidimensional poverty measurement, Alkire and Foster (2011a) also presented a family of

measures that can be seen as an extension of the FGT family of indices to the multidimensional

case. The general form of the AF family of multidimensional poverty measures is the

following:

Mα(X; z) =

∑n
i=1

∑d
j=1 g

α
ijIi

nd
, for α ≥ 0, (1.35)

where Ii = I{ci≥k} is the indicator function defined in (1.27), ci is the deprivation score defined

in (1.26) and α is a parameter that indicates the degree of aversion to inequality among the

poor. All the measures of the AF family in (1.35) satisfy subgroup decomposability, subgroup

consistency, dimensional breakdown, dimensional monotonicity, symmetry, replication and scale

8See Lasso de la Vega and Urrutia (2011) for an axiomatic characterization of this family of measures.
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invariance, poverty and deprivation focus and weak deprivation rearrangement; see Table 1.2.

Some particular measures of the AF family are worth mentioning. In particular, when α = 0

in expression (1.35), we have the Adjusted Headcount Ratio, defined as:

M0 =

∑n
i=1 ciIi
nd

. (1.36)

This index can also be expressed as Hd×A, where Hd is the multidimensional headcount ratio

in (1.28) and A is the average deprivation share across the poor, defined by Alkire and Foster

(2011a) as

A =

∑n
i=1 ciIi

d
∑n

i=1 Ii
,

where
∑n

i=1 Ii = qd. The introduction of the average deprivation share among the poor (A)

allows the Adjusted Headcount Ratio (M0) to increase when a poor individual becomes deprived

in an additional dimension, satisfying dimensional monotonicity. However, M0 does not satisfy

strong monotonicity. Finally, it should be pointed out that M0 has an important advantage, as

it can be calculated by using ordinal indicators. This is not possible with any other measure

of the AF family with α > 0.

When α = 1 in (1.35), the Adjusted Poverty Gap Ratio comes up, defined as:

M1 =

∑n
i=1

∑d
j=1 gijIi

nd
. (1.37)

This index can also be expressed as M0 ×G, where G is the average poverty gap, namely:

G =

∑n
i=1

∑d
j=1 gijIi∑n

i=1 ciIi
.

When a poor individual becomes more deprived in a dimension, then, the sum of normalised

poverty gaps increases, G rises and the Adjusted Poverty Gap (M1) increases, reflecting a

greater intensity of poverty. Therefore, M1 satisfies strong monotonicity. It also satisfies weak
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transfer.

When α = 2 in (1.35), the Adjusted Squared Poverty Gap comes up, which is defined as:

M2 =

∑n
i=1

∑d
j=1 g

2
ijIi

nd
. (1.38)

This index can also be expressed as M0 × S, where S is the average severity, defined by Alkire

and Foster (2011a) as:

S =

∑n
i=1

∑d
j=1 g

2
ijIi∑n

i=1 ciIi
.

M2 satisfies strong monotonicity and weak transfer, among other axioms; see Table 1.2.

The AF measures of multidimensional poverty discussed above are very popular in applied

research; see, for example, the empirical applications in Batana (2013) for Sub-Saharan Africa,

Santos and Villatoro (2016) for Latin America, or Alkire and Seth (2015) for India, among

others. Furthermore, the MPI (Multidimensional Poverty Index) calculated every year by the

United Nations Development Programme is a version of the Adjusted Headcount Ratio (M0).

However, and despite its popularity, AF measures are not exempt of critics. In particular,

Duclos and Tiberti (2016) point out that AF measures can increase after rearrangements of

attributes across individuals that decrease the incidence of multiple deprivation without altering

the marginal distributions of attributes. Thus, the AF family of measures does not satisfy what

Duclos and Tiberti (2016) define as “sensitivity to multiple deprivation”.

Finally, we want to point out that most of the measures reviewed so far have been designed for

handling cardinal indicators. For a proposal of a multidimensional poverty measure applicable

to ordinal data, see Bossert et al. (2013).
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1.3.4 Multivariate stochastic dominance and multidimensional poverty

As in the unidimensional case, the literature of multidimensional poverty has mainly been fo-

cused on the construction of multidimensional poverty indices (see previous section) that are

informative of the level of deprivation that exists in a given society. However, the choice of

different measures of multidimensional poverty may lead to different results, thus generating

doubts about the robustness of the analysis. Moreover, these indices, and especially those

most widely used in empirical applications, are not sensitive enough to the degree of multi-

variate dependence between the different dimensions of poverty, which is the key aspect of the

multidimensional poverty analysis. To overcome these drawbacks, multivariate stochastic dom-

inance techniques have been proposed. This approach allows to obtain robust multidimensional

poverty orderings. Furthermore, as it is based on the joint distribution of the achievements,

this method also allows to capture the possible relationship between the dimensions of poverty.

Over the next lines, the use of multivariate stochastic dominance techniques in the poverty

literature will be discussed.9 First, we will introduce the concept of multivariate stochastic

dominance, reviewing later its application for obtaining robust multidimensional poverty or-

derings. As we will see, the type of relationship between the different dimensions of poverty is

relevant and plays an important role on the determination of the relationship between stochastic

dominance conditions and poverty orderings.

9Although we focus on multidimensional poverty orderings based on the influential contribution made by
Atkinson and Bourguignon (1982), other proposals can be found in the literature. Alkire and Foster (2011a)
propose dominance tests based on the possible values of the poverty cut-off (k) to check the robustness of
multidimensional poverty orderings based on their family of measures. Lasso de la Vega (2010) also proposes
dominance conditions for analysing the robustness of poverty orderings to changes in the identification cut-off in
the counting framework. Yalonetzky (2014) also proposes the use of stochastic dominance techniques to obtain
conditions for robust multidimensional poverty orderings based on popular counting measures.

54



1.3. Multidimensional poverty

1.3.4.1 The concept of multivariate stochastic dominance

Following the notation introduced by O’Brien and Scarsini (1991), let X = (X1, X2, . . . , Xd)

be a random d-dimensional vector and x = (x1, x2, . . . , xd) a real vector in Rd
+.10 Also, let

L(x) = {y ∈ Rd
+ such that y ≤ x}, where y ≤ x denotes component-wise inequalities, namely

yi ≤ xi ∀i. Additionally, let F be the d-dimensional joint cumulative distribution function of

X and let �Mα denote multidimensional stochastic dominance of order α.

The functions defined in (1.18) can be extended to the multidimensional case as:

D1(x) = F (x), Dα(x) =

∫
L(x)

Dα−1(t) dt, for α = 2, 3, . . . (1.39)

Following O’Brien and Scarsini (1991), given two d-dimensional joint cumulative distribution

functions F and G, the condition for multidimensional stochastic dominance at order α of G

over F is written as:

G �Mα F ⇔ Dα
G(x) ≤ Dα

F (x) ∀x ∈ Rd
+. (1.40)

To provide the fundamental results of multidimensional stochastic dominance, and for simpli-

fication purposes, here onwards we limit our attention to the bidimensional case (d = 2).

From (1.39) and (1.40), the condition of first-order dominance (α = 1) comes up, namely:

G �M1 F ⇔ G(x1, x2) ≤ F (x1, x2) ∀(x1, x2) ∈ R2
+. (1.41)

That is, there is stochastic dominance of first order of G over F if G is never above F and it is

below for some values. Noticeably, if G �M1 F , then there is also dominance in both univariate

10As in the unidimensional case, we have assumed for concreteness that the variables of interest can take
any non-negative real value as this is the domain relevant for the measurement of poverty, but it is possible to
extended the domain to include any real number.
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marginal distributions of F and G, that is G1 �1 F1 and G2 �1 F2, since:

G1(x1) = lim
x2→+∞

G(x1, x2) ≤ lim
x2→+∞

F (x1, x2) = F1(x1) ∀x1, (1.42)

G2(x2) = lim
x1→+∞

G(x1, x2) ≤ lim
x1→+∞

F (x1, x2) = F2(x2) ∀x2. (1.43)

As in the unidimensional case, when no conclusions can be reached analysing first-order domi-

nance, it is necessary to resort to second-order stochastic dominance. In this case, taking α = 2

in (1.39) and (1.40), it turns out that

G �M2 F ⇔
∫ x1

s1=0

∫ x2

s2=0

G(s1, s2)ds1ds2 ≤
∫ x1

s1=0

∫ x2

s2=0

F (s1, s2)ds1ds2 ∀(x1, x2) ∈ R2
+. (1.44)

That is, G second-order stochastically dominates F if and only if the volume under G is not

greater than that under F . Conditions for higher dimensions (d > 2) and higher orders (α > 2)

can be worked out in a similar fashion.

1.3.4.2 Application to multidimensional poverty measurement

This subsection is devoted to the application of these stochastic dominance techniques to estab-

lish poverty orderings. Only the bidimensional case is addressed, as this is the case considered

by the vast majority of applications that can be found in the literature. Special attention will

be paid to the role that the type of relationship between dimensions plays in establishing such

orderings.

To begin with, it is important to highlight that bidimensional poverty analyses focus on the

lowest part of the joint distributions and hence the domain of interest is that including the

values of X1 and X2 up to the poverty lines for these variables. Let z = (z1, z2) be the vector
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of these poverty lines and let PF be an additive multidimensional poverty measure given by:

PF (z) =

∫ z1

x1=0

∫ z2

x2=0

p(x1, x2; z)dF (x1, x2), (1.45)

where p(x1, x2; z) is an individual poverty function that is differentiable up to the required

degree and takes the value 0 if the individual is not poor and a positive value when the individual

is considered poor.

Once the poverty measure in (1.45) is defined, poverty orderings between F and G are estab-

lished by computing the difference in the level of poverty of the two distributions as follows:

PG(z)− PF (z) =

∫ z1

x1=0

∫ z2

x2=0

p(x1, x2; z)dG(x1, x2)−
∫ z1

x1=0

∫ z2

x2=0

p(x1, x2; z)dF (x1, x2). (1.46)

Integrating by parts above, the following equation is obtained:

PG(z)− PF (z) = −
∫ z1

x1=0

p1(x1, z2; z)[G1(x1)− F1(x1)]dx1 −
∫ z2

x2=0

p2(z1, x2; z)[G2(x2)− F2(x2)]dx2

+

∫ z1

x1=0

∫ z2

x2=0

p12(x1, x2; z)[G(x1, x2)− F (x1, x2)]dx2dx1, (1.47)

where p1 and p2 denote the partial derivative of the individual poverty function p with respect

to x1 and with respect to x2, respectively, and p12 denotes the cross-partial derivative of the

individual poverty function.

Alternatively, it is possible to rewrite (1.47) in terms of survival functions as follows:

PG(z)− PF (z) =

∫ z1

x1=0

p1(x1, 0; z)[Ḡ1(x1)− F̄1(x1)]dx1 +

∫ z2

x2=0

p2(0, x2; z)[Ḡ2(x2)− F̄2(x2)]dx2

+

∫ z1

x1=0

∫ z2

x2=0

p12(x1, x2; z)[Ḡ(x1, x2)− F̄ (x1, x2)]dx2dx1, (1.48)

where F̄ is defined as F̄ (x1, x2) = Pr(X1 > x1, X2 > x2) and Ḡ is defined similarly.

Notice that the difference PG(z) − PF (z) in expressions (1.47) and (1.48) depends on three

57



Chapter 1. The measurement of poverty: a literature review

terms. The first two terms involve the univariate marginal distributions and thus they are

based on the marginal behaviour of the variables, as in a unidimensional approach to poverty

measurement. But there is also a third term, based on the joint distribution of the variables,

which is the cornerstone when it comes to measuring poverty from a bidimensional perspective.

Actually, the sign of cross-partial derivative p12(x1, x2; z) determines the effect of the type of

relationship between the dimensions on the level of poverty; see Bourguignon and Chakravarty

(2003). In fact, this has to do with the concepts of substitutability and complementarity in the

ALEP sense to be explained below; recall also the discussion in page 45.

The ALEP relationships were originally defined in terms of the properties of a utility function

u(x1, x2) which is differentiable to the required degree; see Kannai (1980). In particular, it is

said that two dimensions are ALEP substitutes if u12 ≤ 0, where u12 is the cross-derivative

of u(x1, x2). Intuitively, with this property the increase in utility that follows an increment in

one dimension, decreases with the value of the other. In our setting, this condition leads to

the following condition p12(x1, x2; z) ≥ 0; see Atkinson (2003). That is, the magnitude of the

decrease in poverty that follows an increment in one dimension decreases with the level of the

other dimension. For example, an increase in the level of education generates more utility for

a poor person (in terms of income) than for an individual whose income is higher.

On the other hand, two dimensions x1 and x2 are ALEP complements if u12 ≥ 0. Intuitively,

with ALEP complementarity the increase in utility that follows an increment in one dimension

increases with the value of the other. Notice that, in our setting, a poverty function satisfying

ALEP complementarity requires p12(x1, x2; z) ≤ 0; see Atkinson (2003). That is, the magnitude

of the decrease in poverty that follows an increment in one dimension increases with the level of

the other dimension. For example, education can be thought to complement nutritional status

because well-nourished children take more advantage of the education opportunities than badly

nourished children.

Finally, it is also possible to consider that the dimensions are ALEP neutral. In this case,
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we have u12 = 0, which means that the increase in utility that follows an increment in one

dimension does not depend on the level of the other dimension. In our setting, a poverty

function satisfying neutrality requires p12(x1, x2; z) = 0. This would mean that the decrease in

poverty that is consequence of an increment in one dimension does not depend on the level of

the other dimension. Noticeably, in this case, the difference PG(z)−PF (z) in expressions (1.47)

and (1.48) would only depend on the behaviour of the marginal distributions.

Next, we will review the relationship between stochastic dominance conditions and poverty

orderings in the bidimensional case focusing on first-order dominance and second-order domi-

nance, the cases most frequently used in the literature.

FIRST-ORDER DOMINANCE

The relationship between first-order stochastic dominance conditions and multidimensional

poverty orderings can be established from equations (1.47) and (1.48). As we will see, depending

on which one we use, different conclusions will come out, which are related to whether the

dimensions are considered as complementary, substitutives or neutral.

First, considering both equations (1.41) and (1.47), the following condition holds:

G �M1 F ⇔ PG(z) ≤ PF (z) ∀p | p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0, p12(x1, x2; z) ≥ 0 ∀z ∈ R2
+.

(1.49)

Condition (1.49) states that if G �M1 F , then the level of poverty in G is not higher than that in

F for all bidimensional poverty measures that are decreasing in both arguments (p1(x1, x2; z) ≤

0, p2(x1, x2; z) ≤ 0) and assume ALEP substitutability between dimensions (p12(x1, x2; z) ≥

0) for all vectors of poverty lines z.11 The latter property is linked to the axiom of weak

rearrangement (AM11.1); see section 1.3.3.

Noticeably, taking into account that F (x1, x2) = PrF (X1 ≤ x1, X2 ≤ x2), condition (1.49) has

11In practice, and similarly to the unidimensional case, when analysing multidimensional poverty, not all
values of the poverty line vector z, are relevant and restricted stochastic dominance analysis can be applied,
determining whether there is dominance of one distribution over another for a certain range of poverty lines.

59



Chapter 1. The measurement of poverty: a literature review

an interpretation in terms of the probability of the intersection and it is thus linked to the

intersection approach in multidimensional poverty measurement. Recall that in the bivariate

case, this approach considers an individual as poor if he is simultaneously deprived in both

dimensions. Therefore, G �M1 F states that, regardless of the poverty lines, the probability of

being poor according to the intersection approach is lower in distribution G than in distribution

F . Hence, condition (1.49) states that when this happens, then bidimensional poverty in G is

lower than in F according to all additive bidimensional poverty measures that are decreasing

and whose arguments are ALEP substitutes. For example, if X1 is income and X2 is the level of

education, when the probability of being simultaneously poor in income and education is lower

in G than in F , then multidimensional poverty in G is lower than in F . This poverty ordering

will be respected by all additive multidimensional poverty measures that are decreasing and

whose arguments are ALEP substitutes. In particular, this class of indices includes the PCMR

measure of Chakravarty et al. (1998), the PT index proposed by Tsui (2002), the AF family of

multidimensional poverty measures by Alkire and Foster (2011a) and the measures PBC1 and

P
(α>β)
BC2 in Bourguignon and Chakravarty (2003); see also the discussion in Chakravarty (2018,

ch.3).

On the other hand, from (1.48) a poverty ordering based on the survival functions can be

established, namely:

Ḡ(x1, x2) ≥ F̄ (x1, x2) ∀(x1, x2) ∈ R2
+ ⇔

⇔ PG(z) ≤ PF (z) ∀p | p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0, p12(x1, x2; z) ≤ 0 ∀z ∈ R2
+

(1.50)

Condition (1.50) states that, if the joint survival function Ḡ lies entirely, or partly, above F̄ for

all (x1, x2), then PG ≤ PF for all poverty lines according to all additive multidimensional poverty

measures that are decreasing in both arguments (p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0) and

assume ALEP complementarity between dimensions (p12(x1, x2; z) ≤ 0). The latter property is
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linked to the axiom of converse weak rearrangement (AM11.3); see Section 1.3.3.

Moreover, since the survival function can be expressed in terms of the probability of the union

as F̄ (x1, x2) = 1 − PrF ({X1 ≤ x1} ∪ {X2 ≤ x2}), condition (1.50) is related to the union

approach in multidimensional poverty measurement. According to this approach, an individual

is considered as poor in a bidimensional setting if he is deprived in at least one of the two

dimensions. In particular, since

Ḡ(x1, x2) ≥ F̄ (x1, x2)⇔ PrG({X1 ≤ x1} ∪ {X2 ≤ x2}) ≤ PrF ({X1 ≤ x1} ∪ {X2 ≤ x2}),

condition (1.50) states that, regardless of the poverty line, if the probability of being poor

according to the union approach is lower in G than in F , then PG ≤ PF according to all

additive bidimensional poverty measures that are decreasing in both arguments and assume

ALEP complementarity between dimensions, for all vectors of poverty lines z. For instance, if

variable X1 is the level of education and X2 is the nutritional status, when the probability of

being poor in education or being poor in nutrition is lower in G than in F , multidimensional

poverty in G is lower than in F .

Additionally, Atkinson and Bourguignon (1982) show that:

G(x1, x2) ≤ F (x1, x2) ∀(x1, x2) ∈ R2
+ and Ḡ(x1, x2) ≥ F̄ (x1, x2) ∀(x1, x2) ∈ R2

+ ⇔

⇔ PG(z) ≤ PF (z) ∀p | p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0, ∀z ∈ R2
+ (1.51)

That is, according to condition (1.51), poverty in G is not higher than that in F for all bidi-

mensional poverty measures that are decreasing in both arguments, for all vectors of poverty

lines z, if and only if there exists bivariate stochastic dominance of G over F both in the joint

CDF and in the joint survival function.
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Finally, from equation (1.47) we also have the following result:

G1(x1) ≤ F1(x1) ∀x1 ∈ R+ and G2(x2) ≤ F2(x2) ∀x2 ∈ R+ ⇔

⇔ PG(z) ≤ PF (z) ∀p | p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0, p12(x1, x2; z) = 0 ∀z ∈ R2
+

This means that, if both marginal distribution functions of G lie below those of F , then poverty

is lower in distribution G than in distribution F for all additive multidimensional poverty mea-

sures that are decreasing in both arguments (p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0) and assume

ALEP neutrality between dimensions (p12(x1, x2; z) = 0). Hence, in this case the poverty order-

ing only depends on the marginal distributions. In other words, when the probability of being

poor in dimension X1 and the probability of being poor in dimension X2 are both lower in G

than in F for all possible poverty lines, then poverty in distribution G is lower than poverty in

distribution F . Moreover, this ordering is respected by all additive multidimensional poverty

measures that are decreasing in their arguments and assume ALEP neutrality.

At this point, an important difference between unidimensional and multidimensional stochastic

dominance must be introduced. In the unidimensional case, there was an equivalence between

first-order dominance definition in terms of cumulative distribution functions and in terms of

survival functions, since G(x) ≤ F (x) ⇔ Ḡ(x) ≥ F̄ (x); see equation (1.16). However, this

equivalence is no longer true in the multidimensional case. In particular, since F̄ (x1, x2) =

1 + F (x1, x2)− F1(x1)− F2(x2) and the same relationship holds for G, it turns out that:

G(x1, x2) ≤ F (x1, x2)⇔ Ḡ(x1, x2) +G1(x1) +G2(x2) ≤ F̄ (x1, x2) + F1(x1) + F2(x2). (1.52)

Therefore, if we deal with two bivariate distributions F and G , the conditions G(x1, x2) ≤

F (x1, x2) and Ḡ(x1, x2) ≥ F̄ (x1, x2) can hardly hold simultaneously, as they do hold in the

univariate case. In particular, if we have two distinct joint distributions (G(x1, x2) 6= F (x1, x2)

for some (x1,x2)) with identical marginals (F1 = G1 and F2 = G2), conditions (1.49) and (1.50)
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cannot be satisfied simultaneously, and therefore condition (1.51) cannot hold.

As it happened in the unidimensional case, first-order dominance results in the bidimensional

case impose strong requirements on the distributions, making them difficult to check in empirical

applications and thus not leading, in some cases, to robust poverty orderings; see Atkinson and

Bourguignon (1982). Hence, it is necessary to resort to second-order dominance, imposing

further conditions on the function p(x1, x2; z).

SECOND-ORDER DOMINANCE

Atkinson and Bourguignon (1982) proved the relationship between second-order dominance

conditions and bidimensional welfare orderings. Based on this result, it is possible to work out

the relationship between second-order conditions and bidimensional poverty orderings. This

requires the assumption of further conditions about the poverty measure, which will limit the

number of poverty measures that will respect the orderings.

At this point, some further notation should be introduced. Let pij(x1, x2; z) = ∂2p(x1,x2;z)
∂xi∂xj

with i = 1, 2 and j = 1, 2 and pijk(x1, x2; z) = ∂3p(x1,x2;z)
∂xi∂xj∂xk

with i = 1, 2; j = 1, 2 and k =

1, 2, and so on. Then, for poverty functions satisfying: p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0,

p12(x1, x2; z) ≥ 0, p11(x1, x2; z) ≥ 0, p22(x1, x2; z) ≥ 0, p112(x1, x2; z) ≤ 0, p122(x1, x2; z) ≤ 0,

and p1122(x1, x2; z) ≥ 0, the condition PG(z) ≤ PF (z) holds if and only if:

∫ z1

x1=0

G1(x1)dx1 ≤
∫ z1

x1=0

F1(x1)dx1 ∀z1 ∈ R+, (1.53a)

∫ z2

x2=0

G2(x2)dx2 ≤
∫ z2

x2=0

F2(x2)dx2 ∀z2 ∈ R+, (1.53b)

∫ z1

x1=0

∫ z2

x2=0

G(x1, x2)dx2dx1 ≤
∫ z1

x1=0

∫ z2

x2=0

F (x1, x2)dx2dx1 ∀z ∈ R2
+. (1.53c)

According to the previous conditions, PG ≤ PF if and only if distribution G second-order

stochastically dominates distribution F both in the joint CDF and in the marginal distributions.
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On the other hand, for poverty functions satisfying p1(x1, x2; z) ≤ 0, p2(x1, x2; z) ≤ 0, p12(x1, x2; z) ≤

0, p11(x1, x2; z) ≥ 0, p22(x1, x2; z) ≥ 0, p112(x1, x2; z) ≥ 0, p122(x1, x2; z) ≥ 0 and p1122(x1, x2; z) ≤

0, the condition PG(z) ≤ PF (z) holds if and only if conditions (1.53a) and (1.53b) are satisfied

and also the following condition on the joint survival function holds:

∫ z1

x1=0

∫ z2

x2=0

Ḡ(x1, x2)dx2dx1 ≥
∫ z1

x1=0

∫ z2

x2=0

F̄ (x1, x2)dx2dx1 ∀z ∈ R2
+. (1.54)

Therefore, PG ≤ PF if and only if distribution G second-order stochastically dominates distri-

bution F in the marginals and in the joint survival functions.

It could also be possible to establish the relationship between higher-order dominance (α >

2) and poverty orderings by imposing more demanding conditions on the individual poverty

function. However, to check that these conditions are fulfilled becomes a difficult task and

so the empirical applications for higher-order dominance are scarce; see the contribution of

Crawford (2005).

We have reviewed the relationship between bivariate stochastic dominance conditions and bidi-

mensional poverty orderings. Although it is possible to extend these results to more than two

dimensions, the literature on this issue is very scarce due to the problems that stochastic dom-

inance involves in a d-dimensional setting with d > 2. First, stochastic dominance methods

suffer from the curse of dimensionality, that is, as the number of dimensions increases so does

the difficulty to compare distributions as well as the possibility to obtain conclusive results.

Furthermore, the relationship between stochastic dominance and poverty orderings in the d-

dimensional case with d > 2 relies on the sign of higher-order partial derivatives of the individual

poverty function, and these signs are difficult to interpret, making the analysis cumbersome.

For the conditions of stochastic dominance when we have more than two dimensions, we refer

the interested reader to Crawford (2005) and, more recently, Garćıa-Gómez et al. (2019).

To conclude this section, we want to point out, as we did in the unidimensional case, that we
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have presented the theoretical results regarding the relationship between bivariate stochastic

dominance conditions and robust poverty orderings. However, in empirical applications, it

is necessary to work with sample data and thus statistical inference procedures are required.

In the multivariate framework, the literature on statistical inference for stochastic dominance

analyses is scarce, but there have been some proposals based on extending some of the tests

proposed for the univariate case; see Garćıa-Gómez et al. (2019) and the references therein.

As we have argued in this chapter, the key aspect of the multidimensional poverty analysis

is the multivariate association between the dimensions, whose study requires focusing on the

joint distribution of the dimensional achievements. However, the multidimensional poverty in-

dices, which constitute the traditional approach to measure poverty from a multidimensional

perspective, are not sensitive enough to this crucial aspect. One way to account for the associa-

tion between poverty dimensions is the use of the multivariate stochastic dominance techniques

reviewed in this section. However, as we have pointed out, this methodology is difficult to

implement empirically, especially when the number of dimensions considered is high. More-

over, although this approach allows to obtain multidimensional poverty orderings taking into

account the interdependence between the dimensions, as it is based on the joint distribution, it

does not allow to quantify the degree of multivariate association. In order to do so, the copula

methodology has been proposed to complement the analysis based on multidimensional poverty

indices, and this is the approach that we use in this thesis. The next chapter will be devoted

to the copula approach and its application to study and quantify multivariate dependence.

65





Chapter 2

Copula-based measures of multivariate

dependence

2.1 Introduction

As we argued in the previous chapter, the dominant approach to study poverty in a multivariate

framework involves the application of multidimensional poverty indices, many of which were

reviewed in Section 1.3.3.2. Actually, some international institutions have already adopted this

approach. For example, the European Union (EU) calculates a multidimensional poverty index

that is the main reference to monitor poverty in Europe, namely the AROPE (At Risk Of

Poverty or social Exclusion) rate. Also, the United Nations Development Program (UNDP)

adopted, in 2010, the Multidimensional Poverty Index (MPI), which is based on the Alkire and

Foster (2011a) methodology reviewed in the previous chapter.

However, many of the multidimensional poverty indices proposed so far, like those mentioned

above, are not sufficiently sensitive to the possible interrelations between the dimensions of

poverty; see Duclos and Tiberti (2016). Hence, these indices could miss an important part of

the picture, since, as several authors argue, a higher degree of dependence between poverty
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dimensions, that is, a stronger alignment of the positions of the individuals in the different

dimensions, can make overall poverty worse. Consider, for instance, a society in which there

is one individual who is top-ranked in all dimensions, another individual who is second-ranked

in all dimensions, and so on. As Decancq (2014) points out, this society is less equitable than

another society with the same marginal distributions for each dimension but with a different

joint distribution in such a way that, in this case, some individuals are relatively well-ranked

on some dimensions and other individuals on others. Therefore, any sound multidimensional

poverty analysis must take into consideration this crucial aspect; see Atkinson and Bourguignon

(1982), Bourguignon and Chakravarty (2003), Duclos et al. (2006), Seth (2013), Ferreira and

Lugo (2013) and Chakravarty (2018, ch.1). Nonetheless, and despite its relevance, the problem

of measuring the dependence between the dimensions of poverty has been scarcely addressed in

the literature. A possible solution to deal with this issue is the use of the multivariate stochastic

dominance techniques reviewed in Section 1.3.4, since they are based on the joint distribution,

which, as Chakravarty (2018, ch.1) points out, is the key factor of multidimensional evaluation.

However, as we have seen in the previous chapter, this approach is difficult to implement when

many dimensions are involved and, in addition, it does not allow to quantify the degree of

multivariate dependence.

The main goal of this thesis is precisely to quantify the multivariate dependence between the

dimensions of poverty. In order to do so, several issues must be taken into consideration. First,

the measurement of multivariate dependence, that is, the dependence between more than two

variables, is challenging and requires special care, since some bivariate dependence properties

are not preserved in higher dimensions; see Durante et al. (2014). Furthermore, in general,

information about the pairwise dependence is not sufficient to infer global dependence. Second,

some of the poverty and welfare dimensions, such as income, for instance, usually do not follow

Gaussian distributions; see Kleiber and Kotz (2003) and the references therein. And third,

there can be non-linear relationships between the different dimensions of poverty or welfare.
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Hence, we face the problem of measuring dependence in a multivariate, possibly non-Gaussian

and possibly non-linear context.

In this setting, it is required a methodology that goes beyond the well-known Pearson’s lin-

ear correlation coefficient, since this measure is only appropriate for measuring bivariate linear

relationships in the context of elliptical distributions; see Embrechts et al. (2001). The cop-

ula methodology constitutes a suitable alternative. This approach focuses on the positions

of the individuals across dimensions, rather than on the specific values that those dimensions

attain for such individuals, and has several advantages when it comes to measuring the mul-

tivariate association between poverty dimensions. First, it enables the decomposition of the

joint distribution of the dimensions into the marginals and the dependence structure. Second,

the copula methodology allows to study well-known scale-free measures of bivariate association

that capture other types of dependence beyond linear correlation. And third, this approach also

permits the construction of multivariate generalisations of these bivariate measures. For these

reasons, in this study we propose the use of copula-based methods to measure the multivariate

dependence between dimensions of poverty.

This chapter is devoted to the copula approach and its application to study multivariate de-

pendence. We begin reviewing, in Section 2.2, the concept of copula and its main properties.

After that, the attention will be focused on the usefulness of this methodology to measure

dependence in multivariate contexts. In particular, we will pay attention to those concepts

of multivariate dependence that are especially valuable to analyse multidimensional poverty,

where it is essential to measure to what extent the positions of the individuals in the different

dimensions of poverty are aligned, that is, to measure how likely it is that an individual is

simultaneously low-ranked in all poverty dimensions. Thus, in Section 2.3, we will introduce

two copula-based concepts of multivariate dependence, namely multivariate concordance and

orthant dependence, which are particularly useful in this context. Then, in Section 2.4, we

will discuss several copula-based measures of multivariate association which stem from those
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dependence concepts. In particular, we will review several multivariate extensions of the well-

known Spearman’s rank correlation coefficient, which measures “departure” of our data from

independence. Finally, Section 2.5 will be devoted to another relevant concept of dependence,

namely tail dependence, and the different proposals to measure it both in the bivariate and

in the multivariate case. The concept of lower tail dependence, which relates to the degree

of dependence in the joint lower tail of a multivariate distribution, is highly valuable in our

multidimensional poverty context, as it captures the probability that an individual who is ex-

tremely poor in one dimension is also extremely poor in the rest of the dimensions. Despite

its theoretical appeal when it comes to analysing poverty from a multidimensional point of

view, the concept of multivariate tail dependence has never been applied, to the best of our

knowledge, in this field. Indeed, this thesis provides a pioneering contribution by proposing, for

the first time, the multivariate tail concentration function (TCF), a graphical tool that allows

to analyse the degree of multivariate dependence between the dimensions of poverty in the tails

of the joint distribution and which allows, at the same time, to represent such dependence in a

unit square, regardless of the poverty dimensions considered.

2.2 A review of copulas: concept and main properties

In this section, the fundamentals of copulas are reviewed. However, the objective is not to

provide an exhaustive discussion of copula theory, which can be found in other works, such as

those of Nelsen (2006), Joe (2014) and Durante and Sempi (2015). The scope of this section

is just to introduce the essentials on which the concepts that will be handled to measure the

multivariate dependence between dimensions of poverty are based.

We begin introducing the definition of a copula. A d-dimensional copula is a function from

Id = [0, 1]d to I = [0, 1] which fulfils certain properties in such a way that it is a multivariate

distribution function with standard uniform margins. More precisely, a d-dimensional copula
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C is a multivariate distribution function C : Id → I defined for every u = (u1, . . . , ud) ∈ Id as

C(u) = p(U ≤ u) = p(U1 ≤ u1, . . . , Ud ≤ ud),

where Ui is U(0, 1), for i = 1, ..., d. Equivalent definitions can be found in Nelsen (2006, p.45)

and Durante and Sempi (2010, p. 9-10).

From an statistical point of view, the most important result of the theory of copulas is given

by Sklar’s theorem (Sklar, 1959), which establishes the relationship between copulas and

distribution functions of random variables. This theorem states that, given a d−dimensional

random vector X = (X1, ..., Xd) with joint distribution function F (x) = F (x1, ..., xd) = p(X1 ≤

x1, ..., Xd ≤ xd) and univariate marginal distribution functions Fi(xi) = p(Xi ≤ xi), for i =

1, ..., d, then there exists a copula C : Id → I such that, for all (x1, . . . , xd) ∈ Rd,

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)). (2.1)

Conversely, if C is a d−copula and F1, ..., Fd are univariate distribution functions, the function

F defined in (2.1) is a joint distribution function with margins F1, ..., Fd. If F1, ..., Fd are all

continuous, the copula C in (2.1) is unique. Otherwise, C is uniquely determined on Range F1×

... × Range Fd. Unless otherwise stated, throughout the rest of this chapter we will assume

that the marginal distributions F1, ..., Fd are all continuous. A detailed discussion on the pitfalls

related to non-continuity of the marginal distributions can be found in Genest and Nešlehová

(2007) and the references therein.

According to (2.1), copulas are functions defined in the unit d-cube, Id, that join or “couple”

multivariate distribution functions to their one-dimensional marginal distribution functions. In

fact, Sklar’s theorem decomposes the joint distribution into the marginals and the copula, the

latter only representing the association between the random variables X1, . . . , Xd. Actually, if

there is only information about the marginal distributions it will only be possible to retrieve
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the joint distribution function in the case of independence between the variables (in which case

the joint distribution is the product of the marginal distributions). In any other case, this is not

possible, as it is necessary to know the structure of dependence between the variables, which

is precisely given by the copula C.

One of the noteworthy features of the copula-based methodology is that it is based on the trans-

formation of the original random vector X = (X1, . . . , Xd) into the vector of U = (U1, . . . , Ud)

via the so-called probability integral transformation, that is, U1 = F1(X1), . . . , Ud = Fd(Xd). In

the multidimensional poverty framework, this transformation makes it possible to focus on the

positions of individuals across dimensions rather than on the values that the variables take for

such individuals. In particular, if the random vector X represents the relevant d dimensions

of poverty for a population, the transformed variables Ui = Fi(Xi), with i = 1, . . . , d, attach

to each individual in the population its relative position in all dimensions. The position is a

real number between 0 and 1 and the vector of positions u = (u1, . . . , ud) for a given individual

gives his/her positions in all poverty dimensions. For instance, an individual with position

vector (1, . . . , 1) will be top-ranked in all dimensions, i.e., he/she will be the “richest” one in

terms of income, health, education, etc. On the contrary an individual with position vector

(0, . . . , 0) will be bottom-ranked in all dimensions, i.e., he/she will be the “poorest” one in

terms of income, health, education, etc. Moreover, from probability theory, the transformed

variables U1, . . . , Ud are standard uniform random variables U(0, 1) and the joint distribution

of the position vector U = (U1, ..., Ud) is the copula C defined above. Therefore, for a given

real vector u ∈ Id, the value C(u) represents the proportion of individuals in the population

with positions outranked by u. For instance, C(0.25, ..., 0.25) will represent the probability

that a randomly selected individual is simultaneously in the 1st quartile (“low ranked”) in all

dimensions, i.e., in our setting, it will be the probability that he/she is simultaneously “poor”

in all dimensions. As we will see along this chapter, the copula functions, as the distribution

functions of the position vector of individuals, will play a central role in measuring dependence
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between poverty dimensions.

Some basic examples of copulas are the following:

• The independent copula, defined as Π(u) = u1×· · ·×ud, which accounts for the case of

independence between the variables X1, . . . , Xd. In this case, the position of an individual

in one dimension does not depend on his/her position in any other dimension.

• The commonotonic copula, M(u) = min(u1, . . . , ud), which represents perfect positive

dependence, i.e, the case where each of the random variables X1, ..., Xd is almost surely

a strictly increasing function of any of the others (the outcomes in all dimensions are

ordered in the same way). That is, a distribution function with a commonotonic copula

describes a society in which one individual is top-ranked in all dimensions, another is

second-ranked in all dimensions, and so forth.

Any copula C satisfies the Fréchet-Hoeffding bounds inequality, attributed to Hoeffding

(1940) and Fréchet (1951), and given by

W (u) ≤ C(u) ≤M(u), (2.2)

for every u =(u1, . . . , ud) ∈ Id, where W (u) is a function defined as W (u) = max(u1 + · · · +

ud − d+ 1, 0) and M(u) is the commonotonic copula defined above. The function W is only a

copula when d = 2. In that case, it represents perfect negative dependence, that is, the case in

which each of X1 and X2 is almost surely a decreasing function of the other, and it is named

countermonotonic copula.1

In the bivariate case, it is possible to represent the graph of each bivariate copula as a continuous

surface within the unit cube I3. Given the Fréchet-Hoeffding bounds inequality in (2.2), the

graph of any copula C lies between the graphs of W and M . Hence, the independent copula Π,

1Notice that, for d > 2, perfect negative dependence is not a clear concept.
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as any other copula, fulfils inequality (2.2) and its graph will lie between those of W and M ;

see, for an illustration, Figure 2.1, which displays the graphs of the basic copulas W , Π and M

in this bivariate case.

Figure 2.1: Graphs of basic copulas W (left), Π (center) and M (right) in the bivariate case.

In this setting, one intuitive possibility for measuring dependence between the variables (X1, . . . , Xd)

would be to quantify the volume between their copula, say C, and the independent copula Π,

as compared to that between M and Π, so that the greater the volume, the higher the level of

dependence. In fact, the measures of multivariate dependence that will be discussed in Section

2.4 do so, by measuring “how far” the distribution of the data being analysed (represented by

the copula C) is from the situation of independence (represented by the independent copula Π)

as compared to the “distance” between the commonotonic copula M , which represents perfect

positive dependence, and the independence copula Π.

Noticeably, the volumes between the independent copula Π and M and between Π and W ,

respectively, for d ≥ 2, are given by the following expressions:

ad =

∫
Id

[M(u)− Π(u)]du =
1

(d+ 1)
− 1

2d
, (2.3)

bd =

∫
Id

[Π(u)−W (u)]du =
1

2d
− 1

(d+ 1)!
. (2.4)
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In the bidimensional case (d = 2), a2 = b2 = 1/12, that is, Π is equidistant from both M and

W . However, when more than two dimensions are involved (d > 2) this symmetry does not

hold and the independent copula Π is closer to W than to M . In fact, it can be shown that

limd→∞
bd
ad

= 0; see Wolff (1980).

Another important function, related to the copula C, is the survival function C̄, which, in

general, is not a copula. If U = (U1, ..., Ud) is a random vector of variables U(0, 1) whose joint

distribution function is the copula C, the survival function of C, C̄ : Id → I, is defined as:

C̄(u) = p(U > u) = p(U1 > u1, . . . , Ud > ud). (2.5)

When U1, ..., Ud are independent random variables, then their survival function is Π̄(u) =

(1−u1)×· · ·× (1−ud). Moreover, when there is perfect positive dependence, then the survival

function is M̄(u) = min(1 − u1, . . . , 1 − ud). In our setting, the survival function will be very

important, as it accounts for the probability of being simultaneously “rich” in all dimensions.

For instance, C̄(0.75, . . . , 0.75) will represent the probability that a randomly selected individual

is simultaneously in the 4th quartile (“high ranked”) in all dimensions.

Over the rest of this chapter, we will focus our attention on the role played by copulas in the

measurement of multivariate association and their adequacy to capture the multivariate depen-

dence between the dimensions of poverty. Then, in Chapter 3, we will carry out an application

of these concepts to measure multivariate dependence between dimensions of poverty in Europe

over the period 2008-2018.

2.3 Concepts of multivariate dependence

As we explained in Chapter 1, there is a wide consensus that poverty is a multidimensional

phenomenon, involving not only the level of income, but also the attainments of individuals in
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other aspects such as education, health or labour status. In this multidimensional framework,

measuring the dependence between the different dimensions is an important issue, since a high

degree of dependence could exacerbate poverty. However, as Durante et al. (2014) point out, the

study of dependence in a multivariate context is challenging, since some bivariate dependence

properties are not preserved in the higher-dimensional case. Therefore, possible generalisations

of the most widely used bivariate dependence concepts are not straightforward; see Malevergne

and Sornette (2006, ch.4). In this section, we briefly review some multivariate dependence con-

cepts that constitute the basis of the copula-based measures of multivariate association that

will be discussed later. In particular, we review the concepts of multivariate concordance and

orthant dependence, which, as we will see, have an appealing interpretation when it comes

to measuring the multivariate dependence between dimensions of poverty. Another relevant

concept of dependence, namely tail dependence, will be discussed in Section 2.5. This concept

is particularly relevant in our setting, as it focuses on the lower and upper tails of the joint dis-

tribution, which in a multidimensional poverty framework means focusing on both the poorest

and richest individuals. For an exhaustive treatment of these and other copula-based concepts

of dependence, see Joe (2014, ch.2).

2.3.1 Multivariate concordance

Roughly speaking, two random variables are concordant if large (small) values of one tend to

be associated with large (small) values of the other. On the other hand, two random variables

are discordant if large (small) values of one tend to be associated with small (large) values

of the other; see Kruskal (1958). More precisely, two observations (x1, x2) and (x′1, x
′
2) from

a bidimensional random vector are concordant if (x1 < x′1 and x2 < x′2) or if (x1 > x′1 and

x2 > x′2), that is, if (x1 − x′1)(x2 − x′2) > 0. On the other hand, they are discordant if

(x1 < x′1 and x2 > x′2) or (x1 > x′1 and x2 < x′2), that is, if (x1 − x′1)(x2 − x′2) < 0. In a

multidimensional poverty setting, measuring concordance is important because if, for instance,
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income and education are concordant variables, this will mean that an individual with a low

level of income is likely to also be an individual with a low level of education, and this could

make overall poverty worse.

Based on these concepts, Nelsen (1998) defines a concordance function Q as the difference

between the probability of concordance and discordance of two vectors (X1, X2) and (X ′1, X
′
2)

of continuous random variables with (possibly) different joint distributions F and F ′ and copulas

C and C ′ but with common marginal distributions F1 (of X1 and X ′1) and F2 (of X2 and X ′2).

In particular, this function Q is defined as:

Q = Pr[(X1 −X ′1)(X2 −X ′2) > 0]− Pr[(X1 −X ′1)(X2 −X ′2) < 0]. (2.6)

Moreover, Nelsen (1998) shows that Q can be expressed in terms of the bivariate copulas C

and C ′ as:

Q = Q(C,C ′) = 4

∫
I2
C ′(u1, u2)dC(u1, u2)− 1. (2.7)

This function Q is symmetric in its arguments, that is, Q(C,C ′) = Q(C ′, C), and it can be

shown that it takes the following values for pairs of the copulas W , Π and M (Nelsen, 2006):

Q(M,M) = 1; Q(M,Π) = 1/3; Q(M,W ) = 0;

Q(W,Π) = −1/3; Q(W,W ) = −1; Q(Π,Π) = 0.

(2.8)

When moving to the multivariate case, the concepts discussed above do not generalise so

straightforwardly. In particular, the concept of concordance generalises as follows: two ob-

servations x = (x1, . . . , xd) and x′ = (x′1, . . . , x
′
d) from a d-dimensional random vector are

concordant if x < x′ or x > x′, where this notation means component-wise inequality, that is,

xi < x′i or xi > x′i for all i = 1, . . . , d, respectively. However, the concept of discordance does

not generalise to the multivariate case. Hence, in order to obtain a generalisation of the concor-

dance function, Nelsen (2002) considers the probability of concordance alone, rather than the
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difference of the probabilities of concordance and discordance. In particular, given two inde-

pendent d-dimensional continuous random vectors X and X′ with common univariate margins

and copulas C and C ′, respectively, he introduces the probability of multivariate concordance

Q′d as:

Q′d = Pr(X > X′) + Pr(X < X′). (2.9)

Moreover, Nelsen (2002) shows that this probability can be written in terms of copulas as

follows:

Q′d = Q′d(C,C
′) =

∫
Id

(
C(u) + C̄(u)

)
dC ′(u), (2.10)

where C̄ is the survival function associated with the copula C defined in (2.5). This function

Q′d is symmmetric in its arguments, that is, Q′d(C,C
′) = Q′d(C

′, C), and is easily evaluated for

pairs of the d-copulas M and Π. In fact, it can be shown that

Q′d(M,M) = 1; Q′d(M,Π) =
2

d+ 1
; Q′d(Π,Π) =

1

2d−1
. (2.11)

As we will see in the next section, multivariate concordance is related to another concept of

dependence, namely orthant dependence.

2.3.2 Orthant dependence

Another important concept of dependence for multivariate distributions, which will be essen-

tial for defining the measures of multivariate association presented in Section 2.4, is orthant

dependence, which is a multivariate generalisation of quadrant dependence.

Following Nelsen (1996), two random variables X1 and X2 with joint distribution function F ,

marginals F1 and F2, copula C and survival function C̄, are positive quadrant dependent if the

probability that they are simultaneously small is at least as great as it would be in the case

of independence, that is, if F (x1, x2) ≥ F1(x1)F2(x2) for each (x1, x2) ∈ R2, or, in terms of
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copulas, if

C(u1, u2) ≥ Π(u1, u2) (2.12)

for each (u1, u2) ∈ I2. Moreover, in the bivariate case, it turns out that

C̄(u1, u2)− Π̄(u1, u2) = C(u1, u2)− Π(u1, u2). (2.13)

Hence, condition (2.12) above is equivalent to

C̄(u1, u2) ≥ Π̄(u1, u2). (2.14)

Thus, two random variables X1 and X2 are said to be positive quadrant dependent if either

(2.12) or (2.14) holds. That is, two variables are positive quadrant dependent if the probability

that they are simultaneously small (or, equivalently, large) is at least as great as it would be

in the case of independence. However, this convenient equivalence is limited to the bivariate

setting and does not hold in the general multivariate case (d > 2), since the equality in (2.13)

does no longer hold in higher dimensions. The corresponding negative concept, that is, negative

quadrant dependence, is defined by reversing the sense of the inequalities in (2.12) and (2.14).

The concept of orthant dependence is a generalization of quadrant dependece (see Nelsen, 2006)

that captures how “far” from independence the joint distribution of our data is from a downward

and an upward perspective, that is, when looking from both the lower and upper parts of the

joint distribution. Hence, in a multidimensional poverty setting, where the downward (upward)

perspective has to do with individuals that are simultaneously low-ranked (high-ranked) in

all dimensions, orthant dependence becomes a very appealing concept. To formally define

this concept, let X = (X1, ..., Xd) be a d-dimensional continuous random variable with joint

distribution function F , marginals F1, ..., Fd, copula C and survival function C̄. Then, it is said

that (Nelsen, 1996):
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(1) X is positively lower orthant dependent (PLOD) if C(u) ≥ Π(u), for each u ∈ Id, that

is, if the probability that the variables X1, ..., Xd are simultaneously small is at least as

great as it would be in the case of independence;

(2) X is positively upper orthant dependent (PUOD) if C̄(u) ≥ Π̄(u), for each u ∈ Id, that

is, if the probability that the variables X1, ..., Xd are simultaneously large is at least as

great as it would be in the case of independence;

(3) X is positively orthant dependent (POD) if both previous inequalities hold.

The corresponding negative concepts (NLOD, NUOD and NOD) are defined by reversing the

sense of the inequalities above.

In our multidimensional poverty context, the existence of positive lower orthant dependence

(PLOD) would mean that the probability that the individuals are simultaneously low-ranked

(“poor”) in all dimensions of poverty is at least as great as it would be if the dimensions

were independent. In turn, the existence of positive upper orthant dependence (PUOD) would

mean that the probability that the individuals are simultaneously high-ranked (“rich”) in all

dimensions of poverty is at least as great as it would be if the dimensions were independent.

Notice that, in the bivariate case, and given (2.13), conditions (1), (2) and (3) above are

equivalent and reduce to quadrant dependence defined above, a reduction that does not hold in

more than two dimensions. This is an illustration of how a bivariate concept does not uniquely

generalise to a multivariate setting and the care that should be taken when moving from the

bivariate to the multivariate case.

Now, the question arises on how to move from these theoretical concepts to the construction

of measures of orthant dependence that can be useful in practical applications. Notice that,

geometrically, PLOD means that the graph of C(u) lies above the graph of the independent

copula Π(u). Hence, following Nelsen (1996), the quantity [C(u) − Π(u)] measures “local”

positive (or negative) lower orthant dependence. Thus, averaging this difference over all position
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vectors u, a measure of “average” lower orthant dependence could be constructed. Similarly,

the quantity [C̄(u) − Π̄(u)] can be thought of as a measure of “local” positive (or negative)

upper orthant dependence and a measure of “average” upper orthant dependence could be

constructed by averaging this difference over all position vectors u. These measures of average

orthant dependence will be introduced in the next section.

2.4 Multivariate extensions of Spearman’s rho

As we said in the Introduction to this chapter, in order to address the measurement of the

dependence between dimensions of poverty it is necessary to go beyond Pearson’s linear corre-

lation coefficient, since we face the problem of measuring dependence in a multivariate, possibly

non-Gaussian and possibly non-linear context. In this section, we will discuss several copula-

based multivariate generalisations of Spearman’s rank correlation coefficient, which is one of the

best-known alternatives to Pearson’s linear correlation coefficient. As we will see, these general-

isations are closely linked to the concepts of orthant dependence and multivariate concordance

introduced in the previous section. After defining the different measures and describing their

main properties, we will also discuss the proposals that can be found in the literature to esti-

mate them in a non-parametric way. To start with, we will review the bivariate Spearman’s

rho and its definition and properties in terms of copulas.

2.4.1 Bivariate Spearman’s rho

In the bivariate framework, one of the best-known alternatives to Pearson’s linear correlation

coefficient is the rank correlation coefficient, known as Spearman’s rho. This measure is

the Pearson’s correlation coefficient between the ranks of two random variables X1 and X2,

that is, the correlation coefficient between the position vector components U1 = F1(X1) and
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U2 = F2(X2):

ρS = Cor(U1, U2) =
Cov(U1, U2)√

Var(U1)Var(U2)
.

As Embrechts et al. (2001) point out, while Pearson’s correlation coefficient only measures the

degree of linear dependence, ρS is a measure of the degree of monotonic dependence between

X1 and X2. When the position of individuals in both variables coincide, ρS takes the value 1,

and it takes the value -1 when the positions in both variables are the opposite. If the variables

are independent, ρS = 0.

Nelsen (1991) shows that ρS can be expressed in terms of copulas. In particular, as the copula

C is the joint distribution function of the position vector U = (U1, U2), with Ui ∼ U(0, 1) for

i = 1, 2, it follows that:

ρS =
E(U1U2)− E(U1)E(U2)√

Var(U1)Var(U2)
=

∫
I2
u1u2dC(u1, u2)− 1

4
1
12

and thus

ρS = 12

∫
I2
u1u2dC(u1, u2)− 3. (2.15)

Furthermore, Nelsen (1991) also shows that an equivalent expression for ρS is given by:

ρS = 12

∫
I2
C(u1, u2)du1du2 − 3. (2.16)

Based on these expressions, we will explain next how ρS can be regarded both as a measure of

quadrant dependence and a measure of concordance. To start with, taking into account that∫
I2
u1u2du1du2 = 1

4
, expression (2.16) can be rewritten as:

ρS = 12

∫
I2

[C(u1, u2)− u1u2]du1du2. (2.17)
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Additionally, using the result in (2.13), the following equivalent expression for (2.17) turns out:

ρS = 12

∫
I2

[C̄(u1, u2)− Π̄(u1, u2)]du1du2. (2.18)

From (2.17) and (2.18) it can be seen that, as Nelsen (1996) argues, ρS is a measure of average

quadrant dependence. In particular, when X1 and X2 are positively quadrant dependent (see

equation (2.12)), then ρS ≥ 0. On the contrary, when X1 and X2 are negatively quadrant

dependent, then ρS ≤ 0. Moreover, in the case of perfect positive dependence of our data

(C = M), and using equation (2.3), then
∫
I2

[M(u1, u2) − Π(u1, u2)]du1du2 = 1/12 and thus

ρS = 1. By contrast, when there is perfect negative dependence (C = W ), and using equation

(2.4), then
∫
I2

[W (u1, u2) − Π(u1, u2)]du1du2 = −1/12 and thus ρS = −1. Finally, in the case

of independence (C = Π), ρS = 0.

On the other hand, bivariate Spearman’s rho (ρS) can also be regarded as a measure of con-

cordance. In particular, from (2.7) and (2.15), it is straightforward to show that Spearman’s

rho can be written as:

ρS = 3Q(C,Π); (2.19)

see Nelsen (1998, 2006). Thus, ρS is proportional to the difference between the probabilities of

concordance and discordance for two independent pairs of random variables, one with copula

C and the other being a pair of independent random variables with copula Π. That is, ρS

allows us to compare the probabilities of concordance and discordance of our data (represented

by any copula C) with respect to those of the independence case (represented by copula Π).

Moreover, since Q(M,Π) = 1
3

and Q(W,Π) = −1
3

(see (2.8)), it turns out that in the case of

perfect positive dependence (C = M), ρS = 1 and in the case of perfect negative dependence

(C = W ), ρS = −1. Furthermore, in the case of independence (C = Π), ρS = 0, since

Q(Π,Π) = 0; see (2.8). Thus, ρS ∈ [−1, 1]. Finally, as Nelsen (2006) points out, ρS is a

measure of concordance according to the axiomatic definition of Scarsini (1984).
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2.4.2 Multivariate generalisations

2.4.2.1 Definition and main properties

In the multivariate framework (d ≥ 3), several extensions of Spearman’s rho have been proposed

and, as we will see throughout this section, they are also related to the concepts of multivariate

concordance and orthant dependence introduced in Section 2.3. To begin with, we recall (see

Section 2.3.2) that the differences [C(u)−Π(u)] and [C̄(u)−Π̄(u)] can be regarded as measures

of “local” lower and upper orthant dependence, respectively. Hence, based on these differences,

two multivariate extensions of bivariate Spearman’s rho can be obtained as the “natural”

extensions of (2.17) and (2.18), respectively, to the multivariate setting.

The first of these extensions, due to Wolff (1980) and Nelsen (1996), focuses on the difference

[C(u)− Π(u)] and is the “natural” multivariate generalisation of (2.17), defined as

ρ−d =

∫
Id

[C(u)− Π(u)]dΠ(u)∫
Id

[M(u)− Π(u)]dΠ(u)
. (2.20)

Notice that, in the above expression, the denominator represents the maximum value of the

numerator, i.e, its value in the case of maximal dependence (C = M). Thus, as Nelsen (1996)

points out, ρ−d can be seen as a rescaled measure of average lower orthant dependence. In fact,

ρ−d assesses, to some extent, the similarity between our multivariate data (represented by its

copula C) and the situation of independence (represented by the copula Π) in the lower orthant.

Moreover, using (2.3) and taking into account that
∫
Id

Π(u)dΠ(u) = 1
2d

, ρ−d can be rewritten

as:

ρ−d =
(d+ 1)

2d − (d+ 1)

[
2d
∫
Id
C(u)dΠ(u)− 1

]
, (2.21)

which is a multivariate generalisation of (2.16).

In a similar fashion, Nelsen (1996) defined a second generalisation of Spearman’s rho, derived

from average upper orthant dependence. This measure focuses on the difference [C̄(u)− Π̄(u)]
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and is a generalisation of (2.18) to the multivariate case, defined as:

ρ+
d =

∫
Id

[C̄(u)− Π̄(u)]dΠ(u)∫
Id

[M̄(u)− Π̄(u)]dΠ(u)
. (2.22)

Thus, ρ+
d can be seen as a rescaled measure of average upper orthant dependence which assesses,

to some extent, the similarity of our data (represented by C̄) and the situation of independence

(represented by Π̄) in the upper orthant.

Furthermore, as Nelsen (1996) points out,
∫
Id

[M̄(u)−Π̄(u)]dΠ(u) = 1
d+1
− 1

2d
and thus, applying

Lemma 3.1 in Dolati and Úbeda-Flores (2006) in the numerator in expression (2.22), ρ+
d can

also be expressed as a multivariate generalisation of (2.15) as follows:2

ρ+
d =

(d+ 1)

2d − (d+ 1)

[
2d
∫
Id

Π(u)dC(u)− 1

]
. (2.23)

Hence, to sum up, in the multivariate case it is possible to define a multivariate generalisation

of Spearman’s rho based on the concept lower orthant dependence (ρ−d ), which focuses on the

difference [C(u) − Π(u)], and another one based on the concept of upper orthant dependence

(ρ+
d ), which focuses on the difference [C̄(u) − Π̄(u)]. In particular, ρ−d measures multivariate

orthant dependence from a “downward” perspective, somehow capturing the average probabil-

ity that the individuals are simultaneously low-ranked in all dimensions, whereas ρ+
d measures

multivariate orthant dependence from an “upward” perspective, somehow capturing the over-

all probability that the individuals are simultaneously high-ranked in all dimensions. In this

setting, Dolati and Úbeda-Flores (2006) propose another measure of multivariate association

which is based on an average of the two differences highlighted above, and which is defined as

follows:

ρd =
2d−1(d+ 1)

2d − (d+ 1)

[ ∫
Id

(
C̄(u)− Π̄(u) + C(u)− Π(u)

)
dΠ(u)

]
. (2.24)

2Lemma 3.1 in Dolati and Úbeda-Flores (2006) establishes that, for any pair of (C, C ′) copulas, the following
equality holds:

∫
Id
C(u)dC ′(u) =

∫
Id
C̄ ′(u)dC(u).
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That is, ρd can be regarded as a rescaled measure of average orthant dependence with respect

to independence. In fact, this coefficient is a particular case of the general family of Aver-

age Orthant Dependence (AOD) measures proposed by Dolati and Úbeda-Flores (2006); see

Appendix 2.A.

Noticeably, ρd is also the average of the coefficients ρ−d and ρ+
d in (2.21) and (2.23), i.e.,

ρd =
ρ−d + ρ+

d

2
. (2.25)

Moreover, this coefficient was previously proposed by Nelsen (2002) as a measure of multivariate

concordance. In particular, ρd can be expressed as a function of the probability of multivariate

concordance Q′d introduced in (2.10) as follows:

ρd =
(d+ 1)

2d − (d+ 1)
[2d−1Q′d(C,Π)− 1], (2.26)

Hence, in our context, ρd can be interpreted as the normalised probability that a randomly

selected individual from the distribution X outranks or is outranked by a randomly selected

individual from a reference distribution in which the dimensions are independent. Therefore,

the more dependence there is in our data, according to the concordance function, the higher

this normalized probability; see Decancq (2014).

Noticeably, in the bivariate case, ρd coincides with the well-known bivariate Spearman’s rho

in (2.19). In particular, since, for d = 2, C̄(u1, u2) = 1 + C(u1, u2) − u1 − u2, then, taking

expression (2.10) and, after some algebra, it turns out that:

Q′2(C,Π) =

∫
I2

(
C(u1, u2) + C̄(u1, u2)

)
dΠ(u1, u2) = 2

∫
I2
C(u1, u2)dΠ(u1, u2).
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Hence, replacing this expression in (2.26) for d = 2, the expression in (2.19) comes up, namely:

ρ2 = 3
[
4

∫
I2
C(u1, u2)− 1

]
= 3Q(C,Π) = ρS.

Several properties of the three multivariate generalisations of Spearman’s rho reviewed so far

(ρ−d , ρ+
d and ρd) can be highlighted:

1. If X is PLOD (NLOD), then ρ−d ≥ 0 (ρ−d ≤ 0).

2. If X is PUOD (NUOD), then ρ+
d ≥ 0 (ρ+

d ≤ 0).

3. If X is POD (NOD), then ρd ≥ 0 (ρd ≤ 0).

4. When the distribution of X is radially symmetric, that is, when there is a point a in Rd

such that Pr(X ≤ a− x) = Pr(X > a + x), then ρ−d = ρ+
d = ρd.

5. When the copula of X is the commonotonic copula (C = M), ρ−d = ρ+
d = ρd = 1.

6. When the components of X are independent (C = Π), ρ−d = ρ+
d = ρd = 0.

7. A lower bound for the three measures is [2d−(d+1)!]
d![2d−(d+1)]

.

8. In the bivariate case (d = 2) the three coefficients above, ρ−2 , ρ+
2 and ρ2, reduce to bivariate

Spearman’s rho.

9. In the trivariate case (d = 3), ρ3 can be expressed as the average of the three pairwise

Spearman’s rho coefficients, that is:

ρ3 =
ρ−3 + ρ+

3

2
=
ρ12 + ρ13 + ρ23

3
, (2.27)

where ρik denotes the pairwise Spearman’s rho coefficient for the bivariate random variable

(Xi, Xk), with 1 ≤ i < k ≤ 3; see Nelsen (1996).
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10. ρd is a measure of multivariate concordance according to the axiomatic definitions pro-

posed by Dolati and Úbeda-Flores (2006) and Taylor (2007).

The advantage of ρ−d and ρ+
d when compared with ρd is that they are capable of revealing some

forms of dependence that ρd fails to detect. For example, for d > 2 it is possible to find a

situation in which ρd and all the pairwise Spearman’s coefficients are 0, which is a sign of inde-

pendence, but at the same time ρ−3 and ρ+
3 are different from 0, indicating some degree of lower

and upper orthant dependence; see, for instance, Example 1 in Nelsen and Úbeda-Flores (2012).

Moreover, it is possible to find different multivariate distributions with the same marginals and

the same value for ρd but very different behaviours in the lower and uppper orthants, thus

leading to different values for ρ−d and ρ+
d . To illustrate this point, Figure 2.2 represents 10000

realisations from two different trivariate distributions that share the same marginals and the

same value of ρ3, namely ρ3 = 0.7, but with different structures of dependence, since they come

from two different trivariate parametric copulas. In particular, the distribution represented in

the left panel, which has a Clayton copula (see Appendix 2.C), has higher dependence in the

lower orthant (ρ−d = 0.734) than in the upper orthant (ρ+
d = 0.665), since the density of points

around the corner (0,0,0) is higher than around the corner (1,1,1). On the other hand, the

distribution represented in the right panel, which has a Gumbel copula (see Appendix 2.C),

displays higher dependence in the upper orthant than in the lower orthant (ρ−d = 0.666 and

ρ+
d = 0.733).3 Hence, unlike ρd, ρ

−
d and ρ+

d allow us to distinguish what happens in the lower

and in the upper orthant. For instance, if the three dimensions of these graphs were income,

health and education in two different countries, in the country represented in the left panel

the probability of being simultaneously poor in all dimensions would be clearly higher than the

probability of being simultaneously rich in all dimensions, whereas the contrary would occur in

the country represented in the right panel, where the probability of being simultaneously rich

3The values of ρ−d and ρ+d cannot be computed analytically for these particular parametric copulas and
so they are approximated by Monte Carlo simulation as the average of their corresponding sample versions
proposed by Pérez and Prieto-Alaiz (2016b), which will be reviewed later on, across 300 samples of size 500000.
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in all dimensions would be clearly higher than the probability of being simultaneously poor in

all dimensions.

Figure 2.2: 10000 realisations from two different trivariate distributions with the same marginal
distributions and the same ρ3 = 0.7, but with different degree of lower and upper orthant
dependence. The distribution in the left panel has a Clayton copula and ρ−d = 0.734 and ρ+

d

= 0.665. The distribution in the right panel has a Gumbel copula and ρ−d = 0.666 and ρ+
d =

0.733.

Despite their advantages over ρd, ρ
+
d and ρ−d may be still incapable of detecting other forms of

dependence when they take values near zero. To overcome this drawback, Nelsen and Úbeda-

Flores (2012) propose, in the trivariate case, new coefficients of what they call directional

dependence, which are defined as follows. Let α = (α1, α2, α3), with αi ∈ {−1, 1}, denote

the eight vertexes of the cube I3 determining the eight directions in which we could measure

dependence in trivariate distributions. For each direction α, a directional ρ-coefficient is defined

as:

ρα3 =
α1α2ρ12 + α1α3ρ13 + α2α3ρ23

3
+ α1α2α3

ρ+
3 − ρ−3

2
. (2.28)

Noticeably, ρ
(1,1,1)
3 = ρ+

3 and ρ
(−1,−1,−1)
3 = ρ−3 .
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Based on these concepts, Garćıa et al. (2013) introduced the index of maximal dependence,

ρmax
3 , as the largest of the eight directional ρ-coefficients defined in (2.28) and they show that

this index can be alternatively calculated as follows:

ρmax
3 =

2

3
max{ρ12, ρ13, ρ23, 3ρ3} −min{ρ+

3 , ρ
−
3 }. (2.29)

It is worth noting that 0 ≤ ρmax
3 ≤ 1. Actually, ρmax

3 attains its maximum value, 1, when

C = M and it becomes 0 when C = Π. Moreover, if ρ12, ρ13 and ρ23 are all positive, then ρmax
3

is equal to either ρ−3 or ρ+
3 ; see Garćıa et al. (2013).

2.4.2.2 Nonparametric estimation

So far, we have focused on the population versions of the different copula-based multivariate

extensions of Spearman’s rho. However, in practice, empirical versions of these measures are

needed, as the copula C is unknown and the coefficients must be estimated from the data.

Over the rest of this section, we review several proposals that can be found in the literature to

estimate the different multivariate generalisations of Spearman’s rho discussed above.

Let {(X1j, ..., Xdj)}j=1,...,n be a sample of n serially independent random vectors from the d-

dimensional vector X = (X1, ..., Xd) with associated copula C. Then, it is possible to estimate

non-parametrically the copula C by the corresponding empirical copula, namely

Ĉn(u) =
1

n

n∑
j=1

d∏
i=1

1{Ũij≤ui}, for u =(u1, ..., ud) ∈ Id, (2.30)

where 1A denotes the indicator function on a set A and Ũij are the transformed data to [0, 1]

by scaling ranks, i.e.

Ũij = Rij/n, (2.31)

where Rij denotes the rank of Xij among {Xi1, ..., Xin}, with i = 1, ..., d and j = 1, ..., n.
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Similarly, the survival function C̄ can be estimated non-parametrically by its corresponding

empirical version, given by

ˆ̄Cn(u) =
1

n

n∑
j=1

d∏
i=1

1{Ũij>ui}, for u =(u1, ..., ud) ∈ Id. (2.32)

Schmid and Schmidt (2007b) propose the non-parametric estimation of ρ−d and ρ+
d by replacing

the copula C in expressions (2.21) and (2.23), respectively, with the empirical copula defined

in (2.30). However, this estimation procedure has an important drawback, since, as Pérez

and Prieto-Alaiz (2016b) show, the resultant statistics are not proper estimators as they can

take values out of the parameter space. Blumentritt and Schmid (2014) and Bedo and Ong

(2014) proposed modifications of these estimators by using the so-called pseudo-observations,

U∗ij = Rij/(n + 1), instead of Ũij, in the computation of the empirical copula. Nevertheless,

Pérez and Prieto-Alaiz (2016b) show that these estimators still suffer from some shortcomings,

as they fail to achieve the maximum value of 1 when there is maximal dependence in the data

and take a narrower range of values than they should.

To overcome these drawbacks, Pérez and Prieto-Alaiz (2016b) propose alternative non-parametric

estimators of ρ−d and ρ+
d based on the ideas in Joe (1990). In particular, the estimation of ρ+

d is

based on rewriting the expression of this coefficient in (2.22) by applying Lemma 3.1 in Dolati

and Úbeda-Flores (2006) -see footnote in page 85-, so that the following expression arises:

ρ+
d =

∫
Id

Π(u)dC(u)−
∫
Id

Π(u)dΠ(u)∫
Id

Π(u)dM(u)−
∫
Id

Π(u)dΠ(u)
.

Now, taking into account that Π(u) = u1 × · · · × ud, ρ+
d can be regarded as a scaled expected

value of U1 × · · · × Ud, namely:

ρ+
d =

EC [U1 × · · · × Ud]− EΠ[U1 × · · · × Ud]
EM [U1 × · · · × Ud]− EΠ[U1 × · · · × Ud]

=
c0 − c1

c2 − c1

, (2.33)
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where c0 = EC [U1 × · · · × Ud] is the expected value of U1 × · · · × Ud with respect to copula C,

c1 = EΠ[U1 × · · · × Ud] = 1
2d

is the expected value of U1 × · · · × Ud in the case of independence

(C = Π) and c2 = EM [U1 × · · · × Ud] = 1
(d+1)

is the expected value of U1 × · · · × Ud in the case

of maximal positive dependence (C = M).

The statistic proposed by Schmid and Schmidt (2007b) only estimates the expectation c0 in

(2.33), keeping the parameters c1 and c2 as known constants. By contrast, Pérez and Prieto-

Alaiz (2016b) propose to estimate all the expectations in (2.33), that is, c0, c1 and c2, by their

corresponding sample means, leading to the following rank-based non-parametric estimator of

ρ+
d :

ρ̂+
d =

1

n

n∑
j=1

d∏
i=1

Ũij −
(
n+1
2n

)d
1

n

n∑
j=1

(
j
n

)d − (n+1
2n

)d . (2.34)

For the estimation of ρ−d proposed by Pérez and Prieto-Alaiz (2016b), the same ideas apply.

To start with, using again Lemma 3.1 in Dolati and Úbeda-Flores (2006), ρ−d in (2.20) can be

rewritten as follows:

ρ−d =

∫
Id

Π̄(u)dC(u)−
∫
Id

Π̄(u)dΠ(u)∫
Id

Π̄(u)dM(u)−
∫
Id

Π̄(u)dΠ(u)

Hence, taking into account that Π̄(u) = (1−u1)×· · ·× (1−ud), ρ−d can be regarded as a scaled

expected value of (1− U1)× · · · × (1− Ud), namely:

ρ−d =
EC [(1− U1)× · · · × (1− Ud)]− EΠ[(1− U1)× · · · × (1− Ud)]
EM [(1− U1)× · · · × (1− Ud)]− EΠ[(1− U1)× · · · × (1− Ud)]

=
c̄0 − c̄1

c̄2 − c̄1

, (2.35)

where c̄0 = EC [(1−U1)×· · ·×(1−Ud)], c̄1 = EΠ[(1−U1)×· · ·×(1−Ud)] = 1
2d

is the expected value

of (1−U1)×· · ·×(1−Ud) in the case of independence and c̄2 = EM [(1−U1)×· · ·×(1−Ud)] = 1
(d+1)

is the expected value of (1− U1)× · · · × (1− Ud) in the case of maximal positive dependence.

As in the case of ρ+
d , the statistic proposed by Schmid and Schmidt (2007b) to estimate ρ−d

only estimates the expectation c̄0 in (2.35), keeping c̄1 and c̄2 as known constants. By contrast,
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Pérez and Prieto-Alaiz (2016b) propose to estimate all the expectations in (2.35), that is, c̄0,

c̄1 and c̄2, by their corresponding sample means, leading to the following rank-based estimator

of ρ−d :

ρ̂−d =

1

n

n∑
j=1

d∏
i=1

Ũ ij −
(
n+1
2n

)d
1

n

n∑
j=1

(
j
n

)d − (n+1
2n

)d , (2.36)

where ˜̄U ij = R̄ij/n and R̄ij = n+ 1−Rij.

The estimators defined in (2.34) and (2.36) overcome the drawbacks of those proposed by

Schmid and Schmidt (2007b), Blumentritt and Schmid (2014) and Bedo and Ong (2014). In

particular, they take values on the parameter space and, by construction, they achieve their

maximum value of 1 in the case of maximal dependence in the data (C = M) and take the value

of 0 in the case of independence (C = Π). Moreover, these estimators are consistent and share

the same asymptotic Normal distribution as those in Schmid and Schmidt (2007b). Nonetheless,

their asymptotic variances cannot be explicitly evaluated for the majority of known copulas

(not even for d = 2) but, as shown in Schmid and Schmidt (2007b), they can consistently

be estimated by nonparametric bootstrap methods. Therefore, in the empirical application

(Chapter 3), bootstrap methods will be applied to estimate their standards errors and perform

statistical inference.

Finally, to estimate the coefficient ρd in (2.26), we take into account the relationship between

ρd, ρ
−
d and ρ+

d in (2.25) and propose the following plug-in estimator:

ρ̂d =
ρ̂−d + ρ̂+

d

2
, (2.37)

where ρ̂−d and ρ̂+
d are the estimators in (2.36) and (2.34), respectively. Noticeably, this estimator

coincides with the estimator of ρd proposed by Dolati and Úbeda-Flores (2006) in the framework

of AOD measures of multivariate concordance; see Proposition 1 in Appendix 2.B.

In the bivariate case, the estimators ρ̂−2 , ρ̂
+
2 and ρ̂2 defined above reduce to the well-known
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empirical version of the bivariate Spearman’s rho. In the trivariate case (d = 3), the estimators

ρ̂+
3 and ρ̂−3 in (2.34) and (2.36) reduce to:

ρ̂+
3 =

8

n(n− 1)(n+ 1)2

n∑
j=1

R1jR2jR3j −
n+ 1

n− 1
, (2.38)

ρ̂−3 =
8

n(n− 1)(n+ 1)2

n∑
j=1

R1jR2jR3j −
n+ 1

n− 1
; (2.39)

see Pérez and Prieto-Alaiz (2016b). Moreover, it can be shown that the relationship between

ρ3, ρ−3 , ρ+
3 and the three pairwise coefficients, which is defined in expression (2.27), also holds

for their empirical versions, that is,

ρ̂3 =
ρ̂−3 + ρ̂+

3

2
=
ρ̂12 + ρ̂13 + ρ̂23

3
, (2.40)

where ρ̂ik denotes the bivariate sample Spearman’s rho for the pair (Xi, Xk), with 1 ≤ i < k ≤ 3;

see Proposition 2 in Appendix 2.B. This means that, with d = 3, it is possible to easily calculate

ρ̂3 as the average of the three pairwise sample coefficients.

Finally, for the estimation of the coefficients ρα3 and ρmax
3 , Garćıa et al. (2013) propose plug-in

estimators consisting of replacing the population bivariate and trivariate Spearman’s coefficients

in (2.28) and (2.29) by their empirical versions. They also show that these plug-in estimators

are asymptotically unbiased, consistent and asymptotically normally distributed.

An application of all the multivariate extensions of Spearman’s rho explained so far will be car-

ried out in Chapter 3, where we measure the multivariate dependence between those dimensions

of poverty included in the AROPE rate for the EU28.
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2.5 Tail dependence

The orthant dependence measures introduced so far are suitable to describe how likely it is, in

average, that large (small) values of one variable appear with large (small) values of the other

variables, as compared to what would happen were these variables independent. However, as

Malevergne and Sornette (2006, ch. 4) argue, orthant dependence is a very strong property

that imposes conditions for every point in the hypercube, since it requires the evaluation of

C(u) and Π(u) for all u ∈ Id. In turn, one may be interested in only analysing dependence

in some specific parts of the multivariate distribution, such as the tails. For instance, when

studying multidimensional poverty, dependence in the joint lower tail of the multivariate dis-

tribution seems specially relevant, as it focuses on those individuals who are extremely poor in

all dimensions. To address this issue, new concepts should be introduced.

In particular, this section is devoted to the concept of tail dependence, which relates to the

degree of dependence in the joint (lower or upper) tail of a multivariate distribution, that is,

the dependence between extreme events; see Schmid et al. (2010). As we will see, this concept

captures the propensity of several random variables to simultaneously take extreme (very small

or very large) values, or more specifically, the probability that some variables exceed a high

(low) quantile given that others also exceed such quantile. In our setting, the concept of tail

dependence becomes a very useful tool, since it would capture the probability of individuals to

be extremely low(high)-ranked in some dimensions of poverty, provided that they are extremely

low(high)-ranked in other dimensions. In particular, to analyse multidimensional poverty, the

concept of lower tail dependence becomes specially relevant, since it captures the probability

that an individual who is extremely “poor” in some dimensions is also extremely poor in other

dimensions. In spite of its relevance, to the best of our knowledge, the application of the

concept of tail dependence to poverty analysis has not yet been addressed in the literature.

Hence, the contribution of this thesis is pioneering in this area and can pave the way for future

contributions.
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To face this goal, we will first discuss, in the next subsection, tail dependence in the bivariate

case. After that, we will turn to the multivariate case, which has been scarcely addressed in

the literature. As we will see, the step from the bivariate to the multivariate setting poses

important difficulties both from a theoretical and a practical point of view, which reinforces

the idea already mentioned in previous section that, when analysing dependence, moving from

two to more than two dimensions is not straightforward. An application of these concepts

to measuring multivariate tail dependence between dimensions of poverty in Europe will be

performed in Chapter 3.

2.5.1 Bivariate tail dependence measures

In the bivariate case, tail dependence captures the degree of dependence in the lower-quadrant

tail or the upper-quadrant tail of a bivariate distribution. Although several ways of measuring

tail dependence have been proposed, the most commonly used measures are the so-called tail

dependence coefficients introduced by Sibuya (1960), which are defined as follows. Given a

bivariate random vector X = (X1, X2) with joint distribution function F and marginal distri-

bution functions F1 and F2, the lower tail dependence coefficient of X1 and X2 is defined

as

λL = lim
u→0+

Pr
(
X2 ≤ F−1

2 (u)|X1 ≤ F−1
1 (u)

)
, (2.41)

and the upper tail dependence coefficient is given by

λU = lim
u→1−

Pr
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)
, (2.42)

provided that the limits above exist. In a probabilistic view, the lower tail dependence coefficient

in (2.41) gives the asymptotic probability that a random variable becomes small, given that

another random variable is also small. Similarly, the upper tail dependence coefficient in (2.42)

gives the asymptotic probability that a random variable exceeds a high quantile, given that
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another random variable also exceeds such quantile. Thus, these coefficients become essential to

understand the risk of simultaneous threshold crossing for two random variables. In our setting,

if X = (X1, X2) represent two relevant dimensions of poverty for a population, say income and

health, the lower tail dependence coefficient λL would measure the limit probability that an

individual is extremely low-ranked (extremely poor) in one dimension (i.e, income) given that

he/she is extremely low-ranked (extremely poor) in the other dimension (i.e, health). Similarly,

the upper tail dependence coefficient λU would measure the limit probability that an individual

is extremely high-ranked (extremely rich) in one dimension (i.e, income) given that he/she is

extremely high-ranked (extremely rich) in the other dimension (i.e, health). Obviously, when

the goal is the measurement of poverty, the lower tail dependence coefficient λL is the most

relevant one.

When F1 and F2 are continuous, the tail dependence coefficients defined above only depend

on the underlying copula C that links F to F1 and F2 and thus they are able to measure tail

dependence independently on the marginal distributions. In particular, applying the probability

integral transformations U1 = F1(X1) and U2 = F2(X2) into equations (2.41) and (2.42),

respectively, the following alternative copula-based expressions for λL and λU come up (Joe,

2014):

λL = lim
u→0+

Pr
(
U2 ≤ u|U1 ≤ u

)
= lim

u→0+

Pr(U1 ≤ u, U2 ≤ u)

u
= lim

u→0+

C(u, u)

u
, (2.43)

and

λU = lim
u→1−

Pr
(
U2 > u|U1 > u

)
= lim

u→1−

Pr(U1 > u,U2 > u)

1− u
= lim

u→1−

C̄(u, u)

1− u
, (2.44)

provided that the limits in (2.43) and (2.44) exist. If this is so, the copula C has an upper

tail dependence coefficient λU and a lower tail dependence coefficient λL. By definition, the

coefficients of tail dependence λL and λU are bounded between 0 and 1 inclusive. According to
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Joe (2014), if λL > 0 (respectively, λU > 0), C has lower (respectively, upper) tail dependence.

In turn, if λL = 0 (respectively, λU = 0), C has no lower (respectively, upper) tail dependence.

Furthermore, it can be easily seen that, if C = Π, that is, if X1 and X2 are independent, then

λL = λU = 0. Furthermore, if C = M , that is, if one variable is a strictly increasing function

of the other, i.e. if the positions of individuals in both variables coincide, then λL = λU = 1.

Theoretical values of the tail dependence coefficients have been derived for the most popular

families of copulas; see, for example, Joe (1997), Malevergne and Sornette (2006, ch. 4) and

Nelsen (2006).

To illustrate the behaviour of the tail dependence coefficients, Figure 2.3 displays 2000 reali-

sations from two different bivariate parametric copulas, namely the bivariate Clayton copula

and the bivariate Gumbel copula; see Appendix 2.C for a brief discussion on these families of

copulas. In the two graphs at the top, the clouds of points reflects different degrees of lower

tail dependence and no upper tail dependence, as they represent realisations from two Clayton

copulas with different degrees of dependence. Noticeably, as the concentration of points in the

lower tail of the distribution increases, so does the theoretical value of the lower tail dependence

coefficient, going from λL = 0.26 in the top-left graph to λL = 0.8 in the top-right graph. In

the two graphs displayed at the bottom of Figure 2.3, the clouds of points reflects some degree

of upper tail dependence but no lower tail dependence, as they represent realisations from two

Gumbel copulas with different degrees of dependence. Again, as the concentration of points

in the upper joint tail increases, so does the theoretical value of the upper tail dependence

coefficient, going from λU = 0.35 in the bottom-left graph to λU = 0.7 in the bottom-right.

The tail dependence coefficients defined in (2.43) and (2.44) give, by definition, an asymptotic

approximation of the behaviour of the copula in the joint tails of the distribution. Some

authors have argued that the study of tail dependence going beyond the asymptotic definition

can be even more informative, and this has led to the distinction between tail dependence at

asymptotic and sub-asymptotic levels. For instance Venter (2001), Manner and Segers (2011)
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2.5. Tail dependence

Figure 2.3: 2000 realisations from different bivariate copulas. The two distributions in the top
come from a Clayton copula (lower tail dependent) with λL = 0.26 (left) and λL = 0.8 (right).
The two distributions in the bottom come from a Gumbel copula (upper tail dependent) with
λU = 0.35 (left) and λU = 0.7 (right).
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and Sweeting and Fotiou (2013), propose a finite alternative to the asymptotic tail dependence

coefficients in (2.43) and (2.44). In particular, they introduce, for any u ∈ (0, 1), the following

functions:

λL(u) =
C(u, u)

u
(2.45)

and

λU(u) =
C̄(u, u)

1− u
. (2.46)

Sweeting and Fotiou (2013) call these functions “finite tail dependence coefficients”, whereas

they are denoted by Manner and Segers (2011) as “penultimate tail dependence coefficients”.

The limits of these functions are the traditional tail dependence coefficients defined in (2.43)

and (2.44), respectively, that is,

λL = lim
u→0+

λL(u) (2.47)

and

λU = lim
u→1−

λU(u). (2.48)

Venter (2001) had previously considered these finite tail dependence coefficients to analyse

graphically the tail behaviour of the copula. In particular, he proposed to combine λL(u) and

λU(u) into the so-called tail concentration function (TCF), further considered by Patton (2013)

and Durante et al. (2015). The TCF is defined as qC : (0, 1)→ I given by

qC(u) =
C(u, u)

u
1(0,0.5] +

C̄(u, u)

1− u
1(0.5,1). (2.49)

This is a continuous function, since C(0.5, 0.5) = C̄(0.5, 0.5) and thus qC(0.5−) = qC(0.5+).

When C = M , qM(u) = 1 ∀u and when C = W , qW (u) = 0 ∀u. Moreover, in the case of

independence (C = Π), qΠ(u) = u1(0,0.5] + (1− u)1(0.5,1).

As expected, the TCF is strictly related to the finite tail dependence coefficients in (2.45) and
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(2.46), as it can be alternatively written as

qC(u) =


λL(u), if u ∈ (0, 0.5],

λU(u), if u ∈ (0.5, 1).

Furthermore, it is related to the asymptotic tail dependence coefficients, since

lim
u→0+

qC(u) = λL (2.50)

and

lim
u→1−

qC(u) = λU . (2.51)

To better appreciate the usefulness of this function, in Figure 2.4 we present the TCF for three

different bivariate parametric copulas (the Clayton copula in the left panel; the Frank copula in

the central panel; and the Gumbel copula in the right panel) for different degrees of dependence;

see Appendix 2.C for a brief discussion on these copulas and their tail dependence properties.

Furthermore, in all panels, the TCF of the independent copula Π is represented in blue and

the TCF of the commonotonic copula M is represented in red.

The first feature that can be observed in this figure is that the three copula models are related

to different shapes of the TCF. In particular, Clayton copulas (left panel) are asymmetric, with

observations in the lower tail being somewhat more dependent than observations in the upper

tail, since qC(u) > qC(1 − u) for 0 < u < 0.5. The contrary occurs in the case of Gumbel

copulas (right panel), where observations in the upper tail are somewhat more dependent than

observations in the lower tail, since qC(u) < qC(1− u) for 0 < u < 0.5. Finally, Frank copulas

(central panel) show a symmetric behaviour, since qC(u) = qC(1 − u) for 0 < u < 0.5. The

second important feature that we can notice in Figure 2.4 is that, for the three models, as the

degree of dependence increases (as the parameter θ increases), the TCFs move upwards and

closer to the upper bound given by the maximal dependence copula M , whereas as θ decreases,
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Figure 2.4: TCFs for some bivariate parametric copulas. Left panel represents Clayton copulas
with θ = 0.1 (solid), θ = 1 (dashed) and θ = 4 (dotted). Central panel represents Frank
copulas with θ = 1 (solid), θ = 2 (dashed) and θ = 4 (dotted). Right panel represents Gumbel
copulas with θ = 1.1 (solid), θ = 2 (dashed) and θ = 4 (dotted). In all panels, the TCF of the
independent copula Π is represented in blue and the TCF of the commonotonic copula M is
represented in red.

the TCF approaches the lower bound corresponding to the independent copula Π.

So far, we have focused on the population versions of the different measures of bivariate tail

dependence. However, in practice, empirical versions of these measures are needed, as the

copula C is unknown and they must be estimated from the data. As we have previously pointed

out, the most-commonly used measures of bivariate tail dependence are the tail dependence

coefficients in (2.43) and (2.44). However, since they are by definition asymptotic measures,

the estimation of these coefficients is not straightforward. In fact, as Joe (2014) argues, the

empirical measure of tail dependence for data does not really exist because of the limit; the

best that can be done is to a apply estimation procedures, either parametric or nonparametric,

such as those in Frahm et al. (2005). These authors point out that parametric procedures give

biased estimators if the model is misspecified, something that is avoided with a non-parametric

estimation, which, in turn, produces larger variances. In the following discussion, we will limit

our attention to non-parametric procedures. For parametric techniques, we refer the interested

reader to Frahm et al. (2005) and Supper et al. (2020), and the references therein.

There is an important number of proposals to estimate tail dependence in a non-parametric
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framework, specially in the case of upper tail dependence (Huang, 1992; Joe et al., 1992; Capéraà

et al., 1997; Frahm et al., 2005). Here we focus on which probably are the most natural non-

parametric estimators of the tail dependence coefficients λL and λU . In particular, as Schmid

et al. (2010) argue, given a sample {(X1j, X2j)}j=1,...,n of n serially independent random vectors

from the bidimensional vector X = (X1, X2) with associated copula C, a natural non-parametric

estimator of λL is given by

λ̂L

(
k

n

)
=
Ĉn( k

n
, k
n
)

k
n

, (2.52)

where Ĉn is the empirical copula defined in (2.30) and k ∈ {1, . . . , n} is a parameter that

must be appropriately chosen. In fact, this is the estimator of λL proposed by Schmidt and

Stadtmüller (2006), who proved it to be consistent and asymptotically normal under rather

general assumptions.

In a similar fashion, a natural non-parametric estimator of λU is given by

λ̂U

(
k

n

)
=

ˆ̄C( k
n
, k
n
)

1− k
n

, (2.53)

where ˆ̄C is the empirical survival function defined in (2.32) and, again, k ∈ {1, . . . , n} is a

parameter that must be appropriately chosen. This estimator also coincides with that proposed

by Schmidt and Stadtmüller (2006), which is also proved to be consistent and asymptotically

normal under rather general assumptions. The estimators λ̂L and λ̂U in (2.52) and (2.53)

have been applied in multiple studies in finance (WeiB et al., 2014; Matkovskyy, 2019) or

environmental sciences (Poulin et al., 2007; Aghakouchak et al., 2010; Ward et al., 2018).

Furthermore, as we will see later, the estimators proposed by Schmidt and Stadtmüller (2006)

allow for an intuitive extension to the multivariate case. For a comprehensive review of other

non-parametric estimators of the tail dependence coefficients we refer the interested reader to

Frahm et al. (2005).

An important point that must be taken into account when applying λ̂L and λ̂U is that an
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appropriate threshold k must be chosen. This is a feature shared by the vast majority of the

non-parametric estimators of tail dependence proposed in the literature and is not a negligible

issue, since the estimates of tail dependence can vary significantly depending on the threshold

used, and the choice of this threshold is by no means trivial. Bücher et al. (2015) argue that

a common approach in extreme-value theory to deal with this problem is to consider several

different values of k. Alternatively, Caillault and Guégan (2005), Frahm et al. (2005) and

Schmidt and Stadtmüller (2006) have proposed an algorithm to obtain an optimal k, which

requires dealing with a variance-bias problem. A comparison of these two approaches can be

found in Aghakouchak et al. (2010), who argue that, in any case, the choice of the threshold

still warrants more in-depth research. Notice also that, with a parametric estimation, and for

the most popular families of copulas, the problem of the choice of the threshold is avoided, since

the tail dependence coefficients have close expressions as functions of the copula parameters.

However, in that case there exists the specification problem that is inherent to any parametric

inference procedure. As we pointed out before, in this thesis we do not consider parametric

approaches.

As we argued before, the traditional bivariate tail dependence coefficients give, by definition, an

asymptotic approximation of the behaviour of the copula in the joint tails of the distribution. In

turn, the TCF in (2.49) allows to study tail dependence going beyond this asymptotic definition.

Patton (2013) and Durante et al. (2015) propose to estimate this function in a non-parametric

way. In particular, the empirical version of the TCF can be calculated, for t ∈ (0, 1), using the

empirical versions of the copula and the survival function as follows:

q̂C(t) =
Ĉn(t, t)

t
1(0,0.5] +

ˆ̄Cn(t, t)

1− t
1(0.5,1). (2.54)

Noticeably,

q̂C(t) =


Ĉn(t,t)

t
= λ̂L(t), if t ∈ (0, 0.5],

ˆ̄Cn(t,t)
1−t = λ̂U(t), if t ∈ (0.5, 1).
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In our framework, that is, when analysing multidimensional poverty, this function allows to

evaluate tail dependence using some specific thresholds, such as the first decile (t = 0.1) or

the second decile (t = 0.2). Thus, if we consider income and health as the two dimensions of

poverty, it is possible to analyse the probability that an individual that is in the first (second)

decile in income is also in the first (second) decile in health.

Other alternatives to study extremal dependence going beyond the asymptotic nature of the

tail dependence coefficients in (2.43) and (2.44) have been proposed in the literature. One

possibility, widely used in finance, is the use of conditional versions of the linear correlation

coefficient. This approach consists in calculating the linear correlation coefficient conditioned

on values of the variables smaller or larger than a given threshold; see Malevergne and Sornette

(2006, ch. 6). However, as we previously pointed out, the linear correlation coefficient is only

appropriate when studying linear dependence in elliptical contexts. To measure extremal de-

pendence in more general contexts, Charpentier (2003) suggests the use of conditional versions

of the Spearman’s rank correlation coefficient; see also Malevergne and Sornette (2006, ch.

6). However, as Sweeting and Fotiou (2013) point out, one potential complication with these

conditional measures of dependence is that the thresholds at which they are measured must

be chosen, and this choice is bound to be arbitrary. In fact, this is the same difficulty that we

find when estimating the asymptotic tail dependence coefficients in a non-parametric way, and

which have been already discussed.

So far we have focused our attention on the study of tail dependence in the bivariate case,

which has been discussed extensively in the literature. In the next section we will review some

of the contributions that have been made beyond the bivariate framework and we will make

a new proposal to extend the TCF to a multivariate framework. As we will see, the bivariate

tail dependence coefficients discussed above cannot be generalised to the general multivariate

case (d > 2) in a straightforward and unique way. This is another proof of the difficulties that

going from the bivariate to the multivariate framework entails; recall, again, the arguments put
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forward by Durante et al. (2014).

2.5.2 Multivariate tail dependence measures

As we have already seen in the previous section, the study of tail dependence, even for the bi-

variate case, is not a simple task. But things become even more difficult, both from a theoretical

and from a practical point of view, when we turn to the scarcely addressed multivariate case.

To start with, the presence of more than two components brings additional difficulties to the

definition of tail dependence. As a result, several different proposals to measure multivariate

tail dependence can be found in the literature. For instance, Frahm (2006) introduces the so-

called “extremal dependence coefficient”, which studies the asymptotic dependence structure

of the minimum and the maximum of a random vector, whereas Schmid and Schmidt (2007a)

define a measure of multivariate lower tail dependence based on a conditional version of the

coefficient ρ−d discussed in Section 2.4.2. However, as Gijbels et al. (2020) argue, none of these

measures are proper multivariate generalisations of the well-known bivariate tail dependence

coefficients, since these measures do not reduce to λL and λU in (2.43) and (2.44), respectively,

when d = 2. Hence, these coefficients can be better considered as different types of tail de-

pendence measures, rather than multivariate generalisations of the traditional bivariate tail

dependence coefficients previously discussed, and will not be further considered.

Over the rest of this section, we will limit our attention to the most natural multivariate exten-

sions of the bivariate tail dependence coefficients λL and λU in (2.43) and (2.44), respectively.

These extensions, which are considered by Schmidt (2002), Li (2008, 2009), Chan and Li (2008),

De Luca and Rivieccio (2012), Di Bernardino and Rullière (2016) and Fernández-Sánchez et al.

(2016), among others, are defined as follows.

Let X = (X1, . . . , Xd) be a d-dimensional continuous random vector with joint distribution

function F , marginals F1, . . . , Fd, and associated copula C. Furthermore, let J = {1, . . . , d}

and consider two non-empty subsets Jh ⊂ J and J̄h = J \ Jh with respective cardinal h ≥ 1
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and d− h ≥ 1. Then, the coefficient of multivariate lower tail dependence is given by:

λ
Jh|J̄h
L = lim

u→0+
Pr
(
Xj ≤ F−1

j (u), ∀j ∈ Jh|Xi ≤ F−1
i (u), ∀i ∈ J̄h

)
=

= lim
u→0+

Pr
(
Uj ≤ u, ∀j ∈ Jh|Ui ≤ u, ∀i ∈ J̄h

)
. (2.55)

Similarly, the coefficient of multivariate upper tail dependence is given by:

λ
Jh|J̄h
U = lim

u→1−
Pr
(
Xj > F−1

j (u), ∀j ∈ Jh|Xi > F−1
i (u), ∀i ∈ J̄h

)
=

= lim
u→1−

Pr
(
Uj > u, ∀j ∈ Jh|Ui > u, ∀i ∈ J̄h

)
. (2.56)

Hence, these coefficients measure the probability that a group of h variables take simultane-

ously extreme (very small or very large) values, given that the remaining d− h variables take

simultaneously extreme (very small or very large) values. If, for some subset Jh ⊂ J , λ
Jh|J̄h
L > 0,

then it is said that there is lower tail dependence, whereas there is upper tail dependence if,

for some subset Jh ⊂ J , λ
Jh|J̄h
U > 0. If for all Jh ⊂ J , λ

Jh|J̄h
L = 0 (λ

Jh|J̄h
U = 0), then we say that

there is lower (upper) tail independence. Noticeably, when d = 2, λ
Jh|J̄h
L and λ

Jh|J̄h
U reduce to

λL and λU in (2.43) and (2.44), respectively.

Although the coefficients defined in (2.55) and (2.56) are very intuitive measures of multivariate

tail dependence, an important drawback must be mentioned. In particular, for d > 2, several

different coefficients can be considered, depending on the choice of the set Jh. Obviously, things

become more difficult as the number of dimensions increases. Furthermore, when conditioning

on more than one variable, the representation of the tail dependence coefficients through the

copula function, which is clear-cut in the bivariate case, is not straightforward, since multi-

variate marginals of the copula are involved. This can be avoided by conditioning on just one

variable, that is, by taking h = d − 1. In doing so, the following multivariate tail dependence
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coefficients come up:

λdL = lim
u→0+

Pr
(
Xj ≤ F−1

j (u), ∀j ∈ Jd−1|Xi ≤ F−1
i (u), ∀i ∈ J̄d−1

)
=

= lim
u→0+

Pr
(
Uj ≤ u, ∀j ∈ Jd−1|Ui ≤ u, ∀i ∈ J̄d−1

)
=

= lim
u→0+

C(u, . . . , u)

u
(2.57)

and

λdU = lim
u→1−

Pr
(
Xj > F−1

j (u), ∀j ∈ Jd−1|Xi > F−1
i (u), ∀i ∈ J̄d−1

)
=

= lim
u→1−

Pr
(
Uj > u, ∀j ∈ Jd−1|Ui > u, ∀i ∈ J̄d−1

)
=

= lim
u→1−

C̄(u, . . . , u)

1− u
. (2.58)

As we can see, these coefficients, which are considered by Alink et al. (2007), Joe et al. (2010)

and Hua and Joe (2011), among others, have a simple representation through the copula func-

tion, and are the ones we adopt in this study. That is, we focus on the probability that a group

of d − 1 variables take simultaneously extreme (very small or very large) values, given that

the remaining variable takes extreme (very small or very large) values. In a multidimensional

poverty setting, the coefficient λdL in (2.57) becomes specially relevant, since it measures the

limit probability that an individual is simultaneously extremely low-ranked (extremely poor)

in d − 1 relevant dimensions of poverty given that he/she is extremely low-ranked (extremely

poor) in the remaining dimension. Similarly, λdU in (2.58) measures the limit probability that

an individual is simultaneously extremely high-ranked (extremely rich) in d−1 relevant dimen-

sions of poverty given that he/she is extremely high-ranked (extremely rich) in the remaining

dimension. For example, if we consider that income, education and health are the three dimen-

sions of poverty, λdL measures the limit probability that an individual that is extremely poor in

one dimension, say income, is also extremely poor in education and health. On the other hand,
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λdU measures the limit probability that an individual that is extremely rich in one dimension,

say income, is also extremely rich in education and health.

In the case of independence, that is, if C = Π, λdL = λdU = 0. On the other hand, in the case

of maximal dependence, that is, if C = M , λdL = λdU = 1. Moreover, Fernández-Sánchez et al.

(2016) show that, for any d ≥ 3, the coefficients λdL and λdU are non-increasing in d, that is,

λdL ≤ λd−1
L and λdU ≤ λd−1

U for any d ≥ 3.

As we argued when we considered the bivariate case, the tail dependence coefficients defined

above give an asymptotic approximation of the behaviour of the copula in the joint tails of

the distribution. Alternatively, one may be interested in analysing extremal dependence going

beyond this asymptotic definition, analysing the tail behaviour at some finite points near the

corners of the hypercube. To that aim, Sweeting and Fotiou (2013) consider the following

multivariate extensions of the finite tail dependence coefficients defined in (2.45) and (2.46):

λdL(u) =
C(u, . . . , u)

u
(2.59)

and

λdU(u) =
C̄(u, . . . , u)

1− u
, (2.60)

for u ∈ (0, 1). These functions allow to study multivariate tail dependence at a subasymptotic

level. Following this approach, we propose a natural multivariate generalisation of the tail

concentration function introduced in (2.49), which integrates in a unique function information

about the degree of multivariate dependence in both the lower and the upper tail of the joint

distribution. The multivariate generalisation of the tail concentration function is defined as the

function qdC : (0, 1)→ I, given by:

qdC(u) =
C(u, . . . , u)

u
1(0,0.5] +

C̄(u, . . . , u)

1− u
1(0.5,1). (2.61)

This function provides an important advantage when measuring dependence in a multivariate
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framework, since, in spite of its multivariate nature, it allows to represent in the plane the de-

gree multivariate dependence (for any d > 2) in the joint tails of a distribution. This will make

it easier to carry out graphical comparisons of multivariate tail dependence in different distri-

butions, for instance, comparisons between different countries or different temporal moments

for the same country.

The multivariate TCF, contrary to what happens in the bivariate case, is not necessarily con-

tinuous, since, with d > 2, C(0.5, . . . , 0.5) is not necessarily equal to C̄(0.5, . . . , 0.5) and thus

qdC(0.5−) does not necessarily coincide with qC(0.5+). When C = M , that is, in the case of max-

imal dependence, qdM(u) = 1 ∀u, and, in the case of independence, that is, when C = Π, then

qdΠ(u) = ud−11(0,0.5]+(1−u)d−11(0.5,1). For instance, for d = 3, qdΠ(u) = u21(0,0.5]+(1−u)21(0.5,1).

Noticeably, qdC can be alternatively defined in terms of the functions λdL(u) and λdU(u) as follows.

qdC(u) =


λdL(u), if u ∈ (0, 0.5],

λdU(u), if u ∈ (0.5, 1).

To better appreciate the usefulness of this function, in Figure 2.5 we present the trivariate

TCF, q3
C , for three different trivariate parametric copulas (the Clayton copula in the left panel;

the Frank copula in the central panel; and the Gumbel copula in the right panel) for different

degrees of dependence (given by the parameter θ); see Appendix 2.C for a brief discussion

on these copulas. Moreover, in all panels, the trivariate TCF of the independent copula Π is

represented in blue and the TCF of the commonotonic copula M is represented in red.

Several conclusions emerge from this figure. First, the three copula models are related to

different shapes of the TCF. In particular, Clayton copulas (left panel) are asymmetric, with

observations in the lower tail being somewhat more dependent than observations in the upper

tail, since q3
C(u) > q3

C(1 − u) for 0 < u < 0.5, that is, λ3
L(u) > λ3

U(1 − u). In a multivariate

poverty setting, this means that the probability that an individual that is extremely poor in
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Figure 2.5: Trivariate TCFs for some trivariate parametric copulas. Left panel represents
Clayton copulas with θ = 0.1 (solid), θ = 1 (dashed) and θ = 2 (dotted). Central panel
represents Frank copulas with θ = 1 (solid), θ = 2 (dashed) and θ = 4 (dotted). Right panel
represents Gumbel copulas with θ = 1.1 (solid), θ = 2 (dashed) and θ = 4 (dotted). In all
panels, the trivariate TCF of the independent copula Π is represented in blue and the TCF of
the commonotonic copula M is represented in red.

one dimension is also extremely poor in the other two dimensions is higher than the probability

that an individual that is extremely rich in one dimension is also extremely rich in the other

two dimensions. The contrary occurs in the case of Gumbel copulas (right panel), where

observations in the upper tail are somewhat more dependent than observations in the upper

tail, since q3
C(u) < q3

C(1−u) for 0 < u < 0.5, that is, λ3
L(u) > λ3

U(1−u). In a multidimensional

poverty setting, this means that the probability that an individual that is extremely rich in

one dimension is also extremely rich in the other two dimensions is higher than the probability

that an individual that is extremely poor in one dimension is also extremely poor in the other

two dimensions. Finally, Frank copulas (central panel) show a symmetric behaviour, since

q3
C(u) = q3

C(1− u) for 0 < u < 0.5, that is, λ3
L(u) = λ3

U(1− u), which in our setting means that

the probability that an individual that is extremely poor in one dimension is also extremely poor

in the other two dimensions is equal to the probability that an individual that is extremely rich

in one dimension is also extremely rich in the other two dimensions. Furthermore, for the three

models, as the degree of dependence increases (as the parameter θ increases), the trivariate

TCF moves upwards and closer to the upper bound given by the maximal dependence copula
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M , whereas as θ decreases, the trivariate TCF approaches the lower bound corresponding to

the independent copula Π.

As in the bivariate case, other proposals to measure extremal dependence going beyond the

asymptotic definition given by the multivariate generalisations of the tail dependence coefficients

can be found in the literature, although these proposals are still scarce. One possibility is to

apply conditional versions of multivariate measures of dependence such as the multivariate

versions of Spearman’s rank correlation coefficient. For instance, Schmid and Schmidt (2007a)

propose a conditional version of the coefficient of average lower orthant dependence ρ−d defined

in (2.20). This conditional version allows to measure lower orthant dependence focusing on the

lowest part of the joint distribution. In fact, they also propose, based on this conditional version

of ρ−d , a new measure of multivariate tail dependence that can be regarded as an alternative to

the multivariate generalisations of the traditional tail dependence coefficients that have been

discussed in this section.

Once we have specified the coefficients of multivariate tail dependence we are going to focus on,

namely λdL and λdU , we next move to the problem of estimating them. As in the bivariate case,

we will only consider non-parametric estimation. It is important to take into account that,

while in the bivariate case there exist several proposals of non-parametric estimators of the tail

dependence coefficients, the literature in the multivariate case is very scarce. Nonetheless, some

proposals can be found. For example, Gijbels et al. (2020) propose to estimate the coefficients

λdL and λdU non-parametrically by using the empirical counterparts of the copula and the survival

functions. This approach has also been considered by Salazar and Ng (2015), who propose the

following estimators:

λ̂dL

(
k

n

)
=
Ĉn
(
k
n
, . . . , k

n

)
k
n

, (2.62)

and

λ̂dU

(
k

n

)
=

ˆ̄Cn
(
k
n
, . . . , k

n

)
1− k

n

, (2.63)

112



2.5. Tail dependence

where Ĉn and ˆ̄Cn are the empirical copula and empirical survival function defined in (2.30)

and (2.32), respectively, and k ∈ {1, . . . , n} is a parameter to be chosen. As Salazar and Ng

(2015) show, these are multivariate extensions of the non-parametric estimators of bivariate tail

dependence considered by Schmidt and Stadtmüller (2006) and defined in (2.52) and (2.53).

They also show that these estimators are asymptotically normal and strongly consistent.

The estimators in (2.62) and (2.63) suffer from the same drawback as their bivariate coun-

terparts, i.e., they depend on the choice of an appropriate threshold and, as we have already

discussed in the previous section, this is not a trivial task; see Salazar and Ng (2015) for some

proposals to deal with this issue. Moreover, in the multivariate case, additional difficulties

arise. For instance, Krupskii and Joe (2019) point out that the non-parametric estimation

of tail dependence is affected by the number of dimensions considered. In particular, as the

number of dimensions increases, larger sample sizes are needed to have reliable estimators of

tail dependence when k is small (in the case of lower tail dependence) or large (in the case of

upper tail dependence), due to sparsity of data in the tail regions. Krupskii and Joe (2019)

give some proposals to deal with this problem, although further research is surely needed.

The multivariate TCF defined in (2.61) allows to analyse multivariate tail dependence going

beyond the asymptotic definition of the coefficients (2.57) and (2.58). By analogy to the

bivariate case, we propose to estimate this multivariate extension of the TCF by replacing

the copula and the survival function in (2.61) by their empirical counterparts. That is, the

empirical version of the multivariate TCF that we propose is given, for t ∈ (0, 1), by:

q̂dC(t) =
Ĉn(t, . . . , t)

t
1(0,0.5] +

ˆ̄Cn(t, . . . , t)

1− t
1(0.5,1). (2.64)

That is,

q̂dC(t) =


Ĉn(t,...,t)

t
= λ̂dL(t), if t ∈ (0, 0.5],

ˆ̄Cn(t,...,t)
1−t = λ̂dU(t), if t ∈ (0.5, 1).
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In our framework, that is, when analysing multidimensional poverty, this function allows to

evaluate tail dependence using some specific thresholds, such as the first decile (t = 0.1) or

the second decile (t = 0.2). Thus, if we consider income, health and education as the three

dimensions of poverty, it is possible to analyse the probability that an individual that is in the

first (second) decile in income is also simultaneously in the first (second) decile in both health

and education.

To conclude this section, we want to highlight a particular characteristic of the tail dependence

coefficients defined so far that has been the subject of some debate. In particular, the tail

dependence coefficients in (2.43) and (2.44), as well as their natural multivariate generalisations

in (2.57) and (2.58), evaluate dependence only in the diagonal section of the copula, i.e, at points

(u, . . . , u) ∈ Id. That is, all the variables considered are required to become extreme at the

same rate. In fact, this characteristic is also shared by the non-asymptotic tool to measure

extremal dependence such as the tail concentration function defined in (2.49) and (2.61). For

the analysis of multidimensional poverty, focusing on the main diagonal of the copula allows

to study if the positions of the individuals in all the poverty dimensions are aligned, which

is a very relevant question, as we have repeatedly argued along this chapter. Hence, for our

purpose, limiting our attention to measures of tail dependence based on the main diagonal of

the copula does not constitute a problem. Nevertheless, some authors, such as Abdous et al.

(2005) or Schmid and Schmidt (2007a), among others, argue that this is a limiting notion of

dependence, as the tail behaviour of a distribution may be very different going to the copula’s

corners following an alternative route to the main diagonal. In fact, one could reasonably

argue that a multidimensional poverty analysis would be enriched by an approach that allows

to rigorously study tail dependence using different thresholds for each of the dimensions. In

the bivariate case, the conditional versions of measures of dependence such as the Spearman’s

rank correlation coefficient, which were briefly mentioned at the end of Section 2.5.1, allow to

do so. However, in the multivariate case, the literature on this issue is scarce. Nonetheless,

114



2.5. Tail dependence

some proposals can be found. In fact, the conditional version of ρ−d proposed by Schmid and

Schmidt (2007a) and its associated measure of multivariate tail dependence, which have been

previously mentioned, enable to study extremal dependence going beyond the main diagonal of

the copula. Furthermore, Schmid and Schmidt (2007a) also propose a non-parametric estimator

for this measure which is based on the empirical copula. However, as Gijbels et al. (2020) point

out, this estimator suffer from the same problems of the estimator for ρ−d proposed in Schmid

and Schmidt (2007b), and which have been discussed in Section 2.4.2.2. Finally, another, more

recent, proposal to measure tail dependence going beyond the main diagonal of the copula can

be found in Escanciano and Hualde (2019). We consider this as a promising field for further

research.
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Appendix 2.A

In this appendix, we briefly review the class of Average Orthant Dependence (AOD) measures,

which were introduced by Dolati and Úbeda-Flores (2006) and include, as a particular case,

the multivariate version of Spearman’s rho defined in (2.26). To define these measures, we

recall the concept of orthant dependence reviewed in Section 2.3.2. Then, taking into account

that, as it has been previously argued, the differences [C(u) − Π(u)] and [C̄(u) − Π̄(u)] can

be thought of as measures of “local” lower and upper orthant dependence, respectively, let us

define the following function D(C,C ′), which represents the C ′-average orthant dependence:

D(C,C ′) =

∫
Id

(C̄(u)− Π̄(u) + C(u)− Π(u))dC ′(u).

Hence, this function measures average orthant dependence with respect to a reference copula

C ′. Based on this function, Dolati and Úbeda-Flores (2006) propose the general class of AOD

measures of multivariate association, which is given by

ωd(C,C
′) =

D(C,C ′)

D(M,C ′)
. (A1)

As Pérez and Prieto-Alaiz (2016a) show, an appealing property of the AOD measures is that

they have a probabilistic interpretation in terms of multivariate concordance and include, as

members of this family, some of the well-known multivariate measures of association, as we will

see next. In fact, recalling the definition in (2.10), the family of AOD measures of multivariate

association given by (A1) can be written in terms of the probability of multivariate concordance

Q′d as follows:

ωd(C,C
′) =

Q′d(C,C
′)−Q′d(Π, C ′)

Q′d(M,C ′)−Q′d(Π, C ′)
. (A2)

Hence, ωd is a normalised probability of concordance between a random vector X with copula

C and a reference random vector with copula C ′. Noticeably, different choices of C ′ in (A2)
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lead to different AOD measures which, at the same time, become multivariate extensions of

well-known bivariate measures of association such as Spearman’s rho, Spearman’s footrule and

Gini’s gamma; see Nelsen (1998) for a detailed description of bivariate Speaman’s footrule and

Gini’s gamma in terms of copulas and see Genest et al. (2010) for a further discussion of these

measures in a multivariate framework.

In particular, when C ′ = Π in (A2), the multivariate version of Spearman’s rho ρd in (2.26) is

obtained:

ρd = ωd(C,Π) =
Q′d(C,Π)−Q′d(Π,Π)

Q′d(M,Π)−Q′d(Π,Π)
=

(d+ 1)

2d − (d+ 1)

[
2d−1Q′d(C,Π)− 1

]
. (A3)

Hence, ρd can be interpreted as a measure of average orthant dependence with respect to

independence and, as we pointed out in Section 2.4.2, is the average of the coefficients ρ−d and

ρ+
d also previously discussed in Section 2.4.2.

On the other hand, as it was shown by Pérez and Prieto-Alaiz (2016a), when C ′ = M in (A2),

the multivariate version of Spearman’s footrule proposed by Úbeda-Flores (2005) comes up,

namely:

ϕd = ωd(C,M) =
Q′d(C,M)−Q′d(Π,M)

Q′d(M,M)−Q′d(Π,M)
=
d+ 1

d− 1
Q′d(C,M)− 2

d− 1
. (A4)

Thus, ϕd is the normalised probability of concordance between a random vector X with copula

C and maximal dependence, represented by the commmonotonic copula M . When there is

maximal dependence (C = M), ϕd = 1 and when there is independence (C = Π), ϕd = 0.

Moreover, the lower bound of the multivariate Spearman’s footrule is −1
d
. Noticeably, unlike

ρd, ϕd is not a measure of multivariate concordance according to the axiomatic definitions of

Dolati and Úbeda-Flores (2006) and Taylor (2007).

Finally, Pérez and Prieto-Alaiz (2016a) also show that another particular case of the family of

AOD measures is the multivariate Gini’s gamma, γd, proposed by Behboodian et al. (2007). In
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particular, this coefficient comes up when C = A in (A2), that is,

γd = ωd(C,A) =
Q′d(C,A)−Q′d(Π, A)

Q′d(M,A)−Q′d(Π, A)
, (A5)

where A is the average of the upper and lower Fréchet-Hoeffding bounds, i.e. A = M+W
2

.

Therefore, the multivariate Gini’s gamma can be regarded as the normalised probability of

concordance with respect to A. This coefficient takes the value 1 when there is perfect positive

dependence (C = M) and the value 0 in the case of independence (C = Π). However, as far

as we know, it is not settled yet if γd is a measure of multivariate concordance according to

the axiomatic definition of Dolati and Úbeda-Flores (2006) and Taylor (2007), since A is not a

copula.

For a review of these three coefficients (ρd, ϕd and γd) and the proposals to estimate them, see

Pérez and Prieto-Alaiz (2016a), who also provide an empirical application of them to analyse

the multivariate dependence between the dimensions of the Human Development Index (HDI)

in the world using data from 187 countries. See also Genest et al. (2010) for a review of ϕd and

γd.
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Appendix 2.B

Proposition 1. The plug-in estimator of ρd defined in (2.37), namely

ρ̂d =
ρ̂−d + ρ̂+

d

2
, (B1)

where ρ̂−d and ρ̂+
d are the estimators in (2.36) and (2.34), respectively, coincides with the esti-

mator of ρd proposed by Dolati and Úbeda-Flores (2006) in the framework of AOD measures of

multivariate concordance.

Proof. The estimator of ρd proposed by Dolati and Úbeda-Flores (2006), that will be denoted

as ρ̂DUFd , is as follows (see Example 5.1 in that paper):

ρ̂DUFd =

1

n

n∑
j=1

[
C ′
(
R1j

n+1
, · · · , Rdj

n+1

)
+ C

′
(
R1j

n+1
, · · · , Rdj

n+1

)]
− ad,n

bd,n − ad,n
, (B2)

where

C ′
(
R1j

n+ 1
, · · · , Rdj

n+ 1

)
=

d∏
i=1

Rij

n+ 1
, C
′
(
R1j

n+ 1
, · · · , Rdj

n+ 1

)
=

d∏
i=1

(
1− Rij

n+ 1

)
, (B3)

and

ad,n =
1

2d−1
, bd,n =

1

n

n∑
j=1

(
j

n+ 1

)d
+

1

n

n∑
j=1

(
1− j

n+ 1

)d
. (B4)

Putting back (B3) and (B4) in (B2), the following expression comes up:

ρ̂DUFd =

1

n

1

(n+ 1)d

n∑
j=1

[
d∏
i=1

Rij +
d∏
i=1

(n+ 1−Rij)

]
− 1

2d−1

1

n

1

(n+ 1)d

[
n∑
j=1

jd +
n∑
j=1

(n+ 1− j)d
]
− 1

2d−1

. (B5)

Now, multiplying both the numerator and the denominator of (B5) by (n+ 1)d and taking into
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account that
n∑
j=1

jd =
n∑
j=1

(n+ 1− j)d, we have:

ρ̂DUFd =

1

n

n∑
j=1

(
d∏
i=1

Rij +
d∏
i=1

Rij

)
− (n+ 1)d

2d−1

2

n

n∑
j=1

jd − (n+ 1)d

2d−1

, (B6)

where Rij = n+ 1−Rij. On the other hand, replacing ρ̂−d and ρ̂+
d in (B1) by their expressions

in (2.36) and (2.34), respectively, the expression in (B6) comes up. Hence, it turns out that

ρ̂d = ρ̂DUFd and the result is proven.

Proposition 2. In the trivariate case (d = 3), the plug-in estimator of ρ3 defined in (2.37)

can be computed as the average of their corresponding pairwise sample coefficients, that is,

ρ̂3 =
ρ̂12 + ρ̂13 + ρ̂23

3
, (B7)

where ρ̂ik denotes the bivariate sample Spearman’s rho for the pair (Xi, Xk), with 1 ≤ i < k ≤ 3.

Proof. First, from equations (2.37)-(2.39), we obtain the following expression for ρ̂3:

ρ̂3 =
ρ̂−3 + ρ̂+

3

2
=

1

2

[
8

n(n− 1)(n+ 1)2

n∑
j=1

(R1jR2jR3j +R1jR2jR3j)− 2
n+ 1

n− 1

]
. (B8)

Now, taking into account that Rij = n+ 1−Rij, we have

R1jR2jR3j = (n+ 1)3 − (n+ 1)2

3∑
i=1

Rij + (n+ 1)(R1jR2j +R1jR3j +R2jR3j)−R1jR2jR3j,

and so the sumation in (B8) becomes

n∑
j=1

(R1jR2jR3j+R1jR2jR3j) = n(n+1)3−(n+1)2

3∑
i=1

n∑
j=1

Rij+(n+1)
n∑
j=1

(R1jR2j+R1jR3j+R2jR3j).
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Now, since
n∑
j=1

Rij = 1 + 2 + · · ·+ n = n(n+1)
2

, the expression above becomes

n∑
j=1

(R1jR2jR3j +R1jR2jR3j) = −1

2
n(n+ 1)3 + (n+ 1)

n∑
j=1

(R1jR2j +R1jR3j +R2jR3j). (B9)

Putting back (B9) in (B8), it turns out that

ρ̂3 =
4

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 3(n+ 1)

(n− 1)
. (B10)

On the other hand, the average of the pairwise sample Spearman’s coefficients is

ρ̂12 + ρ̂13 + ρ̂23

3
=

1

3

[
12

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 9(n+ 1)

n− 1

]
=

=
4

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 3(n+ 1)

(n− 1)
.

Hence, comparing this last equation with (B10), the result in (B7) comes up.
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Appendix 2.C

In the literature on copulas, several parametric families of copulas have been proposed for

building stochastic models. In this appendix, we focus on some parametric copulas in the class

of Archimedean copulas, which are especially popular in the literature and have been frequently

employed in financial applications. For a more complete discussion on parametric families of

copulas, we refer the interested reader to Nelsen (2006), Joe (2014) and Durante and Sempi

(2015).

The Archimedean copulas, which have been extensively discussed in McNeil and Nešlehová

(2009), are capable of capturing a wide range of different dependence structures. In the fol-

lowing, we focus on three particularly popular families of Archimedean copulas, namely the

Gumbel, Clayton and Frank families, with special attention to their tail dependence structure.

Gumbel d-copula

The Gumbel family of d-copulas, introduced in Gumbel (1960), is given by the following ex-

pression:

C(u1, . . . , ud) = exp

(
−
( d∑
i=1

(− log(ui))
θ
) 1
θ

)
, (C1)

where θ ≥ 1 is a parameter controlling the dependence. The case θ = 1 gives the independent

copula Π as a special case, and the limit of (C1) as θ → +∞ is the comonotonicity copula M .

That is, as the parameter θ increases, so does the degree of multivariate dependence.

Bivariate Gumbel copulas are positive quadrant dependent. Moreover, their tail dependence

coefficients are:

λL = 0 and λU = 2− 2
1
θ .

That is, bivariate Gumbel copulas present upper tail dependence for θ > 1 but they are lower

tail independent.
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Clayton d-copula

The Clayton family of d-copulas, introduced in Clayton (1978) is given by the following expres-

sion:

C(u1, . . . , ud) = max

{(
d∑
i=1

u−θi − (d− 1)

)− 1
θ

, 0

}
, (C2)

with θ ≥ −1
d−1

and θ 6= 0, where θ is a parameter controlling the dependence. The limiting case

θ → 0 gives the independent copula Π. Furthermore, for bivariate Clayton copulas, the tail

dependence coefficients take the following form:

λL =


2−

1
θ , if θ > 0,

0, if θ ∈ [−1, 0)

, λU = 0.

That is, Clayton copulas can present lower tail dependence for θ > 0 but they are upper tail

independent.

Frank d-copula

The Frank family of d-copulas was introduced by Frank (1979). The standard expression of

this family is:

C(u1, . . . , ud) = −1

θ
log

(
1 +

∏d
i=1(e−θui − 1)

(e−θ − 1)d−1

)
, (C3)

where θ > 0 when d ≥ 3. For the case d = 2, the parameter θ can be also extended to the case

θ < 0. The limiting case θ → 0 gives the independent copula Π. Moreover, the tail dependence

coefficients of bivariate Frank copulas are

λL = 0 and λU = 0.

That is, bivariate Frank copulas do not present neither lower nor upper tail dependence. Fur-

thermore, as Mai and Scherer (2017) points out, the distinct property of the Frank family is

that, in the bivariate case, it is the only Archimedean family which is radially symmetric.

123





Chapter 3

Empirical application: multivariate

dependence patterns between

dimensions of poverty in Europe

3.1 Introduction

The main goal of this thesis is to incorporate the measurement of the dependence between

dimensions of poverty into the multidimensional poverty analysis, an important aspect that

has been scarcely addressed in the literature. As we argued in the previous chapter, the

copula methodology is highly useful in this framework, since it allows to measure dependence

in multivariate, possibly non-Gaussian and possibly non-linear contexts, such as the ones we

usually face in Welfare Economics.

However, and despite their popularity in other fields such as finance or environmental sciences,

the application of copula-based approaches in Welfare Economics is scarce and mostly limited

to the bidimensional setting; see Dardanoni and Lambert (2001), Quinn (2007), Bonhomme

and Robin (2009), Bø et al. (2012) and Aaberge et al. (2018). In a multidimensional framework,
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the first contribution employing copula-based methods is due to Decancq (2014). He analysed

the temporal evolution of well-being in Russia by means of the multivariate Kendall’s tau and

the multivariate version of Spearman’s rho defined in (2.26) applied to the dimensions included

in the Human Development Index (HDI). Also, Pérez and Prieto-Alaiz (2016a) analysed the

multivariate dependence between the dimensions of the HDI using data from 187 countries

and three copula-based measures of multivariate association: the Spearman’s footrule in (A4),

the Gini’s gamma in (A5) and the Spearman’s rho defined in (2.26). More recently, Garćıa-

Gómez et al. (2021) analysed the evolution of multivariate dependence between the dimensions

of poverty in Europe over the period 2008-2014 using the multivariate extensions of Spearman’s

rho introduced in Section 2.4. These coefficients had been previously used by Pérez and Prieto

(2015) to study the evolution of the dependence between the poverty dimensions in Spain over

the period 2009-2013. Other recent examples of the application of copula-based methods to

poverty and welfare analyses can be found in Decancq (2020), Terzi and Moroni (2020) and

Tkach and Gigliarano (2020).

In this chapter, we contribute to the literature by performing an application of the copula-

based dependence concepts introduced in Chapter 2 to analyse the evolution of multivariate

dependence between the dimensions of poverty in the European Union over the period 2008-2018

using data from the EU-Statistics on Income and Living Conditions (EU-SILC) survey. This is

a very interesting period, since it includes both the Great Recession and the subsequent period

of economic recovery. First, we focus on the concept of orthant dependence and update the

application in Garćıa-Gómez et al. (2021). In particular, we apply the multivariate extensions of

Spearman’s rho reviewed in Section 2.4 to study the multivariate association between the three

dimensions of the AROPE rate. Among these multivariate extensions, especial emphasis will be

put on the coefficients ρ−d and ρ+
d , which allow to distinguish multivariate orthant dependence

from a “downward” and an “upward” perspective, respectively, and thus become particularly

informative in our context. In fact, when analysing multidimensional poverty, the coefficient
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ρ−d becomes especially relevant, as it measures multivariate dependence from a “downward”

perspective and captures the average probability of being simultaneously low-ranked in all

dimensions of poverty as compared to what this would be were those dimensions independent.

After the analysis based on orthant dependence, we focus on the concept of multivariate tail

dependence introduced in Section 2.5. Again, when analysing multidimensional poverty, the

multivariate dependence in the lower tail of the joint distribution is particularly important,

since it captures the probability that an individual who is extremely low-ranked (extremely

poor) in one dimension is also extremely poor in the other dimensions considered. To the

best of our knowledge, this is the first application of multivariate tail dependence in Welfare

Economics and, more specifically, to analyse multidimensional poverty. Hence, the contribution

of this thesis is pioneering in this area and can pave the way for future contributions.

The rest of the chapter is organised as follows. In Section 3.2 we describe the data, variables

and estimation procedure used to carry out the empirical application. Section 3.3 provides a

descriptive graphical analysis of some interesting patterns of multivariate dependence between

the poverty dimensions that can be found in the European Union. The results of the empirical

application for the EU-28 countries are presented in Sections 3.4 and 3.5, presenting first the

results based on the multivariate extensions of Spearman’s rho and then those based on the

multivariate tail dependence analysis.

3.2 Data description and estimation procedure

3.2.1 Data and variables

The data we use comes from the EU-SILC survey, which is the key reference for data on income

and living conditions in the EU. In particular, we use the cross-sectional surveys of all years of

the period 2008-2018.
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The dimensions of poverty we consider are those included in the AROPE rate, namely income,

material needs and work intensity. The selection of these dimensions is based on the relevance

of the AROPE rate in the European context, as it is the headline indicator to monitor and

implement effective poverty-reduction policies in the framework of the Europe 2020 Strategy.

In fact, one of the Europe 2020 headline targets established by the European Commission was

to reduce, by 20 million, the number of people at risk of poverty and social exclusion.1

The three measures characterising the three dimensions of the AROPE rate, namely income,

work intensity and material deprivation, are defined as follows:

• The measure of income is the equivalised disposable income, which is calculated as the

total income of the household, after taxes and other deductions, divided by the equivalised

household size.2

• The work intensity of a household is the ratio of the total number of months that all

working-age household members have worked during the income reference year and the

total number of months they could have theoretically worked during the same period.3

• Material deprivation is originally defined as the enforced lack in a number of essential

items, namely: 1) the capacity of facing unexpected expenses; 2) one-week annual holiday

away from home; 3) a meal involving meat, chicken or fish every second day; 4) an

adequately warm dwelling; 5) a washing machine; 6) a colour television; 7) a telephone;

8) a car; 9) the capacity to pay their rent, mortgage or utility bills.

For ease of interpretation we transform material deprivation into a variable that indicates the

number of no-deprivations out of the nine possible, so that the new variable takes the following

1Despite the importance of the AROPE rate from the public policy perspective, the choice of the dimensions
involved in its calculation is not exempt of criticism; see, for instance, the discussion in Nolan and Whelan
(2011, ch.11).

2The equivalised household size is defined according to the modified OECD scale, which gives a weight of
1 to the first adult, 0.5 to other household members aged 14 or over and 0.3 to household members aged less
than 14.

3Eurostat considers that a working-age person is a person aged 18-59 years, excluding also the students aged
18-24 years.
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values: 0 (having all the 9 possible deprivations), 1 (having eight out of the nine aforementioned

deprivations), . . . , 9 (having no deprivations). Thus, high values of the three variables con-

sidered (equivalised disposable income, work intensity, and number of no-deprivations) convey

lower chance to be poor, while low values of each variable convey higher chance to be poor.

The unit of analysis is the household. We only work with subsamples of households for which

we have complete information for all the three variables. In particular, in these subsamples,

households composed only of children, of students aged 18-24 and/or people aged 60 or more

are excluded, due to their missing values in the work intensity variable. In these subsamples,

the sample sizes range from 2270 observations in Cyprus in 2009 to 14773 observations in Italy

in 2008.4

3.2.2 Estimation procedure

As we have seen in Chapter 2, the copula methodology focuses on the positions of households

in each variable and not on the values these variables take for these households. Thus, the

use of copula-based methods requires ranking the households in each dimension. In doing

so, ties could arise in one or multiple variables. In our case, for example, the work intensity

and material deprivation variables are of non-continuous nature, thus leading to a considerable

number of ties. The problem of having ties in a copula-based framework is that the copula

in (2.1) is no longer unique. Therefore, the values of the different coefficients reviewed in the

previous chapter can vary widely even based on the same joint distribution. Moreover, the

non-parametric estimators of these measures cannot be applied directly, since there are not

unique ranks.

Although the literature is still scarce, some proposals to deal with ties can be found. On one

hand, Decancq (2014) proposed to use secondary variables to break the ties and thus obtain

unique ranks. On the other hand, Quessy (2009), Mesfioui and Quessy (2010) and Genest et al.

4We do not have data for Croatia in 2008 and 2009 and for Ireland, Slovakia and the UK in 2018.
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(2013) have proposed tie-corrected versions of the multivariate generalisations of Spearman’s

rho in (2.21), (2.23) and (2.25). An empirical application of these tie-corrected measures to

multivariate poverty can be found in Garćıa-Gómez et al. (2021). However, to the best of

our knowledge, there is not any proposal of tie-corrected versions of tail dependence measures,

neither in the bivariate nor in the multivariate case. Hence, in order to be coherent over

the entire empirical application, we have adopted the solution proposed by Decancq (2014).

Moreover, Garćıa-Gómez et al. (2021) showed that, when applying the multivariate extensions

of Spearman’s rho, there are not substantial differences in the results when using one approach

or the other. Hence, we break the ties using additional information from secondary variables

so that we eventually get, for each of the three variables considered (income, work intensity

and no material deprivation), unique ranks {1, 2, . . . , n}, where n is the sample size (or the

number of households in the sample). These unique ranks will be used in order to estimate

non-parametrically the multivariate extensions of Spearman’s rho discussed in Section 2.4 and

the empirical version of the multivariate tail concentration function introduced in Section 2.5.2.

Over the next lines, we will explain in detail how we use additional information to break the ties

and obtain unique ranks. Firstly, when a tie occurs in work intensity, households are ranked

according to two secondary ranking variables measuring the intensity in both education and

health of the household. The intensity of education is the sum of the highest ISCED (Interna-

tional Standard Classification of Education) level attained by all members of the household that

are not currently in education divided by the highest possible value of this sum. The health

intensity indicator is constructed in a similar way as the sum of the values of the self-assessed

health indicator of all members of the household divided by the highest possible value of this

sum. The choice of these secondary variables is not arbitrary. Both the relationships between

educational and labour market outcomes and between health and labor market attainments

are well documented in the literature; see, for example, Nickell (1979), Mincer (1991), Wol-

bers (2000), Farber (2004) and Riddell and Song (2011), regarding the former, and Chirikos
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(1993), Ettner et al. (1997), Currie and Madrian (1999), Pelkowski and Berger (2004) and

Garćıa-Gómez and López-Nicolás (2006), regarding the latter. As secondary ranking variable

for material deprivation, we use the burden of the housing cost. An overburden of the housing

cost can be seen as an indicator of financial stress (Whelan and Mâıtre, 2012; Deidda, 2015)

and as an indicator of vulnerability (Brandolini et al., 2013). We use both a dummy variable

taking the value 1 if the housing cost is a burden for the household and the value of the housing

cost itself. Thus, households for which the housing cost is a burden are assigned worse positions

than those for which it is not. If a tie still exists for those households for which the housing

cost is a burden they are ranked using the value of the housing cost. That is, the higher is

the housing cost the worse is the position of the household. Both in the case of work intensity

and material deprivation, if ties still exist after ranking households according to the secondary

variables, the ties are broken at random. As we previously argued, with this procedure we

end up having, for each variable, unique ranks {1, 2, . . . , n}. Then, with these unique ranks we

will estimate non-parametrically the multivariate extensions of Spearman’s rho in (2.21), (2.23)

and (2.25) and the multivariate tail concentration function in (2.61), using their corresponding

sample versions in (2.34), (2.36), (2.37) and (2.64), respectively. We are aware that this solution

is far from being completely satisfactory, as it is unclear the effect of using additional secondary

variables on the concordance properties of the original variables. Nevertheless, as we argued

before, Garćıa-Gómez et al. (2021) showed that, when applying the multivariate extensions of

Spearman’s rho, the procedure of breaking the ties using additional information and the use of

the tie-corrected versions of the coefficients in Quessy (2009), Mesfioui and Quessy (2010) and

Genest et al. (2013) give very similar results. On the other hand, with regard to the application

of tail dependence in the presence of ties, further research is needed, since there is not, as far

as we know, any proposal of tie-corrected versions of tail dependence measures, neither in the

bivariate nor in the multivariate setting.5

5Despite this, we have tested the robustness of the results of our multivariate tail dependence application
both by breaking the ties at random with 1000 replications and by applying the methods in Genest et al.
(2017) to estimate the empirical copula with discrete margins. This is just a first approximation to address this
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3.3 A primer look at the multivariate data

Before presenting the results on the estimated multivariate dependence measures, it is worth

performing a preliminary graphical analysis of the multivariate data, since it allows to ob-

serve some interesting patterns of multivariate dependence between the three dimensions of the

AROPE rate in the EU. As we will see later, these patterns will be precisely confirmed by the

analyses provided in Section 3.4.

To begin with, and to illustrate cross-country comparisons, Figure 3.1 represents the unique

ranks described above, rescaled to [0, 1] as defined in (2.31), for the three dimensions of the

AROPE rate in Bulgaria and Romania in 2008. As we can see, the points are not uniformly

distributed over the unit cube, indicating departure from independence. Actually, in both

countries we observe a positive association, as the points tend to concentrate around the main

diagonal of the cube, that is, the three variables tend to be jointly large or small together.

Moreover, both plots are denser around the vertexes (0, 0, 0) and (1, 1, 1), but in Bulgaria the

concentration is higher around the former than around the latter, suggesting that dependence

in the lower orthant is higher than in the upper orthant. This means that, in this country, the

tendency of households to be simultaneously low-ranked in the three dimensions of poverty is

higher than their tendency to be simultaneously high-ranked in the three dimensions of poverty.

The contrary occurs in Romania, where there is a higher concentration of observations around

the vertex (1, 1, 1), suggesting that upper orthant dependence is higher than lower orthant

dependence. That is, in Romania, the tendency of households to be simultaneously high-

ranked in the tree dimensions of poverty is higher than their tendency to be simultaneously

low-ranked in the three dimensions of poverty. As a matter of fact, these patterns are properly

captured by the coefficients ρ̂−d and ρ̂+
d , which in the case of Bulgaria will fulfil the condition

ρ̂−d > ρ̂+
d while they will behave the other way round in Romania. Furthermore, as we will

complex problem, but the preliminary results are very promising, since our main conclusions seem to be robust
to the method used to deal with the ties.
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see when analysing tail dependence, in Bulgaria lower tail dependence tends to be higher than

upper tail dependence, whereas the contrary occurs in Romania.

Figure 3.1: Scatter plots of scaled ranks for Bulgaria (2008) and Romania (2008)

To illustrate temporal comparisons, Figure 3.2 displays three scatter plots representing the

scaled ranks for Spain in 2008, 2014 and 2018. As we can see, between 2008 and 2014 there was

an increase in the multivariate dependence between dimensions of the AROPE rate in Spain, as

the concentration of the observations around the main diagonal increased over that period. This

suggests that, over the period 2008-2014, there was, in this country, an increase in the tendency

of households to be simultaneously low or high-ranked in the tree dimensions of poverty. On

the contrary, the concentration of observations around the main diagonal seems to remain

rather stable or slightly decrease between 2014 and 2018. Thus, between those two years there

seems to be a stabilisation or slight decrease in multivariate dependence between dimensions of

poverty, that is, in the tendency of household to be simultaneously low or high-ranked in the

tree dimensions of poverty. Moreover, in the three years considered, the concentration of points

in the lower orthant seems to always be higher than in the upper orthant, which means that,
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in Spain, the tendency of households to be simultaneously low-ranked in the three dimensions

of the AROPE rate is higher than their tendency to be simultaneously high-ranked in these

dimensions. Hence, we would expect ρ̂−3 > ρ̂+
3 , with an increase in the value of the coefficients

between 2008 and 2014 and a decrease afterwards. Moreover, with regard to tail dependence,

we would expect multivariate tail dependence between poverty dimensions to be higher in the

lower tail than in the upper tail of the joint distribution, with an increase in the degree of

tail dependence between 2008 and 2014 followed by a slight decrease afterwards. That is, we

expect, first, the probability that a household that is extremely poor in one dimensions is also

extremely poor in the other two dimensions to be higher than the probability that a household

that is extremely rich in one dimension is also extremely rich in the other two dimensions. We

also expect an increase in these probabilities over the period 2008-2014 and a decline afterwards.

As we will see, the results in Sections 3.4 and 3.5 confirm these patterns.

Figure 3.2: Scatter plots of scaled ranks for Spain (2008, 2014 and 2018)

To complement this graphical analysis, we have split the unit cube [0, 1]3 in 64 boxes of the

same size and we have computed (see Table 3.1) the observed relative frequencies in the four

boxes along the main diagonal for the same countries and years presented in Figures 3.1 and

3.2. The four boxes are denoted as {u ≤ 0.25, 0.25 < u ≤ 0.5, 0.5 < u ≤ 0.75, u > 0.75},

where u ≤ 0.25 denotes the component-wise inequality, i.e. ui ≤ 0.25 for i = 1, 2, 3, and so this

first box records the share of households being simultaneously in the 1st quartile (low-ranked)
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in all dimensions. The other three boxes are defined similarly.

u ≤ 0.25 0.25 < u ≤ 0.5 0.5 < u ≤ 0.75 u > 0.75 Total
Bulgaria (2008) 11.06% 3.43% 3.30% 7.28% 25.07%
Romania (2008) 5.80% 2.34% 2.57% 9.10% 19.81%
Spain (2008) 7.23% 2.28% 2.35% 3.29% 15.15%
Spain (2014) 8.14% 2.77% 2.32% 5.27% 18.5%
Spain (2018) 7.68% 2.07% 2.17% 3.38% 15.3%

Table 3.1: Share of households in the main diagonal of the unit cube [0,1]3 in some selected
EU-28 countries and some selected years.

If the three variables were independent, the proportion of points in each box would be the same

and equal to 1.56%. However, in all the examples in Table 1, there is a larger proportion of

points concentrated around the main diagonal, implying departure from independence. It is also

worth noticing that, in all cases, the frequencies are higher in the extreme boxes (u ≤ 0.25 and

u > 0.75), suggesting positive orthant dependence, in agreement with the patterns displayed

in Figures 3.1 and 3.2. Furthermore, in Bulgaria and Spain, the frequencies are higher in

the lower box (u ≤ 0.25) than in the upper box (u > 0.75), which suggest that multivariate

dependence is higher in the lower part of the joint distribution than in the upper part. That

is, the tendency of households to be simultaneously low-ranked in the three dimensions of the

AROPE rate is higher than their tendency to be simultaneously high-ranked in these three

dimensions. However, the contrary occurs in Romania, where dependence in the upper part of

the joint distribution seems to be higher than in the lower part. Finally, Table 3.1 also shows

the increase in multivariate dependence between poverty dimensions in Spain between 2008 and

2014, since the proportion of points around the main diagonal of the unit cube increased over

that period, suggesting an increase in the tendency of households to be simultaneously low or

high-ranked in the three dimensions of poverty. By contrary, this proportion decreased between

2014 and 2018, suggesting a decline in multivariate dependence in this period, a decrease that

is specially relevant in the upper part of the joint distribution. As we will see later, all these

patterns will be confirmed by the detailed analysis performed in the next sections.
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3.4 Multivariate orthant dependence analysis

In this section, we analyse the evolution of the multivariate orthant dependence between the

three dimensions considered in the AROPE rate in the EU-28 countries over the period 2008-

2018 by applying the multivariate generalisations of Spearman’s rho, ρ−d , ρ+
d and ρd discussed in

Section 2.4. Recall that ρ−d and ρ+
d measure multivariate orthant dependence from a downward

and an upward perspective, respectively. In particular, ρ−d assesses the similarity between our

multivariate data and the situation of independence in the lower orthant, hence capturing some-

how the probability, in average, that individuals are simultaneously “poor” in all dimensions of

poverty. On the other hand, ρ+
d assesses the similarity between our multivariate data and the

situation of independence in the upper orthant, and thus captures somehow the probability, in

average, that individuals are simultaneously “rich” in all dimensions. Hence, the higher the

values of these coefficients, the greater the departure from independence and the higher the

degree of lower and upper orthant dependence, respectively.

To perform the empirical application, we compute the non-parametric estimators of ρ−d and ρ+
d

defined in (2.36) and (2.34), respectively, applied to the unique ranks obtained as explained in

Section 3.2.2. To estimate the coefficient of average orthant dependence, namely ρd, we use the

plug-in estimator introduced in (2.37). As we pointed out in Section 2.4.2.2, the asymptotic

variances of these estimators are complex. Therefore, we rely on a non-parametric bootstrap

method to compute the bootstrap standard errors as the sample standard deviation of 1000

bootstrapped point estimates of the coefficients.

Figures 3.3 and 3.4 display, for the EU-28 countries and over the whole period analysed, the

evolution of the values of ρ̂−3 and ρ̂+
3 , respectively, together with the 95% standard confidence

intervals using the bootstrap standard errors. The first conclusion that can be drawn from

Figures 3.3 and 3.4 is that, for all countries and all years, both ρ̂−3 and ρ̂+
3 are positive, indicating

a positive multivariate association between poverty dimensions both in the lower and in the

upper orthant. This means that low (high) values of income tend to occur simultaneously with
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low (high) values of the other two dimensions.

Another relevant feature that can be highlighted is that, regardless of the year and the country,

the value of ρ̂−3 (in Figure 3.3) is greater than that of ρ̂+
3 (in Figure 3.4) in all countries except

in Romania, where ρ̂+
3 > ρ̂−3 . This means that, in the vast majority of the EU countries, average

lower orthant dependence tends to be higher than average upper orthant dependence, that is,

on average, the probability of being simultaneously low-ranked in all poverty dimensions tends

to be higher than the probability of being simultaneously high-ranked in all poverty dimensions.

However, Figures 3.3 and 3.4 show that there are significant cross-country differences in the

evolution of multivariate dependence between poverty dimensions. In general, two different

periods can be distinguished in these figures. First, between 2008 and 2014 we observe, in most

of the EU countries, an increase in multivariate dependence both in the lower and in the upper

orthant. This means that, following the financial crisis of 2008, most of the EU countries expe-

rienced an increase in the tendency of households to be simultaneously poor or simultaneously

rich in all dimensions of poverty. In fact, in countries such as Spain, Cyprus, Denmark, Italy

or the Netherlands, we observe a clear increasing trend in multivariate dependence over that

period. Moreover, in some countries such as Greece and the UK there is not a clear trend,

with several ups and downs over the period, but the multivariate dependence is clearly higher

in 2014 than in 2008. By contrary, in countries like Austria, Germany or Sweden there is a

considerable overlap in the confidence intervals for these two years and thus, just by looking at

Figures 3.3 and 3.4, we cannot give meaningful conclusions on the variation of the dependence

coefficients. Noticeably, no clear decreasing trend shows up in any country. That is, we do not

find any country where the tendency of household to be simultaneously poor or simultaneously

rich in the three dimensions of the AROPE rate decreased between 2008 and 2014.
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We also notice that, after the general increase in multivariate dependence observed between

2008 and 2014, there seems to have been a period of stabilisation or even, in some countries,

decrease in orthant dependence. In particular, we find countries where the values of ρ̂−3 and ρ̂+
3

have remained rather stable over that period, such as Austria, Denmark or Finland. However,

in other countries, we find a clear decreasing trend, such as in the case of Estonia, Greece,

Luxembourg and Spain. In Italy and Hungary we also find this decreasing trend, but with an

upturn at the end of the period. Noticeably, despite the stable or decreasing trends that are

found in the vast majority of the countries over 2014-2018, there are some particular cases,

namely France, Sweden and, especially, Romania and the Netherlands, in which ρ̂−3 and ρ̂+
3

increased over this period.

Finally, Figures 3.3 and 3.4 also highlight that, despite the declining trend in multivariate

dependence observed in many EU countries between 2014 and 2018, the values of both ρ̂−3 and

ρ̂+
3 seem to be still greater in 2018 than in 2008 in most of the countries. This feature is clear

in some cases, such as Greece or Spain, whereas in others, say the Czech Republic or Slovenia,

there is a considerable overlap in the confidence intervals and hence we cannot draw meaningful

conclusions.

To get a better insight into the evolution of multivariate dependence over the whole period

analysed (2008-2018) and the two sub-periods previously highlighted (2008-2014 and 2014-

2018), Figure 3.5 displays, for each EU-28 country, the levels of ρ̂−3 for years 2008, 2014 and

2018.6 Furthermore, Tables 3.2 and 3.3 report point estimates of ρ̂−3 and ρ̂+
3 , respectively, as

well as their bootstrap standard errors (in parenthesis), for 2008, 2014 and 2018. Moreover,

in columns 4, 5 and 6 of these tables we display the results of three two-independent sample

t-tests with unequal variances, calculated using bootstrap standard errors. In particular, we

perform a one-sided test to determine the significance of the variation of the corresponding

coefficient over the two sub-periods 2008-2014 (in column 4) and 2014-2018 (in column 5), and

6We focus on ρ̂−3 because it measures lower orthant dependence, which is arguably particularly relevant in
multidimensional poverty analysis, but the figure is very similar if we consider ρ̂+3 .
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over the whole period 2008-2018 (in column 6). The corresponding p-value (in parenthesis) is

computed assuming asymptotic normality of the t-statistic. Table 3.4 displays the same results

for ρ̂3, the coefficient of average orthant dependence.

Figure 3.5: Cross-country differences in the level of ρ̂−3 for years 2008, 2014 and 2018.
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The first feature that can be noticed in Figure 3.5 is that, in 2008, the lowest values for ρ̂−3 are

found in Denmark and the Netherlands. Other Scandinavian countries, namely Sweden and

Finland, had also relatively low levels of multivariate dependence, a feature that can also be

found in countries from Central (Austria, Luxembourg and the Czech Republic) and Southern

(Italy and Spain) Europe. By contrary, the highest values of ρ̂−3 are found in Belgium, Bulgaria

and Ireland. If we look now at the situation in 2014 as compared to 2008, we first observe a

general increase in multivariate dependence between dimensions of poverty. This means that,

after the financial crisis, there was in Europe a general increase in the tendency of households to

be simultaneously poor in the three dimensions of the AROPE rate. We also observe a reduction

in the cross-country differences, with those countries that were relatively better off coming closer

to the situation of the rest of the countries. Furthermore, between 2014 and 2018 we observe

a decrease in the level of ρ̂−3 in some countries such as Italy, Austria or the Czech Republic,

whereas in other countries the level of the coefficient has remained stable or has even increased

(as in the case of Sweden). Thus, cross-country differences seem to have increased again over

that period. In this sense, in 2018 we observe, on one hand, countries with relatively low levels

of multivariate dependence (such as Luxembourg, Denmark or Austria, among others) and,

on the other hand, countries where the dependence between poverty dimensions is particularly

high (such as Croatia, Hungary or Belgium).

In accordance with Figure 3.5, the results reported in column 4 of Tables 3.2 and 3.3, which

focus on the change of the coefficients in the sub-period 2008-2014, indicate that, in most EU

countries, there was a significant increase in both ρ̂−3 and ρ̂+
3 between these two years. Thus,

we can say that, over that period, there was a general increase in the multivariate dependence

between dimensions of poverty in the EU. This means that, after the Great Recession, there

was, in most of the EU countries, a significant increase in both the average rescaled probability

of being simultaneously low-ranked and the average rescaled probability of being simultaneously

high-ranked in all dimensions of poverty. Noticeably, the highest increase in both lower and

142



3.4. Multivariate orthant dependence analysis

upper orthant dependence is found in Spain, one of the countries most hardly hit by the

economic crisis. Another country severely affected by the crisis, namely Greece, also experienced

a substantial increase in these two types of dependence. Furthermore, the same conclusions are

drawn if we focus on the coefficient of average orthant dependence, namely ρ̂3; see column 4 of

Table 3.4.

Looking at column 5 of Tables 3.2 and 3.3, which focus on the change of the coefficients in

the sub-period 2014-2018, the results displayed in Figure 3.5 are confirmed. In particular, we

find, for the vast majority of EU-28 countries, either significant decreases in the coefficients

ρ̂−3 and ρ̂+
3 (as it is the case of the Czech Republic, Greece, Spain or Poland, among others)

or no significant changes in the level of multivariate dependence (as it is the case of Belgium,

Denmark or Portugal). We also find four countries (France, the Netherlands, Romania and

Sweden) where both coefficients increased over the period 2014-2018. This results suggest

that,during the economic recovery period, in most of the EU countries, the average rescaled

probability of being simultaneously low-ranked and the average rescaled probability of being

simultaneously high-ranked in all dimensions of poverty decreased or remained stable. Again,

the same conclusions are drawn if we focus on the coefficient of average orthant dependence,

namely ρ̂3; see column 5 of Table 3.4.

Finally, from the results displayed in column 6 of Tables 3.2 and 3.3, which focus on the

changes in the coefficients in the whole period analysed (2008-2018), we can conclude that, in

the majority of the EU countries, the values of the coefficients were still significantly higher in

2018 than in 2008. This is the case, for example, of Belgium, Spain, France, Portugal or the

Netherlands. Thus, in these countries, it was still more likely to be simultaneously low(high)-

ranked in all dimensions of poverty in 2018 than in 2008. In other countries, such as Austria

or Italy, we do not find significant differences between the values in 2018 and those in 2008.

Finally, we also find countries (e.g, the Czech Republic, Estonia or Poland) where the values of

ρ̂−3 and ρ̂+
3 were significantly lower in 2018 than at the beginning of the whole period analysed,
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which means that, in these countries, the average probability of being simultaneously low or

high-ranked in all dimensions of poverty was lower in 2018 than in 2008. Moreover, as it can

be seen in column 6 of Table 3.4, the same conclusions can be drawn regarding the coefficient

of average orthant dependence, ρ̂3.

To complement the analysis of three-dimensional dependence, we have also analysed all pos-

sible pairwise relationships between the three dimensions of the AROPE rate. The results

are displayed in Figure 4.5, which shows the evolution of the Spearman’s rho coefficients of

pairwise dependence between income and work intensity (ρ̂income,work, in red), income and no-

material deprivation (ρ̂income,no−deprivation, in green) and work intensity and no-material depri-

vation (ρ̂work,no−deprivation, in blue), together with 95% bootstrap confidence intervals. Several

features emerge from this figure. First, all the pairwise coefficients are always positive, thus

confirming the positive relationship between the different dimensions of poverty in the EU. Sec-

ond, in all countries and for all years, the highest level of dependence is found either between

income and work intensity or between income and no-material deprivation. This means that

the probability of being simultaneously low-ranked (or high-ranked) in income and work inten-

sity and in income and no-material deprivation is clearly higher than the probability of being

simultaneously low-ranked (or high-ranked) in work intensity and no-material deprivation. And

third, the evolution between 2008 and 2018 is very similar for the three pairwise coefficients. In

particular, as it happened with ρ̂−3 and ρ̂+
3 , we observe, in most of the EU countries, an increase

in dependence after the Great Recession (between 2008 and 2014), followed by a stabilisation

or decline over the last four years of the period analysed.

Moreover, and most interestingly, since the three pairwise coefficients are all positive, the

coefficient of maximal dependence ρ̂max3 , defined in (2.29), should be equal to either ρ̂−3 or

ρ̂+
3 ; see page 90. Noticeably, in our case, ρ̂max

3 = ρ̂−3 in all countries (except in Romania,

where ρ̂max
3 = ρ̂+

3 ), indicating that the positions of the households in the three dimensions of

poverty tend to be aligned around the corner (0, 0, 0). In terms of poverty analysis, this fact
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ρ̂−3

2008 2014 2018
t-test t-test t-test

Change 08-14 Change 14-18 Change 08-18
AUSTRIA 0.373 0.412 0.386 2.458 -1.673 0.839

(0.011) (0.011) (0.011) (0.007) (0.047) (0.201)
BELGIUM 0.501 0.558 0.549 4.221 -0.673 3.474

(0.010) (0.010) (0.010) (0.000) (0.251) (0.000)
BULGARIA 0.572 0.553 0.500 -1.167 -3.482 -4.683

(0.011) (0.011) (0.010) (0.122) (0.000) (0.000)
CYPRUS 0.383 0.446 0.462 3.535 1.029 4.351

(0.014) (0.011) (0.012) (0.000) (0.152) (0.000)
CZECH REPUBLIC 0.394 0.421 0.369 2.097 -3.690 -2.008

(0.008) (0.010) (0.010) (0.018) (0.000) (0.022)
GERMANY 0.437 0.447 0.435 0.928 -1.065 -0.196

(0.008) (0.008) (0.008) (0.177) (0.143) (0.422)
DENMARK 0.276 0.374 0.365 5.911 -0.514 4.896

(0.012) (0.012) (0.014) (0.000) (0.304) (0.000)
ESTONIA 0.425 0.441 0.378 0.966 -3.948 -2.824

(0.012) (0.011) (0.012) (0.167) (0.000) (0.002)
GREECE 0.412 0.520 0.428 8.573 -9.570 1.470

(0.010) (0.008) (0.005) (0.000) (0.000) (0.071)
SPAIN 0.342 0.499 0.452 15.792 -4.699 10.669

(0.007) (0.007) (0.007) (0.000) (0.000) (0.000)
FINLAND 0.378 0.410 0.412 2.769 0.223 2.856

(0.008) (0.008) (0.009) (0.003) (0.412) (0.002)
FRANCE 0.412 0.441 0.464 2.596 2.045 4.575

(0.008) (0.008) (0.008) (0.005) (0.020) (0.000)
CROATIA NA 0.502 0.524 NA 1.564 NA

NA (0.007) (0.009) NA (0.059) NA
HUNGARY 0.449 0.525 0.520 6.980 -0.405 5.701

(0.008) (0.009) (0.009) (0.000) (0.343) (0.000)
IRELAND 0.546 0.562 NA 1.144 NA NA

(0.010) (0.006) NA (0.126) NA NA
ITALY 0.384 0.443 0.385 7.168 -7.172 0.119

(0.006) (0.011) (0.006) (0.000) (0.000) (0.452)
LITHUANIA 0.444 0.506 0.489 3.821 -1.036 2.704

(0.012) (0.013) (0.012) (0.000) (0.150) (0.003)
LUXEMBOURG 0.382 0.377 0.295 -0.277 -4.420 -4.737

(0.013) (0.011) (0.013) (0.391) (0.000) (0.000)
LATVIA 0.475 0.477 0.488 0.102 0.715 0.786

(0.012) (0.012) (0.011) (0.459) (0.237) (0.216)
MALTA 0.491 0.481 0.405 -0.590 -3.944 -4.285

(0.013) (0.008) (0.015) (0.277) (0.000) (0.000)
THE NETHERLANDS 0.272 0.387 0.426 9.497 3.242 12.610

(0.009) (0.007) (0.009) (0.000) (0.001) (0.000)
POLAND 0.438 0.472 0.422 3.868 -5.329 -1.767

(0.006) (0.010) (0.007) (0.000) (0.000) (0.039)
PORTUGAL 0.426 0.486 0.489 3.830 0.312 4.555

(0.012) (0.010) (0.007) (0.000) (0.377) (0.000)
ROMANIA 0.439 0.419 0.482 -1.481 4.705 3.355

(0.009) (0.012) (0.009) (0.069) (0.000) (0.000)
SWEDEN 0.357 0.375 0.413 1.166 2.300 3.626

(0.010) (0.008) (0.012) (0.122) (0.011) (0.000)
SLOVENIA 0.410 0.463 0.415 4.922 -4.175 0.451

(0.008) (0.011) (0.009) (0.000) (0.000) (0.326)
SLOVAKIA 0.408 0.451 NA 2.802 NA NA

(0.011) (0.007) NA (0.003) NA NA
UNITED KINGDOM 0.423 0.522 NA 8.377 NA NA

(0.009) (0.007) NA (0.000) NA NA
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.

Table 3.2: Coefficient of trivariate lower orthant dependence, ρ̂−3 , between the dimensions of
the AROPE rate in EU-28 countries (2008-2018).
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ρ̂+
3

2008 2014 2018
t-test t-test t-test

Change 08-14 Change 14-18 Change 08-18
AUSTRIA 0.338 0.372 0.338 2.262 -2.274 0.045

(0.011) (0.010) (0.010) (0.012) (0.011) (0.482)
BELGIUM 0.436 0.484 0.477 3.549 -0.482 3.039

(0.009) (0.010) (0.010) (0.000) (0.315) (0.001)
BULGARIA 0.528 0.529 0.461 0.046 -4.466 -4.305

(0.012) (0.011) (0.010) (0.482) (0.000) (0.000)
CYPRUS 0.379 0.437 0.431 3.326 -0.341 2.854

(0.013) (0.011) (0.013) (0.000) (0.367) (0.002)
CZECH REPUBLIC 0.370 0.383 0.325 1.065 -4.383 -3.745

(0.008) (0.009) (0.009) (0.143) (0.000) (0.000)
GERMANY 0.397 0.401 0.379 0.397 -2.012 -1.675

(0.007) (0.008) (0.008) (0.346) (0.022) (0.047)
DENMARK 0.229 0.325 0.315 6.381 -0.602 5.273

(0.010) (0.011) (0.012) (0.000) (0.274) (0.000)
ESTONIA 0.392 0.410 0.349 1.175 -4.003 -2.689

(0.011) (0.010) (0.011) (0.120) (0.000) (0.004)
GREECE 0.404 0.508 0.416 8.134 -9.204 1.019

(0.010) (0.008) (0.005) (0.000) (0.000) (0.154)
SPAIN 0.314 0.465 0.403 15.909 -6.440 9.285

(0.007) (0.007) (0.007) (0.000) (0.000) (0.000)
FINLAND 0.330 0.353 0.360 2.144 0.660 2.705

(0.008) (0.008) (0.008) (0.016) (0.255) (0.003)
FRANCE 0.373 0.395 0.416 2.014 1.828 3.807

(0.008) (0.008) (0.008) (0.022) (0.034) (0.000)
CROATIA NA 0.497 0.499 NA 0.085 NA

NA (0.011) (0.009) NA (0.466) NA
HUNGARY 0.434 0.509 0.496 6.429 -1.009 4.602

(0.009) (0.008) (0.010) (0.000) (0.157) (0.000)
IRELAND 0.491 0.545 NA 3.748 NA NA

(0.011) (0.010) NA (0.000) NA NA
ITALY 0.355 0.407 0.347 6.621 -7.634 -1.048

(0.005) (0.006) (0.006) (0.000) (0.000) (0.147)
LITHUANIA 0.402 0.483 0.456 5.239 -1.710 3.393

(0.011) (0.011) (0.012) (0.000) (0.044) (0.000)
LUXEMBOURG 0.339 0.329 0.254 -0.525 -4.132 -4.718

(0.013) (0.013) (0.013) (0.300) (0.000) (0.000)
LATVIA 0.445 0.460 0.459 0.976 -0.083 0.878

(0.011) (0.010) (0.011) (0.165) (0.467) (0.190)
MALTA 0.486 0.453 0.368 -1.874 -4.652 -6.136

(0.013) (0.012) (0.014) (0.030) (0.000) (0.000)
THE NETHERLANDS 0.232 0.331 0.366 8.949 3.121 11.967

(0.008) (0.008) (0.008) (0.000) (0.001) (0.000)
POLAND 0.434 0.454 0.392 2.082 -6.635 -4.799

(0.006) (0.007) (0.006) (0.019) (0.000) (0.000)
PORTUGAL 0.417 0.469 0.466 3.237 -0.307 3.358

(0.013) (0.010) (0.007) (0.001) (0.379) (0.000)
ROMANIA 0.478 0.448 0.483 -2.246 2.577 0.401

(0.009) (0.010) (0.010) (0.012) (0.005) (0.344)
SWEDEN 0.315 0.316 0.341 0.066 1.697 1.914

(0.009) (0.011) (0.010) (0.474) (0.045) (0.028)
SLOVENIA 0.395 0.437 0.384 4.019 -4.837 -1.027

(0.007) (0.007) (0.008) (0.000) (0.000) (0.152)
SLOVAKIA 0.387 0.412 NA 1.745 NA NA

(0.011) (0.010) NA (0.040) NA NA
UNITED KINGDOM 0.377 0.482 NA 8.835 NA NA

(0.009) (0.008) NA (0.000) NA NA
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.

Table 3.3: Coefficient of trivariate upper orthant dependence, ρ̂+
3 , between the dimensions of

the AROPE rate in EU-28 countries (2008-2018).
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ρ̂3

2008 2014 2018
t-test t-test t-test

Change 08-14 Change 14-18 Change 08-18
AUSTRIA 0.355 0.392 0.362 2.442 -2.041 0.465

(0.011) (0.010) (0.010) (0.007) (0.021) (0.321)
BELGIUM 0.468 0.521 0.513 4.012 -0.596 3.372

(0.009) (0.009) (0.010) (0.000) (0.276) (0.000)
BULGARIA 0.550 0.541 0.480 -0.575 -4.110 -4.634

(0.011) (0.011) (0.010) (0.283) (0.000) (0.000)
CYPRUS 0.381 0.441 0.447 3.559 0.341 3.734

(0.013) (0.011) (0.012) (0.000) (0.367) (0.000)
CZECH REPUBLIC 0.382 0.402 0.347 1.653 -4.179 -2.964

(0.007) (0.009) (0.009) (0.049) (0.000) (0.002)
GERMANY 0.417 0.424 0.407 0.692 -1.578 -0.944

(0.007) (0.007) (0.008) (0.245) (0.057) (0.173)
DENMARK 0.252 0.349 0.340 6.340 -0.573 5.230

(0.011) (0.011) (0.013) (0.000) (0.283) (0.000)
ESTONIA 0.408 0.425 0.364 1.105 -4.103 -2.857

(0.011) (0.010) (0.011) (0.134) (0.000) (0.002)
GREECE 0.408 0.514 0.422 8.646 -9.715 1.288

(0.009) (0.008) (0.005) (0.000) (0.000) (0.099)
SPAIN 0.328 0.482 0.428 16.372 -5.726 10.316

(0.007) (0.007) (0.007) (0.000) (0.000) (0.000)
FINLAND 0.354 0.381 0.386 2.557 0.448 2.878

(0.007) (0.008) (0.008) (0.005) (0.327) (0.002)
FRANCE 0.393 0.418 0.440 2.387 2.006 4.342

(0.008) (0.008) (0.008) (0.008) (0.022) (0.000)
CROATIA NA 0.500 0.511 NA 0.850 NA

NA (0.011) (0.008) NA (0.198) NA
HUNGARY 0.442 0.517 0.508 6.966 -0.747 5.344

(0.008) (0.007) (0.009) (0.000) (0.228) (0.000)
IRELAND 0.519 0.554 NA 2.579 NA NA

(0.010) (0.009) NA (0.005) NA NA
ITALY 0.369 0.425 0.366 7.136 -7.682 -0.466

(0.006) (0.006) (0.005) (0.000) (0.000) (0.321)
LITHUANIA 0.423 0.494 0.472 4.673 -1.420 3.150

(0.011) (0.011) (0.011) (0.000) (0.078) (0.001)
LUXEMBOURG 0.360 0.353 0.275 -0.414 -4.430 -4.897

(0.012) (0.012) (0.013) (0.339) (0.000) (0.000)
LATVIA 0.460 0.469 0.474 0.552 0.333 0.860

(0.011) (0.010) (0.011) (0.290) (0.370) (0.195)
MALTA 0.488 0.467 0.387 -1.268 -4.442 -5.369

(0.013) (0.011) (0.014) (0.102) (0.000) (0.000)
THE NETHERLANDS 0.252 0.359 0.396 9.575 3.285 12.711

(0.008) (0.008) (0.008) (0.000) (0.001) (0.000)
POLAND 0.436 0.463 0.407 3.067 -6.206 -3.405

(0.006) (0.006) (0.006) (0.001) (0.000) (0.000)
PORTUGAL 0.421 0.477 0.477 3.652 0.002 4.085

(0.012) (0.009) (0.006) (0.000) (0.499) (0.000)
ROMANIA 0.458 0.433 0.482 -1.931 3.764 1.926

(0.009) (0.009) (0.009) (0.027) (0.000) (0.027)
SWEDEN 0.336 0.345 0.377 0.660 2.083 2.910

(0.009) (0.011) (0.011) (0.255) (0.019) (0.002)
SLOVENIA 0.402 0.450 0.399 4.664 -4.677 -0.287

(0.007) (0.007) (0.008) (0.000) (0.000) (0.387)
SLOVAKIA 0.397 0.432 NA 2.368 NA NA

(0.010) (0.010) NA (0.009) NA NA
UNITED KINGDOM 0.400 0.502 NA 8.914 NA NA

(0.009) (0.007) NA (0.000) NA NA
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.

Table 3.4: Coefficient of trivariate average orthant dependence, ρ̂3, between the dimensions of
the AROPE rate in EU-28 countries (2008-2018).
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is particularly relevant because this means that, in the EU, there is a general strong tendency

of the three poverty dimensions (income, no-material deprivation and work intensity) to take

low values together, so that households tend to be simultaneously low ranked in all dimensions,

and this could make overall poverty worse.

To close this section, we wonder whether those countries with higher AROPE rates are also

countries with high levels of dependence between its dimensions. To address this issue, Figure

3.7 contains three scatter plots showing the relationship between the AROPE rate and the

coefficient ρ̂−3 for the EU-28 countries in the years 2008, 2014 and 2018.7 In all graphs, the

horizontal and vertical reference lines represent the corresponding values for the EU-28 as a

whole. We focus on ρ̂−3 because it measures lower orthant dependence, which is arguably

the most relevant concept when analysing multidimensional poverty. The main conclusions

that can be drawn from this figure are the following. First, there is a positive relationship

between the AROPE rate and lower orthant dependence, that is, countries with high incidence

of multidimensional poverty tend to experience also a high degree of multivariate dependence

between its dimensions in the lower orthant. This means that those countries with a high

proportion of households at risk of poverty and social exclusion tend to be also the countries

where, in average, a household is more likely to be simultaneously poor in all dimensions

(income, work intensity and material deprivation). Second, those countries with either very

low or very high values of ρ̂−3 in 2008 came closer to the situation of the majority of the EU-

28 countries in 2014. And third, looking at the evolution of both the scatter plot and the

reference lines, we observe, in the EU-28 as a whole, an increase in both the AROPE rate and

the multivariate dependence between its dimensions over the period 2008-2014, followed by a

slight decrease afterwards. Hence, it becomes clear that the financial crisis of 2008 exacerbated

poverty in terms of both the incidence (proportion of poor households) and the likelihood of

being simultaneously poor in all dimensions.

7The AROPE rate is calculated here as the proportion of households in our sample that are poor in at least
one of the three dimensions considered.
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3.5 Multivariate tail dependence analysis

In this section, we complement the analysis of multivariate dependence between dimensions

of poverty in the EU-28 performed in the previous section by focusing on the concept of tail

dependence, which refers to the probability that, given that a variable takes extremely low

(high) values, the other dimensions also take extremely low (high) values. In particular, we

will analyse the evolution of multivariate tail dependence between the three dimensions of the

AROPE rate in the countries of the EU-28 over the period 2008-2018. To do so, we use the

multivariate version of the tail concentration function (TCF) that we proposed in Section 2.5.2,

and which is defined in (2.61). We estimate this function non-parametrically using the empirical

versions of the copula and the survival function as proposed in (2.64) applied to the unique

ranks as explained in Section 3.2.2. Throughout this section, special emphasis will be given

to multivariate lower tail dependence, which refers to the probability that a household that is

extremely poor in one of the dimensions is also extremely poor in the rest of the dimensions

considered.

Figure 3.8 displays, for the EU-28 countries, the trivariate TCF for years 2008 (black line),

2014 (red line) and 2018 (green line) together with 95% standard bootstrap confidence intervals

using 1000 bootstrap replications. The choice of these years allows us to study the change in

multivariate tail dependence between the tree dimensions of the AROPE rate after the Great

Recession (2008-2014) and also in the period of economic recovery (2014-2018). The TCFs

are calculated in all cases for t ∈ [0.05, 0.95] over 100 points. Recall that the multivariate

TCF allows to analyse multivariate tail dependence going beyond the asymptotic notion of

dependence of the traditional tail dependence coefficients. In particular, the left part of the

TCF (for t ∈ (0, 0.5]) measures dependence in the lower tail of the joint distribution, whereas

its right part (for t ∈ (0.5, 1)) measures dependence in the upper tail of the joint distribution.

Several conclusions emerge from Figure 3.8. First, since the TCF take values different from 0

when t is near 0 and 1, there is tail dependence both in the lower and in the upper joint tails of
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the distribution. That is, there is a positive probability that a household that is poor (rich) in

one of the dimensions of the AROPE rate is also simultaneously poor (rich) in the rest of the two

dimensions. Second, looking at the shapes of the TCF, we observe considerable cross-country

differences. On one hand, there are countries, such as Croatia, Cyprus, Hungary or Poland,

where the curves are rather symmetric. This means that, in these countries, dependence in the

lower tail of the joint distribution seems to be similar to dependence in its upper tail. Take,

for instance, the case of Poland in 2008, where there was a probability of q̂3
C(0.25) = 0.28

of being simultaneously in the first quartile in two poverty dimensions given that you are in

the first quartile in the other dimension, and the probability of being simultaneously in the

fourth quartile in two poverty dimensions given that you are in the fourth quartile in the other

dimension was very similar, q̂3
C(0.75) = 0.3. On the other hand, we observe that, in many EU

countries, the TCF is not symmetric, but observations in the lower tail are somewhat more

dependent than observations in the upper tail, since q̂3
C(t) > q̂3

C(1 − t) for 0 < t < 0.5. To

better appreciate this feature, let us focus on the case of Belgium. In this country, in 2008,

there was a probability of q̂3
C(0.25) = 0.45 of being simultaneously in the first quartile in two

poverty dimensions given that you are in the first quartile in the other dimension, whereas the

probability of being simultaneously in the fourth quartile in two poverty dimensions given that

you are in the fourth quartile in the other dimension reduces to q̂3
C(0.75) = 0.22. As we pointed

out before, this feature is observed in many countries, such as Austria, Belgium, Denmark,

France, Germany, Finland, Italy, The Netherlands, Spain or Sweden. Interestingly, we find one

country, namely Romania, where upper tail dependence is somewhat stronger than lower tail

dependence, since q̂3
C(t) < q̂3

C(1 − t) for 0 < t < 0.5. For instance, in this country in 2008

there was a probability of q̂3
C(0.25) = 0.25 of being simultaneously in the first quartile in two

poverty dimensions given that you are in the first quartile in the other dimension, whereas the

probability of being simultaneously in the fourth quartile in two poverty dimensions given that

you are in the fourth quartile in the other dimension increases to q̂3
C(0.75) = 0.35. Therefore, we

can conclude that, in most of the EU countries, the probability that a household that is poor in
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one of the three dimensions of the AROPE rate is also poor in the other two dimensions tends

to be higher than the probability that a household that is rich in one of the three dimensions

of the AROPE rate is also rich in the other two dimensions. These results are consistent

with those obtained in the previous section, where we found that, for all EU countries except

for Romania, multivariate orthant dependence between the dimensions of the AROPE rate

tends to be higher when analysing it from a “downward” perspective than when the analysis

is performed an “upward” perspective.

Further noteworthy features can be observed if we focus on the value of the TCF in the extremes,

that is, for t = 0.05 and t = 0.95. In doing so, we can have an approximation to the asymptotic

tail dependence coefficients λdL and λdU , respectively, defined in (2.57) and (2.58). We observe

that, in many EU countries, dependence in the lower tail is higher than in the upper tail, since

q̂3
C(0.05) is higher than q̂3

C(0.95). This is clearly the case of Belgium, Bulgaria, Czech Republic,

Denmark, France, Italy, The Netherlands or Slovakia, among others. This means that, in all

these countries, the probability that a household that is extremely poor (in the 5th percentile) in

one dimension is also simultaneously extremely poor in the other dimensions is higher than the

probability that a household that is extremely rich (in the 95th percentile) in one dimension is

also simultaneously extremely rich in the other dimensions. For instance, look again at the case

of Belgium. In this country, in 2008, there was a probability of q̂3
C(0.25) = 0.08 of a household

to be simultaneously in the 5th percentile (t = 0.05) in two poverty dimensions given that it

was in the 5th percentile in the other dimension, whereas the probability of a household to be

simultaneously in the 95th percentile (t = 0.95) in two poverty dimensions given that it was

in the 95th percentile in the other reduces to q̂3
C(0.95) = 0.01. By contrary, in other countries,

there seems to be a symmetry between the value of the function in the lower and in the upper

extremes, as q̂3
C(0.05) is approximately equal to q̂3

C(0.95); see, for instance, the cases of Croatia,

Cyprus or Greece.

We will focus now on the evolution of multivariate tail dependence over the period analysed. As
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we pointed out before, we will mainly focus on lower tail dependence, since it is the most relevant

concept in a multidimensional poverty analysis, capturing the probability that a household that

is extremely poor in one of the dimensions of poverty is also extremely poor in the rest of the

dimensions.

To begin with, in Figure 3.8 we observe that there are no significant differences in the shapes of

the TCF in the different years considered, except in the case of Ireland, where the TCF seems

to be symmetric in 2008 and asymmetric in 2014. Figure 3.8 also reveals, in the majority of

the EU countries, an increase in multivariate lower tail dependence between 2008 and 2014,

since the left side of the TCF of 2014 (red line) seems to be above that of 2008 (black line)

in most cases. In fact, we only find some evidence of a decrease in multivariate lower tail

dependence in Bulgaria and Ireland. This means that, after the Great Recession, most of the

EU countries experienced an increase in the probability of a household to be poor in one of

the dimensions given that it is poor in the rest of the dimensions. Nonetheless, and despite

the general increase in multivariate lower tail dependence observed, it is possible to observe

different cross-country patterns. First, we find countries where we observe a clear increase in

multivariate lower tail dependence. This is the case, for instance, of countries such as Denmark,

Greece, Hungary, Italy, Portugal, Spain or The Netherlands. Furthermore, this increase seems

to be particularly remarkable in Spain, one of the countries most hardly hit by the Financial

Crisis of 2008. However, it is worth pointing out that, in many of these countries, this increase

in multivariate lower tail dependence in the period 2008-2014 is less clear when focusing in the

lowest part of the joint distribution, that is, for small values of t. A subsequent analysis will

throw more light into this issue. Second, Figure 3.8 also reveals that there are countries where

multivariate lower tail dependence between poverty dimensions did not change much between

2008 and 2014. This is the case of Germany or Luxembourg, for instance. A rather stable

behaviour can also be found in France (with some evidence of an increase in certain parts of

the distribution) and Estonia (in this case with some evidence of a decrease in some parts of the
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distribution). Third, as we argued before, we only find evidence of a decrease in multivariate

lower tail dependence in this period in Bulgaria and Ireland.

In the period of recovery from the crisis, namely the period 2014-2018, we observe that, for most

of the countries, multivariate lower tail dependence between dimensions of poverty remained

rather stable, as the left side of the multivariate tail concentration function barely moved

between 2014 (red line) and 2018 (green line). This is the case of Belgium, Denmark, Finland,

France, Hungary, Latvia or Poland, among others. This stable behaviour is also found in

other countries such as Czech Republic, Slovenia or even Spain, but in these cases with some

evidence of a decrease in multivariate lower tail dependence when focusing in certain parts of

the distribution. In this period we also find countries (Romania or Sweden, for instance) where

multivariate lower tail dependence between dimensions of poverty still increased. This increase

is also found in other countries, such as Germany or The Netherlands, but only in certain parts

of the distribution. Finally, there are also countries, such as Greece, Italy or Luxembourg,

which display a decrease in multivariate lower tail dependence between poverty dimensions in

that period. However, it is important to remark that this decrease is not so clear when focusing

on the lowest part of the joint distribution, that is, when considering small values of t. Again,

in a subsequent analysis we will try to throw more light into this issue.

To sum up, as a consequence of the Great Recession, over the period 2008-2014 we find evidence,

in most of the EU countries, of an increase in the probability that a household which is poor in

one of the three dimensions of the AROPE rate is also poor in the other two dimensions. By

contrast, over the period of economic recoverty (2014-2018), this probability seemed to remain

rather stable or even decrease in the majority of the countries.

Finally, if we look at the change in multivariate lower tail dependence between poverty di-

mensions over the whole period analysed, that is, if we compare the situation in 2008 (black

line) and in 2018 (green line), some interesting conclusions can be drawn. In particular, in

countries such as France, the Netherlands or Spain, for instance, the level of multivariate lower
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tail dependence between the dimensions of poverty was still higher in 2018 than in 2008. This

means that, over that decade, these countries have experienced an increase in the probability

of being simultaneously poor in two dimensions of poverty given that one is poor in the other

dimension. We also find countries, such as Greece or Italy, which experienced an increase in

lower tail dependence during the period of economic crisis (2008-2014) that was followed by

a decrease afterwards. As a result, the level of multivariate lower tail dependence between

poverty dimensions seems to be similar in 2018 to that observed at the beginning of the period

analysed. Noticeably, we only find three countries (Bulgaria, Estonia and Luxembourg) where

multivariate lower tail dependence between poverty dimensions seems to be clearly lower in

2018 than in 2008.

So far we have focused our analysis on the evolution of lower tail dependence, since this is

the most relevant concept in a multidimensional poverty framework. Nonetheless, Figure 3.8

also allows us to analyse the evolution of multivariate upper tail dependence between poverty

dimensions. The first feature that is worth mentioning is that, while multivariate lower tail

dependence between dimensions of poverty increased in most of the EU countries over the period

2008-2014, with multivariate upper tail dependence we do not find this generalised increase.

That is, over that period, there was a generalised increase in the probability that a household

that is poor in one of the three dimensions of the AROPE rate is also poor in the other two

dimensions. However, over that same period, we do not find evidence of a generalised increase

in the probability that a household which is rich in one of the dimensions of poverty is also

rich in the rest of the dimensions. In fact, in many of the EU countries we find a rather stable

behaviour of multivariate upper tail dependence between 2008 and 2014; see, for example,

the cases of France, Germany or Estonia. Nevertheless, we also find some countries, such as

Greece, Hungary, Ireland or Spain, where there was a clear increase in multivariate upper tail

dependence between dimensions of poverty. It is also worth mentioning that only in a few cases

multivariate upper tail dependence seems to decrease over that period; see, for example, the
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case of Malta and Romania.

Moving to the change in multivariate upper tail dependence between 2014 and 2018, the first

noteworthy feature is that we do not find evidence, for any country, of an increase in multi-

variate upper tail dependence between dimensions of poverty in that period. In particular, we

find countries in which multivariate upper tail dependence did not seem to change, such as

Denmark, France or Germany, and countries in which we find evidence of a decrease in upper

tail dependence between poverty dimensions, such as Poland, Slovenia or Spain.

Finally, when we compare the situation at the beginning (2008, in the black line) and at the end

(2018, in the green line) of the period analysed, we observe that, in most of the EU countries,

multivariate upper tail dependence between poverty dimensions in 2018 seems to be either

similar to or lower than in 2008. In particular, in countries such as France, Germany or Italy,

multivariate tail dependence seems to be similar in 2018 to that observed at the beginning of

the period, whereas in other cases, such as that of Poland, it seems to be lower in 2018 than in

2008. Finally, we also find some countries (see, for example, Spain or The Netherlands) where

multivariate upper tail dependence between the dimensions of poverty seemed to be higher in

2018 than in 2008, although, this result is less clear when we focus on the highest end of the

joint distribution, that is, when we consider values of t close to 1.

Next, to get a better insight into the evolution of multivariate dependence between poverty

dimensions in the lowest part of the joint distribution, which is the most relevant one to

analyse multidimensional poverty, we have estimated the coefficient of multivariate lower tail

dependence introduced in (2.59) using the non-parametric estimator proposed in (2.62) for two

particular thresholds, namely t = 0.1 and t = 0.2. These coefficients, namely λ3
L(0.1) and

λ3
L(0.2), allow to analyse the probability that a household that is in the first (second) decile

in one of the dimensions of the AROPE rate is also simultaneously in the first (second) decile

in the other two dimensions. Tables 3.5 and 3.6 display the estimated values (with bootstrap

standard errors in parenthesis) of λ3
L(0.1) and λ3

L(0.2), respectively, for three selected years,
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2008, 2014 and 2018. These tables also include, in columns 4, 5 and 6, the results of a two-

independent sample one-side t-test with unequal variances, calculated using bootstrap standard

errors, to test the significance of the change in the coefficient in the periods 2008-2014, 2014-2018

and 2008-2018, respectively. The corresponding p-value (in parenthesis) is computed assuming

asymptotic normality of the t-statistic.

We begin analysing the evolution of multivariate lower tail dependence by focusing on the

first decile. To do so, we focus on the results provided by Table 3.5. Several conclusions

can be drawn from these results. In particular, looking at column 6, we observe that, in

the majority of the countries, λ̂3
L(0.1) did not significantly change between 2008 and 2018.

Nevertheless, in some countries, λ̂3
L(0.1) was significantly higher in 2018 than in 2008. Thus,

in these countries (Austria, Czech Republic, Germany, Denmark, Lithuania, Malta, Poland,

Portugal, Romania and Sweden), there was a significant increase in the probability that a

household that is extremely poor (in the first decile) in one dimension is also extremely poor

in the other two dimensions. Noticeably, this increase in multivariate lower tail dependence

is the result of different evolutions of the coefficient in the sub-periods 2008-2014 and 2014-

2018. In particular, in Czech Republic, Malta and Poland the increase in multivariate lower tail

dependence was experienced between 2008 and 2014, when we also observe a significant increase

in λ̂3
L(0.1) in Slovakia. On the other hand, in Germany, Lithuania, Romania and Sweden the

increase in the coefficient is observed in the period 2014-2018. We also find two countries,

namely Italy and Estonia, where the evolution of λ̂3
L(0.1) is rather singular. In particular, in

Italy this coefficient significantly increased between 2008 and 2014 and significantly decreased

afterwards, whereas exactly the opposite occurred in Estonia. Finally, it is worth remarking

that, in none of the EU countries, λ̂3
L(0.1) was significantly lower in 2018 and 2008.

If we set the second decile as the threshold to estimate multivariate tail dependence, that

is, if we focus on how likely it is that a household being in the second decile in one poverty

dimension is also simultaneously in the second decile in the other two poverty dimensions,
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λ̂3
L(0.1)

2008 2014 2018
t-test t-test t-test

Change 08-14 Change 14-18 Change 08-18

AUSTRIA
0.145 0.176 0.208 1.233 1.244 2.517

(0.017 ) (0.018 ) (0.019) (0.109) (0.107) (0.006 )

BELGIUM
0.205 0.212 0.199 0.280 -0.473 -0.209

(0.018 ) (0.019 ) (0.020) (0.390) (0.318) (0.417)

BULGARIA
0.177 0.176 0.181 -0.022 0.150 0.124

(0.022 ) (0.021) (0.020) (0.491) (0.440) (0.451)

CYPRUS
0.120 0.107 0.157 -0.511 1.930 1.301

(0.020) (0.017) (0.020) (0.305) (0.027) (0.097)

CZECH REPUBLIC
0.169 0.235 0.264 3.144 1.161 4.271

(0.013) (0.017) (0.018) (0.001) (0.123) (0.000)

GERMANY
0.152 0.181 0.299 1.604 5.621 7.522

(0.012) (0.014) (0.016) (0.054) (0.000) (0.000)

DENMARK
0.193 0.204 0.245 0.415 1.412 1.839

(0.018) (0.019) (0.022) (0.339) (0.079) (0.033)

ESTONIA
0.213 0.160 0.212 -1.917 2.012 -0.045

(0.021) (0.018) (0.018) (0.028) (0.022) (0.482)

GREECE
0.103 0.108 0.112 0.227 0.288 0.547

(0.014) (0.013) (0.008) (0.410) (0.387) (0.292)

SPAIN
0.111 0.128 0.129 1.208 0.021 1.212

(0.010) (0.010) (0.011) (0.113) (0.492) (0.113)

FINLAND
0.206 0.223 0.224 0.901 0.076 0.917

(0.013) (0.013) (0.015) (0.184) (0.470) (0.179)

FRANCE
0.167 0.167 0.187 -0.018 1.052 0.998

(0.013) (0.012) (0.015) (0.493) (0.146) (0.159)

CROATIA
NA 0.166 0.202 NA 1.469 NA
NA (0.019) (0.016) NA (0.071) NA

HUNGARY
0.130 0.129 0.139 -0.065 0.449 0.381

(0.013) (0.012) (0.017) (0.474) (0.327) (0.352)

IRELAND
0.115 0.084 NA -1.318 NA NA

(0.018) (0.014) NA (0.094) NA NA

ITALY
0.126 0.152 0.132 2.079 -1.564 0.519

(0.008) (0.009) (0.009) (0.019) (0.059) (0.302)

LITHUANIA
0.174 0.179 0.237 0.175 1.891 2.066

(0.020) (0.021) (0.023) (0.430) (0.029) (0.019)

LUXEMBOURG
0.145 0.155 0.150 0.390 -0.197 0.185

(0.019) (0.019) (0.020) (0.348) (0.422) (0.426)

LATVIA
0.221 0.191 0.220 -1.101 0.948 -0.037

(0.019) (0.019) (0.024) (0.135) (0.172) (0.485)

MALTA
0.091 0.171 0.198 2.858 0.849 3.501

(0.019) (0.020) (0.024) (0.002) (0.198) (0.000)

THE NETHERLANDS
0.230 0.222 0.205 -0.418 -0.824 -1.226

(0.014) (0.014) (0.015) (0.338) (0.205) (0.110)

POLAND
0.104 0.152 0.153 3.486 0.099 3.592

(0.009) (0.010) (0.010) (0.000) (0.461) (0.000)

PORTUGAL
0.127 0.158 0.174 1.297 0.801 2.201

(0.018) (0.016) (0.012) (0.097) (0.212) (0.014)

ROMANIA
0.087 0.083 0.131 -0.208 2.521 2.345

(0.012) (0.012) (0.015) (0.418) (0.006) (0.010)

SWEDEN
0.200 0.227 0.326 1.048 3.343 4.697

(0.016) (0.020) (0.022) (0.147) (0.000) (0.000)

SLOVENIA
0.177 0.170 0.201 -0.373 1.540 1.202

(0.013) (0.013) (0.016) (0.355) (0.062) (0.115)

SLOVAKIA
0.181 0.293 NA 4.105 NA NA

(0.018) (0.021) NA (0.000) NA NA

UK
0.148 0.133 NA -0.797 NA NA

(0.014) (0.013) NA (0.213) NA NA
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.

Table 3.5: Coefficient of trivariate lower tail dependence λ̂3
L(0.1) between the dimensions of the

AROPE rate in EU-28 countries (2008-2018)
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λ̂3
L(0.2)

2008 2014 2018
t-test t-test t-test

Change 08-14 Change 14-18 Change 08-18

AUSTRIA
0.272 0.313 0.296 1.983 -0.752 1.197

(0.014) (0.015) (0.015) (0.024) (0.226) (0.116)

BELGIUM
0.373 0.406 0.422 1.574 0.724 2.218

(0.015) (0.015) (0.016) (0.058) (0.235) (0.013)

BULGARIA
0.364 0.335 0.362 -1.228 1.267 -0.084

(0.017) (0.017) (0.014) (0.110) (0.103) (0.467)

CYPRUS
0.219 0.212 0.231 -0.281 0.843 0.513

(0.017) (0.015) (0.016) (0.389) (0.200) (0.304)

CZECH REPUBLIC
0.258 0.278 0.275 1.198 -0.185 0.988

(0.010) (0.013) (0.013) (0.115) (0.426) (0.162)

GERMANY
0.315 0.351 0.386 2.489 2.237 4.719

(0.010) (0.011) (0.011) (0.006) (0.013) (0.000)

DENMARK
0.265 0.295 0.309 1.425 0.628 2.039

(0.014) (0.015) (0.016) (0.077) (0.265) (0.021)

ESTONIA
0.291 0.285 0.265 -0.309 -0.954 -1.246

(0.015) (0.015) (0.015) (0.379) (0.170) (0.106)

GREECE
0.219 0.221 0.208 0.119 -0.969 -0.809

(0.012) (0.012) (0.007) (0.453) (0.166) (0.209)

SPAIN
0.217 0.276 0.286 4.497 0.752 5.514

(0.009) (0.010) (0.009) (0.000) (0.226) (0.000)

FINLAND
0.317 0.338 0.358 1.365 1.320 2.622

(0.011) (0.011) (0.011) (0.086) (0.093) (0.004)

FRANCE
0.291 0.307 0.331 1.071 1.607 2.640

(0.010) (0.010) (0.011) (0.142) (0.054) (0.004)

CROATIA
NA 0.258 0.299 NA 2.072 NA
NA (0.015) (0.012) NA (0.019) NA

HUNGARY
0.257 0.288 0.311 1.977 1.262 2.990

(0.011) (0.011) (0.014) (0.024) (0.103) (0.001)

IRELAND
0.318 0.273 NA -2.051 NA NA

(0.016) (0.015) NA (0.020) NA NA

ITALY
0.228 0.282 0.230 5.084 -4.844 0.145

(0.007) (0.008) (0.007) (0.000) (0.000) (0.442)

LITHUANIA
0.308 0.298 0.349 -0.464 2.205 1.717

(0.016) (0.015) (0.017) (0.321) (0.014) (0.043)

LUXEMBOURG
0.300 0.271 0.246 -1.333 -1.083 -2.467

(0.015) (0.016) (0.016) (0.091) (0.139) (0.007)

LATVIA
0.339 0.323 0.339 -0.712 0.694 -0.010

(0.016) (0.015) (0.016) (0.238) (0.244) (0.496)

MALTA
0.261 0.316 0.319 2.220 0.128 2.186

(0.018) (0.017) (0.019) (0.013) (0.449) (0.014)

THE NETHERLANDS
0.275 0.323 0.374 3.252 3.433 6.671

(0.010) (0.011) (0.011) (0.001) (0.000) (0.000)

POLAND
0.232 0.260 0.266 2.230 0.525 2.858

(0.008) (0.009) (0.008) (0.013) (0.300) (0.002)

PORTUGAL
0.237 0.246 0.295 0.477 3.165 3.306

(0.015) (0.013) (0.009) (0.317) (0.001) (0.000)

ROMANIA
0.172 0.197 0.235 1.526 2.284 3.822

(0.011) (0.012) (0.012) (0.063) (0.011) (0.000)

SWEDEN
0.273 0.326 0.415 2.815 4.081 7.173

(0.012) (0.015) (0.016) (0.002) (0.000) (0.000)

SLOVENIA
0.262 0.283 0.292 1.427 0.557 1.975

(0.010) (0.011) (0.011) (0.077) (0.289) (0.024)

SLOVAKIA
0.235 0.325 NA 4.471 NA NA

(0.014) (0.014) NA (0.000) NA NA

UK
0.329 0.328 NA -0.108 NA NA

(0.012) (0.011) NA (0.457) NA NA
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.

Table 3.6: Coefficient of trivariate lower tail dependence (with λ̂3
L(0.2)) between the dimensions

of the AROPE rate in EU-28 countries (2008-2018)
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the general picture does not change much, although the values of λ̂3
L(0.2) (in Table 3.6) are

greater than those of λ̂3
L(0.1) (in Table 3.5). That is, the probability that a household that

is in the second decile in one poverty dimension is also in the second decile in the other two

poverty dimensions is greater than the probability that a household that is in the first decile

in one poverty dimension is also in the first decile in the other two dimensions. Moreover, if

we look at the results displayed in column 6 of Table 3.6, we observe that, in the majority of

the EU countries, λ̂3
L(0.2) significantly increased between 2008 and 2018. That is, there has

been a significant increase in the probability that a household that is in the second decile in

one poverty dimension is also in the second decile in the other two poverty dimensions. In

most of these countries, the increase in multivariate lower tail dependence was observed over

the period 2008-2014, that is, after the financial crisis of 2008. This is the case of Belgium,

Germany, Spain, Hungary, Malta, The Netherlands, Poland, Romania and Sweden. Noticeably,

in Germany, The Netherlands, Romania and Sweden we also observe a significant increase in

λ̂3
L(0.2) over the recovery period of 2014-2018. Again, Italy constitutes a very interesting case,

as it experience a very significant increase in multivariate lower tail dependence between poverty

dimensions over the period 2008-2014 that was followed by a significant decrease afterwards.

Finally, it is worth mentioning that only in Luxembourg was λ̂3
L(0.2) lower in 2018 than in

2008.

To complement the analysis of trivariate tail dependence, we have also computed all the possible

pairwise lower tail dependence coefficients between the three dimensions of the AROPE rate.

Again, we focus on lower tail dependence, which is the most relevant concept when analysing

multidimensional poverty. In particular, Figure 3.9 displays the evolution, in all the EU-28

countries, of the estimated coefficients of finite bivariate lower tail dependence in the first

decile, namely λ̂L(0.1), between income and work intensity (in the red line), income and no-

material deprivation (in the green line) and work intensity and no-material deprivation (in the

blue line), together with 95% bootstrap confidence intervals. Figure 3.10 displays the same
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results but using the second decile as the threshold (λ̂L(0.2)).

Several conclusions can be drawn from these figures. First, as expected, we observe higher values

than those observed for trivariate lower tail dependence (recall the theoretical result in page

109). Second, for the vast majority of countries, and both for λ̂L(0.1) and λ̂L(0.2), the highest

bivariate tail dependence is between income and work intensity and the lowest is between no-

material deprivation and work intensity. In fact, the gap between the red line and the others

is very big in certain countries, such as Estonia, Finland or Slovenia. Nevertheless, there are

some significant exceptions. In particular, in Luxembourg, Greece and Romania, the highest

dependence is between income and no-material deprivation and, in the UK and for λ̂L(0.1),

is between work intensity and no-material deprivation. Notice that these results confirm the

patterns already observed in the previous section, since when we applied the Spearman’s rho

coefficients of pairwise dependence, we observed that, in all countries, the highest level of

dependence is found either between income and work intensity or between income and no-

material deprivation. Third, the evolution is very similar for the three pairwise coefficients. In

particular, if we focus on λ̂L(0.1), in most countries lower tail dependence remained rather stable

over the period, but in some of them, such as Czech Republic, Malta, Slovakia or Germany,

we observe a slight increasing trend. With regard to λ̂L(0.2), we observe, for the vast majority

of the countries, a rather stable trend, although we also find slight increasing trends in some

countries such as The Netherlands, Spain or Sweden.
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Conclusions

There is a consensus in the literature on the multidimensional nature of poverty, as it does not

depend only on income, but also on other non-monetary aspects such as health, education or

labour status, among others. Accordingly, over the last years, a large and still growing litera-

ture on multidimensional poverty measurement has emerged. However, this literature, which

has mainly focused on the construction of multidimensional poverty indices, has traditionally

overlooked a crucial aspect of multidimensional poverty, namely the dependence between its

different dimensions. The aim of this thesis is precisely to incorporate the measurement of

such dependence into the multidimensional poverty analysis, complementing the information

provided by multidimensional poverty indices. In order to do so, several issues should be ad-

dressed. First, the measurement of multivariate dependence is challenging and requires special

care, since some bivariate dependence properties are not preserved when we have more than

two dimensions. Second, some of the dimensions usually considered in Welfare Economics, such

as income, for instance, usually do not follow Gaussian distributions. And third, there can be

non-linear relationships between the different dimensions.

Hence, when measuring dependence between poverty dimensions, we face the problem of mea-

suring dependence in a multivariate, possibly non-Gaussian and possibly non-linear context.

In this framework, we need a methodology that goes beyond the well-known Pearson’s linear

correlation coefficient, which is only appropriate for the measurement of bivariate linear rela-

tionships in elliptical contexts. The copula approach, which is based on the positions of the
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individuals across dimensions, constitutes a suitable methodology in this setting due to several

reasons. First, it enables the decomposition of the joint distribution of the dimensions into the

marginals and the dependence structure. Second, it allows to study well-known scale-free mea-

sures of bivariate association that capture other types of dependence beyond linear correlation.

And third, this approach also permits the construction of multivariate generalisations of these

bivariate measures.

In this thesis, we have proposed the measurement of multivariate dependence between the

dimensions of poverty using the copula approach. In particular, we have discussed two copula-

based concepts of multivariate dependence, namely multivariate concordance and orthant de-

pendence, which allow to build up measures of overall association between poverty dimensions

from both “downward” and “upward” perspectives. Furthermore, we have also studied the

concept of multivariate tail dependence, which focuses on the extremes of the joint distribution

and measures the probability that an individual who is extremely low(high)-ranked in one di-

mensions of poverty is also extremely low(high)-ranked in the other dimensions considered. In

particular, we propose a new tool, the multivariate TCF, which allows to analyse multivariate

tail dependence going beyond the asymptotic notion of dependence of the traditional tail de-

pendence coefficients. This function is a very powerful tool, since it allows to represent in the

plane the degree of multivariate dependence in the joint tails of a distribution, regardless of the

number of dimensions considered. Moreover, we have applied these copula-based concepts to

measure multivariate dependence between the different dimensions of poverty in the European

Union. In particular, we have used data from EU-SILC to analyse the evolution of multivariate

dependence between the dimensions of the AROPE rate (income, work intensity and material

deprivation) in the EU-28 countries between 2008 and 2018.

In this empirical application, we have first applied several multivariate extensions of Spear-

man’s rho, which are based on the concept of orthant dependence. Among these multivariate

extensions, the coefficient of average lower orthant dependence, ρ−d , becomes especially relevant
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when analysing multidimensional poverty, as it captures the rescaled average probability of

being simultaneously low-ranked in all dimensions of poverty as compared to what this would

be were those dimensions independent. Several noteworthy results emerge from this analysis.

First, there is a positive multivariate association between poverty dimensions in the EU both

in the lower and in the upper orthant, which means that low (high) values of income tend

to occur simultaneously with low (high) values of the other two dimensions. Second, in the

vast majority of the EU countries, average lower orthant dependence tends to be higher than

average upper orthant dependence, which means that the average probability of being simulta-

neously low-ranked in all poverty dimensions tends to be higher than the average probability

of being simultaneously high-ranked in all poverty dimensions. Third, between 2008 and 2014,

the degree of multivariate dependence between poverty dimensions increased in most of the

EU countries both in the lower and in the upper orthant. Thus, over that period, there was,

in most of the EU countries, a significant increase in the overall level of association between

poverty dimensions from both “downward” and “upward” perspectives. By contrary, over the

period 2014-2018 we observe that in many EU countries the degree of multivariate dependence

between the three dimensions of the AROPE rate remained rather stable, with some evidence of

a decrease in some countries. Nonetheless, in the majority of the EU countries, multivariate de-

pendence between the dimensions of poverty was still significantly higher in 2018 than in 2008.

Finally, we detect a positive relationship between the incidence of multidimensional poverty,

measured by the AROPE rate, and the dependence between its dimensions. This means that

countries with a high poverty incidence tend to experience also a higher degree of dependence

between the dimensions of poverty.

We have complemented the analysis based on orthant dependence by focusing on the concept of

multivariate tail dependence, which is very useful when it comes to analysing multidimensional

poverty. In particular, the concept of multivariate lower tail dependence captures the proba-

bility that an individual who is extremely low-ranked (extremely “poor”) in one dimension is
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also extremely poor in the other dimensions considered. We have analysed, using our proposed

multivariate TCF, the evolution of multivariate tail dependence between the three dimensions

of the AROPE rate in the countries of the EU-28 over the period 2008-2018, putting special

emphasis on the evolution of multivariate lower tail dependence. To the best of our knowledge,

this constitutes the first application of multivariate tail dependence in Welfare Economics. Sev-

eral conclusions can be drawn from this analysis. First, there is multivariate tail dependence

both in the lower and in the upper joint tails of the distribution, which means that there is a

positive probability that a household that is poor (rich) in one of the dimensions of the AROPE

rate is also simultaneously poor (rich) in the rest of the two dimensions. Second, in most EU

countries dependence in the lower tail seems to be higher than in the upper tail, which means

that the probability that a household that is extremely poor in one of the three dimensions

of the AROPE rate is also extremely poor in the other two dimensions tends to be higher

than the probability that a household that is extremely rich in one of the three dimensions

of the AROPE rate is also extremely rich in the other two dimensions. Third, we observe, in

the majority of the EU countries, an increase in multivariate lower tail dependence between

2008 and 2014. Thus, over this period, most of the EU countries experienced an increase in

the probability that a household which is poor in one of the dimensions is also simultaneously

poor in the rest of the dimensions. By contrary, between 2014 and 2018, we observe that,

for most of the countries, multivariate lower tail dependence between dimensions of poverty

remained rather stable. Moreover, if we compare the situation in 2008 and in 2018, we observe

some countries where the level of multivariate lower tail dependence between the dimensions of

poverty was higher in 2018 than in 2008 and others in which the level of multivariate lower tail

dependence between poverty dimensions seems to be similar in 2018 to that observed at the

beginning of the period analysed. Noticeably, we only find three countries (Bulgaria, Estonia

and Luxembourg) where multivariate lower tail dependence between poverty dimensions seems

to be clearly lower in 2018 than in 2008.
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Finally, we have come across several topics that still deserve further research. First, more re-

search is needed to analyse tail dependence in the presence of ties. In this thesis, which provides

the first application of multivariate tail dependence in Welfare Economics, we have followed

the approach suggested by Decancq (2014) to deal with the problem of ties, which consists

in using the information from secondary variables to obtain continuous ranks. Nevertheless,

further studies that provide tie-corrected versions of the tail dependence measures used in this

work would be very valuable. Second, in this thesis we have proposed the multivariate TCF to

measure multivariate tail dependence. However, this is just one possible approach to analyse

multivariate tail dependence, and it is not exempt from limitations. In particular, the multi-

variate TCF, like the traditional tail dependence coefficients, only evaluates dependence in the

diagonal section of the copula. Some authors have considered this as a limiting approach and

have suggested to study tail dependence using different thresholds for each of the dimensions.

We believe that this is a very promising idea. Unfortunately, in the multivariate framework the

literature is still scarce. Schmid and Schmidt (2007a), for instance, propose the use of condi-

tional versions of the multivariate extensions of Spearman’s rho discussed in Section 2.4. More

recently, Escanciano and Hualde (2019) have also proposed a measure to study tail dependence

going beyond the main diagonal of the copula. The study and applicaton of these proposals

constitute a very promising field for further research. Third, a more exhaustive study is needed

in order to establish possible relationships between our proposed multivariate TCF and some

copula-based measures of multivariate dependence also based on the diagonal section of the

copula, such as the multivariate Blomqvist’s beta. Finally, we believe that the application of

the copula-based concepts and measures of multivariate dependence performed in this thesis

can be extended to study multidimensional poverty at a regional level or to analyse the phe-

nomenon in other geographic areas. Furthermore, and more importantly, this approach can

also be applied to other fields of Economics that requires multivariate analyses.
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Garćıa-Gómez, C., Pérez, A., and Prieto-Alaiz, M. (2021). Copula-based analysis of multivari-

ate dependence patterns between dimensions of poverty in europe. Review of Income and

Wealth, 67(1):165–195.
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Schweizer, B., and Taylor, M. D., editors, Distributions with Given Marginals and Related

Topics, volume 28, pages 223–232. Institute of Mathematical Statistics.

187



Bibliography

Nelsen, R. B. (1998). Concordance and Gini’s measure of association. Journal of Nonparametric

Statistics, 9(3):227–238.

Nelsen, R. B. (2002). Concordance and copulas: A survey. In Cuadras, C. M., Fortiana, J.,

and Rodriguez-Lallena, J. A., editors, Distributions With Given Marginals and Statistical

Modelling, pages 169–177. Springer, Dordrecht.

Nelsen, R. B. (2006). An introduction to copulas. Springer-Verlag, New York.
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