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“It’s the questions we can’t answer that teach us the
most. They teach us how to think. If you give a man an

answer, all he gains is a little fact. But give him a
question and he’ll look for his own answers.”

— From “The Wise Man’s Fear”
(Patrick Rothfuss, 2011)





Acknowledgements

It is difficult for me to find the right words to express all the gratitude that
so many people deserve for helping me during all the exhausting process
to finally get this Thesis complete.

In the first place, I would like to express my deepest gratitude to
Marcos and Carlos for their unconditional dedication, for their trust placed
in me and for always transmitting their optimistic point of view, even
though I was not able to see it. It has been a real pleasure to work at their
side. Somehow, I guess that we might be, under certain extremely odd
conditions, a little bit contentos.

I would also like to extend my gratitude to Pablo Irarrázabal and Sergio
Uribe for their warm welcome in their research group at the Pontifical
Catholic University of Chile and showing me other points of view for
understanding research. I should give special recognition to Ronal, Katy
and Hernán, as well. I am also in debt to Señora Antonia and Señor Matías
for their help in finding a little bit of order within the chaos and, of course,
to Vito for lways being there despite of the passage of time.

Many thanks to Dr. David Filgueiras-Rama, from the Spanish Na-
tional Center for Cardiovascular Research (CNIC), for his collaboration in
analyzing the images.

� hotel by poblagodarit~ the people of the LPI, present and past
members, for the huge amount of good moments we shared in coffee breaks,
discussing and planning a better world under the watchful and silent gaze
of Ivanka. I would like to especially mention the magnificent Equipo Cardio:
without you these years would have been much harder.

그라시아스 to the people of Drama and Comedia, for making me feel
one of them, despite being a complete ifak.

vii



viii

To my friends, in particular to all the inhabitants of the Kingdom of
Jalem, kirimvos for being the light that guide me in the darkest moments.
Takk kærlega to my favourite step-aunt Marien and my beloved Jinetes for
their unconditional support. Und ich sollte alle Nächte von Therapie mit
Chelo —mit der Erlaubnis von Herrn Schwarz, natürlich— in Begleitung
Bachs nicht vergessen. Danke schön.

Moltes gràcies to Valentí Ponsa for helping me with the design of this
book, and teaching me that there are plenty of things to do on a rainy day.
I tolerate you enough.

Dzac nit vodzorsi nitru vultas lüfä? Êstájrofäté tümánwa, molté dzacä
vultasuté, dzacwa nit lemviné, lex dotwaçeté-minsä nestalüshahn árgul
mamdärose nit, dorusna nitsi liyáä rup ôtlavurrä dotwaruté sülle ets ñasvul-
tasjolshaté shahnúté riênwaté.

I would like to thank the Spanish Ministry of Economy and Competi-
tiveness for their financial support through the grant BES-2015-073064.

Finally, it would not be me if I do not thank the Russians, who are
marvelous people that have had political changes, and cows, who provide
us nutritious breakfasts without expecting anything in return.



Resumen

La imagen por resonancia magnética (MRI) es una técnica que se utiliza
para obtener, en forma de imagen, información sobre la estructura y la
composición de un objeto, así como datos sobre su funcionalidad. Entre las
ventajas de la MRI se encuentran sus altas reproducibilidad, precisión y
versatilidad, además de que ofrece alta resolución espacial, amplio campo
de visión y un buen contraste entre tejidos blandos. Sin embargo, la MRI
también presenta algunas desventajas: es una técnica lenta en comparación
con algunos procesos fisiológicos comunes, como el flujo sanguíneo, los
latidos del corazón o la apnea, y, en consecuencia, es muy sensible al
movimiento.

Una forma de acelerar las adquisiciones de MRI consiste en adquirir
solo una porción del espacio k (submuestreo) y aplicar después técnicas
avanzadas de procesado de imagen para su reconstrucción. Sin embargo, el
problema de reconstrucción resultante deriva en un sistema indeterminado
y mal condicionado. Por esta razón, se suele incorporar en el modelo de
imagen cierta información, restricciones y asunciones conocidas a priori
para definir una función de coste, cuya optimización proporciona una
solución regularizada a dicho problema.

Esta Tesis aborda el problema computacionalmente exigente de la
reconstrucción dinámica de MRI a partir de datos altamente submuestrea-
dos. El movimiento presente en la secuencia dinámica de MRI se utiliza
como fuente de información adicional para aprovechar convenientemente
la redundancia que existe tanto en las dimensiones espaciales como en la
temporal.

Por un lado, en esta Tesis se exploran términos de regularización espa-
cialmente variantes que tienen en cuenta la cantidad de movimiento presente
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en la imagen para ponderar pixel a pixel la cantidad de regularización que
se necesita.

Por otro lado, se propone la técnica denominada como elastic aligned-
SENSE (EAS), con la que se obtiene, como resultado del proceso de
optimización propuesto, una imagen patrón libre de movimiento, junto con
una serie de deformaciones no rígidas. Estas deformaciones se aplican sobre
la imagen patrón hasta alcanzar cada uno de los estados del ciclo cardiaco
que conforman la secuencia CINE completa. En términos de carga com-
putacional, los resultados obtenidos muestran que este método es menos
exigente que otros que utilizan muestreo compresivo (compressed sensing) y
utilizan el movimiento para favorecer la representación de las imágenes con
un número reducido de coeficientes (sparsity). Sin embargo, en ocasiones
con EAS se pierde el movimiento en algunas áreas de la imagen. Esto se
debe a que este método es altamente dependiente del modelo de imagen
empleado y, en este tipo de metodologías, el rendimiento es satisfactorio
en tanto en cuanto el modelo de imagen utilizado describe con precisión
el movimiento que se está tratando. De hecho, el movimiento fuera del
plano de observación de la imagen (through-plane) hace que el movimiento
estimado por EAS no represente de forma precisa las deformaciones reales
que sufre el corazón y, por tanto, la calidad de las reconstrucciones se ve
afectada. Por esta razón, la extensión al caso 3D, donde el movimiento
fuera de plano no existe, parece la línea futura de investigación más natural.

La reducción en el coste computacional de la solución EAS, así como en
los tiempos de ejecución hacen que ésta sea especialmente adecuada como
etapa inicializadora para otros métodos que utilizan muestreo compresivo
y hacen uso del movimiento para obtener una regularización inteligente.
En este nuevo escenario, el movimiento no es ya un elemento tan crítico
como cuando se utiliza el modelo directo —como en el caso de EAS—, sino
que EAS proporciona a estos otros métodos una estimación de movimiento
inicial más conveniente y con una carga computacional más asequible. De
ahí que se mantenga la calidad de las reconstrucciones finales, mientras
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que el tiempo de ejecución total se reduce considerablemente.
Adicionalmente, se ha propuesto una metodología basada en validación

cruzada para establecer el valor de los parámetros de regularización, junto
con una generalización de un esquema de muestreo 3D con ordenamiento en
espiral según el ángulo áureo. Este esquema de muestreo permite seleccionar,
por medio de un determinado parámetro α, desde un patrón de muestreo
uniforme del espacio k hasta un esquema de muestreo más denso en el
centro. Los experimentos realizados han demostrado que las configuraciones
con α ≈ 1 son preferibles, pero en presencia de altos niveles de ruido, las
configuraciones intermedias con α ≈ 0.7 proporcionan mejores resultados.





Abstract

Magnetic Resonance Imaging (MRI) is a technique used to obtain, in
the form of a picture, information about structure, composition and even
functionality of an object. It is characterized by its high reproducibility,
accuracy and versatility, and it offers high spatial resolution, wide field-of-
view and good contrast between soft tissues. However, MRI presents some
disadvantages: it is slow compared to common physiological processes such
as blood flow, heartbeat or breath hold and, in addition, it is very sensitive
to motion.

A common approach to accelerate MRI acquisitions is to collect only a
portion of k-space (subsampling) and to apply advanced image processing
techniques for image reconstruction. Nevertheless, the problem to be solved
becomes undetermined and ill-conditioned. Thus, some knowledge, con-
straints and assumptions are added to the information of the image model
to define a cost function, the optimization of which provides a regularized
solution.

This Thesis deals with the computationally demanding problem of
dynamic MRI reconstruction from highly undersampled data. The mo-
tion present in the dynamic sequence is used as a complementary source
of knowledge to exploit conveniently the redundancies existing in both
temporal and spatial dimensions.

On one hand, this Thesis explores spatially varying regularization
terms that take into account motion to weight pixelwise the amount of
regularization needed.

On the other hand, we have proposed what we call the elastic aligned-
SENSE (EAS) solution, in which a motion-free pattern image, together
with a set of nonrigid deformations, are the results of our optimization.
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The pattern image is deformed to the corresponding phase of the cardiac
cycle to build the CINE sequence. In terms of computational needs, our
results are less demanding than other methods that make use of motion to
foster sparsity. However, occasionally motion is lost in some areas of the
image. This is due to the fact that the method is model-based and in such
methodologies performance is satisfactory as long as the model describes
accurately the motion that is being dealt with. In fact, through-plane move-
ment makes estimated motion not represent the real deformations that
the heart undergoes and thus quality of reconstructions is compromised.
Therefore, the extension to 3D seems a natural future line of research.

EAS computational performance makes it specially suitable as a fast
initializer for other data-driven motion-compensated compressed sensing
methods that make use of motion for smart regularization. This makes
motion not as critical as when it is used in the image forward model —as it
is the case of EAS— but EAS does provide those methods with a convenient
initial motion estimation with affordable computational load. Hence, in
this new scenario, the quality of final reconstructions is maintained while
execution time is considerably reduced.

Additionally, a methodology based on cross validation to establish the
value of the regularization parameters has been proposed, together with a
generalization of a 3D sampling scheme with spiral golden angle ordering.
This sampling scheme allows the practitioner to select, by means of a
certain parameter α, from a uniform sampling pattern of k-space to a
denser sampling scheme in its center. The conducted experiments have
shown that configurations with α ≈ 1 are preferable, but in presence of
high levels of noise, intermediate configurations with α ≈ 0.7 draw better
results.
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Chapter 1
Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a technique used to obtain, in
form of an image, information about the structure, composition and even
functionality of an object. This technique is based in the phenomenon of
nuclear magnetic resonance, described in the mid-20th century by Bloch [1],
but it was not included in the clinical routine until some decades later [2].

As opposed to other imaging techniques such as Computed Tomography
(CT) and Positron Emission Tomography (PET), MRI does not make use
of ionizing energy, but of electromagnetic radiation, a fact that makes it an
innocuos technique, since this kind of radiation does not affect the molecular
structure of the object being examined. In addition, MRI is characterized
by its high reproducibility, accuracy and versatility [3] and offers high
spatial resolution, wide Field-of-View (FOV) and good contrast between
soft tissues [4, 5]. All these characteristics have led MRI to progressively
acquire more importance within the clinical routine, to the point that it
has become one of the most used radiological techniques nowadays [6,7]
and, specifically, in the field of cardiology, it is considered the gold standard
procedure to assess cardiac function and anatomy [8].

However, MRI presents some disadvantages. An MRI scan takes long

1
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compared to common physiological processes such as blood flow, heartbeat
or breath hold (BH). In addition, it is relatively expensive and requires
well-trained staff, long examination times and elaborated setups, due to
the complex underlying physical phenomena [3]. Furthermore, the main
source of artifacts and image quality degradation of this technique is due
to its high sensitivity to motion, showing up adverse effects in the images,
like blurring or ghosting, among others [9].

In the field of cardiology the cardiac CINE MRI modality is commonly
used. This modality consists of different images of the heart throughout
the cardiac cycle, so that a dynamic sequence is created in which both
anatomical structure and movement can be observed as a function of time,
as if it were a movie. This is quite challenging, as stated before, since
cardiac CINE MRI is affected by motion, in particular, the movement
introduced by the heart itself and the movement induced by the patient’s
breathing.

In order to obtain this kind of images, the cardiac cycle is divided
into different phases of short duration (typically ≈ 30 ms) to minimize
heart motion effects. Since cardiac movement is quasi-periodic, data can
be acquired along several cardiac cycles to complete k-space for each phase.
For this reason, synchronism is needed, which is achieved by means of exter-
nal devices like electrocardiogram (ECG) or pulse photoplethysmography
(PPG) (gated approaches), or by estimating such synchronism signals from
the acquired data themselves (self-gating approaches). The synchronism
can be made prospectively or retrospectively. In the first case, taking the
R-wave from the ECG signal as a temporal reference, k-space samples
are collected during 80-90% of the RR interval —the time between two
consecutive R-waves— and the procedure makes use of as many cycles as
needed to complete the k-space. The main drawback of this technique is
that there are some instants of the cardiac cycle that are not represented.
In the second case, k-space samples are collected continuously and a times-
tamp label is assigned to each of them, so that synchronism can be made
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at reconstruction time using the ECG signal as a reference.
As far as breathing is concerned, both the diaphragm and the tho-

racic cage make the heart move fairly rigidly along the longitudinal axis.
Movement induced by respiration is different in inspiration and expiration
stages as a result of lung hysteresis. However, breath-induced motion is
usually considered periodic and the relationship between the displacement
of the diaphragm and heart motion is approximately linear [9, 10]. The
simplest solutions to overcome the adverse effects derived from respiratory
motion perform acquisitions in apnea or by means of navigators, such as
chest belts with pressure sensors. Both alternatives reduce the efficiency of
the acquisition process, as data are not acquired during a long part of the
total time needed to perform a complete study. For example, several rest
periods between apneas are needed for the patient to recover or data are
only acquired in a specific time window (usually end expiration). Moreover,
apnea is not always possible, especially with non-cooperative patients,
such as children or those with a respiratory pathology that prevents them
to carry out long apneas, and also misalignment can occur due to the
difficulty of having equal apnea states. For this reason, free breathing (FB)
approaches in which respiratory motion is estimated and compensated
have gained a great interest.

A common approach in FB acquisitions consists in dividing the data into
different cardiac and respiratory states (bins) depending on the breathing
position and cardiac phase at which they were acquired. An image for
each bin can be then reconstructed. One of the drawbacks of this double
binning technique is that there are less data available for each image to
be reconstructed, due to the additional breathing states. Furthermore,
the fact of having less data makes the problem worse posed, so that
stability might be at stake and hence further processing demands, additional
computational needs and higher time consumption may arise. In addition,
the diagnostic potential of the additional images may be objectionable.
Motion compensation has also been included in a similar reconstruction
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pipeline to improve final image quality [11].
Performing acquisitions either in multiple apneas or in FB can result

in remarkably long scans, due to temporal inefficiencies in the acquisition
process, as stated above. One way to reduce scan times is to acquire
only a portion of the k-space (subsampling) and to apply later on some
advanced image post-processing techniques. The relationship between the
total number of samples of the fully sampled k-space and the actual number
of acquired samples is known as acceleration factor (AF) or reduction
factor, R. However, subsampling k-space implies aliasing in the image
domain, which manifest itself as superimposed replicas of the scanned
object. Moreover, the reconstruction problem becomes undetermined, due
to the missing samples, and ill-conditioned, due to noisy measurements.
The problem can be solved as a least square problem, but this method is
very sensitive to any data perturbation (for example, noisy measurements).
Therefore, some knowledge, constraints and assumptions (regularization
terms) may be integrated into the image model to obtain the desired
solution.

This Thesis deals with the highly computational demanding problem
of dynamic magnetic resonance image reconstruction from largely under-
sampled data. In particular, cardiac CINE MRI in both 2D and 3D are
considered. To face this problem, the Thesis focuses on the use of motion
present in the dynamic sequence as a complementary source of knowledge
to be included in the image model. This knowledge is incorporated in two
main different ways.

On one hand, artifacts as well as noise amplification may arise during
the reconstruction process, due to high subsampling of k-space. Therefore,
regularization is included, but this may make the problem even more
computationally expensive. Besides, selecting an adequate regularization
parameter is crucial: a high value of the regularization parameter gives
rise to static sequences with less artifacts, whereas a low value of the
regularization parameter results in moving sequences with more artifacts.
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This Thesis aims, as one major objective, to explore spatially varying
regularization terms that take into account the motion present in the image
to weight pixelwise the amount of regularization needed. This may allow a
tradeoff between the two previous cases —recovering static sequences with
less artifacts and moving sequences with more artifacts due to incorrect
regularization parameter selection— to be reached, resulting in higher
quality images.

On the other hand, an image needs a relatively high number of parame-
ters to describe itself. Furthermore, a CINE sequence is redundant not only
in the spatial dimensions, but also in the temporal one. These features can
be exploited, so that a CINE sequence can be interpreted as a free-motion
pattern image that is deformed by a set of transformations, which take that
pattern image to the corresponding cardiac state. Since transformations
need less parameters to be described, the reconstruction problem will
be better posed, so higher AF seems achievable and the reconstruction
problem should be less computationally demanding. However, this solution
would be model-based, so its quality will depend on the precision of the
model. Exploring these ideas as a reconstruction methodology is the second
major objective of this Thesis.

1.2 Objectives

The main objective of this Thesis is to propose and design a framework for
dynamic MRI reconstruction from highly undersampled data that takes
the motion information present in the dynamic sequence as complementary
source of knowledge, so that computational needs can be reduced without
losing image quality.

This main objective can be divided into the following sub-objectives:

• To define a strategy to leverage the regularization parameter, that
takes into account the particular properties of the different regions
of the image.
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• To propose an image model consisting of a free-motion pattern image
plus a set of transformations that deform the pattern image to the
corresponding cardiac cycle.

Additionally, and as a consequence of the two previous sub-objectives,
two secondary objectives appears:

• To define a method for selecting the value of regularization parame-
ters, so that image quality is maximized, not only in terms of intensity,
but also in terms of motion preservation.

• To define a variable 3D Cartesian sampling scheme with Golden-angle
ordering and determine the conditions under which the image quality
is maximized in cardiac CINE MRI applications.

1.3 Methodology

Along the work of this Thesis, comparisons and validations of the proposed
framework with respect to related Compressed Sensing (CS) reconstruction
methods, with special attention to those that apply motion estimation
(ME) and motion compensation (MC), have been carried out. To this end,
several datasets have been used, when applicable:

1. Synthetic datasets using the extended Cardiac-Torso anatomical
phantom software (XCAT) [12,13]. In this scenario both the exact
image to reconstruct and the motion are known beforehand. Thus, it
is possible to evaluate the performance of the proposed methods both
in ideal conditions as well as when several sources of degradation are
introduced, for different AF. However, it is important to notice that
synthetically generated functions are in general simpler than images
from real acquisitions.
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2. Simulated acquisitions from DICOM images. k-space can be obtained
by applying the Fourier transform (FT) to the images and the result-
ing k-space can be subsampled without constraints. This allows us to
test the algorithms in a more realistic scenario, although the original
phase information is lost.

3. Acquisitions on sedated swine, kindly provided by the Spanish Na-
tional Center for Cardiovascular Research (CNIC). The anatomy of
a swine is similar to the human being. However, respiratory motion
is barely appreciated, due to the physiology of these animals. Never-
theless, synthetically spatio-temporal deformations can be added, if
needed, to simulate different respiration positions, so that algorithms
can be tested in a more realistic situation, but knowing the exact
respiratory motion beforehand.

4. True raw data coming from fully sampled Cartesian acquisitions from
the scanner of the Universidad de Valladolid, which the research group
has access to, and from King’s College London acquisitions, to which
our research group has access thanks to past collaborations. This
allows us to validate the proposed methods in a more realistic scenario.
Data can be retrospectively undersampled to simulate different AF.

5. True raw data using Golden-radial subsampling in single BH acqui-
sitions performed at King’s College London. In this case, data are
collected continuously and different AF can be obtained by setting
the acquisition time or the time resolution window, when applicable.

1.4 Publications

In the course of this Thesis, the following contributions have been produced
(Figure 1.1):



8 Chapter 1. Introduction

• Indexed international journals:

– Godino-Moya, A., Royuela-del-Val, J., Usman, M., Menchón-
Lara, R.M., Martín-Fernández, M., Prieto, C., Alberola-López,
C. (2019). Space-time variant weighted regularization in com-
pressed sensing cardiac CINE MRI. Magnetic Resonance Imag-
ing. 58:44-55.

– Godino-Moya, A., Menchón-Lara, R.M., Martín-Fernández, M.,
Prieto, C., Alberola-López, C. (2021). Elastic alignedSENSE
for dynamic MR reconstruction. A proof of concept in cardiac
CINE. Entropy. 23(5):555.

• Conference presentations:

– Godino-Moya, A., Cloquell T., Royuela-del-Val, J., Martín-Fer-
nández, M., Alberola-López, C. (2017). Avoiding additional
hardware and recovering cardiac information from k-space. In
Proceedings of the 35th Annual Congress of the Spanish Society
of Biomedical Engineering (CASEIB 2017), pp:45-48, Bilbao,
Spain. The work that served as basis for this communication
has been included in Appendix D.

– Godino-Moya, A., Royuela-del-Val, J., Menchón-Lara, R.M.,
Martín-Fernández, M., Alberola-López, C. (2017). G-CASPR
and VDRad: extreme cases of a continuum. Intermediate may
be better. In Proceedings of the 34th European Society for Mag-
netic Resonance in Medicine and Biology Scientific Meeting
(ESMRMB 2017), Barcelona, Spain, 30(1):96-78.

– Royuela-del-Val, J., Godino-Moya, A., Menchón-Lara, R.M.,
Martín-Fernández, M., Alberola-López, C. (2017). Space-time
variant weighted regularization improves motion reconstruction
in compressed sensing accelerated cardiac CINE MRI. In Pro-
ceedings of the 34th European Society for Magnetic Resonance
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Figure 1.1: Graphical outline of the contributions (orange) and publications
(blue) of this Thesis. The main contributions are represented with darker boxes.
Some relevant contributions and publications from other authors that inspired
or served as an important basis for this work are included and represented with
dashed outlined boxes.

in Medicine and Biology Scientific Meeting (ESMRMB 2017),
Barcelona, Spain, 30(1):96-78

– Menchón-Lara, R.M., Royuela-del-Val, J., Godino-Moya, A.,
Cordero-Grande, L., Simmross-Wattenberg, F., Martín-Fer-
nández, M., Alberola-López, C. (2017). An Efficient Multi-
resolution Reconstruction Scheme with Motion Compensation
for 5D Free-Breathing Whole-Heart MRI. In: Cardoso M. et al.
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(eds) Molecular Imaging, Reconstruction and Analysis of Mov-
ing Body Organs, and Stroke Imaging and Treatment. RAMBO
2017, CMMI 2017, SWITCH 2017. Lecture Notes in Computer
Science, vol 10555. Springer, Cham.

– Godino-Moya, A., Cloquell, T., Royuela-del-Val, J., Martín-
Fernández, M., Alberola-López, C. (2018). Obtención de la
señal de sincronismo cardiaco a partir de los datos del k-espacio
en IRM CINE cardiaca. 34th Congress of the Spanish Society
of Medical Radiology (SERAM 2018), Pamplona, Spain. The
Magna Cum Laude Award in Biotechnology was recieved
for this communication.

• Electronic posters:

– Godino-Moya, A., Cloquell, T., Royuela-del-Val, J., Martín-
Fernández, M., Alberola-López, C. (2019). Recovering cardiac
synchronism signal from k-space data in cardiac CINE MRI.
78th Annual Meeting of the Japan Radiological Society (JRS
2019), Yokohama, Japan.

– Godino-Moya, A., Cloquell, T., Royuela-del-Val, J., Martín-
Fernández, M., Alberola-López, C. (2019). Recovering cardiac
synchronism signal from k-space data in cardiac CINE MRI.
2019 Annual Meeting of the American Roentgen Ray Society
(ARRS 2019), Honolulu, United States.

– Godino-Moya, A., Menchón-Lara, R.M., Martín-Fernández, M.,
Alberola-López, C. (2020). Combination of alignedSENSE and
groupwise motion-compensated compressed SENSE for cardiac
CINE MRI reconstruction. 37th European Society for Mag-
netic Resonance in Medicine and Biology Scientific Meeting
(ESMRMB 2020), Barcelona, Spain. A Certificate of Merit
Award was received for this communication.



Chapter 2
Background

2.1 Nuclear Magnetic Resonance

It is well known that an object is composed by atoms, which can be divided
in turn into a nucleus and their orbiting electrons. A fundamental property
of nuclei is that those with an odd atomic number, such as the hydrogen,
possess an angular momentum, called spin [14]. Like any spinning charged
object, a nucleus with a non-zero spin creates a magnetic field around it,
called magnetic moment. Although spin and its interaction represent a
quantum effect, in MRI spins do not need to be individually analyzed, but
the macroscopic behaviour of spin systems can be fully described with
classic magnetic field theory [15].

In the absence of an external magnetic field, spin directions are com-
pletely random, so macroscopic magnetization is null. However, when an
external magnetic field ~B0 is applied (by convention it is applied in the ~z
direction), the spin directions tend to align along it, but this alignment
happens partially, due to the fact that movements and interactions between
neighboring nuclei at corporal temperature still play an important role.
(Figure 2.1) [16]. In addition, spins start to precess around ~B0 at a certain
angular frequency ω0, known as Larmor frequency, the expression of which

11



12 Chapter 2. Background

~B0

(a)

~B0

(b)

Figure 2.1: Nuclear magnetic moment vectors pointing in random directions (a)
and in the presence of an external magnetic field ~B0 (b).

is given by
ω0 = γ‖ ~B0‖ (2.1)

where ‖·‖ denotes the `2-norm1 and γ is a nucleus-specific constant called
gyromagnetic ratio. In this situation, spins show a slight tendency to point
themselves along the direction given by the main magnetic field, creating
a net magnetization aligned with ~B0.

Nonetheless, the described process is still stationary and, in order to
obtain a measurable signal it is necessary to apply a time-varying radio-
frequency (RF) pulse, ~B1 (t), during a short period of time. This RF pulse
is applied perpendicularly to ~B0 and its frequency ωRF is tuned to the
Larmor frequency, modeled as [14]:

~B1 (t) = Be
1 (t) · [cos (ωRF · t) ~x− sin (ωRF · t) ~y] (2.2)

where Be
1 (t) defines the envelope of the RF pulse. The effect of the net

magnetization ~M = [Mx,My,Mz] under the application of the RF pulse

1The `p-norm of a vector x ∈ Cn, n ∈ N, p ∈ R+ is defined as ‖x‖`p =
(∑n

i=1 |xi|
p
) 1

p .
Note that when no `p subscript is specified, it refers to the `2-norm (p = 2).
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Figure 2.2: Displacement of the net magnetization ~M after the application of a
RF pulse ~B1 along the ~x direction in both a static frame of reference (a) and a
rotating frame of reference (b).

~B1 (t) is modeled by the Bloch equation

d ~M

dt
= γ ~M × ~B − Mx~x+My~y

T2
− (Mz +M0z)~z

T1
(2.3)

where ~B denotes the total magnetic field ~B = ~B0 + ~B1, M0z is the value
of the magnetization when only ~B0 is present (thermal equilibrium value)
and T1 and T2 are two constants that describe the relaxation process.

A common approach at this time is to define a frame of reference
that rotates around the ~z direction at Larmor frequency, to get rid of the
effect of the Larmor-precession (Figure 2.2). In this new rotating frame
of reference the general Bloch equation (Eq. (2.3)) can be expressed as
follows [14]:

d ~Mrot
dt

= γ ~Mrot × ~Beff −
Mx′

~x′ +My′
~y′

T2
− (Mz′ +M0z) ~z′

T1
(2.4)

where ~Mrot is the magnetization vector in the new rotating frame of
reference and ~Beff is the applied magnetic field, the value of which is given
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by
~Beff =

(
B0 −

ωRF
γ

)
~z′ +B1~x′ (2.5)

The frequency ω1 at which ~Mrot precesses around ~Beff is given by
Eq. (2.6) and the so-called flip angle α that depends on the strength and
duration of the applied RF pulse can be written as Eq. (2.7).

ω1 = γ‖ ~Beff ‖ = ‖ ~B1‖ (2.6)

α =
∫ τp

0
γBe

1 (τ) dτ (2.7)

After a magnetized spin system has been perturbed from its thermal
equilibrium state by an RF pulse, it will return to this original equilibrium
after removing the RF pulse, according to the laws of thermodynamics [14].
This process is called relaxation (Figure 2.3) and can be described by the
Bloch equations given by Eq. (2.3). Specifically, in the rotating frame, we
have 

dMz′
dt = −Mz+M0z′

T1
dMx′y′
dt = −Mx′y′

T2

(2.8)

The first term corresponds to the longitudinal or spin-lattice relaxation by
whom the longitudinal magnetization recovers in order to realign with the
static field ~B0:

Mz′ (t) = M0z ·
(

1− e−
t
T1

)
+Mz′ (t = 0) · e−

t
T1 (2.9)

The second term corresponds to the transverse or spin-spin relaxation,
which refers to the transverse component of the net magnetization due to
the dephasing of the spins by the small contributions to the magnetic field
that vary from spin to spin:

Mx′y′ (t) = Mx′y′ (t = 0) · e−
t
T2 (2.10)
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Figure 2.3: Relaxation of both longitudinal (a) and transverse (b) components
for different constant decays.

Another aspect that causes spin dephasing is the presence of an inho-
mogeneous magnetic field, ∆Binhom . The transversal relaxation due to the
time independent field inhomogeneities and spin-spin interactions is called
T ∗2 and is related to T2 by the following relation [17]:

1
T ∗2

= 1
T2

+ 1
∆T2

(2.11)

where 1
∆T2

= γ∆Binhom and ∆Binhom ≥ 0. Note than T ∗2 is always smaller
or equal to T2, since γ > 0.

These relaxation constants, as well as the proton density —i.e., the
number of protons per volume unit—, are parameters characteristic to
each tissue. By properly setting two parameters from the MR acquisition
sequence, namely Echo Time (TE) and Repetition Time (TR), images can
be weighted to provide contrast sensitive to any of these three parameters
(T1, T2 and T ∗2 ).

2.2 Signal localization

RF pulses give rise to time varying signals in the transverse plane that can
be measured. However, the receptor will observe the superposition of the
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signals coming from all excited spins and therefore the exact spatial origin
of each cannot be determined without additional processing. To this end,
a gradient field ~BG, whose amplitude varies linearly with the position, is
applied:

~BG (~r) = 〈~G,~r〉 = Gxx+Gyy +Gzz (2.12)

The presence of such gradient modifies the precession frequency of the
spins of the object along its direction

ω (~r) = ω0 + γBG (~r) (2.13)

and the received signal s (t) would be

s (t) =
∫

Ω
Mx′y′ (~r, t) e−iγ

∫ t
0 〈

~G(τ),~r〉dτdr (2.14)

Including the definition of the k-space trajectory as

~k (t) = γ

2π

∫ t

0
~G (τ) dτ (2.15)

the received signal can be expressed as

s (t) =
∫

Ω
Mx′y′ (~r, t) e−2πi〈~k(t),~r〉dr (2.16)

It can be seen from Eq. (2.16) that the receive signal s (t) is a three-
dimensional Fourier Transform evaluated at locations ~k (t). The reason of
spatial encoding is to use different gradients to visit the different k-space
locations (phase-encoding steps) while the received signal is sampled. It
can be proved that the three-dimensional FT of the RF pulse defined along
the visited k-space would define the excitation profile. This is the basis for
slice selection.
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2.2.1 k-Space sampling

As stated in Section 1.1, time reduction in MRI can be achieved if only
a portion of k-space is acquired. According to this, some of the most
commonly used sampling schemes are explained below.

Radial sampling of k-space was the first trajectory used in an MRI
experiment, which was carried out by Lauterbur in 1973 [18]. However, it
was widely substituted in the 1980’s by the spin-warp technique [19], which
employed Cartesian data sampling. The principal advantage of Cartesian
sampling is that k-space data points are regularly spaced on a rectangular
grid (Figure 2.4a), so that the Fast FT (FFT) algorithm can be applied
directly to the acquired k-space data to recover an image. Radial sampling,
however, obtains k-space data points that do not fall on a rectangular grid;
k-space is sampled with equally spaced radial lines, all of which traverse
the center of k-space (Figure 2.4c). In order to apply the FFT to these
non-uniformly sampled data, they must be transformed into a Cartesian
grid. This process, known as gridding, is computationally complex and
time demanding [20].

Cartesian acquisitions show significantly higher sensitivity to motion.
Translations in image space lead to phase offsets in k-space. Thus, image
copies appear from aliasing that contaminate the FOV along the phase-
encoding direction, which often give rise to images that do not allow
diagnostic tasks. Radial acquisitions, in contrast, show higher robustness
to motion due to the following facts: the overlap of spokes in the k-space
center creates a time-averaging effect and, since the readout direction has
variable orientations, object movements do not translate into shifted image
copies. These resulting artifacts appear as streaks, that radiate from the
motion affected regions. Therefore, they are easy to identify and rarely
hide diagnostic information, since they tend to merely add texture-like
patterns [21].

The use of efficient k-space sampling strategies has been largely inves-
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tigated to reduce acquisition time and to generate high Signal-to-Noise
Ratio (SNR) images. Echo-Planar Imaging (EPI) [22] is one of the fastest
MRI pulses sequences and can be used for both 2D and 3D imaging. It is
designed to collect multiple lines of k-space after a single RF excitation,
resulting in a zig-zag traversal of k-space (Figure 2.4b).

Azimuthal undersampling may speed up image acquisition without
sacrificing spatial resolution. Since each profile incorporates data from the
center of k-space, the global image structure is maintained and potentiates
an increase of the image update rate in dynamic MRI [23, 24]. However,
uniform radial sampling scheme is restricted to a constant length of the
acquisition window and requires a new scan for each desired temporal
resolution. Golden-radial acquisition uses a constant azimuthal profile
spacing based on the Golden Ratio, known as golden angle (111,246°). In
contrast to uniform radial sampling, where profiles may not be distributed
over the entire radial space or may be sampled more than once, golden
angle guarantees an optimal profile distribution for any arbitrary number
of profiles used in reconstruction (Figure 2.4c and 2.4d) [24].

Spiral sampling is one of the most efficient sampling schemes [25–27],
where k-space data are collected along a spiral curve and it is very often
that spirals are interleaved, providing more densely coverage of k-space
(Figure 2.4e). Like radial k-space sampling, spiral sampling is relatively
robust to motion artifacts, but it is less robust to undersampling than radial
schemes [28]. For spiral scanning, it is desirable to perform a one-time
calibration for gradient delays and eddy currents [29–31].

Stack of Stars [21] is a 3D acquisition scheme, which acquires the kx-ky
plane along radial spokes and the kz direction with Cartesian sampling.
The angle of the radial spokes can be ordered using an equidistant scheme
(uniform radial) or using the golden angle scheme (Figure 2.4f). Spiral
phyllotaxis [32] is another 3D sampling pattern, consisting of several inter-
leaves. Each interleave is formed by a spiral in the upper hemisphere and its
complementary spiral in the lower hemisphere, which are joined by spokes,
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Figure 2.4: Different trajectories for k-space subsampling: Cartesian (a), EPI
(b), uniform radial (c), Golden-radial (d), spiral (e), Stack of Stars (f), spiral
phyllotaxis (g) and G-CASPR sampling (h).

forming a lattice. This gives rise to an overall uniform distribution of the
readouts and optimized interleaving properties, that minimizes the effect of
eddy currents, when the number of interleaves is a Fibonacci number2, since
the trajectory self-arranges in such a way that the displacements between
successive readouts within one interleave are minimized. Furthermore, it
is intrinsically prepared for self-navigated cardiac MRI, since the center
of k-space is always sampled (Figure 2.4g). These non-Cartesian sampling
patterns, as mentioned before, imply to include density compensation and
gridding steps in the reconstruction problem, which may be complex and
time consuming. To overcome this issue, some pseudo-radial trajectories
have been proposed. ROCK (ROtating Cartesian K-space) [33] defines a
rotating Cartesian k-space reordering, where a spiral path is generated
and subsequently mapped to a Cartesian grid. Then the path is rotated

2Fibonacci numbers are those from the so called Fibonacci sequence, defined by
an = an−1 + an−2, for n > 3 and a1 = a2 = 1.
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according to golden-angle until the desired number of samples is reached.
The undersampling rate grows exponentially along radial direction and
k-space center line is repetitively sampled as a respiratory motion surrogate.
VDRad (Variable-Density sampling and Radial view ordering) [34] defines a
temporal ordering of phase-encoding lines on a Cartesian grid that resemble
spirals. This scheme aims to maintain a variable-density pseudorandom
subsampling, by segmenting k-space according to its radius and grouping
the lines into rings. The number of lines per ring is varied, so that lines
from smaller ring groups are chosen more often than lines in larger ring
groups. The advantage of this scheme is that variable-density sampling
has shown better results for compressed sensing methods [35]. In a similar
way, G-CASPR (Golden angle Cartesian Acquisition with Spiral PRofile
ordering) [36] defines a temporal ordering of phase-encoding lines on a
Cartesian grid, whose interleave is temporally ordered according to a golden
ratio permutation (Figure 2.4h), resulting in a quasi-uniform sampling
pattern of k-space. In Appendix A a generalized 3D Cartesian sampling
scheme with spiral golden-angle ordering is provided. This scheme allows
the practitioner to select from a uniform sampling pattern of k-space to a
denser sampling scheme in its center by means of a continuous parameter
α.

2.3 Image reconstruction

As mentioned in previous sections, MRI is a slow imaging technique due to
its demanding sampling requirements. Therefore, in this section the focus is
set on how acquisitions can be accelerated. Specifically, the fundamentals of
parallel MRI are described as well as modern algebraic reconstruction tech-
niques that use prior knowledge and regularization, with special attention
to those approaches that have served as basis to develop the algorithms
presented in this Thesis.
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2.3.1 Parallel Imaging

Parallel Imaging (PI) [37,38] has its origin in Phased Array technology [39],
with the aim of obtaining better SNR in reconstructed images [40]. Multiple
antennas (also known as coils or channels) are placed around the object to
be studied (Figure 2.5a). The images coming from each antenna can be
later combined and, as a result, noise can be reduced. Thus, the SNR of
the final image is improved. However, nowadays this approach is usually
used to reduce acquisition times by undersampling k-space data [41].

As previously stated, the data are simultaneously sampled by Nc

different coils placed around the object under study (see Figure 2.5a). The
signal that each antenna receives varies as a function of the position, ~r (the
closer an antenna to a certain location, the stronger the signal it receives).
An antenna can be characterized mathematically by its sensitivity map
Cn (~r), so the signal sn(~r) received by each antenna can be expressed as

sn (~r) = Cn (~r) · s (~r) , n = 1, ..., Nc (2.17)

where s (~r) represents the original image. In order to reduce acquisition
time, some k-space lines can be skipped, resulting in aliased images. Even if
the same k-space positions are acquired by all the coils, the data they receive
are affected by different antenna profiles or sensitivities, therefore each
coil is acquiring different information. Consequently, this new information
incorporated by the antennas can be used to recover the missing data and
reconstruct the original image. The most well-known PI techniques are
SENSE and GRAPPA. Since most of the work developed in this Thesis
takes SENSE as its basis, this technique will be described in more detail
in the next subsection.
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Figure 2.5: Paralell imaging scheme. Distribution of a multi-coil system around
the object of study (a). Example of a regular subsampling with an AF of 2 and
its pixel-wise resolution in the image domain (b) (SENSE).

2.3.2 SENSE

SENSitivity Encoding (SENSE) [37] is one of the most employed PI tech-
niques, which is performed in the image domain after obtaining the images
for each coil individually —in contrast to GRAPPA (Generalized Auto-
calibrating Partially Parallel Acquisitions) that operates in k-space before
obtaining the images. The use of multiple coils permits the reduction of
the number of phase-encoding steps by means of increasing the distance of
sampling positions in k-space while maintaining the maximum k-values. It
is well-known that reducing the sampling density results in a reduction of
the FOV, causing aliasing. In the first step, SENSE reconstruction creates
one such aliased image for each coil element by means of the FT, creating
a set of intermediate images. The second step is to create a full-FOV image
by combining that set of intermediate images. To this purpose, the signal
superposition underlying the fold-over effect must be undone. The key idea
of SENSE is that the superposition of signals occurs with different weights
according to the local coil sensitivities. Let us consider an acquisition with
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two coils and an AF of 2 (Figure 2.5b). The original signal arising from the
point A would be affected by the sensitivity of the two coils, namely, s1A

and s2A. However, due to undersampling, the images obtained from each
coil would be aliased and each pixel p would be the sum of the contribution
of two pixels (A and B, in this example). Denoting this pixel values from
coil images p1 and p2, it can be written

p1 = s1A ·A+ s1B ·B
p2 = s2A ·A+ s2B ·B

(2.18)

Since pi and si (i = 1, 2) are known values, the true values A and B can
be easily recovered by solving that system of 2 equations and 2 unknowns.
A similar process can be done for all pixels and using a compact matrix
vector notation the problem is formulated as

y = Em = AFSm (2.19)

where m is the true image to be recovered and y denotes all the k-space
measurements by all the coils, defined both as a single column vector. The
matrix E is often called encoding matrix and comprises the coil sensitivity
maps S, the Fourier transform F and the undersampling mask A, which
keeps only the acquired k-space positions and coincides for all coils. The
unfolding process is possible as long as the matrix inversions in Eq. (2.19)
can be performed. In particular, the number of pixels to be separated must
not exceed the number of coils. On the other hand, in a real application
this is generally not possible (due to noise presence, matrix size...), so the
problem is solved as an optimization problem in an iterative manner [37].

Sensitivity based reconstruction requires highly accurate sensitivity
assessment. The first step in generating such maps is to acquire and recon-
struct single-coil, full-FOV images of the slice of interest in a conventional
manner. By dividing each of these images by a body coil image a more
homogeneous scaling is achieved, rather than “sum of squares” of the
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set, since this is only applicable if the object phase is sufficiently smooth.
However, resulting sensitivity maps are contaminated by noise, thus a
smoothing procedure of polynomial fitting is performed to obtain refined
sensitivity maps [37].

2.3.3 Compressed Sensing

The CS theory is remarkably extensive and therefore it is not covered
in depth in this section. A thorough mathematical introduction can be
found in [42]. The main ideas of the CS theory state that if the encoding
matrix E (Eq. (2.19)) satisfies the Restricted Isometry Property (RIP)
for all S-sparse vectors (i.e., those vectors with S non-zero elements at
most), and if the vector m̃ is S-sparse and a solution of Eq. (2.19), then
an exact recovery of m̃ is possible by solving the following `1-minimization
problem [43]

minimize
m̃∈Cn

‖m̃‖`1 s.t. y = Em̃ (2.20)

where C is the complex number space and n the dimension of the vector
m̃. When the data are noisy, the `2-norm of the error between the solution
of the problem

minimize
m̃∈Cn

‖m̃‖`1 s.t. ‖Em̃− y‖2 < ε (2.21)

and the true vector m̃, is below Kε, where K is a given constant [43]. These
results can be extended to vectors that are not sparse in the canonical
coordinates, but in a transformed domain defined by certain operator Ψ.
In such case, those vectors are said to be sparse or compressible. One last
idea related to CS theory and RIP is that the encoding matrix obeys the
RIP with almost sure probability, when sampling is incoherent (i.e., when
randomness is included) [43].
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2.3.4 k-t SPARSE-SENSE

As described in the previous section, CS states that an image can be
recovered from a small number of incoherent measurements, if such an
image is sparse or compressible. This idea inspired the method k-t SPARSE-
SENSE [44], which is, in turn, a combination of k-t SPARSE [45] and
SENSE. The rationale of this combination is that CS alone limits the
acceleration, due to the requirement in the number of samples in practice
(three or five times the number of sparse coefficients). Therefore, PI may
increase AF, which is ultimately limited by noise amplification [44].

The method exploits both spatial and temporal sparsity of dynamic
images, since they are highly redundant in both spaces. By using linear
transformations (such as wavelets, FT, etc.) the dynamic image can be
represented by means of a few sparse transform coefficients [45]. Specifically,
cardiac CINE MRI images are sparse in the combined temporal Fourier and
spatial domain (y-f space, usually), since only portions of the FOV require
the full temporal bandwidth while other regions may be either static of
have information limited to low temporal frequencies. The incoherence
required by CS can be obtained by randomly excluding phase-encoding
lines (ky lines) with a different pattern for each time frame (t). This
ky-t random undersampling increases incoherence, since undersampling
artifacts are incoherently distributed along two dimensions rather than one.
Furthermore, the combination of k-t SPARSE and SENSE does indeed
represent a form of distributed compressed sensing, due to the fact that
joint sparsity is exploited —instead of individual coil-by-coil sparsity—
to reconstruct one image series that represents the combination from
all coils. Multicoil samples with different spatial information content are
simultaneously obtained to reduce the required number of samples per
coil needed to reconstruct an unaliased image, just as in PI. Even though
the same ky-t random undersampling pattern is shared for all coils, the
convolution in k-space with the coil sensitivities will generate different
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incoherent artifacts for each coil [44]. The image is then recovered by
solving the following optimization problem:

minimize
m

‖Ψm‖`1 s.t. ‖AFSm− y‖2 < ε (2.22)

where m is the dynamic image to be recovered, y is the measured k-space
data, Ψ is the operator that transforms the dynamic image into a sparse
representation, F is the spatial FFT, S is the sensitivity coil maps matrix
and A is the sampling matrix. The parameter ε controls the fidelity of the
reconstruction to the measured data and it is usually set as the noise level.
Using a Lagrange multiplier and the temporal FFT (Ft) as the sparsifying
transform, the problem can be rewritten as follows:

m̃ = arg min
m

{
‖AFSm− y‖2 + λ ‖Ftm‖`1

}
(2.23)

where the parameter λ establishes a trade-off between data consistency
and the sparsity of the solution, enforced by the `1 norm term.

A further improvement to this approach is proposed in [8], in which
two different sparsifing transforms are used. Specifically, a combination of
temporal total variation (tTV) and temporal FFT are used as follows:

m̃ = arg min
m

{
‖AFSm− y‖2 + λ1 ‖∇tm‖`1 + λ2 ‖Ftm‖`1

}
(2.24)

where ∇t is the tTV operator. λ1 and λ2 are regularization parameters
that satisfy λ1 = 10λ2, so that the second regularization term (i.e., the
one that uses temporal FFT) is sufficiently small so as not to introduce
temporal blurring artifacts, but sufficiently large to help suppress residual
aliasing artifacts arising from the static regions.
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2.3.5 Groupwise motion compensated compressed sensing

A common proposal in cardiac CINE MRI is to incorporate motion infor-
mation to regularize the reconstruction problem in order to promote signal
sparsity and achieve higher AF [46–51]. One of them is the groupwise
(GW) MC-CS algorithm (GWCS) in [51], which has been used in this
Thesis for both comparison purposes and as part of one of the reconstruc-
tion methodologies proposed in this Thesis. In GWCS approach, a first
reconstruction is performed by aplying kt-SPARSE SENSE with tTV as
sparsifying transform:

m̃ = arg min
m

{
‖AFSm− y‖2 + λ ‖∇tm‖`1

}
(2.25)

Note that this modification of the original formulation of k-t SPARSE-
SENSE in [44] will be hereafter referred as to simple Parallel Imaging
Compressed Sensing (sPICS) in order to distinguish it from the improved
version of k-t SPARSE-SENSE with the two different regularization terms
[8] (i.e., Eq. (2.24)), which will be refered to as such and denoted by the
acronim kt-SS for brevity.

Then, motion is estimated from this first reconstruction in a groupwise
manner instead of pairwise one, i.e., the whole sequence is registered at
once. The registration method will be explained in subsequent subsections.
Afterwards, the motion in the moving sequence is compensated by an
operator TΘ that deforms each cardiac phase to a common reference,
resulting into a pseudostatic sequence. This pseudostatic sequence gives
rise to a higher sparse representation when a sparsifying transform, such as
tTV, is applied. However, the direct application of such operator may lead
to severe artifacts in those areas where large deformations occur. This is due
to the accumulated differences, which are implicitly weighted according to
their corresponding areas in the motion corrected sequence, as opposed to
those in the one to be reconstructed. Specifically, when the transformation
TΘ gives rise to a contraction (the Jacobian of the transformation is
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Figure 2.6: Relation between area changes and the Jacobian of the transformation.
The scheme shows the left ventricle and the spatial transformations that map
the common reference configuration, m (TΘ (x)), in the material point coordinate
system, Xcr (center) to systolic (left) and diastolic (right) cardiac phases. At
systole, mi (TΘi

(x)), the blood pool, Xa, contracts (coloured in orange), so the
Jacobian of the transformation takes values lower than one. In contrast, the
cardiac muscle, Xb, thickens (coloured in blue), so the Jacobian is greater than
one in the myocardium. At diastole, mj

(
TΘj (x)

)
, the situation is reversed.

lower than 1), that area will be overregularized during the reconstruction
process, as it occupies a larger area in the reference configuration. On
the contrary, when a dilatation occurs (the Jacobian is higher than 1),
it will be underregularized (see Figure 2.6). Therefore, the Jacobian of
the transformation is incorporated to the sparsifing operator in order to
counteract this effect, so that each temporal difference is locally weighted.
This sparsifying term avoids the presence of reconstruction artifacts and
eliminates the need of an additional spatial regularization term. Thus, the
problem is formulated as follows:

m̃ = arg min
m

{
‖AFSm− y‖2 + λ ‖m‖JTΘ

}
(2.26)

where ‖m‖JTΘ denotes the Jacobian weighted tTV regularization term,
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which can be expressed by

‖m‖JTΘ= 1
|Xcr|N

∫
x∈Xcr

N∑
n=1
|mn+1

(
TΘn+1(x)

)
−mn(TΘn(x))|JT

n+ 1
2
(x) dx

(2.27)
where x ∈Xcr ⊂ RL denotes the coordinate space in which the common
reference is defined, L is the number of dimensions of the image (L = 2, 3),
N is the number of frames, TΘn (x) ≡ TΘ (x, n) represents the spatial
transformation —controlled by the set of parameters Θ— incurred by
the n-th frame mn (x) ≡ m (x, n) of the dynamic image m to match a
common reference motion state3 and the term JTn (x) denotes the Jacobian
of the transformation TΘn (x). Given the discrete nature of the temporal
index n, the the Jacobian of the transformation at time instant (n+ 1/2)
is approximated by

JT
n+ 1

2
(x) ≈ 1

2
[
JTn (x) + JTn+1 (x)

]
(2.28)

2.3.5.1 Motion Estimation

Cardiac motion in the images is estimated by using a groupwise regis-
tration method based on the Free Form Deformation (FFD) model with
B-splines [52]. FFDs rely on a parametric model that deforms an object by
manipulating a mesh of K control points {uk|1 ≤ k ≤ K}, governed by a
set of transformation parameters Θ = {Θn|1 ≤ n ≤ N} with Θn = {θn,uk}
and θn,uk ∈ RL.

Thus, FFDs are used here to describe the N nonrigid deformations TΘ

that map the coordinates of each material point in a common reference
image into its corresponding coordinates in each frame. The details of
how the transformation is obtained are given in the Section 2.3.5.2. Using
the variance of the intensity along time as groupwise registration metric,

3The transformation is defined from the space of the common reference motion state
to the space of each dynamic image, so that it is precisely the reference image the one
that is deformed.
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the optimal set of transformation parameters Θ that describe the spatial
transformations TΘ can be found by solving the following optimization
problem:

Θ̃ = arg min
Θ


N∑
n=1

∑
x∈Xcr

[
mn (TΘn (x))− 1

N

N∑
k=1

mk (TΘk
(x))

]2

+ R1 (Θ)


(2.29)

where R1 (Θ) represents an additional regularization term given by the
second order spatio-temporal derivatives of the motion fields approximated
by finite differences, the purpose of which is to promote smoothness of the
estimated spatial deformations:

R1 (Θ) =
N∑
n=1

∑
x∈Xcr

(
β1
∥∥∥∇2

xTΘn (x)
∥∥∥2

+ β2
∥∥∥∇2

tTΘn (x)
∥∥∥2
)

(2.30)

where the parameters β1 and β2 are used to weight the spatial and temporal
regularization terms, respectively [50].

2.3.5.2 B-Spline Free Form Deformation model

Translation, rotation and scaling are the only means for describing a rigid
transformation. However, soft tissues of the body, especially the heart, can
be deformed in ways that such transformations cannot fully describe [53].
Therefore, non-rigid deformations are needed.

FFD models are a powerful tool for modelling arbitrary deformations
applied to objects. The basic idea of them is that an object can be deformed
by manipulating a regular grid of control points, which are distributed
across the full object with a certain resolution.

In this Thesis, a FFD model based on cardinal cubic B-Splines is
adopted. B-splines are functions defined piecewise by polynomials that
have minimal support with respect to a given degree, smoothness and
domain partition. B-spline functions pass through a number of knots and
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create smooth shapes and surfaces. It is very common to use FFD based
on third-order B-spline basis functions, since they present a good balance
between smothness and support region [54]. Therefore, they are suitable
for modeling the elastic deformations of the hearth and the surrounding
tissues.

2.3.5.2.1 Forward model

This Section is focused in explaining the 2D case, but the model is easily
extendable to the 3D case. The set of control points u = (u1, u2) ∈ R2, is
located over a region of interest (ROI) in the pixel mesh, Xcr ⊂ R2, so
that the ROI is fully covered (see Figure 2.7). Notice that the ROI may be
chosen considering some margin in each direction of the image to avoid
border effects. The resolution of the control point grid, i.e., the spacing
between control points, is denoted by ∆ = (∆1,∆2). For simplicity, it is
set to be constant, and satisfies the relation ∆lKl ≤ Nl, where Nl and Kl

are the number of pixels in the ROI and the number of control points,
respectively, along the l direction. Therefore, each control point u can
take values in the interval4 −

⌊
Kl
2

⌋
≤ ul ≤

⌊
Kl−1

2

⌋
. If the position of the

center of the control point grid, in the image coordinate space, is defined
as c = (c1, c2) =

(⌈
N1
2

⌉
,
⌈
N2
2

⌉)
, the position of the control point u can be

written as p(u) = pu = (pu1 , pu2) = c + ∆ � u, where ‘�’ denotes the
Hadamard product5.

The resolution of the control point grid plays an important role, since it
controls the elasticity of the transformation: lower values of ∆ will allow to
obtain very local transformations, as control points will only have influence
inside a small pixel neighborhood, meanwhile higher values will allow to

4The the floor operator (nearest lower integer) is denoted by b·c, whereas d·e denotes
the ceil operator (the nearest higher integer).

5Given two matrices A and B of the same dimension n×m, the Hadamard product
is defined as the matrix (A�B), also of dimension n×m, whose elements are given by
(A�B)ij = (A)ij(B)ij .
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obtain more global transformations, since the influence of control points
will be extended to a larger area. The radius of influence of control points,
rl, is given by the following expresion:

rl = (E + 1) ∆l

2 (2.31)

where l denotes the dimension and E, the order of the B-Spline functions,
which has been set to 3 in this Thesis. Thus, the local neighborhood
affected by a control point is determined by the interval

[
Cinfl , Csupl

]
with

Cinfl = −b cl−xl+rl∆l
c and Csupl = bxl−cl+rl∆l

c. Since the points outside the
image will not have any effect, the previous expressions can be rewritten as
Cinfl = max

(
−b cl−xl+rl∆l

c,−bKl2 c
)
and Csupl = min

(
bxl−cl+rl∆l

c, b (Kl−1)
2 c

)
.

With all these previous definitions, the B-spline based transformation
can be obtained as

TΘ(x) = x +
Csup1∑

u1=Cinf1

Csup2∑
u2=Cinf2

[ 2∏
l=1

BE

(
xl − pul

∆l

)]
· θu (2.32)

where θu = (θ1, θ2) represents the control point displacements, and BE

stands for the third order (E = 3) B-spline function obtained through the
Cox-DeBoor recursion formula, as defined in [55]. Deformations at each
point are given by a 2D tensor product of 1D [52].

2.3.5.2.2 Backward model: inversion

Sometimes, the set of inverse transformations, T−1
Θ , is needed. However,

the inverse of a B-spline cannot be analytically obtained. Furthermore,
such inverse transformation will not be described by another B-spline
transformation in general. Therefore a numerical approach is adopted
instead. We obtain, as an approximation of T−1

Θ , the set points x̃ that are
mapped to the regular Cartesian grid of spatial locations, x′, in which the
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Figure 2.7: Design of the control point grid for FFD B-Spline transformations.
Image coordinate grid is shown in black color, where as the control point grid is
shown in blue. The center of the grid is highlighted in orange.

original images are defined, when TΘ is applied by solving

x̃ = arg min
x

 ∑
x′∈X

‖TΘ(x)− x′‖2
 (2.33)

The solution of the optimization problem defined by Eq. (2.33) is equivalent
of having a lookup table for the evaluation of T−1

Θ for each point u. The
main advantage of this procedure is that there is no deformation model
assumption for the inverse transformation, but this solution will be only
be valid for the set of points in X where Eq. (2.33) is solved, which is
compatible with the reconstruction methods that have been used.

2.3.5.2.3 Composition

Once the transformations and their inverses are obtained, the transfor-
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mation that map any position in the i-th frame into its corresponding
position in the j-th frame can be easily calculated by function composition
as follows:

T
i→j

Θ = T−1
Θj
◦TΘi (x) (2.34)

2.3.6 Other image reconstruction methods

In previous subsections, the methods that have been directly used or served
as the basis for this Thesis work have been explained in more detail. For
completeness, in the next paragraphs some other image reconstruction
methods and techniques are briefly reviewed.

2.3.6.1 Methods with PI and CS

Along with SENSE, GRAPPA [38] is one of the most well-known PI
techniques. In contrast with the former, GRAPPA operates in k-space
before obtaining the images. It takes only a constrained number of phase-
encoding steps; many k-space lines are skipped, but lines passing through
the center of k-space are fully sampled and constitute the auto calibration
signal region (ACS). These ACS lines are used to calculate the weighting
factors for each coil, that describe how each coil affects spatial frequencies
within k-space. Then, missing k-space data are estimated using these
weighting factors by means of a local linear combination of the sensed data.
Once the missing information is estimated, a FT is performed to obtain
an image free of aliasing for each coil. Finally, these images are combined
to form the final reconstructed image.

UNFOLD (UNaliasing by Fourier-encoding the Overlaps in the tempo-
raL Dimension) [56] takes advantage of spatio-temporal redundancy jointly.
k-Space is undersampled by a factor of 2, alternating even and odd samples
along time direction, so that the aliased portion of the image alternates
signs in successive frames. Consequently, aliasing can be easily eliminated
by filtering out the non-overlapping replicas.
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k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) and
k-t SENSE [57] divide the data in two groups, namely, undersampled
and training data. In the x-f domain, undersampled data have full spatio-
temporal resolution but are contaminated by aliasing artifacts. Training
data, however, have low spatio-temporal resolution but no aliasing artifacts,
due to the fact that they are located in the k-space center. These training
data are used to estimate how data are contaminated by the undersampling
proccess and guide the reconstruction problem to eliminate aliasing artifacts
in the undersampled data. k-t GRAPPA [58] recovers the missing data by
estimating their values based on neighboring data points in k-t space. k-t
PCA is an extension of k-t BLAST and k-t SENSE that uses Principal
Component Analysis (PCA) along the time dimension; it has shown higher
AF with improved temporal fidelity [59].

2.3.6.2 Methods with motion estimation and motion compensa-
tion

Motion estimation (ME) —i.e., the process for the obtention of motion
vectors between certain frames— and the subsequent motion compensation
(MC) —i.e., the process for the relocation of pixels on frames according to
certain given motion vectors— can be used to compensate some undesired
motion (such as respiratory motion) and/or to promote sparsity in the
images.

The reconstruction method in [60] suggests a general reconstruction
framework based on a temporal multi-resolution scheme that combines PI
with a MC strategy, to compensate the respiratory motion. The registration
method that they employ is based on estimating the optical flow between
two consecutive images. The optical flow is a vector field consisting of the
changes in space coordinates, regarding to the direction of intensity flow.
Therefore, it only works for registering images of the same modality and
with consistent grey intensity values. Other assumption of this method is
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that the deformation is smooth, which it is valid for soft tissue deformation,
in general.

The approach in [61] incorporates a generalized motion correction for-
mulation to CS reconstruction. The respiratory motion is estimated by
the algorithm in [62], which combines hierarchical multiple local affine
registrations. This algorithm starts with a global affine registration, after
which a hierarchical splitting scheme is applied. At each subsequent level,
the registration result is refined by splitting each parent block into chil-
dren sub-blocks, in which local registrations are performed. A B-Spline
interpolation scheme is used to combine all the affine transformations to
produce a smooth output transformation after each level in the hierarchy.

k-t FOCUSS (FOCal Underdetermined System Solver) [63] decomposes
the unknown image into a predicted and a residual images. The predicted
image is obtained by means of a high quality frame of reference and a
block matching algorithm applied separately to each frame. To estimate the
inter-frame motion, k-t FOCUSS recommends using a fully sampled image
as a reference frame. However, a reference image can be generated from
the temporal average of k-t measurements for the entire image sequence
or for only those images that correspond to the diastole phase, if the fully
sampled image is not accessible. Temporal FT is applied to the residual
image in order to promote sparsity in the solution. MASTeR (Motion-
Adaptive Spatio-Temporal Regularization) [47], on the other hand, does
not depend on a reference frame. The motion is estimated sequentially
between adjacent frames in both backward and forward directions. These
motion operators construct motion-adaptive transforms that use inter-
frame motion to represent an image sequence in the form of forward and
backward motion-compensated residuals, which are assumed to be sparse.
The image sequence is recovered by enforcing sparsity in those residual
terms.

The proposed method in [64] estimates the motion field between two
successive images. It is based on the traditional brightness constancy
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combined with a local shape constraint. A random walk optimization is
adopted to estimate the optimal displacement field. Random walk scheme
refers to a special category of Markov chains that can be used to scan multi-
dimensional spaces. The random walk model simulates the probability of
the pixel displacement at certain time instant to its neighbour positions. A
series of random displacement propositions are applied to each pixel, whose
magnitude is restricted to a maximum of possible random displacement. A
cost function is defined, so that if the cost function for a certain pixel is
smaller than a reference cost function value, then the expected displacement
is updated for that pixel; otherwise, no updating is applied at this iteration.
This process will continue until the stop criterion is reached.

These methods so far use ME between pairs of frames. Nonetheless,
as pointed out in subsection 2.3.5, an alternative methodology estimates
motion in a groupwise manner [51] —i.e., the whole dynamic sequence at
once— and has reported improved reconstructed images. This algorithm
has also been successfully adapted to the golden-radial acquisition pattern
and whole-heart single BH CINE MRI [65].

2.3.6.3 Methods with low-rank decomposition

Other approaches combine low-rank matrix completion and CS theories,
in which the dynamic image is divided into a low-rank component (L) and
a sparse component (S). Therefore, they are usually referred as L + S

decomposition or Robust PCA (RPCA). In [66] a multi-coil L+ S recon-
struction problem is formulated. The temporally correlated background
is modelled as the L component whereas the organ motion is modelled
as the S component. The nuclear norm6 and `1-norm are used as convex
surrogate functions for the rank function and `0-norm, respectively, in the
optimization problem. The L+ S model is sensitive to respiratory motion,
which affects the quality of the reconstructed MR images.

6The nuclear norm of a matrix M is defined as the sum of the singular values of M.
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The approach in [67] proposes an L+ S decomposition in conjunction
with a registration algorithm for ME/MC. The inter-frame motion between
pairs of images is estimated using block matching, where fully sampled
frames and the background segment of the L+ S decomposition is used
as reference. The images are divided into non-overlapping blocks of equal
size and the motion vectors for each block on the individual dynamic
frame are calculated by minimizing the mean absolute difference between
specific blocks of the reference frames and dynamic frames. The motion
compensation is carried out on the image domain by relocating the specified
blocks of the reference frames according to the estimated motion vectors.

The method proposed in [68] extracts the respiration motion signal
by applying an algorithm based on the Fourier shift theorem. Then, a
demons-based image registration algorithm [69–71] is performed, where
the translational displacement of the moving sequences is calculated with
respect to the reference images by means of the local characteristics of
them. Finally, respiratory motion is compensated to promote sparsity in the
MC-CS reconstruction problem. In MALLRT (Motion Aligned Locally Low
Rank Tensor) [72] a low rank constraint is enforced on image patch-based
local tensors, which correspond to overlapping blocks extracted from a
reconstructed high-dimensional image after groupwise inter-frame motion
registration. The problem is solved by using variable splitting and the
Alternating Direction Method of Multipliers (ADMM) framework.

2.3.6.4 Methods with manifold learning

Manifold learning (ML) [73] have been recently used in MRI to detect the
most important features from the acquired data. This technique projects
a high dimensional manifold (e.g., an image of large dimensions) to a
corresponding low dimensional representation, preserving the neighborhood
structure of the higher dimensional space.

SToRM (SmooThness Regularization on Manifolds) [74] introduces the
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concept of ML in the regularization term. In this approach, image frames
are modeled as points on a smooth and low-dimensional non-linear manifold.
The entire dynamic sequence is recovered by enforcing similarity between
neighboring image frames on the manifold. A kernel-based framework is
proposed in [75]. This framework exploits simple tangent-space geometries
defined on manifolds in Reproducing Kernel Hilbert Spaces (RKHS), and
follows classical kernel approximation arguments to form the data-recovery
task as a bi-linear inverse problem.

The main disadvantage of applying global transforms is that they are
not specific to the image and can lead to insufficiently sparse representations.
The authors in [76] propose a patch-based sparsifying method, where the
image is divided into patches that sample a low-dimensional manifold
embedded in a high dimensional space. They rely on the idea that patches
can better capture the local image features and promotes sparsity at much
higher undersampling rates. The reconstruction problem is formulated as a
Low-Dimensional Manifold Model (LDMM), in which the patch manifold
is used as regularizer in the optimization function.

A Double Tight Frame (DTF) approach is proposed in [77]. The image
is decomposed into smooth and non-smooth region. They achieve sparse
representations by using separately a wavelet transform in the smooth
region and a curvelet transform in non-smooth region. The key point is to
combine these sparse representations with a new mixed-norm regularization
model; the latter is intended to preserve the edge structural details in non-
smooth regions and piecewise-smooth information of image in smooth
regions.

2.3.6.5 Methods with FB acquisitions

The iGRASP (iterative Golden-angle RAdial Sparse Parallel MRI) paradigm
[78] is based on the continuous acquisition of k-space data following a golden-
angle sampling pattern. Within this paradigm, it should be highlighted the
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XD-GRASP framework (XD comes from eXtra-Dimensional) [79], where
dynamic data are retrospectively sorted into extra cardio-respiratory mo-
tion states, rather than applying any sort of MC algorithm. The resulting
multidimensional dataset is reconstructed using a CS approach, in which
sparsity along the two temporal dimensions, namely, cardiac and respira-
tory, is simultaneously imposed. Although it was originally conceived for
3D reconstruction, has also been successfully applied to the 2D case. In [11]
an extension of this approach is proposed; their authors include on one
hand, a groupwise motion correction procedure in which both cardiac and
respiratory motions are taken into account during the CS reconstruction
process, and on the other hand, an efficient multi-resolution scheme deal-
ing with the high computational cost that this reconstruction framework
involves.

CASPR-Tiger (CArtesian trajectory with Spiral PRofile ordering and
Tiny golden angle step for eddy current reduction) [80] is a self-gated
Cartesian approach for FB 3D CINE MRI with isotropic resolution and
no data rejection. It uses a modified version of G-CASPR [36] sampling
scheme, in which the authors use tiny golden angles7, so that eddy current
effects are reduced. Then, the images are reconstructed using a soft gating
technique and an iterative SENSE with tTV scheme.

2.3.6.6 Methods with Deep Learning

Deep Learning (DL) has burst in every field related to imaging, due to
the current development of Graphics Processing Units (GPU) and the
availability of big data. Deep neural networks are currently used to solve
either classification, regression or reconstruction problems, since they are
able to establish complex relationships between data in multiple abstraction

7Tiny golden angles are small irrational angles that exhibit properties similar to the
original golden angle. They are defined using the golden ratio Φ =

(
1 +
√

5
)
/2 and

the sequence φn = π/ (Φ + n− 1), n = 1, 2, .... For more details, the reader is referred
to [81].
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levels out of some training datasets, with very high performance. However,
there is a questioning attitude toward the long training period that DL
needs. Nevertheless, the training stage is performed “only once” in the
pre-production stage, so that in the production stage processing time would
be non-critical.

The approach in [82] is proposed as a framework for reconstructing
dynamic 2D cardiac MRI sequences from highly undersampled Cartesian
data using a deep cascade of convolutional neural networks (CNN), which
resembles iterative reconstruction of DL-methods, but allows end-to-end
optimization of the reconstruction. The problem is posed as an iterative
procedure in the image domain, where CNNs learn spatio-temporal correla-
tions by combining convolution and data sharing approaches to reconstruct
frames jointly, by means of alternate de-aliasing and data consistency steps.

MoDL (Model-based Deep Learning framework) [83] introduces a frame-
work in order to develop deep architectures to solve arbitrary inverse
problems. It combines the capacity of model-based reconstruction schemes
with DL. The proposed architecture consists of numerical optimization
blocks, to capture information about the image set, and data consistency
blocks, to promote agreement on the measurements. This enables the use of
complex forward models as well as to include image priors. In addition, the
training is performed end-to-end with weight sharing across iterations, of-
fering a better performance than other approaches that rely on pre-trained
denoisers [83].

The approach in [84] proposes a Convolutional Recurrent Neural Net-
work (CRNN) architecture to reconstruct high quality cardiac MRI from
highly undersampled k-space data. It consists of a CRNN block, that acts
as a proximal operator, and a data consistency layer, corresponding to a
data fidelity term. Furthermore, recurrent connections across each iteration
are used to share information among multiple iterations of the process, as
well as bidirectional convolutional recurrent units to exploit the temporal
dependency of dynamic sequences.
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A conditional Deep de-Aliasing Generative Adversarial Network (DA-
GAN) is proposed in [85], where the architecture is designed with a refine-
ment learning method to stabilize a U-Net [86] generator to reduce aliasing
artifacts. To preserve texture and edges the adversarial loss is integrated, as
well as frequency-domain information, to enforce similarity in both image
and frequency domains. This approach is able to reconstruct images in
some milliseconds, which makes it suitable for real-time applications.

2.3.6.7 Conclusion

The MRI reconstruction is a very wide area of active investigation, that
is continuously evolving, and has been briefly covered in the previous
subsections. An extensive and more detailed survey can be found in [87].
Thus, in this Thesis we have focused on CS techniques that take into
account motion, specially those that make use of ME/MC.
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3.1 Space-time variant weighted regularization

In dynamic applications, like cardiac CINE MRI, consecutive frames are
expected to be very similar to each other, so a sparser representation
of the original sequence can be obtained; therefore, CS in combination
with temporal sparsity is often used [8, 44, 88]. However, as stated in
Chapter 1, temporal regularization may affect negatively the dynamic
properties of the moving regions in the reconstructed image whenever
the regularization parameter is not carefully selected. Specifically, a low
value of the regularization parameter does not eliminate aliasing artifacts
due to k-space undersampling, whereas a high value of the regularization
parameter causes temporal blurring artifacts and loss of motion. It should
be pointed out that not only information about the anatomical structure
should be preserved, but also the motion, so that its potential abnormalities
can be evaluated. In Figure 3.1 an example of this effect is shown. The
figure shows the temporal evolution of one line of the reference image
(vertical orange line in Figure 3.1a) after reconstruction both with a high
value of the regularization parameter (Figure 3.1b) and with a low value of
this parameter (Figure 3.1c). In the former, contractile movement of the
myocardium is barely appreciated, but the intensities are soft along the

43
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Figure 3.1: Effect of the regularization parameter in the reconstructed images.
Temporal evolution of a single line in original image (a) in both reconstructions
with a high value of the regularization parameter (b) and with a low value of the
regularization parameter (c).

temporal dimension, so that undersampling artifacts are hardly seen. In
the latter, on the contrary, myocardial movement is appreciated (wave-like
patterns can be observed in the center of the image), but undersampling
artifacts arise, which can be easier to appreciate in dark zones, as if they
were some sort of noise.

A unique global regularization term is frequently used in the whole
image for the reconstruction problem. However, as described in Section
2.3.4, the improved version of k-t SPARSE-SENSE [8] has two different
sparsifying transforms, accounting for both dynamic and static regions
in the image; specifically, tTV is employed for the dynamic region of the
image while temporal FFT helps suppress residual aliasing artifacts from
static regions (see Eq. 2.24). Nonetheless, these two regularization terms
are applied globally to the whole image, i.e., λ1 and λ2 in that equation
are constant values. The main drawback of applying global regularization
terms is that they are not specific to the local image properties in terms of
motion and the reconstruction may suffer, in particular, when the data are
highly undersampled.

In this Thesis, we propose a methodology to dynamically adapt the
regularization parameter according to the moving characteristics present
in each point of the image. This methodology is based on the robust
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registration technique for non-rigid motion estimation explained in Section
2.3.5.1, so that local motion properties can be adequately exploited. The
reconstruction problem is formulated as a modified version of the original
k-t SPARSE-SENSE [44], where the temporal FFT originally used has been
substituted by tTV as sparsifying transform, since it has been reported
that this operator offers reconstructions with lower root mean square error
(RMSE) and higher temporal fidelity of myocardial wall motion than other
operators such as temporal FFT or temporal PCA [8]. In addition, the
regularization parameter λ has been substituted by a diagonal weighting
matrix W that locally leverages the regularization effect:

m̃ = arg min
m

{
‖AFSm− y‖2 + ‖W∇tm‖`1

}
(3.1)

The selection of the weighting matrix W entries and the underlying
regularization parameter λ are explained in the following sections.

3.1.1 Weighting matrix

Different alternatives have been studied to define the matrix W introduced
in Eq. (3.1) and are described below.

3.1.1.1 Plateau regularization

In this strategy, the image is divided into two different regions, namely
a dynamic region, which includes the heart and some other surrounding
moving structures, and static (or pseudo-static) region, that includes the
rest of the image or background, which barely moves. Therefore, the first
step is to define a mask that contains the heart. This mask has been defined
as the largest region where the temporal variance is higher than a certain
threshold value γ, which has been empirically selected to accommodate the
whole heart in the datasets used. Then, two different λ-values have been
defined, namely, λst for the outer region, where st stands for static, and
λdyn for the inner region, where dyn stands for dynamic. This procedure is
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(a) (b) (c)

Figure 3.2: Different alternatives for the space-time variant weighting matrices:
plateau regularization (a), motion weighted regularization by displacement fields
(b) and motion weighted regularization by velocity fields (c).

formally expressed as follows:

wplateau(x, n) =

λst, Var(x) < γ

λdyn, Var(x) ≥ γ
(3.2)

with wplateau(x, n) the entry of the matrix W corresponding to the spatial
position x and frame n, and the variance at point x is defined as

Var(x) = 1
N

N∑
n=1

(
m(x, n)− 1

N

N∑
k=1

m(x, k)
)2

(3.3)

Finally, the resulting mask is low-pass filtered to ensure soft transitions
between the two regions.

3.1.1.2 Motion weighted regularization

In this set of strategies the magnitude of motion in the image determines
the necessary amount of regularization needed in each pixel. To do this,
we carry out a first reconstruction applying sPICS (Eq. (2.25)). Then, mo-
tion is estimated from the reconstructed images by using the registration
algorithm explained in Section 2.3.5.1. The resulting transformations TΘ

from the registration algorithm are used to obtain the displacement fields
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Figure 3.3: Space-time variant regularization reconstruction model. Motion is
estimated in a first step of reconstruction and the obtained displacement fields are
used to leverage the regularization in a second step of reconstruction. Alternatively,
the velocity fields can be also used in the second step of reconstruction.

that are used to leverage the regularization parameter in a second step of
reconstruction. If we denote x′ = TΘ (x, n) as the transformed coordinates
for the points x in frame n, the modulus of the displacement ‖D (x, n) ‖ can
be obtained as ‖D (x, n) ‖ = ‖x′ − x‖ = ‖TΘ (x, n)− x‖. The maximum
and the minimum values of displacement modulus (‖D (x, n)‖2max and
‖D (x, n)‖2min, respectively) are associated to λdyn and λst, respectively,
and the intermediate values for λ are calculated using linear interpolation
(Eq.(3.4)). The rationale of this action is to increase regularization in more
static areas and to decrease regularization in those areas where deformation
is more pronounced. The pipeline of the whole reconstruction process is
shown in Figure 3.3. Alternatively, the velocity fields, ‖V (x, n)‖, derived
from the displacements by means of temporal finite differences, have been
also employed using a similar procedure (Eq.(3.5)), where ‖V (x, n)‖2max
and ‖V (x, n)‖2min are the maximum and minimum velocity moduli, re-
spectively. An example of these weighting matrices can be shown in Figure
3.2. The λ values have been selected with the methodology explained
in Appendix B using twelve tentative values, ranging from 10−4 to 1,
equally spaced in a logarithmic scale. Additionaly, the resulting values for
wdisp (x, n) and wvel (x, n) were limited to lie within the interval (λdyn, λst)
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to eliminate any posible artifact caused by improper motion estimation.

wdisp(x, n) = λst + (λdyn − λst)
(
‖D (x, n) ‖2 − ‖D (x, n) ‖2min

)
‖D (x, n) ‖2max − ‖D (x, n) ‖2min

(3.4)

wvel(x, n) = λst + (λdyn − λst)
(
‖V (x, n) ‖2 − ‖V (x, n) ‖2min

)
‖V (x, n) ‖2max − ‖V (x, n) ‖2min

(3.5)

3.2 Elastic alignedSENSE

An alternative approach to those presented so far is based on including a
motion model directly in the data consistency term as opposed to including
it in the regularization term [89,90].

The method proposed in [89] is able to handle elastic motion models.
It assumes that a corrupted image comes from a general matrix equation,
the inversion of which provides the ideal image of the scanned object.
This formulation can also be used to estimate motion using only partial
spectral information, as shown in the alignedSENSE approach [90], where
the authors reconstruct a static, multi-shot, 3D MRI brain volume subject
to rigid motion between shots. Estimated motion is incorporated into
the reconstruction model in an iterative manner to obtain a motion-free
image. Their method does not assume any prior model for the image to
be reconstructed, does not make use of external sensors and does not
require modifications in the acquisition sequence [90]. The downside is the
restrictive class of rigid motion used: this type of motion, however, is not
suitable for deformable organs, such as the heart. Nevertheless, this idea of
creating a single motion-free image (say, a pattern image) that is deformed
to match the measured data may be of great interest to build a cardiac
CINE reconstruction framework, as long as elastic motion is incorporated.

This Section focuses on the alignedSENSE formulation, which is here
extended to handle elastic deformations and employs the 2D cardiac CINE
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MRI reconstruction problem as a proof of concept. This approach, as
originally posed, iterates between an image reconstruction problem and a
deformation estimation problem. The second contribution of the Thesis is
twofold; on one hand, a framework to incorporate elastic deformations in the
pattern image is proposed; on the other hand, motion information is used
to spatially weight the amount of regularization in both the reconstruction
and the deformation problems. This allows us not only to pose the problem
in terms of `2-norms, which makes optimization more convenient, but
also to simplify the problem so that a pattern image, along with a set of
transformations, suffice to build an entire 2D CINE sequence.

The alignedSENSE approach for parallel multi-shot imaging was for-
mulated in matrix form as follows [90]:

{
m̃, Θ̃

}
= arg min

m,Θ

{
‖AFSUΘm− y‖2

}
(3.6)

where UΘ denotes the rigid motion transformation matrix. The proposed
elastic alignedSENSE (EAS) extends the approach in Eq. (3.6) to consider
nonrigid deformations, referred to as TΘ. This is achieved by using a 2D
FFD model, similar to that explained in Sections 2.3.5.1 and 2.3.5.2.

Thus, the proposed EAS reconstruction problem is formulated as fol-
lows:

{
m̃, Θ̃

}
= arg min

m,Θ

{
‖AFSTΘm− y‖2 + R2 (m) + R3 (Θ)

}
(3.7)

where R2 (m) and R3 (Θ) are regularization terms that stabilize the re-
construction: R2 (m) promotes removal of artifacts in the pattern image,
whereas R3 (Θ) favors smoothness in the temporal trajectory, since recon-
structions may present some tremor. The specific expressions and further
details for both regularization terms will be given in Subsection 3.2.1.

The joint problem in Eq. (3.7) is solved using an alternating fashion
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arg min
m

{∥∥AFSTΘ̃m− y
∥∥2 + R2 (m)

}
m̃

pattern image

arg min
Θ

{
‖AFSTΘm̃− y‖2 + R3 (Θ)

}
TΘ̃

transformations TΘ̃m̃

image sequence

m̃1

...
m̃N

Figure 3.4: Scheme of the EAS reconstruction as an alternating minimization
approach. If the transformations TΘ are assumed to be known, the best possible
m in terms of fidelity to the measured data y can be obtained. Likewise, assuming
m to be known, the best possible TΘ can be obtained. The final image sequence
is obtained by applying each of the transformations TΘ̃n

to the pattern image
m̃. Input to the reconstruction method is the blue shaded circle. Outputs are
coloured in orange and enclosed by an orange dashed line rectangle.

by iteratively solving the two following sub-problems:

m̃ = arg min
m

{∥∥AFSTΘ̃m− y
∥∥2 + R2 (m)

}
(3.8a)

Θ̃ = arg min
Θ

{
‖AFSTΘm̃− y‖2 + R3 (Θ)

}
(3.8b)

The first sub-problem (3.8a) will be referred to as image sub-problem —
since its solution is a new image pattern—, whereas the second (3.8b), will
be referred to as deformation sub-problem, since its solution is a new set of
deformations.

The loop starts by solving the image sub-problem (Eq. (3.8a)), consid-
ering that there is no transformation, i.e., TΘ̃ equals the identity, so that
an initial pattern image m0 can be obtained. After that, the deformation
sub-problem is fed with m0 and the loop can continue as expected (see
Figure 3.4), until some stop criterion is achieved.
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Figure 3.5: Scheme of spatial transformations in GWCS (left) and EAS (right)
for 2D cardiac CINE MRI. Left: Points to be transformed x ∈ Xcr ⊂ R2 are
defined on the common reference coordinate space. Right: Points to be transformed
x ∈Xn ≡X ⊂ R2, 1 ≤ n ≤ N are defined on each image coordinate space, which
coincide for all images.

Notice that the registrations in GWCS and EAS, although quite similar
in conception and notation, differ in two relevant elements:

1. Transformations are defined in opposite directions, as illustrated in
Figure 3.5. In GWCS, the coordinate space Xcr ⊂ R2 is defined
in the common reference image and each frame mn (1 ≤ n ≤ N ,
being N the number of frames) is transformed so that it fits into
such Xcr, i.e., we calculate mn (TΘn (x)) with x ∈ Xcr. Thus, in
the optimization problem described in Eq. (2.29), we aim to find
that mp

(
TΘp (x)

) ∼= mq
(
TΘq (x)

)
, with p 6= q. In the case of EAS,

the coordinate space Xn ⊂ R2 is defined in each frame mn —and
coincides for all frames (Xn ≡ X, 1 ≤ n ≤ N)—, so that each
frame mn is a deformed version of the pattern image m, i.e., mn =
m (TΘn (x)). In summary, the transformations have their origin in
the space in which the coordinate system is defined and the direction
is the opposite of what “common sense” dictates. The reason of this is
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because the transformation defined in that way makes the underlying
interpolation process more convenient.

2. The common reference image in GWCS is the average of the registered
images, following [91], while in EAS the reference arises as a result
of the optimization sub-problem in Eq. (3.8a)1, which is transformed
to create the images of the final sequence, and does not necessarily
correspond to any pre-selected cardiac phase.

It should be also pointed out that solving the whole EAS problem
(Eq. (3.7)) can be challenging, specially when calculating the cost function
and its gradient, due to the fact that both image and k-space domain
terms may be mixed up. These calculations may become a bottleneck and
degrade the performance of the reconstruction algorithm. Therefore, some
details on this topic are provided in Appendix C.

3.2.1 Regularization terms in elastic alignedSENSE

Different strategies for the regularization terms in EAS have been tested.
They can be divided in fixed regularization terms —which are governed
by constant regularization parameters for the whole image— and variant
regularization terms —in which the methodology described in 3.1 has been
applied.

3.2.1.1 Fixed regularization terms in elastic alignedSENSE

The image sub-problem of EAS (Eq. 3.8a) is formulated, on one hand,
as an `2-problem in which R2 (m) is substituted by both spatial total
variation (spTV) —Eq. (3.9a)— and the Laplacian operator —Eq. (3.9b)—
. These two resulting `2-problems have been solved by means of a conjugate
gradient (CG) algorithm [89].

1For simplicity in notation, we often denote m (TΘ (x)) as TΘm. Also note that,
when we refer to a specific frame, we add a subindex to the previous expression, i.e.,
TΘn mn ≡mn (TΘn (x)) ≡m (TΘ (x, n)).
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On the other hand, the image sub-problem is also formulated as a
`1-problem where R2 (m) is substituted by both spatial FFT —Eq. (3.9c)—
and Wavelet Transform operators —Eq. (3.9d)—. These two resulting
`1-problems, on the contrary, have been solved by using the Nesterov’s
algorithm (NESTA) [92].

In summary, the four different regularization terms that have been
tested for the image sub-problem can be expressed as follows:

R2,1 (m) = λ ‖∇xm‖ (3.9a)

R2,2 (m) = λ
∥∥∥∇2

xm
∥∥∥ (3.9b)

R2,3 (m) = λ ‖Fm‖`1 (3.9c)

R2,4 (m) = λ ‖Wm‖`1 (3.9d)

where ∇x represents here the spTV operator, ∇2
x denotes the Laplacian

operator, F symbolizes the FFT and W stands for the Wavelet Transform
operator. The influence of the regularization term is controlled by the
regularization parameter λ, the value of which must be determined in each
case.

The regularization term R3 (m) in the deformation sub-problem of EAS
(Eq. 3.8b) is related to both first and second order derivatives of transfor-
mation TΘ in both spatial and temporal dimensions. However, the spatial
derivatives have not shown any perceptible effect on the reconstructions.
Therefore, only the temporal derivatives are considered:

R3 (Θ) =
N∑
n=1

∑
x∈X

ω1

∥∥∥∥∂TΘ (x, t)
∂t

∥∥∥∥2

t=n
+ ω2

∥∥∥∥∥∂2TΘ (x, t)
∂t2

∥∥∥∥∥
2

t=n

 (3.10)

where, ω1 and ω2 are regularization parameters to be set and derivatives are
approximated by temporal finite differences. The deformation sub-problem
has been solved by means of a nonlinear CG algorithm with backtracking
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line search [93].

3.2.1.2 Variant regularization terms in elastic alignedSENSE

The formulation of EAS in Eq. (3.7) is modified in order to incorporate
space-time variant regularization, as described in Section 3.1. To this
end, the regularization parameters λ, ω1 and ω2 have been substituted
—analogously to matrix W in Section 3.1— by the diagonal weighting
matrices Λ, Ω1 and Ω2, respectively, as follows:

{
m̃, Θ̃

}
= arg min

m,Θ

{
‖AFSTΘm− y‖2 + ‖ΛΦm‖2 + R4 (Θ)

}
(3.11a)

R4 (Θ) =
N∑
n=1

∑
x∈X

∥∥∥∥Ω1
∂TΘ (x, t)

∂t

∥∥∥∥2

t=n
+
∥∥∥∥∥Ω2

∂2TΘ (x, t)
∂t2

∥∥∥∥∥
2

t=n


(3.11b)

where Φ could be any of the operators defined in Eq. (3.9).
The version of EAS when displacement fields are used to leverage the

regularization parameters will be referred as to EASdisp, whereas it will be
referred as to EASvel , when velocity fields are used. These two strategies
have been used because they exploit the motion information in a more
specific way than Plateau and therefore the latter has not been employed.

3.2.2 Combination of elastic alignedSESNE and groupwise
motion-compensated compressed sensing

Elastic aligendSENSE may be a method on its own, but it may also be used
as an initializer of methods with ME/MC, such as the GWCS approach
(Figure 3.6). Recall from Eqs. (2.26) and (3.7) that less parameters are
estimated in EAS with respect to GWCS, so it is expected that estimations
may be more estable with EAS, as least in the first iterations. Therefore, a
combination of EAS with GWCS is proposed (referred as to MIX) in an
attempt to benefit from the advantages of each. EAS with fixed regulari-
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TΘ̃

deformations
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m̃1 · · · m̃N

elastic alignedSENSE
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m1
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·
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final image
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Figure 3.6: Scheme of the MIX reconstruction method as a combination of EAS
phases followed by a GWCS phase. The output of EAS, m̃ and TΘ̃ (coloured with
blue lines), is fed to GWCS. Since EAS provides directly a set of transformations
TΘ̃, that maps the pattern image m0 to each cardiac state, there is no need of the
registration stage within GWCS. Thus, only the MC stage in GWCS is applied
to obtain the final reconstruction. Input to the whole reconstruction method is
the blue shaded circle. Outputs are coloured in orange and enclosed by an orange
dashed line rectangle.

zation parameters as well as EAS with variant regularization parameters
—namely, EASdisp and EASvel— have been tested as initializers of GWCS.
The resulting combinations of the different variants of EAS with GWCS
will be referred as to MIX , MIXdisp and MIX vel , respectively.

3.2.3 Radial extension of elastic alignedSENSE

So far, a Cartesian sampling scheme was always considered. As pointed
out in Section 2.2.1, Cartesian sampling is significantly less robust to
motion than radial sampling. However, it is simpler to handle, since no
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gridding is needed and the efficient FFT algorithm can be directly applied
to reconstruct the image, at least in the fully sample case. So, the radial
alternative seems worth exploring.

The extension of EAS to radial trajectories is rather straightforward,
since we only need to substitute the regular FFT for the non-uniform
FFT (NUFFT) [94] in Eq. (3.7). The NUFFT was computed by using the
existing implementation for GPU in [95] (gpuNUFFT).

{
m̃, Θ̃

}
= arg min

m,Θ

{
‖GTΘm− y‖2 + λ ‖∇xm‖2 + R3 (Θ)

}
(3.12)

where G represents the gpuNUFFT operator just mentioned, that includes
sensitivity coil maps operator as well as gridding, NUFFT and subsampling
operations.

3.3 Experiments

3.3.1 Space-time variant weighted regularization

To test this method some experiments have been conducted for both 2D
and 3D datasets, whose details will be given in subsequent sections.

The 2D datasets were retrospectively subsampled with the procedure
described in [47] for different values of AF, whereas 3D datasets were
retrospectively subsampled with the procedure described in Appendix A,
with different values of AF and α, which controls the amount of subsampling
in the center of k-space. Complex Gaussian noise has been also artificially
added in k-space to these datasets by setting different values for the noise
standard deviation, so that its effects in reconstructions can be analyzed.

Images have been reconstructed with sPICS (Eq. (2.25)), kt-SS (Eq.
(2.24)) and with the three different approaches of weighted regularization
described before: Plateau, weighted λ by displacement fields (Wdisp) and
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weighted λ by velocity fields (Wvel), respectively, Eqs. (3.2), (3.4) and (3.5).
Both Signal-to-Error Ratio (SER) and High Frequency Signal-to-Error
ratio (HFSER) [96] were calculated as image quality measurements. SER
and HFSER are defined as given by Eqs. (3.13) and (3.14), respectively

SER = 10 · log
(

‖mref ‖2

‖mref −mrec‖2

)
(3.13)

HFSER = 10 · log
(

‖LoG(mref )‖2
‖LoG(mref )− LoG(mrec)‖2

)
(3.14)

where mref is the fully sampled image (reference), mrec is the reconstructed
image, and LoG is a Laplacian of Gaussian filter that captures boundaries,
with a kernel size of 7× 7 pixels (−3 ≤ x ≤ 3, −3 ≤ y ≤ 3) and standard
deviation of σ = 1.5:

LoG (x, y) = − 1
πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2 (3.15)

For 2D experiments, quantitative cardiac function indicators have been
also obtained, namely, end diastolic volume (EDV), end systolic volume
(ESV), stroke volume (SV) and ejection fraction (EF). EDV and ESV
were computed using Simpson’s rule and manual segmentation with an in-
house software for all the reconstructions using all regularization strategies.
Afterwards, SV and EF were calculated as:

SV = EDV − ESV (3.16)

EF = 100 · SV
EDV (3.17)

Since this chapter is focused on the importance of regularization, the
selection of the parameter λ has received special attention. A methodology
based on cross validation [97] has been applied. The details of the procedure
are thoroughly described in Appendix B, where some parameters (namely,
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the total number of datasets used in the cross validation procedure, K, the
number of datasets used for the training group, P , the set of N tentative
values of the regularization parameter λ and the similarity metric V (λ))
have to be set. In this case, K = 7 and P = 4 have been chosen for 2D
experiments and K = 5 and P = 4 for the 3D experiments. For both 2D
and 3D experiments, SER (Eq. (3.13)) has been chosen as similarity metric
and twelve values equally space in a logarithmic scale in the range between
10−4 and 1 have been chosen as tentative values of λ. As for the methods
in Eqs. (2.25) and (2.24) that are used to compare with, the parameters
have been set λ = λ1 = λopt and λ2 = λ1/10, following the same criteria
as in [8], and being λopt the value obtained by the procedure described in
Appendix B.

It should be pointed out that 3D images are reconstructed in a per-slice
basis, since the k-space visiting schemes are fully sampled in one direction,
so 2D displacement fields have been used in both 2D and 3D experiments.

Coil sensitivity maps were obtained from separate SENSE reference
scans in an arbitrary geometry. After the adaptation of the geometry of
the reference scans to the geometry of the corresponding CINE scans, the
sensitivity maps are estimated by dividing the individual coil images by
the body coil images. Finally, the sensitivity maps are smoothed to remove
undesired peaks and singularities.

3.3.1.1 2D experiments

2D Cartesian, fully sampled dynamic CINE BH gated acquisitions were
performed on 7 healthy subjects in a 1.5 T Philips scanner with a balanced
Steady State Free Precession (bSSFP) sequence. Some relevant parameters
of the acquisitions include flip-angle 60°, TR/TE = 3/1.5 ms, spatial
resolution 2 × 2 mm2, slice thickness 8 mm, 20 cardiac phases, FOV
320× 320 mm2. They were afterwards retrospectively subsampled using a
Gaussian variable-density random undersampling pattern along the phase
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encoding direction [47] with different values of AF.

3.3.1.2 3D experiments

A 3D+t cardiac MR scan was performed on five swine in a 3 T Philips
scanner with volumetric balanced Turbo Field Echo (bTFE) sequence. Some
relevant parameters of the acquisition include flip-angle 30°, TR/TE =
1.95/0.976 ms, 20 cardiac phases. Reconstructed voxel size was 1.417× 1.417
× 1.1 mm3. Acquisitions were cardiac-triggered by means of a Peripheral
Pulse Unit (PPU) located at the swine’s tail. Due to the physiology of these
animals, respiratory motion in sedated swine is barely appreciated and
causes no artifacts, so the acquisition did not make use of any additional
hardware to deal with breathing issues. A 3D Cartesian sampling scheme
has been used to avoid gridding operations. These sampling scheme is
defined here as a general Cartesian sampling scheme with spiral ordering
of samples and golden-angle step, whose details are given in Appendix A.

3.3.2 Elastic alignedSENSE

The 2D datasets from previous sections have also been used to test the
EAS framework. Details follow.

3.3.2.1 Fixed regularization terms

The 2D datasets were retrospectively subsampled using de procedure in [47]
for different values of AF. Afterwards, they were reconstructed using EAS
with the four different alternatives for the regularization term in the image
subproblem (Eqs. (3.9)).

The fully sampled reconstruction was used as a reference. HFSER and
structural similaryty index (SSIM) [98] were calculated for image quality
assessment. To measure the quality of motion, we obtained displacement
fields by registering the reconstructed sequence and the reference sequence;
specifically, the n-th frame on the reconstructed sequence, is registered
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Figure 3.7: Scheme of the registration methods performed for motion quality
assessment. Note that a periodic extension is considered (represented with dotted
blue lines), so that the first frame is registered to the last one.

to the (n− 1)-th frame on the reference2 to obtain the displacement field
Drec(n) that results from transformation Trec

Θn
, where the latter is calculated

by using the motion estimation procedure described in Section 2.3.5.1 (see
Figure 3.7). Similarly, each frame in the reference sequence was registered
to its previous frame in the reference (once again, with periodic extension)
to obtain the displacement field Dref (n). Finally, the RMSE value between
both reference and reconstruction displacement fields is calculated (Eq.
3.18).

RMSE =

√√√√√ N∑
n=1
‖Drec(n)−Dref (n)‖2F

N
(3.18)

with ‖ · ‖F the Frobenius norm, considering Dref (n) a matrix with dimen-
sions |X|×2, with X the set of reconstructed pixels and | · | the cardinality
of a set.

The temporal profiles along radial directions separated 45 degrees were
concatenated to form the image Incc (Figure 3.8). The normalized crossed

2Actually, as indicated in Figure 3.7, we assume periodicity in the cardiac cycle, so
n = mod (m,N), with 2 ≤ m ≤ N + 1, and N is the number of frames in the sequence.
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Figure 3.8: Temporal profiles along radial directions every 45 degrees, (the center
of which coincide with the center of the left ventricle) are concatenated to form
an image. The NCC between such images is used to assess motion quality.

correlation (NCC) between such images from both the reconstructed an
the reference datasets was also computed as a quality measurement. NCC
is defined as

NCC =

∑
x∈X

(
Iref

ncc − Iref
ncc

)(
Irec

ncc − Irec
ncc

)
√ ∑

x∈X

(
Iref
ncc − Iref

ncc

)2 ∑
x∈X

(
Irec

ncc − Irec
ncc

)2 (3.19)

where Iref
ncc and Irec

ncc stand for the Incc images obtained from the reference
image and the reconstruction, with spatial average values Iref

ncc and Irec
ncc,

respectively. Since the temporal evolution is accounted for in NCC, this
parameter is also useful for motion quality assessment.

The λ value for each case in Eqs. (3.9), as well as the values of ωi
(i = 1, 2) in Eq. (3.10) have been set by using the procedure described in
Apendix B. The parameters of the procedure have been chosen as follows:
K = 7, P = 4 and HFSER as the similarity metric. λ and ωi (i = 1, 2)
have been grouped into vector µ = (λ, ω1, ω2) and the exploring grid has
been established by setting six tentative values for λ ranging in logarithmic
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scale from 1 to 10−3, and five tentative values in logarithmic scale from 1
to 10−4 for ωi (i = 1, 2).

3.3.2.2 Variant regularization terms

Similarly to previous experiments, the 2D datasets were retrospectively
subsampled and reconstructed by using the two types of EAS with variant
regularization terms, namely EASdisp (Eqs. (3.11) and (3.4)) and EASvel

(Eqs. (3.11) and (3.5)). For comparisons, they have also been reconstructed
using sPICS (Eq. (2.25)), GWCS (Eq. (2.26)), kt-SS (Eq. (2.24)), Wdisp

(Eqs. (3.1) and (3.4)) and Wvel (Eqs. (3.1) and (3.5)).

In this case, two values have to be set for the regularization parameters,
µ = (λ, ω1, ω2), namely µst and µdyn . To do this, the procedure described
in Appendix B have been used with the same parameters as in the previous
subsection. The difference is that, in order to set the µst , we have used
HFSER, since it is more focused on intensity levels and, therefore, is more
suitable for static regions. As for µdyn, we have used RMSE, since it is
more focused in displacement fields, so that it is more suitable for dynamic
regions.

Using the fully sampled reconstruction as a reference, HFSER, SSIM,
RMSE between displacement fields —obtained as in the previous section—
as well as NCC have been computed to measure performance.

Moreover, for this type of regularization we have used an additional
quality metric, which is based on landmark distance. Specifically, we have
used four frames, including diastole and systole as well as two intermediate
frames. We have manually drawn several landmarks in three different slices
—in basal, medial and apical regions of the heart— (see Figure 3.9). The pro-
cess has been carried out twice and coordinates have been averaged to avoid
bias. The RMSE between the landmarks obtained in both reconstructed
and reference images has been calculated.
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Figure 3.9: Example of landmarks for motion assessment.

3.3.2.3 Combination of elastic alignedSENSE and groupwise
motion-compensated compressed sensing

The 2D datasets were retrospectively subsampled and reconstructed by us-
ing MIX, MIXdisp and MIXvel methods. Indeed, we have tested to initialize
GWCS with one iteration of each variant of EAS —i.e., finding one solution
to the image and the deformation EAS sub-problems— and two iterations
as well —to solve twice each image and deformation EAS sub-problems—.
These two possibilities will be denoted by a superscript MIXn, where
n indicates the number of EAS iterations performed before the GWCS
stage. The resulting reconstructions were compared with GWCS and EAS.
HFSER, SSIM, NCC and RMSE were computed as both image and motion
quality assessment.
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3.3.2.4 Radial extension of elastic alignedSENSE

2D whole heart single BH acquisitions with golden radial trajectory and 32-
element cardiac coil were performed on 7 subjects on a 1.5 T Philips scanner
with bSSFP sequence. Some other parameters include TR/TE = 2.9 ms/1.44 ms,
flip-angle 60°, spatial resolution 2×2 mm2, slice thickness 8 mm and FOV
320×320 mm2. Between 256 and 280 radial profiles, depending on the
subject, were acquired per slice during a single cardiac cycle with ECG
triggering.

Datasets were retrospectively reconstructed by using EAS, with 16
cardiac phases including the maximum of the spokes available per frame,
which results in an equivalent temporal resolution of 46.4 ms. In this
case, there is no availability of ground truth to compare with. Thus, the
regularization parameters in Eqs. (3.12) and (3.10) could not be set by
applying the method described in Appendix B. Therefore, some parameter
sweeps for λ and ωi (i = 1, 2) were performed. Specifically, the parameters
varied within the intervals λ ∈

[
10−7, 10−4], ω1 ∈

[
0, 5 · 103] and ω2 ∈[

0, 5 · 104]. The resulting reconstructions were visually inspected and the
parameters were set accordingly. Furthermore, this parameter sweeping
revealed that the component of R3 (Θ) weighted by ω1 (see Eq. (3.10)) had
no perceptible effect in the reconstructions and therefore was discarded for
all the subsequent experiments.

Variant regularization parameters, both weightening by displacement
and by velocity fields, were also tested for the radial extension of EAS.
From the values for the regularization parameters obtained in the previous
experiments, µ0 = (λ0, ω20), the variation interval for µ ∈ [µdyn, µst] was
set to µ ∈ [µ0/K1, µ0 ·K2], with (K1,K2) = {(10, 10) , (1, 10) , (10, 1)}.

Finally, the datasets were also reconstructed with iGRASP, GWCS and
MIX for comparison purposes. The regularization parameter λ in iGRASP
was set to 0.02 as the authors specify in [79]. For GWCS the regularization
parameter λ in the MC steps, was set to 0.007 after performing some sweeps



3.3. Experiments 65

for λ in the range
[
10−3, 10−1]. For the MIX methods, the parameters were

the same of EAS and GWCS when they act independently.
The reconstructions in the experiments described in all Section 3.3

were performed using Matlab R2017b (The MathWorks, Natick, MA) on
a Virtual Machine (VM) with two processors (Intel® Xeon® E5-2697 v4
@ 2.30 GHz), with a total of 35 cores (2 threads per core) and 500 GB
RAM. The GPU executions for computing the gpuNUFFT needed in
the experiments that make use of radial trajectories were performed in a
NVIDIA Quadro RTX5000 device by using Matlab CUDA capabilities.





Chapter 4
Results

4.1 Space-time variant weighted regularization

4.1.1 2D Results

Figure 4.1 show boxplots of SER and HFSER parameterized by R for
all the reconstructions on the 2D datasets using the five regularization
strategies and reveals that motion-weighted regularization schemes provide
higher figures for higher values of R. Mann-Whitney U-tests have been
conducted between SER and HFSER distributions for reconstructions with
R = 20, finding no significant differences. Despite these differences are not
statistically significant (at both p < 0.05 and p < 0.01) it can indeed be
observed some artifacts in the motion of papillary muscles, but this motion
seems more natural in reconstructions using Wdisp. Error images shown in
Figure 4.3 reveal that the error is higher in the left-ventricle myocardium
and in the apex.

Regarding functional measurements, Figure 4.2 show Bland-Altman
plots for EF calculated on the reconstructions using the five strategies of
regularization for R = 5. It reports agreement between them, but a bias
in measurements can also be observed as a function of R. The resulting
EF values (mean ± standard deviation) and their p-values are shown
in Table 4.1 for two different values of R. Nevertheless, those p-values

67
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(a)

(b)

Figure 4.1: SER (a) and HFSER (b) values of all reconstructions on 2D datasets
for the five regularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel),
using Cartesian subsampling and different values of R.
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Figure 4.2: Bland-Altman plots for ejection fraction (EF) for all the the re-
gularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel) on 2D datasets
using Cartesian trajectories and R = 5. The observed bias is also represented
parameterized by the parameter R.

in Table 4.1 reveal that there are not significant differences (p > 0.05)
in EF between the reference value obtained in the fully sampled image
and those obtained in reconstructions by using all the regularizations
strategies when low values of R are used. Significant differences (p < 0.05)
appear when R increases, although those space-time variant regularization
strategies (namely, Wdisp and Wvel) give rise to higher p-values which are
not significant at a lower level value (p < 0.01). The positive sign of the bias
means that the regularization strategies provide lower values than those of
the ground truth. This being the case, it can be inferred that there is a
loss of movement in the reconstructed images. However, the figure shows
that regularization strategies with variant parameters (and, specifically,
that in Eq. (3.4)) preserve heart movement better than those with a single
and/or invariant regularization parameter (Eqs. (2.25) and (2.24)).
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Table 4.1: EF values (mean value ± standard deviation) calculated in the 2D
reconstructions using all the regularization strategies (sPICS , kt-SS, Plateau,
Wdisp and Wvel) for R = 5 and R = 10. The EF reference value, calculated in the
fully sampled image, is shown for comparison. p-Values between EF calculated in
fully sampled image and reconstructed images are also shown. p-Values below the
significance level 0.05 are boldfaced.

R = 5 R = 10
Strategy EF p-value EF p-value
sPICS 60.21± 2.92 0.1282 55.02± 4.65 0.0006
kt-SS 60.27± 4.16 0.1282 52.36± 5.63 0.0006
Plateau 62.46± 4.97 0.6200 57.00± 3.69 0.0041
Wdisp 59.97± 5.19 0.2593 57.60± 4.70 0.0175
Wvel 61.69± 4.08 0.3829 57.67± 4.44 0.0262
Reference 64.35± 4.87

Figure 4.3: Normalized error images between reference and reconstructions on
2D datasets subjects with different values of R using kt-SS and Wdisp strategies.
White arrows point at significant locations where error is higher.
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4.1.2 3D Results

Figures 4.4 and 4.5 show boxplots of SER and HFSER parameterized by
α, which controls the amount of subsampling in the center of k-space (see
Appendix A), for all the reconstructions on the 3D datasets using the
five regularization strategies for a selected value of SNR = 18 (recall from
Section 3.3.1 how this value is set up) and R = 5 and R = 20, respectively.
These results reveal that reconstructions with higher values of SER and
HFSER are obtained when α is close to —albeit not necessarily equal to—
1. Differences between methods are more notable when R increases. sPICS
and Wdisp regularization strategies give rise to reconstructions with higher
SER and HFSER values than the other three regularization strategies.
However, between these two strategies there are not significant differences
in terms of SER and HFSER (Tables 4.2 and 4.3), which is a result that
supports the proposed space-time variant weighted regularization method,
since λopt was chosen, as described in the Appendix B, to maximize SER,
so the method with λopt is acting in this experiment as a SER benchmark.
Nevertheless, Wdisp strategy produces reconstructions with more natural
movement, especially in papillary muscles, than the other strategies. For
easier reading, several examples have been included in Figure 4.7 that
reveal higher and more structured error1 values in myocardium in sPICS
reconstructions than those using Wdisp. This result is in line with the fact
that SER is limited when used to quantify image quality perception and,
specially, to measure the amount of movement present in a dynamic image.
Therefore, the selected optimal value λopt may be higher than necessary,
so that images tend to be overegularized. HFSER, on the other hand, does
not seem to provide additional information to these experiments. As for
the other three methods, they do show significant differences with respect
to Wdisp, which, again, supports this proposal.

1Structured errors similar to the original signal are not desirable and far from the
ideal case, which would be unstructured noise (ideally, white Gaussian noise).
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(a)

(b)

Figure 4.4: SER (a) and HFSER (b) values of all reconstructions on 3D datasets
for the five regularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel),
different values of α, R = 5 and SNR = 18.
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(a)

(b)

Figure 4.5: SER (a) and HFSER (b) values of all reconstructions on 3D datasets
for the five regularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel),
different values of α, R = 20 and SNR = 18.
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Table 4.2: p-values of SER distributions for reconstructions on 3D datasets using
all regularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel) with R = 20
and (a) α = 0.7 and (b) α = 1. p-Values below the significance level 0.05 are
boldfaced.

sPICS kt-SS Plateau Wdisp
kt-SS 0.0000
Plateau 0.0000 1.0000
Wdisp 0.0877 0.0000 0.0000
Wvel 0.0000 0.0056 0.0056 0.0000

(a)

sPICS kt-SS Plateau Wdisp
kt-SS 0.0000
Plateau 0.0000 1.0000
Wdisp 0.3329 0.0000 0.0000
Wvel 0.0000 0.0339 0.0339 0.0000

(b)

Table 4.3: p-values of HFSER distributions for reconstructions on 3D datasets
using all regularization strategies (sPICS , kt-SS, Plateau, Wdisp and Wvel) with
R = 20 and (a) α = 0.7 and (b) α = 1. p-Values below the significance level 0.05
are boldfaced.

sPICS kt-SS Plateau Wdisp
kt-SS 0.0040
Plateau 0.0040 1.0000
Wdisp 0.1120 0.0000 0.0000
Wvel 0.2707 0.0351 0.0351 0.0199

(a)

sPICS kt-SS Plateau Wdisp
kt-SS 0.0000
Plateau 0.0000 1.0000
Wdisp 0.1537 0.0000 0.0000
Wvel 0.0000 0.0000 0.0000 0.0000

(b)
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These experiments also allowed us to study the effect of noise in the
different regularization strategies. In Figure 4.6a it can be observed that, for
the same value of SNR and R, reconstructed images with α = 1 in systole
and diastole are very similar to each other. However, reconstructed images
with α = 0.7 differ notably. Additionally, it can be observed in reconstructed
images that those with α = 1 seem to show step-wise transitions while
images with α = 0.7 move seamlessly along the cardiac cycle. It can also
be noticed that the accumulated error is more structured when α = 1 than
for α = 0.7.

In Figures 4.6 we show a comparison between reconstructions of the
systole and the diastole time instants on 3D datasets for three different
regularization strategies (sPICS , kt-SS and Wdisp), two different values
of α (0.7 and 1), R = 5 and with two low levels of SNR (0 and 6 dB,
respetively). For simplicity, onlyWdisp strategy has been compared with the
other reported regularization strategies, since the former provides the best
reconstructions (Figures 4.4 and 4.5) in the motion-weighted strategies.
It can be observed that in figure 4.6b, with a higher SNR, differences
are hardly appreciated in terms of quality of motion although the error
images maintain a higher structure for α = 1. This evidence highlights
that α = 1 gives rise to images with less natural movement in the presence
of noise, even though they obtain higher SER and HFSER values. Thus,
in low signal to noise ratio scenarios, it would be preferable to choose
an intermediate value of α close to 0.7, since heart movement is better
preserved and noise can be eliminated by using tailored techniques.

Figure 4.7 shows normalized error images for representative cases
between reference and reconstructions on 3D datasets using two different
regularization strategies (sPICS andWdisp), SNR = 18, α = 1 and different
values of R (10 and 15).

As mentioned in previous sections, the space-time variant weighted
regularizated methods involve two steps: (1) initial reconstruction and (2)
second reconstruction using a variant regularization term derived from
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(a)

(b)

Figure 4.6: Fully sampled image (Ref) compared to reconstructions on 3D
datasets with R = 5 and two different values of α, using sPICS , kt-SS and Wdisp,
and SNR = 0 (a) and SNR = 6 (b).
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Figure 4.7: Normalized error images between reference and reconstructions on
3D datasets with different values of R using sPICS and Wdisp strategies, α = 1
and SNR = 18. White arrows point at significant locations where error is higher.

the motion fields obtained from step (1). It is indeed more critical to
have errors in step (1). At this step, errors arise due to either over- or
under-regularization. Over-regularization gives rise to images with less
artifacts (which is desirable) but more static (which is not desirable), while
under-regularization is accompanied by more artifacts but better motion
preservation. At step (2), artifacts may hinder motion estimation, but this
estimation will never be corrected if motion is lost at step (1). Therefore,
it is critical not to over-regularize in step (1). Under-regularization in
step (1) may lead to worse motion estimates in step (2) but, since motion
information is solely used to leverage temporal differences, the method
would never introduce spurious movement, although it may give rise to non-
optimal regularization in those specific areas where motion is incorrectly
assessed. This sort of remaining artifacts, however, may be smoothed by
tailored techniques. Therefore, it should be pointed out the importance of
the procedure to select the parameter λ and develop a method to select it
automatically for the step (1).
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The main limitation of using Eq. (3.4) is the need to estimate movement
from a prior reconstruction, making the whole reconstruction process longer.
However the development of high performance implementations of the
algorithms on GPUs drastically reduces these reconstructions times. As a
matter of fact, this information has been incorporated in the reconstruction
pipeline as well [11,50]. Nevertheless, as previously stated, errors in motion
field estimation may be propagated to the final reconstruction so robustness
to this sort of mismatch is of importance. This may be the case in 2D
imaging of the apical and basal slices, where structures come in and out
of the planes along the cardiac cycle. To illustrate this, one of the human
images has been sampled with a pseudorandom Cartesian scheme (R = 10)
and has been reconstructed both with the MC-method described in [50]
and with the method here proposed. It can be observed in Figure 4.8a
that the MC algorithm introduces spurious deformations in the lung/right
ventricle area (pointed with arrows). Interestingly, the rounded shape of
the right ventricle is preserved when Wdisp algorithm is used instead. In
Figure 4.8b, a part of the myocardium has been marked with colored lines
to highlight this fact. As observed, the method proposed in this chapter
seems more robust when model mismatches are observed.

According to this evidence, complementarity between these two methods
is worth exploring. This could be done by setting λ as a function of the
residual motion observed in the (ideally) motion compensated images.

4.2 Elastic alignedSENSE

4.2.1 Fixed regularization terms

Figure 4.9 shows HFSER (a), SSIM (b), NCC (c) and RMSE (d) aver-
aged values across all slices and volunteers, parameterized by R, for the
reconstructions of the 2D datasets by applying EAS with the four different
operators for the regularization term in the EAS image sub-problem de-
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(a)

(b)

Figure 4.8: Results on real data, using 2D Cartesian pseudorandom undersam-
pling with acceleration factors (R) of 10 (top row) and 15 (bottom row). Left
column, fully sampled images of reference (Ref); center column, reconstructed
images using a motion compensation algorithm (MC ); right column, reconstructed
images using displacement fields to leverage the regularization parameter (Wdisp).
Red arrows point areas with spurious deformation. In (b) the same images as in (a)
are represented, but the myocardium is marked with coloured lines to hightlight
spurious deformations.
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fined in Eq. (3.9). The average execution time needed for reconstructing
one slice is also provided in Figure 4.9e. Tables 4.4–4.6 show p-values for
comparisons with the Mann-Whitney test for every pair of operators on
samples of HFSER (Table 4.4), RMSE (Table 4.5) and average running
time for reconstructing one slice (Table 4.6) for three values of AF, namely
R = 2, R = 8 and R = 14.

As it can be seen in Figure 4.9, the wavelet transform operator provides,
generally speaking, worse results compared with the other three operators.
Furthermore, it has also presented some convergence problems when re-
constructing some slices in the whole dataset. In contrast, the remaining
operators provide very similar values to each other for the four quality
measures and there are hardly any differences among them, a statement
that is supported by the p-values provided in Tables 4.4 and 4.5 (p > 0.05).
Nevertheless, Table 4.6 presents some significative differences (p < 0.05) in
the average execution times needed for reconstructing one slice, essentially
between spTV operator and the other three. According to Figure 4.9e,
spTV regularization operator reveals itself as the fastest and needs between
twice and three times less time to reconstruct one slice, compared to the
others. Therefore, this strategy seems the one to be preferred, since it offers
similar quality in both image and motion to Laplacian or FFT operators,
but needing less running time, besides that it entails less computational
complexity.

4.2.2 Variant regularization terms

Figure 4.10 displays systole and diastole frames of the reconstructions
of the 2D datasets by applying EAS with both fixed (EAS) and variant
regularization terms (EASdisp and EASvel), for a representative case and
R = 8. The selected operator for the EAS image sub-problem regularization
term is spTV in all of these three cases, due to the results obtained in the
previous subsection. Two temporal profiles corresponding to a vertical and
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(a) (b)

(c) (d)

(e)

Figure 4.9: Results for EAS reconstructions with the four different regularization
operators defined in Eq. (3.9) for the EAS image sub-problem. Averaged values
across slices and volunteers for HFSER (a), SSIM (b), NCC (c) RMSE (d) and the
average running time needed to reconstruct one slice (e) are provided for different
values of R.
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Table 4.4: p-Values of the Mann-Whitney test on samples of HFSER for recon-
structions using EAS with the four different regularization operators defined in
Eq. (3.9) for the EAS image sub-problem and different values of AF: R = 2 (a),
R = 8 (b) and R = 14 (c). p-Values below the significance level 0.05 are boldfaced.

spTV Laplacian FFT
Laplacian 0.1007
FFT 0.1214 0.2556
Wavelet 0.0211 0.0491 0.0471

(a)

spTV Laplacian FFT
Laplacian 0.5271
FFT 0.9264 0.5042
Wavelet 0.0121 0.0082 0.0100

(b)

spTV Laplacian FFT
Laplacian 0.2556
FFT 0.2892 0.5225
Wavelet 0.0036 0.0325 0.0133

(c)

Table 4.5: p-Values of the Mann-Whitney test on samples of HFSER for recon-
structions using EAS with the four different regularization operators defined in
Eq. (3.9) for the EAS image sub-problem and different values of AF: R = 2 (a),
R = 8 (b) and R = 14 (c).

spTV Laplacian FFT
Laplacian 0.5271
FFT 0.5042 0.9887
Wavelet 0.2191 0.2320 0.2738

(a)

spTV Laplacian FFT
Laplacian 0.6340
FFT 0.8091 0.8201
Wavelet 0.4691 0.3722 0.4288

(b)

spTV Laplacian FFT
Laplacian 0.2996
FFT 0.2526 0.9039
Wavelet 0.1255 0.2320 0.3905

(c)
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Table 4.6: p-Values of the Mann-Whitney test on samples of running times for
reconstructing one slice using EAS with the four different regularization operators
defined in Eq. (3.9) for the EAS image sub-problem and different values of AF:
R = 2 (a), R = 8 (b) and R = 14 (c). p-Values below the significance level 0.05
are boldfaced.

spTV Laplacian FFT
Laplacian 0.0000
FFT 0.0000 0.0000
Wavelet 0.0013 0.1835 0.0061

(a)

spTV Laplacian FFT
Laplacian 0.0000
FFT 0.0000 0.0000
Wavelet 0.0010 0.0771 0.0018

(b)

spTV Laplacian FFT
Laplacian 0.0000
FFT 0.0000 0.0005
Wavelet 0.0010 0.9329 0.0771

(c)

a horizontal line are also displayed. Similarly to the previous subsection,
Figure 4.11 displays HFSER (a), SSIM (b), NCC (c) and RMSE (d)
averaged values across all slices and volunteers, parameterized by R, for the
reconstructions just mentioned. The average time needed for reconstructing
one slice is also provided in Figure 4.11e.

Tables 4.7–4.9 show p-values of comparisons with the Mann-Whitney
test for every pair of regularization methods on samples of HFSER (Ta-
ble 4.7), RMSE (Table 4.8) and average time for reconstructing one slice
(Table 4.9) for three values of AF, specifically R = 2, R = 8 and R = 14.

It is rather difficult to perceive differences with a naked eye between
the three different versions of EAS that have been tested (EAS , EASdisp

and EASvel), unless one pays attention to small and subtle details. In fact,
Figure 4.11 shows very similar values in HFSER, SSIM and NCC, which
is also supported by p-values (Table 4.7) in all the AF range. This is also
the case for RMSE, where at a first glance might not be the case, but this
may be just an effect on the scale (Figure 4.11d). Indeed, corresponding
p-values (Table 4.8) do not reveal any significant difference (p > 0.05).
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Figure 4.10: EAS reconstructions of a representative case with R = 8. The fully
sampled reconstruction is included in the top line as a reference. Diastole and
systole frames are shown in the two leftmost columns, respectively. Two temporal
profiles of the horizontal and vertical lines —marked in the reference image with
orange lines— are shown in the rightmost columns for all the methods.

Table 4.7: p-Values of the Mann-Whitney test on samples of HFSER distributions
for reconstructions using EAS with both fixed and variant regularization terms,
and three different values of AF: R = 2 (a), R = 8 (b) and R = 14 (c).

EAS EASdisp
EASdisp 0.2627
EASvel 0.2708 0.8423

(a)

EAS EASdisp
EASdisp 0.3483
EASvel 0.2526 0.8758

(b)

EAS EASdisp
EASdisp 0.2411
EASvel 0.4730 0.0993

(c)
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(a) (b)

(c) (d)

(e)

Figure 4.11: Results for EAS reconstructions with both fixed and variant
regularization terms. The average values across slices and volunteers for HFSER
(a), SSIM (b), NCC (c) RMSE (d) and the average time needed for reconstruct
one slice (e) are provided for different values of R.
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Table 4.8: p-Values of the Mann-Whitney test on samples of RMSE for recon-
structions using EAS with both fixed and variant regularization terms, and three
different values of AF: R = 2 (a), R = 8 (b) and R = 14 (c).

EAS EASdisp
EASdisp 0.7708
EASvel 0.9151 0.7065

(a)

EAS EASdisp
EASdisp 0.3096
EASvel 0.3375 0.9773

(b)

EAS EASdisp
EASdisp 0.6493
EASvel 0.8814 0.7763

(c)

In contrast, p-values in Table 4.9 reveal that there are some significant
differences between average running times for reconstructing one slice,
specifically between EAS with fixed regularization terms (EAS) and both
EAS with variant regularization terms (EASdisp and EASvel). The former
takes about 20 additional seconds with respect to the other two. This
stems from the fact that variable regularization turns out to converge
faster in the optimization algorithm, so that the execution time is reduced
despite it entails more computational complexity. This overhead, for a
typical multislice reconstruction, where the heart is divided into 10 or 12
slices, leads to a time saving between 3.5 and 4 minutes, approximately,
per subject.

Figures 4.12 and 4.13 display the systole and diastole frames from
two representative cases of the 2D datases reconstructed with EAS meth-
ods (EAS , EASdisp and EASvel) compared with other methods from the
literature —sPICS , GWCS , kt-SS as well as the space-variant regulariza-
tion methods proposed in Section 3.1 of this Thesis (Wdisp and Wvel)—.
Two temporal profiles from vertical and horizontal lines are also provided
in the two rightmost columns. Both images and temporal profiles from
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Table 4.9: p-Values of the Mann-Whitney test on samples of execution times
for reconstructing one slice using EAS with both fixed and variant regularization
terms, and three different values of AF: R = 2 (a), R = 8 (b) and R = 14 (c).
p-Values below the significance level 0.05 are boldfaced.

EAS EASdisp
EASdisp 0.0027
EASvel 0.0022 0.9943

(a)

EAS EASdisp
EASdisp 0.0124
EASvel 0.0414 0.6040

(b)

EAS EASdisp
EASdisp 0.2439
EASvel 0.0187 0.1935

(c)

the fully sampled reconstruction are included as a reference in the top
line. In terms of image quality, EAS reconstructions tend to have less
subsampling artifacts (Figure 4.12, orange arrows), but they may show
some more pronounced blurring —especially in EASvel— due to the spatial
regularization that is applied in the EAS image-subproblem (4.12, red
arrows). In terms of motion, EAS reconstructions (EAS , EASdisp and
EASvel) seem smoother, whereas in the other methods motion is perceived
with sharper transitions, mostly when AF increases. Nevertheless, in some
of the EAS reconstructions residual fluctuations may also be perceived in
the images, as if they were immersed in liquid. This effect probably arises
as a consequence of using a B-spline deformation model and sub-optimal
regularization parameter tuning.

In addition, EAS methods tend to show difficulties in homogeneous areas
where registration is known to show worse performance. Since EAS methods
are essentially model-based (as opposed to the other methods, which are
data-driven), resulting reconstructions tend to be in some areas more static
than expected, what may lead to a false diagnosis of a movement disorder
characterized by that loss of motion (hypokinesia). An example of this effect
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is presented in Figure 4.13. The corresponding EAS reconstructions showed
more static inferior/inferior-lateral segments compared to the reference
image. This fact manifest itself in the images of the temporal profile of the
vertical line (rightmost column of Figure 4.13) by a subdued fluctuation
in the intensity line as a consecuence of contraction of the myocardium
(marked with blue arrows).

For the sake of performance quantification, figure 4.14 shows HFSER
(a), SSIM (c) and NCC (e) averaged values across all slices and volunteers,
parameterized by R, for the reconstructions of the 2D datasets by applying
EAS with both fixed and variant regularization terms in comparison with
the reconstruction methods mentioned in previous paragraphs. Since the
resulting graphs are very close together, their relative values with respect to
those provided by GWCS are shown (Figures 4.14b, d and f, respectively),
so that both visualization and interpretation could be easier. Similarly,
Figure 4.15 displays RMSE (a), Landmark RMSE (c) —as defined in
Chapter 3— and average time needed for reconstructing one slice (e) and
their relative values (Figures 4.15b, d and f, respectively), taking again
GWCS method as reference.

Figure 4.14 shows that the set of EAS methods gives rise to values
of the metrics more closely related to intensity quality (HFSER, SSIM
and NCC) lower than those provided by the other methods for AF less
than 8. From this AF value, the metrics begin to approximate and from
R = 10 EAS methods give rise to slightly higher values than the other
ones, specifically EAS and EASvel . As far as motion metrics is concerned,
the crossing point seems to be also at R=10. Below this value, the rest
of methods give rise to higher values, but there is no method that clearly
qualifies as “the winner”. In contrast, for R ≥ 10 EAS methods give rise
to higher values, being EASvel the method with the highest scores closely
followed by EAS . Taking into account the RMSE scores, EAS methods
with variant regularization terms give rise to lower values than the rest
of reconstruction methods (here lower is better). The Landmarks RMSE
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Figure 4.12: Comparison of EAS reconstructions with other methods from the
literature for a representative case (volunteer 2) with R = 8. The fully sampled
reconstruction is included in the top line as a reference. Diastole and systole
frames are shown in the two leftmost columns, respectively. Two temporal profiles
of the horizontal and vertical lines —marked in the reference image with orange
lines— are shown in the rightmost columns for all the methods. Arrows point to
significant locations.
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Figure 4.13: Comparison of EAS reconstructions with other methods from the
literature for a representative case (volunteer 3) with R = 8. The fully sampled
reconstruction is included in the top line as a reference. Diastole and systole
frames are shown in the two leftmost columns, respectively. Two temporal profiles
of the horizontal and vertical lines —marked in the reference image with orange
lines— are shown in the rightmost columns for all the methods. Arrows point to
significant locations.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: EAS with both fixed and variant regularization terms compared to
other methods from the literature. Absolute values for HFSER (a), SSIM (c) and
NCC (e), parametrized by R are shown. Relative values for HFSER (b), SSIM
(d) and NCC (f), taking GWCS method as reference and parametrized by R, are
also displayed.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: EAS with both fixed and variant regularization terms compared
to other methods from the literature. Absolute values for RMSE (a), landmarks
RMSE (c) and average time for reconstructing one slice (e), parametrized by R are
shown. Relative values for RMSE (b), landmarks RMSE (d) and average time for
reconstructing one slice (f), taking GWCS method as reference and parameterized
by R, are also displayed.
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shows a similar behaviour to the other metrics: below R = 10, GWCS
gives rise to the lowest values, whereas EAS methods lead for higher R
values.

Additionally, a cardiologist2 was consulted by means of a questionnaire,
consisting of 21 videos. Each video displayed a composition of CINE
reconstructions of the same slice, volunteer and AF level by applying
the six methods to be compared, randomly sorted: sPICS , GWCS , kt-SS,
EAS , EASdisp and EASvel (Wdisp and Wvel were not included to simplify
the task). The fully sampled image was also included as reference (see
Figure 4.16) and the selected levels of AF were R = 8, R = 10 and R = 14.
The expert was asked to sort the reconstructions in each video according
to his perceived quality, especially in terms of observed motion, giving a
score of 6 to the reconstruction with the best quality and a score of 1 to
the reconstruction with the worst quality.

According to the expert all the images were useful for diagnosis. He
reported the great difficulty of executing the task, since all the images were
quite similar and the differences between them were very subtle. Never-
theless, he also mentioned that it was relatively easier to find differences
between the images in the quality extremes, than among those in the
intermediate quality levels. He also reported that a homogeneous decision
criterion for the entire sample was very difficult to set, since different subtle
details had to be accounted for, such us sharpness in trabeculae or papillary
muscles, among other structures, depending on the image in every moment.
Table 4.10 displays the mean value ± standard deviation calculated out
of the scores that each reconstruction method received in the 21 videos
mentioned above.

It can be inferred from the results in Table 4.10, the GWCS reconstruc-
tion method received, generally speaking, the highest scores. EAS methods,
however, give rise to motion patterns that the expert was not comfortable
with, despite Figures 4.14 and 4.15 indicate that EAS methods provide

2Dr. David Filgueiras-Rama, from CNIC, Spain.
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Table 4.10: Mean value ± standard deviation of the scores given by the expert
for each reconstruction method. The scores vary in the range [1, 6], being 6 the
method that provides reconstructions with the highest image quality.

R=8 R=10 R=14
sPICS 5.14± 0.69 4.86± 0.69 3.43± 1.72
GWCS 5.00± 1.83 5.71± 0.49 4.86± 1.68
kt-SS 4.00± 1.53 3.43± 1.62 4.86± 0.90
EAS 2.57± 1.13 2.57± 0.79 3.29± 1.38
EASdisp 2.43± 0.53 2.71± 1.60 2.14± 1.46
EASvel 2.00± 1.15 1.71± 0.76 2.43± 1.40

better figures for R ≥ 10. As stated above, the model-based character of
EAS seems to reduce the degrees of freedom in the reconstruction to an
extent that other data-driven methods are preferable to the expert eye in
terms of motion quality (but not in terms of image quality).

Hence, due to the fact that motion provided by GWCS was the preferred
expert option, but EAS provides slightly better results with considerable
less execution times when R ≥ 10, according to Figures 4.14 and 4.15,
the combination of both methods —EAS as an initializer of GWCS— can
benefit from each other, since better motion reconstructions can be achieved
with GWCS but in EAS comparable running times. This is developed in
the next subsection.

4.2.3 Combination of elastic alignedSENSE and groupwise
motion-compensated compressed sensing

Figure 4.17 illustrates reconstructions for the different versions of MIX
methods with both fixed and variant regularization terms in comparison
with GWCS and EAS for a representative case and R = 8. Specifically,
diastole and systole frames are displayed in the two leftmost columns. The
fully sampled images of reference are shown in the top line for comparison
purposes. Two temporal profiles of both horizontal and vertical lines —
marked in the reference image with orange lines— are also displayed, in
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Figure 4.16: Example of the questionnaire for subjective image quality assessment.
The questionnaire was originally written in Spanish, but has been translated here
into English to facilitate its reading by non-Spanish speakers.
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the two rightmost columns. The superscript in the MIX methods represent
the number of EAS stages before the GWCS stage.

Figure 4.18 shows HFSER (a), SSIM (c) and NCC (e) for the 2D
datasets reconstructed by using both MIXn, MIXn

disp and MIXn
vel (n = 1, 2),

parameterized by R, in comparison with with GWCS and EAS . Their
relative values are also shown (Figures 4.18b, d and f), taking GWCS as
reference. Figure 4.19 shows the corresponding RMSE (a) and average
execution time for reconstructing a slice (b).

There are hardly any noticeable differences within the reconstructions
using MIX methods (Figure 4.17). Indeed, it can be seen in Figure 4.18
that MIX methods provide figures very similar to each other for the metrics
related with intensity (HFSER, SSIM and also NCC). Furthermore, the
MIX values in Figure 4.18 are comparable with those provided by GWCS
for lower values of AF, but they separate when AF is increasing, with MIX
providing values higher than those from the other methods, including EAS.
Looking to Figure 4.19 we can notice that MIX methods give rise to lower
values of RMSE, specifically, the MIX strategies that incorporate variant
regularization terms using velocity fields.

As far as execution time is concerned, MIX strategies take much less
time than GWCS, about two or three times less, reaching the same level as
EAS , particularly when MIX strategies with one EAS stage are considered
(MIX1, MIX1

disp and MIX1
vel). Between the two groups of MIX strategies

—those with one EAS stage and those with two EAS stages, previous to the
GWCS stage— the differences in running times can be as long as one minute,
approximately. However, as seen above, the quality of reconstruction is
similar in both. Therefore, MIX1 strategies —and specifically, MIX1

vel—
arise as competitive reconstruction methods to take into account.
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Figure 4.17: Comparision of MIX reconstructions with GWCS and EAS for a
representative case with R = 8. The fully sampled reconstruction is included in the
top line as a reference. Diastole and systole frames are shown in the two leftmost
columns, respectively. Two temporal profiles of the horizontal and vertical lines
—marked in the reference image with orange lines— are shown in the rightmost
columns for all the methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: MIX with both fixed and variant regularization terms compared
with EAS and GWCS. Absolute values for HFSER (a), SSIM (c) and NCC (e),
parameterized by R are shown. Relative values for HFSER (b), SSIM (d) and
NCC (f), taking GWCS as reference and parameterized by R are also displayed.
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(a) (b)

Figure 4.19: MIX with both fixed and variant regularization terms compared to
EAS and GWCS. RMSE (a) and average execution times for reconstructing one
slice (b), parameterized by R are shown.

4.2.4 Radial extension of elastic alignedSENSE

Figure 4.20 illustrates 2D golden radial reconstructions using EAS with
both fixed and variant regularization terms in comparison with iGRASP
and GWCS for a representative case. The reconstructions using the three
variants of the MIX method are also included. In the two leftmost columns
diastole and systole frames are shown and in the two rightmost columns
temporal profiles of both horizontal and vertical lines (marked with orange
lines in the top left image) are represented. Table 4.11 shows the average
running time needed for reconstruct one slice. The equivalent AF for this
example is 19.33.

The iGRASP method provides the most blurred images: the borders
of the myocardium are not as defined as in the other methods. In addition,
the contraction motion of the heart is reduced, which can be perceived by
the smooth intensity waves in the temporal profiles (see purple arrows in
Figure 4.20). On the contrary, GWCS seems to reflect the motion of the
heart in a more accurate way, compared to the Cartesian reconstructions
from the previous experiments.
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Figure 4.20: EAS radial reconstructions in comparison with iGRASP and GWCS
(R = 19.33). Reconstructions from MIX methods have been also included. Arrows
point significative locations.



4.2. Elastic alignedSENSE 101

Table 4.11: Mean values of execution times for reconstructing one slice using
EAS and MIX radial approaches in comparison with iGRASP and GWCS.

mean running time (min)
iGRASP 1.9513
GWCS 6.4263
EAS 2.2940
EASdisp 1.8276
EASvel 1.6979
MIX 3.7792
MIXdisp 2.6890
MIX vel 2.9559

There are no perceptible differences between the three versions of
EAS (EAS , EASdisp and EASvel) but not among the three versions of
MIX methods (MIX , MIXdisp and MIX vel). The three EAS strategies also
preserve motion, although there is a slightly loss of it. This effect can
be observed in the intensity fluctuations due to myocardial contraction
in the temporal profiles, which are perceived not as prominent as in
GWCS . In addition, the torsion motion has not been captured by the
deformations of EAS approaches, although this torsion is maintained in
the Cartesian reconstruction. This is probably due to the fact that the
regularization term in the radial EAS deformation sub-problem is filtering
out some important components of motion, so that a finer tuning of the
parameters might be necessary. Despite this, EAS strategies still introduce
some residual vibrations in the image sequences, as a consequence of the
B-spline model used for deformations. This can be seen in the temporal
profiles of Figure 4.20 as tiny waves in some intensity bands (blue arrows).
Finally, EAS strategies have introduced a non-realistic deformation in the
right ventricle (Figure 4.20, orange arrows). MIX methods on the contrary
manage to capture the torsion motion and the general motion is perceived
of the same quality as in GWCS but with slightly sharper details and less
subsampling artifacts.



102 Chapter 4. Results

As far as running time is concerned, the fastest method is EASvel ,
followed by EASdisp and iGRASP, which take between 10-15 more sec-
onds. MIX approaches reach an intermediate level and take half of the
time needed by GWCS, which is the slowest approach, taking almost 6.5
minutes per slice. Other point to highlight is that the versions that make
use of variable regularization are faster than their versions with fixed re-
gularization. Specifically, EASdisp and EASvel are about 30 seconds faster
than EAS , whereas MIXdisp and EASvel take about a minute less than
MIX .



Chapter 5
Conclusions and future work

5.1 Conclusion

MRI is a powerful image modality due to its reproducibility, accuracy and
versatility and it offers high spatial resolution, wide FOV and good contrast
between soft tissues. However, an MRI scan takes long time compared to
common physiological processes and the acquisition procedure requires
well-trained staff and elaborated setups.

One way to reduce scan times is to subsample k-space data and to apply
involved image reconstruction techniques. However, this makes the resulting
reconstruction problem become undetermined, due to absent samples, and
ill-conditioned, due to presence of noise in measurements. Thus, some
knowledge, constrains and assumptions are integrated in the function to be
optimized for reconstruction, usually making the overall problem even more
computationally demanding and time consuming. Modern learning-based
approaches are fast in production mode, but require long training stages.

This Thesis has focused on the cardiac CINE MRI reconstruction
problem from highly subsampled data. The work in this Thesis has pursued
to use motion as a source of knowledge, i.e., to take advantage of the
redundancy in the images in both spatial and temporal dimensions to
reduce, whenever possible, computational needs and execution times in the
optimization while keeping quality in the reconstructions. This statement
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was our main objective, from which two sub-objectives were identified,
namely, to define a strategy for spatially varying regularization and to
reduce the number of parameters needed in the problem by finding a
pattern image (reference) and a set of deformations to apply to that image.
The contributions derived from this Thesis (described in section 5.2) allow
us to state that these objectives have been satisfied.

This Thesis, however, has a number of limitations which give rise to
some ideas to be explored in future work. Those future lines of research
are covered in Section 5.3.

5.2 Contributions

The main contributions and results of this Thesis are:

• Space-time variant weighted regularization strategies based on group-
wise motion estimation. We have observed that CS in combination
with this kind of regularization provides better reconstructions in
terms of motion fidelity than other methods from the literature.

• Design and implementation of the EAS framework for cardiac CINE
MRI reconstruction for both Cartesian and radial subsampling. This
reconstruction framework provides a motion-free pattern image along
with a set of nonrigid deformations. Motion is not only used here to
deform the pattern image that generates the cardiac CINE series, but
also to weight the regularization degree in the objective functions.
However, no appreciable differences have been observed in terms of
image intensity quality between variant and non-variant regulariza-
tion versions of the proposed method, but they arise when motion
quality and running times are considered, where variant regularized
strategies seem preferable. We have also observed that the regulari-
zation term based on spTV (spatial Total Variation) employed in the
image sub-problem provides reconstructions with a similar quality,
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but with less execution times, than the other regularization terms
that have been tested (FT, Laplacian and Wavelet Transform).

• The combination of EAS and GWCS as a complete reconstruction
method provides images with a better degree of quality in both inten-
sity and motion, or with comparable quality and less computational
load, compared to other methods from the literature. Specifically,
the combination of EAS with variant regularization weighted by
velocity fields and GWCS (denoted as MIX vel) arises, in our opinion,
as the most competitive method to take into account and to keep
exploring in future lines of investigation, since it has provided the
highest quality metrics and the lowest error between displacement
fields as well, and also incorporates the motion patterns preferred by
the expert eye, but with less computational load and shorter running
times than other approaches.

As a result of the work described in the Thesis mentioned, the following
secondary contributions have also arisen:

• Generalization of 3D Cartesian sampling scheme with spiral golden
angle ordering. This sampling scheme is designed to make it possible
to choose, by a certain continuous parameter α, from a uniform
sampling pattern of k-space to a denser sampling scheme in its
center. For CINE cardiac MRI α values in the vicinity of α = 1
seem preferable. However, higher noise content makes intermediate
configurations (α ≈ 0.7) draw better results.

• A cross validation method to select regularization parameters based
on certain image quality metrics, when the number of available images
is scarce has been also proposed.
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5.3 Future work

EAS is capable to reconstruct cardiac CINE images, but in some cases
some motion components are lost. This is due to the fact that the method is
model-based. In such methodologies the performance is satisfactory as long
as the model describes accurately the motion that is dealt with. Our results
seem to indicate that this is not quite the case, as revealed by a cardiologist
subjective assessment. Indeed, there is a limitation in the method by its
own 2D nature: cardiac motion has a component in the perpendicular
direction to the observation plane (through-plane motion), which cannot
be estimated or recovered based on its two-dimensional projection in the
observation plane. Thus, the estimated motion will not fully represent
the real deformations that the heart suffers, since only the two in-plane
components are accessible. This fact restricts the ability of the estimation
method —EAS deformation sub-problem— and, consequently, the quality
of the reconstructed images is reduced. Hence, the extension to 3D arises as
a natural line of future work, where the problem of through-plane motion
disapears. In addition, 3D reconstruction offers an advantage over 2D
multi-slice reconstruction: the latter needs a laborious spatial planning,
due to the leaning position of the heart within the thoracic cage and the
variability between subjects. In a 3D method with isotropic resolution, this
operation can be avoided since orientation can be obtained retrospectively
from the canonical planes. External constrast, however, is needed for the
latter.

On the other hand, the deformation model used in EAS may be not
entirely adequate or it may be too simple to describe the complex motion
of the heart. Therefore, a more exhaustive modelling of the components of
the heart motion seems mandatory, as well as to account for respiratory
motion, specially in the 3D case.

The level of running times achieved by EAS and MIX approaches
may be still not clinically viable. Furthermore, the implementation of the
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algorithms used for this Thesis were executed in CPU and implemented
in Matlab and still in a development stage, so that some programming
optimization or even a compiled implementation surely would be possible
to reduce running times. Nevertheless, the MRI reconstruction problem
turns out to be highly parallelizable, so that an implementation in GPU
seems advisable.

However, programming in GPU is device dependent. OpenCL [99] is an
open standard for parallel computing that covers a wide set of computing
devices from several vendors, while ensuring that source code and data
are unique, thus avoiding the need for code and data replication among
prospectively supported devices. However, OpenCL programmers must deal
on their own with device selection and initialization, memory management,
kernel loading and compilation, host-device interaction, and administration
overload. The OpenCLIPER framework [100] was developed to address
all these shortcomings, allowing to work in a wide range of computing
devices (CPU, GPU, DSP, FPGA, etc.), so that development is significantly
simplified versus a pure OpenCL implementation. Therefore, EAS and MIX
as well could benefit from OpenCLIPER and achieve more competitive
running times. In fact —and serve as an example—, the authors in [101]
report running times between 4 and 8 seconds for reconstructing a whole
slice stack of k-space data similar to those datasets used in this Thesis by
using a GPU implementation similar to the GWCS algorithm.

DL approaches have gained importance recently, since they are capable
of obtaining reconstructions typically in the order of seconds, once the
training step is completed. Most of DL MRI reconstruction techniques are
based on a supervised training strategy, but they require abundant high-
quality reference images for network training, which are not always available
[83]. Several recent works have investigated self-supervised learning for the
reconstruction of undersampled MRI [102,103], in which a network is trained
on undersampled datasets directly without fully sampled references, and
inherent MR physical models are incorporated as training regularizations,
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achieving a similar reconstruction performance. EAS and MIX can benefit
from such self-supervised approaches, by adopting a methodology similar
to [101], where the optimization problem is considered as an inverse problem
including a data fidelity term and a regularization term with groupwise
motion compensation, implemented by means of a pre-trained network [104].
Thus, running times may be further reduced and become clinically viable.

Furthermore, EAS has been mainly evaluated from a technical point of
view, although the clinical viewpoint has also been tackled by consulting a
cardiologist, who kindly assessed the proposed methods through a ques-
tionnaire. However, this second method has the drawback of subjectiveness,
especially if only one expert judgement is available. Therefore, it would be
advisable to assess the proposed methods from the clinical point of view by
using more objective indicators, such us the well-established end systolic
volume or end diastolic volume, among others.

Finally, only datasets from healthy volunteers have been used. Therefore,
it would be advisable to test the EAS method with patients with certain
pathologies, such as arrhythmia, hypokinesia or any other condition related
to impaired left ventricle and/or regional wall motion abnormalities.



Appendix A
Generalized 3D Cartessian sampling
scheme with spiral golden angle
ordering

A.1 Introdution

Non-Cartesian sampling patterns, such as radial or spiral, are more robust
to motion. However, they have the disadvantage that FFT algorithm cannot
be directly applied to reconstruct an image and therefore a prior gridding
stage is needed, which introduces more complexity and overload to the
reconstruction problem.

As stated in Section 2.2.1, different approaches that use Cartesian
trajectories with spiral profiles and golden angle step have been proposed
to avoid the gridding procedure and accelerate the reconstruction problem.
G-CASPR [36] is characterized by a scheme with uniform k-space sampling
pattern that is usually applied to static MRI, although in [80] was used in
cardiac CINE MRI. Nevertheless, compressed sensing have shown better
results if the center of k-space is more densely sampled [35,105]. VDRad [34]
is a variable density sampling scheme that has been reported for abdominal
imaging. This sampling scheme has the drawback that some positions in
the k-space are repeatedly acquired, decreasing efficiency. We define a
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ordering

Figure A.1: proposed sampling pattern overview. Top line: on the left, each ring
has the same area (α = 0.00), on the right each ring has the same radial width
(α = 1.00). In the center an intermediate case is shown (α = 0.60) where each ring
has variable radial width and area. Bottom line: Resulting sampling patterns for
different values of α after the cardiac binning. Sampling patterns show uniformity
for α = 0.00, although there are some zones with a few samples in the center of
k-space. The density in the center of k-space increases progressively with the value
of α and so do the repetitions of samples. The number of times that a sample has
been visited is represented by colors.

versatile sampling scheme that varies continuously, by setting a parameter
α, from a uniform sampling pattern of k-space to a denser sampling scheme
in its center. The reason of this is to determine whether intermediate
configurations can provide better sampling schemes for cardiac CINE MRI
applications.

A.2 Description of the sampling scheme

The proposed sampling scheme is defined here as a general Cartesian
sampling scheme with spiral ordering of samples and golden-angle step.
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Specifically, samples are acquired from the center to the periphery of
the ky-kz plane, giving rise to spiral-like trajectories (see Figure A.1); kx
dimension is fully sampled. Given a spiral length L, the ky-kz plane is
divided into L concentric elliptic rings (no corners are used) and each ring
in turn is divided in L sectors. The radii of every ring along the ky and kz
directions (RKy and RKz , respectively) are controlled by the parameter α,
as shown by

Rky(k) = α · kN2L + (1− α) · N2
√

k
L

Rkz(k) = α · kM2L + (1− α) · M2
√

k
L

 (A.1)

where N ×M is the size of the image, k represents the number of the ring
(k = 1, 2, ..., L) and 0 ≤ α ≤ 1.

It is easy to check that a value of α equal to zero produces rings with
constant area while a value of α equal to one produces rings with constant
radial width but with increasing area when moving to the periphery of
the k-space. Since each sector will be sampled an equal number of times,
the case α = 0 yields uniform sampling of the k-space, while in the case
α = 1 the sampling density decreases at the periphery. Thus, the parameter
α enables the selection from an uniform —or quasi-uniform— sampling
pattern of k-space to a denser sampling in its center.

The samples within each ring are ordered first by radius and second by
angle in the k-space. Afterwards, trajectories are formed by choosing each
time one sample of one ring and sector forming a spiral twist (for example,
(sector, ring)=(l, l), 1 ≤ l ≤ L, then (sector, ring)= (l, l+ 1), 1 ≤ l ≤ L− 1
and so forth). Finally, the resulting trajectories are ordered according to
the golden-angle (137.5°). The number of total acquired samples is adjusted
by the desired AF.





Appendix B
Regularization parameter selection

B.1 Introduction

Establishing the regularization parameter in a cardiac CINE MRI recons-
truction problem is not an easy task and, furthermore, it is decisive, due
to the fact that, if the chosen value is too large, reconstructed images with
less artifacts are obtained, but motion can also be reduced; whereas if
the value of the regularization parameter is chosen too small, the motion
will be preserved, but artifacts will be hardly eliminated. Therefore, an
intermediate situation would be ideal.

In this Appendix a method to select the regularization parameter is
proposed, specially when the number of available images is scarce. Roughly,
the proposed approach can be described this way: the images are recon-
structed using some different regularization parameters, that have been
previously chosen. Afterwards, these reconstructed images are divided
into training and test groups and a quality metric is computed (in this
Thesis SER, HFSER and RMSE between displacement fields have been
used as quality metrics). By means of a cross-validation methodology, the
regularization parameter that maximizes the former metric within the
test groups is selected, so that a compromise between the two situations
explained in the previous paragraph may be achieved.

113



114 Appendix B. Regularization parameter selection

DATASETS DS1 · · · DSP −1 DSP DSP +1 · · · DSK−1 DSK

Combination c1 DS1 · · · DSP −1 DSP DSP +1 · · · DSK−1 DSK d1

Combination c2 DS2 · · · DSP DSP +1 DSP +2 · · · DSK DS1 d2

...
... . . . ...

...
... . . . ...

...

Combination ci DSci,1 · · · DSci,P −1 DSci,P
DSci,P +1 · · · DSci,K−1 DSci,K di

...
... . . . ...

...
... . . . ...

...

Combination cM DScM,1 · · · DScM,P −1 DScM,P
DScM,P +1 · · · DScM,K−1 DScM,K dM

TRAINING SET TEST SET

Figure B.1: Division of the datasets into both training and test sets of the
regularization parameter selection method. Note that M =

(
K
P

)
.

Details as well as the mathematical description of the procedure are
given in the next section.

B.2 Description of the procedure

In the first place a set of N tentative values for the regularization parameter
vector µ = (µ1, ..., µn) ∈ Rn is defined, as well as a similarity metric V (µ)
to measure the affinity between the set of reconstructed images with respect
to a reference one. Let K denote the number of datasets available and
let k ∈ {1, ...,K}. In a pre-training phase (see Figure B.2), an image
mrec
k (µi) is reconstructed for each dataset k and each tentative vector µi

(1 ≤ i ≤ N). After that, the similarity metric, Vk(µi), is computed within
a ROI that contains the heart for each of those reconstructions. The µi
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DS1 mrec
1 (µ1)

V1(µ1)

· · · mrec
1 (µN )

V1(µN )

µds
1 = arg max

i

V1(µi)

DS2 mrec
2 (µ1)

V2(µ1)

· · · mrec
2 (µN )

V2(µN )

µds
2 = arg max

i

V2(µi)

DS3 mrec
3 (µ1)

V3(µ1)

· · · mrec
3 (µN )

V3(µN )

µds
3 = arg max

i

V3(µi)

...
...

. . .
...

...

DSK mrec
K (µ1)

VK(µ1)

· · · mrec
K (µN )

VK(µN )

µds
K = arg max

i

VK(µi)

µ1 µN

DATASETS RECONSTRUCTIONS

Figure B.2: Pre-training phase of the regularization parameter selection method.

that gives rise to the highest V (µ) value is then selected for dataset k:

µdsk = arg max
i

Vk(µi) (B.1)

Later on, a cross validation method is used to determine the optimum
vector, i.e., µopt. This method can be described as follows: The K datasets
are divided into P training datasets and (K − P ) test datasets (see Figure
B.1). In order to avoid any sort of bias, exhaustiveness in the number
M =

(K
P

)
of different combinations is suggested. Let ci denote the group of

training datasets included in combination i (1 ≤ i ≤M) and let cij denote
the index in the set {1, . . . ,K} of the j-th element of ci (1 ≤ j ≤ P ), i.e.,
cij ∈ {1, . . . ,K}. For this j-th element its associated µdscij is taken and is
used to reconstruct all other datasets in ci (see Figure B.3). Afterwards,
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Figure B.3: Training phase of the regularization parameter selection method.
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Figure B.4: Test phase of the regularization parameter selection method. Note
that M =

(
K
P

)
.

the accumulated similarity metric aV (µ) is calculated:

aVci,j =
P∑

n=1,n 6=j
Vci,n(µdsci,j ). (B.2)

For each training group ci we select the candidate µtestci by maximizing
the accumulated similarity metric aV (µ) within ci, i.e.,

µtestci = arg max
j

aVci,j (B.3)

The final step to determine µopt (see Figure B.4) is to select the best
µtestci with 1 ≤ i ≤M . Let di denote the group of datasets not included in ci
(i.e., the testing datasets associated to the training set ci); correspondingly,
let dij denote the index in the set {1, . . . ,K} of the j-th element of di
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(1 ≤ j ≤ K − P ). The accumulated similarity metric aV (λ) is calculated
as follows:

aV test
di =

K−P∑
n=1

Vdi,n(µtestci ) (B.4)

With these values dtesti , (1 ≤ i ≤M), the optimum value is selected as

µopt = arg max
i

aV test
di (B.5)



Appendix C
Gradient calculation of the cost
function for elastic alignedSENSE

C.1 Introduction

The calculation of the gradient of the cost function is a key point in any
reconstruction problem. In the case of the EAS, the cost function has
associated an image registration component. This makes the calculation
of the gradient quite challenging, due to the fact that computational cost
and execution times may increase considerably.

In this Thesis, the convolutional implementation of the B-spline based
FFD model by means of 1D convolutions proposed in [106] has been
adopted. This technique takes advantage of the limited number of points in
which operators are defined and the high optimization of the convolution
that different development environments have achieved during the last
years. Therefore, computational cost and execution times can be reduced.
However, one must be careful when obtaining the analytical expression of
the gradient of the cost function, since elements in both k-space and image
space may be mixed, so that the previous technique cannot be applied.
In this Appendix how the gradient can be obtained in order to apply the
efficient implementation technique from above is explained.
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C.2 Calculation

The cost function, C(Θ), for the elastic alignedSENSE problem has been
defined as follows:

C(Θ) = ‖AFSm (TΘ)− y‖2 + λ ‖∇xm‖2 + R3(Θ) =

= ‖Em (TΘ)− y‖2 + λ ‖∇xm‖2 + R3(Θ) =

= V(Θ) + λ ‖∇xm‖2 + R3(Θ)

(C.1)

where m (TΘ) ≡m (TΘ (x)) and x ∈ R2 represents the spatial coordinates
in the space of each frame image. The parameters that define the transfor-
mation are Θ = {θ1, ...,θN}, with each θn = {θn1 , ...,θnu , ...,θnK}, and
θnu = (θnu1 , θnu2) , which corresponds to the parameters that characterize
each node in the B-Spline FFD model described in Section 2.3.5.2, N is the
number of frames and K is the number of control points. Furthemore, the
calculation shown in this Appendix will be focused only on the derivative
of the first term of Eq. (C.1), V(Θ):

∂V (Θ)
∂θnul

= ∂

∂θnul

(
mH (TΘ) EH − yH

)(
Em (TΘ)− y

)
=

= ∂

θnul

(
mH (TΘ) EHEm (TΘ)−mH (TΘ) EHy −

− yHEm (TΘ) + yHy
)

=

= ∂V1 (Θ)
∂θnul

− ∂V2 (Θ)
∂θnul

− ∂V3 (Θ)
∂θnul

+ ∂V4 (Θ)
∂θnul

(C.2)

where the index ul denotes the position of the control point within the
whole set of control points Θ and n denotes the frame number.

If x′ = TΘ (x) ∈ R2, [x′]l (1 ≤ l ≤ 2) represents the l-component of
the vector x′ and ‘�’ denotes the Hadamard product, we obtain

∂m (TΘ)
∂θnul

= ∂m (x′)
∂ [x′]l

� ∂TΘ (x)
∂θnul

≡ ∂m
∂ [x′]l

� ∂TΘ
∂θnul

(C.3)
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by applying the chain rule to each component of the vector m (TΘ (x))
and taking into account that only the component [x′]l depends on the
parameter θnul .

∂V1 (Θ)
∂θnul

= ∂

∂θnul

(
mH (TΘ) EHEm (TΘ)

)
=

=
[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]H
EHEm (TΘ) +

+ mH (TΘ) EHE
[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]
=

= zH1 + z1

(C.4a)

∂V2 (Θ)
∂θnul

= ∂

∂θnul

(
mH (TΘ) EHy

)
=
[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]H
EHy =

= zH2

(C.4b)

∂V3 (Θ)
∂θnul

= ∂

∂θnul

(
yHEm (TΘ)

)
= yHE

[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]
=

= z2

(C.4c)

∂V4 (Θ)
∂θnul

= ∂

∂θnul

(
yHy

)
= 0 (C.4d)

Combining Eq. (C.2) and Eqs. (C.4), we obtain:

∂V (Θ)
∂θnul

= zH1 + z1 − zH2 − z2 = (z1 − z2) + (z1 − z2)H =

= 2 · <{z1 − z2}
(C.5)

Depending on how z1 and z2 are chosen in Eqs. (C.4), two main posible
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solutions arise:

∂V (Θ)
∂θnul

= 2 · <


[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]H
EH

(
Em (TΘ)− y

) =

= 2 · <


[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]H
EHr


(C.6a)

or,

∂V (Θ)
∂θnul

= 2 · <
{(

Em (TΘ)− y
)H

E
[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]}
=

= 2 · <
{

rHE
[
∂m
∂ [x′]l

� ∂TΘ
∂θnul

]} (C.6b)

As mentioned in Section 2.3.5.2, B-splines have compact support and
so do their derivatives. Therefore, the derivative component of the previous
group of Eqs. (C.6), ∂TΘ

∂θnul
, only depends of the position of the control points

and the distance between them. Thus, this calculation can be efficiently
made by means of convolution, as described in [106]. The Eq. (C.6a) allows
to obtain the cost gradient by means of sucesive 1D convolutions in the
image domain, where as in Eq. (C.6b), it is not posible, since components
in both the image and k-space domains are mixed when convolution must
be applied, so that other approaches that imply, for example, pixelwise
iterations should be used instead.



Appendix D
Recovering a cardiac synchronism
signal from k-space data in cardiac
CINE MRI

D.1 Introduction

Cardiac CINE MRI involves long examination times and elaborated setups.
Specifically, additional hardware is required, such as ECG and respiratory
belts. The ECG is used to synchronize the acquisition of MRI data with the
cardiac beating and respiratory belts are used as respiration sensors to avoid
artifacts produced by respiratory motion. However, these external devices
increase the examination, preparation and acquisition times [107, 108].
Moreover, the ECG in high field MRI systems can be severely corrupted
by induced electromagnetic signals and the magneto-hydro-dynamic effect
[109].

In this Appendix an automatic method to recover the cardiac synchro-
nization signal directly from the k-space data is proposed, so that the need
of additional hardware in cardiac MRI examinations can be avoided. The
procedure has been tested via numerical simulation and with real data,
both in BH and FB acquisitions.
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(a) (b) (c)

Figure D.1: Diastolic (a) and systolic (b) cardiac phases in a cardiac CINE exam.
Evolution of the average intensity value along the cardiac cycle (c). Minimum
corresponds to the systolic phase shown. “a.u.” stands for arbitrary unit.

D.2 Theory

In cardiac CINE MRI a set of images along the cardiac cycle are obtained
enabling the visualization of the motion of the heart. In these images, blood
typically appears bright, surrounded by darker regions (mainly myocardium,
lungs, and liver). Therefore, a cardiac contraction will translate into a
decrease on the average intensity value of each image (DC component)
along the cardiac cycle (Figure D.1). Since the k-space data is related to
the final images via the Fourier transform, the evolution of DC component
of the images along time is contained in the central position of the k-
space, which is more frequently sampled when radial trajectories are used.
Consequently, the proposed methodology for the recovery of the cardiac
synchronization information is based on the processing of the signal formed
by the central samples of the k-space along time. In FB scenarios, the
change of volume of the lungs will also affect the DC value of the images.
Therefore, breathing dynamics will be present in the signal as well. As a
preprocessing step, this signal is band-pass filtered between 0.1 Hz and 1.5
Hz, where most of the cardiac and respiratory activities are contained. A
peak detection algorithm is then applied to identify cardiac cycles.
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D.2.1 Coil selection

k-space data are ussually acquired simultaneously with several coils, which
are placed all over the chest. Given the spatial distribution of the antennas,
some of them will provide, therefore, more useful information for the
recovery of the cardiac signal than others (Figure D.2). A method to
automatically select the best coil in these sense is a key component of the
proposed method. Two different approaches are presented:

• Automatic selection based on spectral analysis: the ratio between
the average of the spectrum of the signal in the [0.5-1.5 Hz] and
[0.1-0.5 Hz] bands is calculated. Those spectral bands correspond to
the frequencies of the cardiac cycle and respiratory cycle, respectively.
The coil that provides the highest value of this ratio is selected. In
this approach, only the information from one coil is used for signal
recovery.

• PCA approach: by means of PCA, most of the common dynamic
cardiac information that is distributed among the different coils may
be concentrated in the first principal components of the multicoil
DC signal.

D.3 Materials and Methods

Four healthy volunteers with ages ranging 24-29 were scanned with a
32-elements cardiac coil on a 1.5 T Philips scanner and a bSSFP sequence.
The acquisitions where performed in three different scenarios:

D.3.1 Cartesian, breath-hold acquisition

A standard Cartesian acquisition in BH was performed. Relevant acquisition
parameters include TR/TE = 2.9 ms/1.44 ms, flip angle of 60°, field of



126
Appendix D. Recovering a cardiac synchronism signal from k-space data in cardiac

CINE MRI

(a) (b) (c)

Figure D.2: Coil selection. The images obtained from three different coils are
represented. The image in (b) is discarded because of its low brightness. The coil
in (c) is more focused on the external area than the coil in (a), which is more
focused on the heart. Therefore, the coil in (a) will be preferred.

view (FOV) = 320× 320 mm2, spatial resolution = 2× 2 mm. 20 cardiac
phases where reconstructed.

D.3.2 Golden-radial breath-hold acquisition

A golden-radial acquisition [24] was performed in BH with similar parame-
ters than in the Cartesian case. Total acquisition time was approximately
12 seconds and a total number of 4000 projections were acquired. The first
400 projections were discarded in order to guarantee that the stationary
state was reached.

Contrary to Cartesian, in a radial acquisition each line passes through
the center of the k-space. The three central samples along each line were
averaged in order to correct possible misalignments with respect to the cen-
ter of the k-space, due to gradient errors and eddy currents, and considered
as the DC component.

D.3.3 Golden-radial free breathing acquisition

An additional golden-radial acquisition was performed with similar param-
eters in FB to analyze the influence of the respiration in the recovery of
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the cardiac signal.
In all the scenarios, an ECG signal was recorded simultaneously with

the data and used as a ground truth. In order to validate the proposed
methods in the different scenarios, the following error measure has been
defined:

Error = RRECG − RRMRI
RRECG

where RRECG is the RR interval obtained from the ECG signal of reference
and RRMRI is the interval acquired from the cardiac cycle signal obtained
from the MRI data.

D.4 Results

Figure D.3 shows the cardiac cycle signals obtained from Cartesian real data
in both BH and FB. Only the data from a single coil were manually selected.
To select the coil, the images resulting from each coil were represented and
visually inspected. The coil that provided an image that showed a better
compromise between brightness and direction (that is, the coil that was
more focused on the heart region) was selected (Figure D.2). In the plotted
signal, cardiac dynamics are clearly appreciable, with an abrupt decrease
of its value indicating ventricle contraction.

With respect to golden radial acquisitions, Figure D.4 shows the cardiac
signal obtained from the golden radial data only for the FB case, for the
sake of conciseness. Data from only one coil was automatically selected
applying the automatic method described in Section D.2 based on spectral
analysis. The peak detection algorithm was adapted to allow RR intervals
between 0.5 and 1.2 seconds, corresponding to heart rates between 50
and 120 BPM. Then the obtained RR-intervals were compared with the
RR-intervals obtained from the ECG signal of reference.

In the FB scenario, the band-pass filter to use is adapted to mitigate
the influence of the respiratory component in the cardiac signal and a
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(a) (b)

Figure D.3: Cardiac cycle signals obtained from Cartesian real data in a BH
situation (a) and in a FB situation (b). “a.u.” stands for arbitrary unit.

higher cutoff frequency to collect additional harmonics of the cardiac cycle
signal at higher frequencies. Its original spectrum, obtained by means of
the FFT, and the signal obtained after filtering are also represented in
Figure D.4.

An error of 2.0589% in BH situation is achieved, calculated using the
metric defined above. Before adapting the filter as described, the error
in the FB case was as high as 30.8826%. After readjusting the filter and
inverting the signal to detect the minima of the resulting signal instead of
the maxima, an error of 1.6271% is obtained.

Finally, the PCA approach was applied to the FB golden-radial data. In
this scenario all the information provided by the 32 coils from the previous
data set is used by applying a PCA approach. In a first step, the first
PCA component is used to obtain the cardiac cycle signal. In order to
test the hypothesis that the first principal component gathers most of
the cardiac information, the automatic coil selection approach based on
spectral analysis applied to all the PCA components is applied.

Results are summarized in Table D.1, which shows the error between
manual and automatic selection of a single coil and for PCA based ap-
proach. The second column shows the error obtained when the coil was
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(a) (b)

(c)

Figure D.4: Cardiac cycle signals recovered from golden radial real data. In
(a) the signal obtained before filtering is represented (only the real part of the
complex signal is considered); in (b) its spectrum, calculated by applying the
FFT, is represented; and in (c), the cardiac cycle signal after filtering is shown in
the time domain.

selected manually by visual inspection. The number preceded by the ‘#’
symbol represents the number of the selected coil. In the third column,
the results from the method described in Section D.2 are shown. In the
fourth column, the results obtained from the PCA approach are shown.
The number preceded by a ‘C’ letter means the selected PCA component
by the automatic method based on spectral analysis. The results from
selecting the first PCA component (C1) are also shown for comparison.
Finally, in the fifth column the results of the PCA approach with a previous
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Table D.1: Error comparison (in percentage) between manual and automatic
selection and between single or multi-coil methods. The ‘#’ symbol represents
the number of the selected coil, whereas the ‘C’ letter means the selected PCA
component.

Subject Visual Automatic PCA PCA after
inspection selection filtering

1 #5: 1.63% #13: 2.514% C1: 3.04% 2.65 %
C5: 2.34%

2 #12: 0.93% #11: 0.984% C1: 2.40% 1.37 %
C4: 1.45%

3 #14: 1.40% #13: 3.103% C1: 4.39% 3.20 %
C8: 1.97%

4 #4: 3.56% #5: 3.731% C1: 7.57% 3.88 %
C2: 3.40%

filtering of the data and automatic selection of the PCA component are
presented.

D.5 Discussion

In the first scenario with Cartesian data, the cardiac cycle signal can be
easily obtained by extracting the zero frequency component along time in a
BH situation. The RR-intervals were relatively constant due to the fact that
influence of respiration is not included, although the intrinsic heart rate
variability was present. However, in a FB situation the cardiac cycle signal
was affected by the respiratory signal. A band pass filter (cutoff frequencies
1 and 2.5 Hz) was used to remove the respiratory signal. Since the results
were not accurate enough, different band-pass filters with different cutoff
frequencies were used until the desired accuracy was achieved.

For BH golden-radial acquisitions, the filtering method has shown good
results and allows us to recover the RR intervals with enough accuracy.
When switching to a FB scenario, and after applying the described modifi-
cations in the filtering procedure, the error between automatic selection



of one coil and filtering before the PCA approach look similar. It can be
presumed, that if more subjects had participated, this slight difference may
be included in the standard deviation. Concerning the resulting images
from coils, it is really difficult to clearly detect differences between the
optimal coil and the two other coils selected by an automatic approach.
However, it seems that the best choice between these proposed methods
is the PCA approach after filtering the data, since the information of all
coils is combined. This also makes sense because some noise is removed,
which can affect negatively to the resulting PCA directions.

Another important point in this discussion is that the recovered signals
are not in the same cardiac phase when the image is reconstructed, since
an offset is introduced between the peaks detected in the real ECG signal
and the one recovered from the k-space data. This fact is not a big deal,
as the information reside in the RR interval series.
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