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A B S T R A C T   

We propose a method that can provide information about the anisotropy and orientation of diffusion in the brain 
from only 3 orthogonal gradient directions without imposing additional assumptions. The method is based on the 
Diffusion Anisotropy (DiA) that measures the distance from a diffusion signal to its isotropic equivalent. The 
original formulation based on a Spherical Harmonics basis allows to go down to only 3 orthogonal directions in 
order to estimate the measure. In addition, an alternative simplification and a color-coding representation are 
also proposed. Acquisitions from a publicly available database are used to test the viability of the proposal. The 
DiA succeeded in providing anisotropy information from the white matter using only 3 diffusion-encoding di-
rections. The price to pay for such reduced acquisition is an increment in the variability of the data and a 
subestimation of the metric on those tracts not aligned with the acquired directions. Nevertheless, the calculation 
of anisotropy information from DMRI is feasible using fewer than 6 gradient directions by using DiA. The method 
is totally compatible with existing acquisition protocols, and it may provide complementary information about 
orientation in fast diffusion acquisitions.   

1. Introduction 

The term Diffusion Magnetic Resonance Imaging (DMRI) refers to a 
set of diverse imaging techniques that, applied to brain studies, provide 
useful information about the organization and connectivity of the white 
matter. The most relevant feature of DMRI is its ability to measure 
orientational variance in the different tissues, i.e., anisotropy, a feature 
that is mostly used in research. In the clinical practice, and as a com-
plement to structural studies, there are protocols that incorporate a fast 
acquisition to obtain a measure of the amount of diffusion. A common 
implementation in commercial scanners, like EPI-DWI, acquires only 3 
separate orthogonal diffusion weighted images (DWIs) with diffusion 
gradients aligned with directions (x, y, z). These 3 DWIs are averaged 
into a final combined image [1] that resembles measures like the Mean 
Diffusivity (MD) [2] or the Average Sample Diffusion (ASD) [3]. Due to 
the limitation in the number of gradient directions, no extra information 
is provided. If a measure of anisotropy and orientation of the diffusion 
wants to be extracted, there is a minimum requirement of 6 acquired 
DWIs in order to estimate the components of the diffusion tensor (DT) 
[4]. Under the DT approach, it would still be possible to calculate an 

anisotropy measure with fewer than 6 gradient directions, but we must 
impose a restricted model that reduces the number of values to estimate, 
like, for instance, assuming that the diffusion has a cylindrical symme-
try. Nevertheless, regardless of the used methodology, it is well known 
the intrinsic inability of dMRI measures to properly characterize 
different spatial orientation with fewer than 6 gradient directions. 

In this paper we propose a new method that can provide additional 
information about the anisotropy in the diffusion from only 3 orthogonal 
gradient directions. This method is totally compatible with existing fast 
diffusion acquisitions since it only makes use of the same 3 DWIs already 
acquired. This way, no extra scanning time is needed: the same sequence 
that provides MD images can also provide anisotropy information. 

The method is based on a novel anisotropy metric called Diffusion 
Anisotropy (DiA) proposed in [5]. The metric measures the distance 
from the actual diffusion signal to its isotropic equivalent. Its original 
formulation relies on the fitting on the signal using a basis of Spherical 
Harmonics (SH), but an alternative simpler formulation is here proposed 
to be exclusively used with 3 orthogonal gradient directions. In addition, 
we also present a color-coding method, like the one used for the Frac-
tional Anisotropy (FA) in DT imaging. We carry out some examples and 
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tests to show that, although the variability of the anisotropy image is 
high (compared to the one calculated with more gradient-directions), it 
succeeds in providing structural information of the white matter with 
just 3 acquired directions for those tracts aligned with the axis. 

Due to the limitations of DMRI, when working with fewer than 6 
gradient directions, those tracts not aligned with the axis will be 
underestimated by the procedure. Thus, we must recall that this method 
is not initially intended to carry out clinical studies or to obtain detailed 
anisotropy information, but simply to complement existing acquisition 
methods with an anisotropy measure. The acquisition remains un-
changed, only some extra processing is needed, and new information is 
then provided. 

2. Methods 

2.1. Diffusion anisotropy 

In [5], authors proposed a series of advanced anisotropy measures 
that could be calculated from a single shell acquisition. Among them, the 
Diffusion Anisotropy (DiA) was presented as a robust alternative to the 
FA. DiA assumes a mono-exponential diffusion profile for the normal-
ized magnitude signal provided by the MRI scanner, E(q): 

E
(
q
)
= E

(
q, u

)
= exp

(
− 4π2τq2 D(u)

)
= exp( − b⋅D(u)). (1)  

D(q) = D(q,u)>0 is the diffusivity signal, also known as the Apparent 
Diffusion Coefficient (ADC), b=4π2τ ‖q‖2 is the b-value, τ is the effective 
diffusion time, q = ‖q‖ and u ∈ S is a unit direction in space where ‖u‖
=1 and q = qu. Note the mono-exponential constraint translates in the 
diffusivity D(q,u) being independent on the radial direction: D(q,u) ≡ D 
(u). Under this assumption, the DiA is defined as [5]: 
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The integration on the surface of the unit sphere, S = {u∈ℝ3: 
‖u‖=1}, from a limited number of samples can be performed by fitting 
corresponding signals in the basis of Spherical Harmonics (SH), whose 0- 
th order coefficient is defined as: 

C0,0{H(u) } =
1̅̅
̅̅̅

4π
√

∫

S
H(u)du. (3) 

This way, a practical implementation of DiA was originally defined 
as: 

DiA =
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This implementation can be seen as a generalization of the Coeffi-
cient of Variation of the Diffusion (CVD), defined in [3], and an alter-
native definition to the Generalized Anisotropy (GA) proposed in [6]. 
Finally, note that, as mentioned in [7,8], FA-like measures suffer from 
confounding factors derived from the MRI resolution being bigger than 
most of the hydrogen molecules displacement in brain tissues. There-
fore, both FA and DiA are the result of an averaged measure of the 
diffusion contributions over the voxel being studied. 

2.2. Simplified DiA and color-by-orientation 

The advantage of the definition of DiA using a SH base, like the one 
proposed in eq. (4), is that the integral can be roughly estimated from 

just 3 orthogonal values. Let Dx(x), Dy(x), and Dz(x) be the diffusion 
signals acquired for these such directions (that, in principle, we assume 
aligned with the corresponding axes ‘x’, ‘y’, and ‘z’). We can calculate 
the average diffusivity by simply drawing: 

DAV(x) =
Dx(x) + Dy(x) + Dz(x)

3
. (5) 

At the same time, DiA can be calculated using eq. (4): 

DiA(x) =
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However, since the three acquired DWIs are orthogonal and aligned 
with the Cartesian axes, the DiA can be alternatively calculated using a 
simplified formulation [3]: 

DiA(x) =
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Note that, in this case, since we are assuming three orthogonal vec-
tors, we do not need to use the gradient directions in order to calculate 
the DiA. 

We can also provide color-coded anisotropy information using DiA. 
In DT imaging, the anisotropy is usually coded using a RGB color system 
[9] in which blue is superior-inferior, red is left-right, and green is 
anterior-posterior. For visual purposes, the luminance of the color is 
weighted by the FA. Analogously, we define the RGB components as a 
function of the three orthogonal directions normalized by the average 
diffusivity, so that: 

r(x) = DiA(x)×
Dx(x)

DAV(x)
; (8)  

g(x) = DiA(x)×
Dy

(
x
)

DAV(x)
; (9)  

b(x) = DiA(x)× Dz(x)
DAV(x)

. (10) 

Note that this formulation implicitly assumes that the three acquired 
gradient directions are orthogonal and they are aligned with the axis (x, 
y, z). Thus, the color coding must be interpreted as orientation of the 
structures with respect to the axis. 

The calculation of the different metrics from the 3 acquired orthog-
onal measures is surveyed in Fig. 1. 

3. Results 

3.1. Data used for the experiments 

An MRI volume (UVa) from a healthy control was acquired using a 
Philips Achieva 3 T unit (Philips Healthcare, Best, The Netherlands) in 
the MRI facility at the Universidad de Valladolid (Valladolid, Spain). 
The acquisition was obtained with these parameters: TR = 9000 ms, TE 
= 86 ms, flip angle = 90o, one baseline volume, b-value = 1000 s/mm2, 
128 × 128 matrix size, 2 × 2 × 2 mm3 of spatial resolution and 66 axial 
slices covering the whole brain. 3 different sets were considered: 3, 6 
and 61 gradient directions. For the acquisition with 3 directions, the 
acquired gradients are aligned with the axis. Data were preprocessed 
using MRtrix software [10] for correction of eddy currents, motion, and 
field inhomogeneities. 
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In addition, the Human Connectome Project (HCP)1 database was 
also used, specifically volumes MGH1010 and MGH1016, acquired on a 
Siemens 3 T Connectom scanner with 4 different shells at b=[1000, 
3000, 5000, 10,000] s/mm2, with [64, 64, 128, 256] gradient directions 
each, in-plane resolution 1.5 mm and slice thickness 1.5 mm. We will 
only make use of the innermost shell (b=1000 s/mm2 and 64 gradient 
directions). 

3.2. Visual assessment 

First, we calculate the proposed metric over 3 slices (31, 40 and 55) 
from the UVa volume. The DAV and DiA were calculated using only 3 
DWIs from the shell at b = 1000 s/mm2 using the simplified expression 
in eq. (7). For the sake of comparison, we have also calculated the FA at 
b = 1000 s/mm2 with 61 and 6 gradient directions and DiA with 61 
(UVa) directions. In the latter case, DiA was calculated using eq. (4); the 
SH are fitted with a Laplace-Beltrami penalty λ=0.006. Results are 
shown in Fig. 2. 

Although the visual quality of DiA calculated with 3 directions, 
Fig. 2-(e), is clearly poorer than FA and DiA with 61 directions (which is 
obvious), note that DiA succeeds in estimating information about 
orientation and anisotropy with just 3 gradient directions. Main struc-
tures are visible within the white matter, even clearer in the colored 
version, Fig. 2-(f). Thus, the same fast acquisition that can produce in-
formation about the amount of diffusion can also be used to provide 
rough information about the orientation of such diffusion. Note that the 
high quality of the images calculated with only 3 gradients is due to the 
large voxel size used (2 × 2 × 2 mm3), which assures a high SNR in the 
data. 

3.3. Numerical assessment 

Next, we quantified the loss of information in DiA when calculated 
using only 3 different orientations. First, we tested the dependency of 
DiA on the number of diffusion samples taken in a given shell. To that 

end, we used a whole volume from the HCP data, MGH1016. The vol-
ume was divided in 6 different regions according to their diffusion 
features. The DiA was first calculated at b = 1000 s/mm2 using 64 di-
rections and those voxels with DiA<0.1 removed. The remaining voxels 
were clustered in 6 different groups using k-means. Each voxel in the 
white matter was assigned to one cluster using its DiA value and the 
minimum distance. The following test was carried out: we began with 
the 64 samples (gradient directions) and uniformly downsampled this 
set to obtain either 3, 6, 15, 24, 35 and 48 diffusion directions subsets.2 

The DiA was computed for each considered case, and the median value 
inside each of the six clusters is depicted in Fig. 3. Although DiA shows it 
is a consistent measure when it is calculated using over 20 different 
orientations, for fewer gradient directions this measure is under-
estimated. This effect is much more noticeable when using only 3 di-
rections. However, note that the separation between clusters remains 
constant. This suggest that the differences in the anisotropy detected by 
these measures can still be seen when using 3 orientations (at least in 
this example). 

3.4. Variability of DiA with orientation 

One of the issues with anisotropy measures in dMRI is the intrinsic 
inability to properly characterize fibers in all different spacial orienta-
tion when fewer than 6 gradient directions are considered. Thus, in 
order to quantify the capability of this method to identify fibers that are 
not aligned with the axis, we will carry out a simple simulation: we 
generate a synthetic tensor with eigenvalues [1,0.3,0.3] × 10− 3 mm2/s 
totally aligned with axis. This corresponds to FA = 0.6444. We rotate the 
tensor according to two different rotation schemes, see Fig. 4: 

1. Rotation in plane, so one of the components of the tensor is 
aligned with one axis. The rotation matrix is: 

RM =

⎡

⎣
cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎤

⎦

2. Spatial rotation, so none of the components are aligned with any 
axes. The rotation matrix is:   

The tensor is sampled using three to six directions. For the case of 3 

Fig. 1. Scheme of the calculation of the different metrics derived from 3 DWIs acquired with 3 orthogonal gradient directions.  

1 Data obtained from the Human Connectome Project (HCP) database (ida. 
loni.usc.edu/login.jsp). The HCP project (Principal Investigators: Bruce 
Rosen, M.D., pH.D., Martinos Center at Massachusetts General Hospital; Arthur 
W. Toga, pH.D., University of Southern California, Van J. Weeden, MD, Mar-
tinos Center at Massachusetts General Hospital) is supported by the National 
Institute of Dental and Craniofacial Research (NIDCR), the National Institute of 
Mental Health (NIMH) and the National Institute of Neurological Disorders and 
Stroke (NINDS). HCP is the result of efforts of co-investigators from the Uni-
versity of Southern California, Martinos Center for Biomedical Imaging at 
Massachusetts General Hospital (MGH), Washington University, and the Uni-
versity of Minnesota. 

2 A “uniform” downsampling of n gradients among the original 64 is here 
defined as those n directions that minimize the overall electrostatic repulsion 

energy among all 
(

64
n

)

combinations. The optimization is carried out using 

heuristic rules. 
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directions, these correspond to the Cartesian axes. For the sake of 
simplicity, no noise or simulated artifacts are added to the tensor. The 
diffusivity D(x) is reconstructed and the DiA is calculated for each case. 
The values of DiA for the different sampling schemes and for different 
rotation angles are shown in Fig. 5 (plane rotation in red and spatial 
rotation in green). 

Note that, according to the figure, when the DiA is estimated with 

Fig. 2. Visual assessment of proposed methods (2). Slices (31, 40, 55) from the UVa volume are shown. For the sake of comparison, we have added (a) DiA (using 61 
gradient directions); (b) FA (using 61 gradient directions; (c) FA (using 6 gradient directions. The proposed metrics are calculated with 3 gradient directions: (d) 
Average Diffusivity; (e) DiA; (f) DiA with orientation color code. 
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⎢
⎢
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⎥
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⎥
⎥
⎥
⎥
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.

Fig. 3. Evolution of DiA with the angular resolution (number of gradient di-
rections), using data from HCP. The volume has been clustered in 6 different 
sets (for original DiA with 64 directions) and the median of each set is shown. 
Centroids of the data CL={0.24, 0.32, 0.42, 0.57, 0.82}. 

Fig. 4. Directions of the eigenvectors of the synthetic tensor (red) in relation 
with the axis (black). Two different rotations are applied. LEFT: rotation on a 
plane. RIGHT: spatial rotation. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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only 3 directions, there is a clear underestimation of the metric when the 
main diffusion direction is not aligned with the directions of the ac-
quired gradients. If we focus on the in plane rotation, the maximum 
error arises precisely for the 45o angle, when the main direction is di-
agonal to the axis. This is also the case for 4 and 5 directions, while with 
6 directions the same DiA is provided, regardless of the orientation of the 
tensor. 

This experiment raises the main weakness of this method, the un-
derestimation of the anisotropy of those fibers not aligned with the axis. 
This effect can also be seen on real data. In Fig. 6 we show one axial and 
one coronal slice from the UVa volume. We have calculated DiA for 61 
and 3 gradient directions in order to compare the loss of information. We 
have highlighted some of the fiber bundles that are not aligned with the 
axis. Let us first focus on the structures circled in green and red (numbers 
1 and 2). These structures would correspond to the rotation in plane in 
Fig. 5, with an angle of around 45o respect to the axis. According to the 
previous experiment, the anisotropy here would experience its 
maximum underestimation. This is the case in Fig. 6: the bundles in DiA 
with 3 gradient directions show a reduced value, when compared to the 
61 case. However, in both cases (1 and 2), although reduced, the bundles 
are still present. A similar effect can be found on the area number 3. A 
small structure has almost disappeared due to its orientation. 

Finally, we numerically quantified this variability over the HCP data 
(volume MGH1010). We downsample the 64 acquired directions to sets 
of 3 directions through an exhaustive search with all possible orienta-
tions. This way, we consider sampling schemes not aligned with the axis 
and in all the possible orientations. DiA is calculated for each acquisition 
set using eq. (4). The median and standard deviation is calculated along 

Fig. 5. DiA calculated from 3 acquisitions. The main diffusion direction of the tensor is rotated a certain angle so that the fiber is not aligned with the axis.  

Fig. 6. DiA calculated with 61 and 3 gradient directions: Comparison of the anisotropy in three different areas for bundles not aligned with the axis.  

Fig. 7. Variability of the DiA as a function of the orientation of the acquired 
direction. HCP data have been used. In blue, the median along different 
gradient configurations. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

S. Aja-Fernández et al.                                                                                                                                                                                                                        



Magnetic Resonance Imaging 88 (2022) 38–43

43

the different configuration. Results as a function of the FA are shown in 
Fig. 7. 

Despite its great variability with the orientation of the acquired 
gradients, DiA also shows a great correlation (in median) with the FA, 
revealing that the differences in the anisotropy detected by FA can still 
be seen when using DiA 3 orientations, although with a greater variance. 

4. Discussion and conclusions 

The calculation of anisotropy measures over diffusion data is usually 
limited by the 6 gradient directions needed to estimate the components 
of the diffusion tensor. Hence, in those fast acquisitions for which only 3 
orientations are acquired, only information about the amount of diffu-
sion can be inferred. That is the case of fast diffusion sequences in 
commercial scanners (like EPI-DWI) in which the installed software 
produces an image which is the average of 3 images acquired with 3 
orthogonal gradient directions where no information about the orien-
tation of the diffusion is present. 

In this work we have proposed a method that is able to calculate a 
rough anisotropy image that could give complementary information 
about the anisotropy and orientation of the diffusion with just those 3 
orthogonal directions. In addition, we also provide a color-coded version 
that helps in better understanding the orientation of the different 
structures. The method is totally compatible with existing fast acquisi-
tion sequences, and it does not require extra data: the anisotropy metric 
is calculated from the same DWIs used for the MD estimation. 

On the other hand, the use of 6 gradient directions to better char-
acterize diffusion is not only related with the 6 degrees of freedom of the 
diffusion tensor. It is well-known that there is an intrinsic limitation in 
dMRI that hinders the proper estimation of anisotropy measures to 
characterize fibers in all different spatial directions. This effect also af-
fects the method here proposed, imposing a limitation of use. We have 
shown that those fibers that are not aligned with the axes will be 
underestimated, the larger the misalignment the larger the underesti-
mation. Thus, this method is not able to circumvent this intrinsic limi-
tation of dMRI and therefore it must be used with caution. The purpose 
of the method is not to be used in clinical studies or as a substitute of the 
FA, but to provide complimentary information in fast diffusion acqui-
sitions. There is a clear loss of information when compared with a 
complete dMRI acquisition, but there is also a clear additional infor-
mation when compared with that provided only by the MD. In this sense, 
the advantage of using DiA is its ability to provide anisotropy informa-
tion with the smallest possible data set. 

Software 

The full implementation of DiA is included in the AMURA toolbox 
and it may be downloaded for Matlab© and Octave, together with use- 
case examples and test data, from: http://www.lpi.tel.uva. 
es/AMURA. 
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