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0. Introduction

Polycyclic codes over a local ring R can be described as ideals on the ring R[x]/〈f(x)〉
where f is a polynomial in R[x]. They were introduced in [18] and are a general-
ization of cyclic and constacyclic codes which have been extensively studied in the 
literature. Polycyclic codes over finite fields have been studied from several points 
of view, see for example [1,26], they have been also studied over Galois rings [17]
and recently over chain rings in [9]. Note that codes over chain rings have gath-
ered a great importance, see [29,27] and the references there in. In [26] the au-
thors pointed out that it was worth to generalize their results from finite fields al-
phabets to chain rings. In this paper we will make this generalization to finite lo-
cal rings in the case that the polynomial defining the ambient space has simple 
roots (see Section 1 for a definition). We will propose a transform approach that 
generalizes the classical Mattson-Solomon (Fourier) transform to finite fields, more-
over, we show the relationship between the transform and the annihilator duality 
for polycyclic codes introduced in [1]. Note that this approach can be easily trans-
lated to the multivariable case as it is pointed out in the last section of this pa-
per.

The outline of the paper is as follows. In Section 1 we show those results on finite 
local rings, circulant matrices over rings and matrix diagonalization needed for our work. 
In Section 2 we review the discrete Fourier Transform over rings as well as some facts 
on Vandermonde matrices over rings. Section 3 is devoted to the description on the 
Mattson-Solomon transforms and its relationship with several inner products both in 
the original space and its transform image. The main result is Theorem 3.3 that shows 
that all of them generate the same dual code. The generalization to finite local rings 
of the results in [26] can be found in Section 4. In Section 5 we investigate when two 
different polycyclic definitions provide isomorphic and isometric coding ambient spaces. 
Finally in Section 6 we show how all the previous result can be generalized in the case 
of serial codes.

1. Preliminaries

1.1. Finite local rings

We will show here selected results about local rings needed in the paper, for a complete 
account see [10]. In this paper R will denote a finite local ring of characteristic q = pr for 
a prime p and a positive integer r, m will denote the maximal ideal of R and Fq = R/m

the finite residue field of R. It is well-known that R is trivially complete and thus Hensel, 
i.e. every element of R is nilpotent or a unit and m is a nilpotent ideal. We denote by ̄·
the natural polynomial ring morphism ̄· : R �→ (R/m) and abusing notation we will use 
it also for polynomial rings acting on the coefficients ̄· : R[x] �→ (R/m)[x] = Fq[x].
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Let J denote the set of all polynomials f in R[x] such that f̄ has distinct zeros in the 
algebraic closure of Fq, a polynomial in J has distinct zeros in local extensions of R, Rf =
R[x]/〈f〉 (where f is monic) is a separable local extension if and only if f is an irreducible 
polynomial in J , and the polynomials in J admit unique factorizations into irreducible 
polynomials and a polynomial in J has no multiple roots in any local extension of R.
Throughout the paper we will restrict to polynomials in J unless otherwise stated. The 
following two lemmas will be helpful during the paper.

Lemma 1.1 (Azumaya’s lemma). Let f be a monic polynomial in R[x]. Then Rf =
I1

⊕
I2 where I1 and I2 are ideals in Rf if and only if there exist monic coprime poly-

nomials h and g in R[x] with f = gh and I1 = 〈g〉/〈f〉, I2 = 〈h〉/〈f〉.

An element e of the ring Rf is called an idempotent if e2 = e; two idempotents e1, e2
are said to be orthogonal if e1e2 = 0 and an idempotent is said to be primitive if it is 
non-zero and cannot be written as the sum of non-zero orthogonal idempotents. A set 
{e1, ..., er} of elements of Rf is called a complete set of idempotents if 

∑r
i=1 ei = 1. 

If {e1, ..., er} is a complete set of pairwise orthogonal idempotents, we have that Rf =⊕r
i=1 Rfei.

Lemma 1.2 (Theorem 3.2 in [6]). Let R be a finite local commutative ring and f be a 
monic polynomial in R[x] such that f =

∏r
i=1 fi is the unique factorization of f into a 

product of monic primary pairwise coprime polynomials. The ring Rf admits a unique 
complete set of primitive pairwise orthogonal idempotents {e1, e2, ..., er} given by

ei = vi(x)f̂i(x), where vi(x) ∈ Rf and f̂i = f

fi
. (1)

Moreover eiR[x] ∼= R[X]
〈fi〉 and Rf =

⊕r
i=1 eiR[x].

1.2. Circulant matrices

We will denote by Mn(R) the set of n ×n matrices over the local ring R. If degf(x) =
n, Ef ∈ Mn(R) will be the companion matrix associated with f(x) = xn −

∑n−1
i=0 fix

i,

Ef =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
f0 f1 f2 · · · fn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Consider the usual matrix multiplication in Mn(R) and the ordinary product in Rf . 
Consider the basis B = {1, x, x2, . . . , xn−1} for Rf and let the map ρf : Rf → Rn send 
a polynomial to coefficients of xi. The map M : Rf → Mn(R) defined by
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M(g(x)) =

⎡
⎢⎢⎢⎣

ρf (g(x))
ρf (xg(x))

...
ρf (xn−1g(x))

⎤
⎥⎥⎥⎦

is the regular representation of elements Rf . If we denote the image of M by Mn(R, f), 
then M : Rf → Mn(R, f) is a ring isomorphism. Clearly M(x) = Ef and hence set 
{Id, Ef , E2

f , . . . , E
n−1
f } is a basis for Mn(R, f), in fact the elements of Mn(R, f) are 

linear combination of powers of the companion matrix Ef . This isomorphism has been 
extensively studied in [30]. Note that elements Mn(R, f) are called Barnett matrices in 
[30], f(x)-circulants in [7] or polycirculant matrices in [28]. The following characterization 
of the subrings of Mn(R) being images of such an isomorphism can be found in [30].

Lemma 1.3 (Theorem 2.1 [30]). A subring S of Mn(R) is of the form Mn(R, f) if and 
only if S = CMn(R)(Ef ), the centralizer of the matrix Ef in Mn(R).

This fact plays a central role for the diagonalization of commuting matrices in the 
field case [7]. We will denote by M1,n(R, f) the set of all 1 ×n matrices [a0, a1 . . . an−1]
endowed with the following multiplication

[a0, a1 . . . an−1] · [b0, b1 . . . bn−1] = [a0, a1 . . . an−1]M(b), (3)

where b = b0 + b1x + . . .+ bn−1x
n−1. Since every element of Mn(R, f) is determined by 

its first row and polynomial f(x), the map ϕ : Mn(R, f) → (M1,n(R, f), ·), which sends 
every matrix to the first row is a ring isomorphism.

2. The Discrete Fourier Transform over commutative rings

We assume that the reader is familiar with the Discrete Fourier Transform (DFT) 
over finite fields and its applications to cyclic codes (see [19] for example). Suppose that 
ξ is a primitive N th root of unity in a field F , i.e., ξN = 1 and ξ �= 1 for i = 1, . . . , N −1. 
For any integer j,

N−1∑
i=0

ξij =
{
N, j = 0(mod N),
0, otherwise,

(4)

and the DFT of length N generated by ξ is the mapping DFTξ from FN to FN defined by 
B = DFTξ(b), where Bi =

∑N−1
n=0 bnξ

in for i = 0, 1, . . . , N − 1 or equivalently B = bMξ, 
where
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Mξ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ξ ξ2 . . . ξN−1

1 ξ2 ξ2·2 . . . ξ2(N−1)

...
...

... . . .
...

1 ξN−1 ξ(N−1)2 . . . ξ(N−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎦ .

Thus Mξ is a Vandermonde matrix with determinant 
N−1∏
j=1

j−1∏
i=1

(ξj − ξi) which is non-zero 

and hence Mξ is non-singular and the DFT is always invertible. The inverse transform 
of DFT is given by

bn = 1
N

N−1∑
i=0

Biξ
−in, for n = 0, 1, . . . , N − 1. (5)

Note that a matrix over a ring is non-singular if and only if its determinant is a unit in 
the ring [3]. Moreover, a product of elements of a ring is unit if and only if each element 
is unit. Therefore the following theorem holds.

Theorem 2.1. (DFT over rings [22, Theorem 10]) If ξ is a primitive N th root of unity 
in a commutative ring R. Then the DFT from RN to RN defines an invertible mapping 
whose inverse is given by the Equation (5) if and only if ξk − 1 is a unit of R for 
k = 1, 2, . . . , N − 1.

For example, ξ = 2 is a primitive 4th root of unity in Z15 but ξ2−1 is not unit. So for 
ξ = 2, DFT of length N = 4 is not invertible. There are some results for DFT over Zm, 
(Number Theory Transform in [23]). It follows from above theorem that if ξ generates an 
invertible DFT of length N in ring R and L(> 1) is a divisor N , then ξ

N
L also generates 

an invertible DFT of length L in R (see [23]).

2.1. Vandermonde matrices over commutative rings

Let R be the local ring with extension R′ and R-algebra morphism γ : R → R′. 
A matrix M ∈ Mn(R) is diagonalizable over R′ if there are matrices V, D ∈ Mn(R′)
such that D is diagonal and V −1γ(M)V = D, see [15]. From now on, for convenience we 
simply write V −1MV = D. Consider f(x) ∈ R[x] such that f(x) =

∏n
i=1(x −αi) ∈ R′[x], 

i.e. f(x) splits in R′. Also consider the following Vandermonde matrix

V = V (α1, . . . , αn) =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
... . . .

...
n−1 n−1 n−1

⎤
⎥⎥⎥⎥⎥⎦ .
α1 α2 . . . αn
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For i = 1, . . . , n, denote ith column of V as Vi and for j = 1, . . . , n, and given 
g ∈ Rf denote jth row of M = M(g) by Mj . We know that entries of Mj are 
the coefficients of xj−1g(x)( mod f) and henceforth MjVi = αj−1

i g(αi). Therefore 
MVi = g(αi)Vi, that is Vi is the eigenvector and g(αi) is the eigenvalue of M in R′. 
So MV = diag[g(α1), g(α2), . . . , g(αn)]V . Now If V is non-singular then V −1MV =
diag[g(α1), g(α2), . . . , g(αn)], and hence M is diagonalized by V . We know that detV =∏n−1

j=1
∏j−1

i=1 (αj−αi) is in local ring R′. It is well-known that for a local ring αj−αi(i �= j)
is a unit if and only if ᾱj �= ᾱi, see [24]. So V is non-singular if and only if ᾱj �= ᾱi, 
for all i �= j. Note that if f(x) ∈ J ⊆ R[x] then V is non-singular. Moreover, if A is a 
non-singular matrix over a local ring, then the homogeneous system Ax = 0 has a unique 
solution [24, Lemma 2.1]. The following result provides us V −1.

Lemma 2.2 ([25]). If V T is non-singular, then (V T )−1 = (wij) is given by

(wij) = (−1)i+j Sn−i,j
n∏

l<k

(αk − αl)

with l = j or k = j and Sk = Sk(α1, . . . , αn) =
∑

1�i1<...<ik�n

αi1 . . . αik , and 

S0(α1, α2, . . . , αn) = 1 and Sk,j = Sk(α1, . . . , αj−1, αj+1, . . . , αn).

Example 2.3. Let n = 3 and f(x) = x3 +5x +3 ∈ Z9[x]. Then f(x) = (x −1)(x −12)(x −
23) ∈ Z27[x]. Moreover det(V ) = 16 is unit in Z27. We have

V −1 =
[21 8 26

19 6 2
15 13 26

]
.

3. Mattson-Solomon transform and polycyclic codes over rings

From now on we will be concerned with univariate polycyclic codes defined as ideals of 
the ambient space Rf , where f(x) a monic polynomial in J ⊆ R[x]. For a local ring the 
diagonalizing of M is unique up to permutation of diagonal entries. So let {α1, . . . , αn}
be a fixed ordering of roots of f(x) in extension ring R′ of R. The map

MSf : (Rf , ·) −→ (R′[x]/〈f(x)〉, �)

g(x) �→
n∑

i=1
g(αi)xi−1,

(6)

is a ring homomorphism, where · denotes ordinary polynomial multiplication modulo 
f(x) and � denotes the component-wise multiplication or Schur product. We will call the 
map in (6) the Mattson-Solomon transform with respect to the polynomial f(x). Indeed 
in the case f(x) = xn−1 we recover the Fourier transform in the previous section. Since 
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f(x) ∈ J , the Vandermonde matrix V is non-singular and hence the homomorphism 
MSf is injective. Take V −1 = (uij) and g(x) = g0 + g1x + . . . + gn−1x

n−1 ∈ Rf and 
denote g = (g0, g1, . . . , gn−1). If we denoted by B = MSf (g), then Bi = g(αi) and the 
inverse formula is given by

gj−1 =
n∑

k=1

Bk−1ukj , 1 � j � n,

i.e. g(x) =
n∑

j=1

n∑
k=1

Bk−1ukjx
j−1.

Example 3.1 (Example 2.3 Cont.). Let g(x) = g0 + g1x + g2x
2 ∈ Z9[x] and MSf (g) =

(B0, B1, B2) then the inverse of the Mattson-Solomon transform is

g0 = 21B0 + 19B1 + 15B2, g1 = 8B0 + 6B1 + 13B2, g2 = 26B0 + 2B1 + 26B2.

Given two polynomials g1(x), g2(x) ∈ R′[x]
〈f(x)〉 = R′

f , we define the � inner product as

〈g1(x), g2(x)〉� = (g1)0(g2)0 + . . . + (g1)n−1(g2)n−1 = (g1 � g2)(1). (7)

Since 〈g(x), xi〉� = gi for i = 1, . . . , n, the inner product is non-degenerate. Let C ⊆ Rf

be a polycyclic code. The dual of C w.r.t. �, denoted by C⊥� , is defined as

C⊥� = {h(x) ∈ Rf | 〈MS(g),MS(h)〉� = 0 for all g(x) ∈ C}. (8)

We also define an inner-product on Rf by

〈g1(x), g2(x)〉tr = trace (M(g1g2)), g1(x), g2(x) ∈ Rf , (9)

and denote C⊥tr = {g ∈ C | 〈g(x), h(x)〉tr = 0 for all h ∈ C}. Let k(x) ∈ Rf and 
〈k(x), xi〉tr = 0 for all i = 0, 1, . . . , n − 1. Then 〈MSf (k(x), MSf (xi))〉� = 0. Thus 
αi

1k(α1) +. . .+αi
nk(αn) = 0 and hence (k(α1), . . . , k(αn))V = 0. Since V is non-singular, 

then the linear homogeneous system has the unique solution k(α1) = . . . = k(αn) = 0. 
So MSf (k(x)) = 0, i.e. k(x) = 0. Henceforth the trace inner product is non-degenerate.

Let πi denote the projection of Rf onto the coefficient of xi for i = 0, . . . , n − 1, the 
trace map is defined in [10] as tr : Rf → R is given by tr(g) =

∑
πi(xig). It is clear that 

the trace inner product of g1, g2 is equal to the trace map of g1g2.

Proposition 3.2. Let g1(x), g2(x) ∈ Rf , then

〈g1(x), g2(x)〉tr = 0 ⇐⇒ 〈MSf (g1), MSf (g2)〉� = 0
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Proof. We know γ(M(g1g2)) is similar to diag[(g1g2)(α1), . . . , (g1g2)(αn)]. So

γ(trace(M(g1g2))) = trace(γ(M(g1g2)))

= (g1g2)(α1) + . . . + (g1g2)(αn)

= 〈MSf (g1), MSf (g2)〉�. �
Now consider the following inner product on Rf ,

〈g1(x), g2(x)〉(0) = g1g2(0), g1(x), g2(x) ∈ Rf , (10)

it is a non-degenerate symmetric bilinear form if f0 �= 0. The dual C⊥0 of code C is just 
its annihilator dual in [1,9]. Since the matrix V is non-singular the Mattson-Solomon 
transform is an injective morphism and thus it is clear that for any ideal C we have

Ann(C) = C⊥MS = {g ∈ Rf | MS(g) � MS(c) = 0 for all c ∈ C}.

We have this result that identifies the dualities in the transform domain.

Theorem 3.3. Let R be a finite local ring. If f ∈ J ⊆ R[x] and C is a code in Rf we 
have that

C⊥tr = C⊥� = C⊥0 = C⊥MS = Ann(C).

Proof. From the discussion above it is clear that C⊥tr = C⊥� and C⊥0 = C⊥MS = Ann(C). 
Moreover Ann(C) ⊆ C⊥tr is straightforward. Let’s prove the other direction. Suppose 
there exists an element g ∈ C⊥tr such that g /∈ Ann(C) = Cc, thus g ∈ C ∩C⊥tr and hence 
g = r ·

∑k
j=1 eij where 

∑k
j=1 eij is the idempotent generating C. Consider now any other 

element s ∈ Rf , then s =
∑t

i=1 siei and g ·s =
∑k

j=1 rsijeij . Hence 0 = 〈g, s〉tr = 〈r, s〉tr
for all s in Rf , thus r = 0 since the trace inner product is non-degenerate and therefore 
g = 0. �
4. Polycyclic codes as invariant spaces

Let f1, f2, . . . fr be pairwise coprime monic polynomials over R, f = f1f2 . . . fr and 
f̂i = f

fi
. There exists ai, bi ∈ R such that aifi + bif̂i = 1. Let ei = bif̂i + 〈f(x)〉 as in 

Lemma 1.2. Let us define the set Ui ⊆ M1,n(R, f) as Ui = kerfi(Ef ).

Proposition 4.1.

1. Rfei = AnnRf
(fi).

2. c ∈ Rfei if and only if eic = c.
3. The matrix M(ei) = ei(Ef ) is the generator matrix of the polycyclic code Rfei.
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4. M(ei) is invariant under multiplication by the companion matrix Ef for all i =
1, . . . r and they are pairwise orthogonal idempotent matrices.

5. The image of a polycyclic code under M is an invariant ideal under multiplication 
by Ef .

6. Ui
∼= Rfei.

Proof.

1. It follows from the annihilator definition.
2. It follows from aifi + bif̂i = 1 and Part 1.
3. The rows of M(ei) are the coefficients of ei(x), xei(x), . . . , xn−1ei(x).
4. M(Rfei) is an ideal in Mn(R, f) and we know that {Id, Ef , E2

f , . . . , E
n−1
f } is a 

basis for Mn(R, f). Moreover, since M is an isomorphism, for all i �= j we have 
M(ei) �= M(ej), M(ei)M(ei) = M(e2

i ) = M(ei), and M(ei)M(ej) = M(0) = 0.
5. It is clear.
6. It is enough to prove that for a fixed i, ρf (Rfei) = Ui. Let k = rei ∈ Rfei for some 

r ∈ Rf . Since eifi = 0, we have k(Ef )fi(Ef ) = 0, and hence ϕ(k(Ef ))fi(Ef ) = 0, i.e. 
ρf (k) ∈ Ui. Conversely, let [a0 . . . an−1] ∈ Ui. Denote fi(x) = b0+b1x +. . .+bn−1x

n−1. 
Applying definition (3), we have [a0 . . . an−1].[b0 . . . bn−1] = 0. If we denote a(x) =
a0 + a1x + . . . + an−1x

n−1,

a(x)fi(x) = ρ−1
f ([a0 . . . an−1].[b0 . . . bn−1]) = 0.

Therefore a(x) ∈ Ann(fi), i.e. ρ−1
f [a0 . . . an−1] ∈ Rfei and the proof is complete. �

Taking into account the previous proposition and since the ring Rf admits a unique 
complete set of primitive pairwise orthogonal idempotents {e1, e2, ..., er}, polycyclic 
codes over rings decompose into some minimal polycyclic codes corresponding to each 
one of them and the following result follows.

Theorem 4.2. Let Ef be companion matrix with minimal polynomial f and f = f1 . . . fr
decomposes in to pairwise coprime monic irreducible polynomials. Then

Rf
∼= U1 ⊕ . . .⊕ Ur,

where Ui = Kerfi(Ef ) ⊆ M1,n(R, f).

1. Each of the above summands is an indecomposible polycyclic code with Ef -invariant 
image in Mn(R, f).

2. Each polycyclic code C ⊆ Rf can be seen as a direct sum of Ui for some indices i.
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3. If a polycyclic code C decomposes as C ∼=
⊕

i∈I Ui then

C⊥tr ∼=
(⊕

i∈I

Ui

)c

=
⊕
i/∈I

Ui

Note that this result generalizes the decomposition in [26] based on the Primary 
Decomposition Theorem in linear algebra over finite fields.

Remark 4.3 (BCH-like bounds). Mattson-Solomon transform can be a great tool for 
understanding BCH-like bounds that have been established for different types of (chain) 
rings (see for example [11,16]) or based on invariant spaces for polycyclic codes over 
fields [26]. Note that the minimum distance of a linear general code over R is the same 
as the one of its socle [14, Proposition 5]. Note that in general, we can not state that 
the minimum distance of a code C is equal to the minimum distance of the code C̄, since 
in general d(C) ≤ d(C̄). However, if they are Hensel’s lifts of codes over Fq (see [21] for 
a characterization) we have the equality and therefore all classical bounds on distances 
for codes over fields (Bose–Ray-Chaudhuri–Hocquenghem, Hartmann–Tzeng, Roos, etc.) 
also apply to their Hensel’s lifts.

5. Isometric ambient spaces

Assume that a finite ring R is equipped with a weight w. Linear codes C, D ⊆ Rn

are called isometric if there exists an R-linear isomorphism φ : C → D which w(φ(c)) =
w(c) for all c ∈ C. In the literature, codes C, D are called isometrically equivalent. The 
MacWilliams Extension Theorem, one of the most powerful theorems, states that the 
map φ : C → D between linear codes over R is the Hamming-isometry if and only if it 
is a monomial transformation, i.e. for every c ∈ C there is a monomial matrix Mc such 
that φ(c) = cMc. Notice that every Hamming-isometry is a homogeneous-isometry and 
vice versa, [12].

Theorem 5.1. ([30] Theorem 3.1) Let h(x) = xn − hn−1x
n−1 − · · · − h1x − h0 be a 

polynomial in R[x] of the same degree of f . If there exists a polynomial ω ∈ Rf such 

that h (ω) = 0 ∈ Rf , and det(W ) is a unit in R, where W =

⎡
⎢⎢⎢⎢⎣

ρf (ω0)
ρf (ω1)
ρf (ω2)

...
ρf (ωn−1)

⎤
⎥⎥⎥⎥⎦ then

θ : M1,n(R, h) −→ M1,n(R, f)

ρ (x) �→ ρ (ω),
(11)
h f
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is an isomorphism which is the identity in R (where R is identify with ρh(r), r ∈ Rf a 
constant polynomial).

Remark 5.2. To construct such a polynomial h(x) as described in the first statement of 
Theorem 5.1, choose ρf (ω) ∈ M1,n(R, f) such that detW is a unit element in R. Now 
assume [h0 h1 . . . hn−1] = ρf (ωn)W−1.

Example 5.3.

1. Let R = Z4, f(x) = x3−2x2−x −1 and h(x) = x3−x2−1 are polynomials in R[x]. 
If ω = 1 + x2 ∈ R[x]

〈f(x)〉 then θ : R[x]
〈h(x)〉 → R[x]

〈f(x)〉 is an isomorphism since h(ω) = 0 and 
detW = 1. Note that it is not a Hamming isometry, because θ(x2 + x + 1) = 3x + 1.

2. Let R = Z4, f(x) = x4−3x −1 and h(x) = x4−2x2−x −3 are polynomials in R[x]. 
If ω = 3x + 1 ∈ R[x]

〈f(x)〉 then θ : R[x]
〈h(x)〉 → R[x]

〈f(x)〉 is an isomorphism since h(ω) = 0 and 
detW = 1. Note that this one is not isometry, because θ(x2) = x2 + 2x + 1.

We know that isometrically equivalent linear codes have both the same algebraic 
structure and distance properties thus it will be nice to know when two polycyclic ambient 
spaces are isometric or not. In [8], Dinh and Li classify all isometrically equivalent classes 
of constacyclic codes and only study representatives of equivalent classes. The previous 
example shows that Rf and Rh are not necessarily isometrically equivalent for different 
polynomials f, h of the same degree even if they are isomorphic. In the rest of this 
section we will describe when a polycyclic ambient space Rf is isometrically equivalent 
to another one. Notice that the isomorphism θ is an isometry if and only if W is a 
monomial matrix.

Proposition 5.4. With the notation above, W is a monomial matrix if and only if either 
f(x) = xn − f0 and ωix

i, where f0, ωi ∈ R∗ and (n, i) = 1 or f(x) = xn − f1x and 
ω = ωjx

j, where f1, ωj ∈ R∗ and (n − 1, j) = 1

Proof. We know that W is monomial if and only if

{ωk : 1 � k � n− 1} = {aixi : 1 � i � n− 1, ai ∈ R∗}. (12)

Suppose that W is monomial. Let w = w0 +w1x + . . . wn−1x
n−1 and f(x) = xn − λ(x). 

Since W is monomial, w can not be the sum of two terms or more. So there is i, 1 � i �
n −1, such that ω = ωix

i and ωi ∈ R∗. Moreover, if λ(x) is the sum of two terms or more, 
then there is k, 1 � k � n − 1, such that ωk is the sum of two terms, a contradiction. So 
λ(x) = f0, f0 ∈ R∗ or λ(x) = f1x, f1 ∈ R∗. Notice that if λ(x) = ftx

t, t � 2, then f(x) is 
not in J . In the case f(x) = xn− f1x, let (n − 1, j) = k > 1. Then there is t1, t2 < n − 2
such that kt1 = j and kt2 = n − 1. We obtain ωt2 = xjt2 = xkt1t2 = xnt1x−t1 = 1, a 
contradiction with (12). With a similar discussion in the other case, we prove (n, i) = 1.
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Conversely, let f(x) = xn − f1x and ω = ωjx
j . The left side of inclusion in (12) is 

trivial. For the other direction, by contradiction assume that there are k1, k2 < n such 
that k1 �= k2 and ωk1 = ωk2 . So xk1j = x(n−1)+k2j and hence (k1 − k2)j = n − 1. A 
similar discussion occurs for the case f(x) = xn − f0. �
Corollary 5.5.

1. Let f(x) = xn−f0 and ω = ωix
i, where (n, i) = 1 and f0, ωi ∈ R∗. Then M1,n(R, f)

and M1,n(R, xn − ωn
i f0) are isometric.

2. Let f(x) = xn − f1x and ω = ωjx
j, where (n − 1, j) = 1 and f1, ωj ∈ R∗. Then 

M1,n(R, f) and M1,n(R, xn − ωn−1
j f j

1x) are isometric.

As a corollary we can recover the result [2, Theorem 4.3] as follows.

Corollary 5.6. Let n be an integer and there is λ ∈ R∗ such that nth root of λ is an 
element in R∗. Then λ-constacyclic code of length n is isometrically equivalent to the 
cyclic code of length n.

Proof. Choose an integer i < n such that (n, i) = 1. We know there is an element ωi ∈ R∗

such that ωn
i = λ. Then M1,n(R, xn − λ) and M1,n(R, xn − 1) are isometric. �

Example 5.7. Let f(x) = x6 − f1x and ω = ω4x
4, where f1, ω4 ∈ R∗. Then

W =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 ω4 0
0 0 0 ω2

4f1 0 0
0 0 ω3

4f
2
1 0 0 0

0 ω4
4f

3
1 0 0 0 0

0 0 0 0 0 ω5
4f

3
1

⎤
⎥⎥⎥⎥⎥⎦ .

We have ω6 = ω6
4f

4
1x

4 and hence by Remark 5.2

[h0 h1 . . . h6] = [0 0 0 0 ω6
4f

4
1 0]W−1 = [0 ω5

4f
4
1 0 0 0 0].

Then h(x) = x6 − ω5
4f

4
1x.

6. Multivariable serial codes and transform domain

From now on we will assume that R is a chain ring. A multivariable serial code 
over R is an ideal of the ring R[x1, . . . , xr]/〈f1(x), . . . , fr(xr)〉, where fi(x) ∈ J for 
all i = 1, . . . , r, for an account on serial codes see [21]. In this section we will propose 
a transform approach to those codes defining it duality. For the sake of simplicity all 
results in this section will be proved for r = 2 and can be straightforward worked out 
for r > 2. Let f1(x), f2(x) be polynomials in R[x] of degree n1, n2, respectively, we will 
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denote the multivariable ring R[x1, x2]/〈f1(x1), f2(x2)〉 by Rf1,f2 . There is an extension 
R′ of R such that f1 and f2 splits over R′. Let {α1, . . . , αn1} be a fixed ordering of roots 
of f1 in R′ and {β1, . . . , βn2} be that of f2 in R′.

The tensor product of two R-modules A, B is an R-module denoted by A ⊗ B with 
multiplication (a ⊗ b)(c ⊗ d) = ac ⊗ db. If A, B are free R-modules with basis X1, X2, 
respectively, then {x1 ⊗ x2 : x1 ∈ X1, x2 ∈ X2} is a basis of A ⊗ B. If A, B are free 
R-modules and I be a submodule of free R-module A ⊗ B, then there are submodules 
I1 ∈ A and I2 ∈ B such that I = I1 ⊗ I2. If f : A → B and g : A′ → B′ be R-module 
isomorphisms, then f ⊗ g : A ⊗B → A′ ⊗B′ defended as (f ⊗ g)(x ⊗ y) = f(x) ⊗ g(y) is 
an R-module isomorphism. Tensor product over direct sum of modules is distributive.

Recall that the tensor product of matrices A of size m× n and B of size p× q (denote 
by ⊗) is mp × nq matrix A ⊗ B = (ai,jB). If A and B are square matrices, then 
det(A ⊗B) = (detA)m(detB)p and tr(A ⊗B) = (trA)(trB). Also for matrices A, A′, B, B′

we have that (A ⊗B)(A′⊗B′) = (AA′) ⊗ (BB′) mixes the ordinary matrix product and 
tensor product (mixed-product property). For more information on the tensor product 
of modules and matrices the reader can refer to [13].

Example 6.1. This example is for clarifying the influence of the basis one can choose. Let 
the polynomials f(x) = f1 + f2x in R[x] and g(y) = g0 + g1y + g2y

2 in R[y] and also 
consider the basis β = {1, y, y2, x, xy, xy2} on Rf,g. By computing the representation 
matrix of elements of Rf,g we see that they are related to companion matrices Ef and 
Ef as follows:

1. the representation matrix x is Ef ⊗ Id3
2. the representation matrix y is Id2 ⊗Eg

3. the representation matrix xy is Ef ⊗Eg

4. the representation matrix xy2 is Ef ⊗E2
g

5. the representation matrix y2 is Id2 ⊗E2
g

Thus β′ = {Id2 ⊗ Id3, Id2 ⊗ Eg, Id2 ⊗ E2
g , Ef ⊗ Id3, Ef ⊗ Eg, Ef ⊗ E2

g} is its associated 
basis for the representation matrices. Note that if we choose now another basis β =
{1, x, y, y2, xy, xy2}, the representation matrix of elements is not equal to tensor product 
of Ef , Eg, like above, but after permutation on rows of the representation matrix we see 
that both will be equal.

Consider basis θ = {θ1, . . . , θn1n2} for the multivariable ring Rf1,f2 described in 
above example. A matrix representation of each element of Rf1,f2 can be computed 
with respect to the basis θ. Recall that notations Mn1(R, f1), Mn2(R, f2) are used 
for matrix representations of rings R[x1]/f1(x1), R[x2]/f2(x2), respectively. By Theo-
rem 1.3 and mixed-product property, it is obvious that Mn1(R, f1) ⊗ Mn1(R, f2) is 
commutative. Let ρ denote a map from Rf1f2 onto coefficients xi

1x
j
2. Then the map 

M : Rf1f2 → Mn1(R, f1) ⊗Mn1(R, f2) is defined by
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M(k(x1, x2)) =

⎡
⎢⎢⎢⎣

ρ(θ1k(x1, x2))
ρ(θ2k(x1, x2))

...
ρ(θn1n2k(x1, x2))

⎤
⎥⎥⎥⎦

is the regular representation of Rf1,f2 with respect to θ. In fact M maps element k(x, y) =∑n1−1
i

∑n2−1
j kijx

i
1x

j
2 to 

∑n1−1
i

∑n2−1
j kijE

i
f1
⊗Ej

f2
. Clearly M is an isomorphism. Note 

also that this fact arises from the fact that R[x1, x2]/〈f1(x1), f2(x2)〉 ∼= R[x1]/〈f1(x1)〉 ⊗
R[x2]/〈f2(x2)〉, see [5], moreover it is a principal ideal ring if both Rf and Rf are 
principal ideal rings, see [4].

Let Vf1 = V (α1, . . . , αn1) and Vf2 = V (β1, . . . , βn1) be the Vandermonde matrices 
associated to f and g respectively. We know that the image of the companion ma-
trices Ef1 , Ef2 by γ is diagonalizable by Vf1 , Vf2 , respectively. Denote V = Vf1 ⊗ Vf2

and suppose that k(x1, x2) ∈ Rf1,f2 is an arbitrary element. For simplicity we take 
M(K(x1, x2)) = γ(M(K(x1, x2))), then

M(K(x1, x2))V =
n1−1∑

i

n2−1∑
j

kij(Ei
f1

⊗ Ej
f2

)(Vf1 ⊗ Vf2)

=
n1−1∑

i

n2−1∑
j

kij(Ei
f1
Vf1) ⊗ (Ej

f2
Vf2)

=
n1−1∑

i

n2−1∑
j

kij(Vf1 diag[α1, . . . , αn1 ]) ⊗ (Vf2diag[β1, . . . , βn2 ])

=
n1−1∑

i

n2−1∑
j

kij(Vf ⊗ Vg)(diag[α1, . . . , αn1 ] ⊗ diag[β1, . . . , βn2 ])

= V

n1−1∑
i

n2−1∑
j

kijdiag[α1, . . . , αn1 ] ⊗ diag[β1, . . . , βn2 ]

= V (diag[k(α1, β1), . . . , k(α1, βn2), . . . , k(αn1 , β1), . . . , k(αn1 , βn2)]).

Recall that since f1, f2 ∈ J then Vf1 and Vf2 are non-singular. Therefore, since det(V ) =
(detVf1)n1(detVf2)n2 then V is non-singular. Hence M(K(x1, x2)) is diagonalized by V
and its eigenvalues are related to the roots of f and g as above.

Now we are able to define multivariable Mattson-Solomon transform for serial codes 
as follows.

MSf1,f2 : (Rf1,f2 , ·) −→ (R′[x1, x2]/〈f1(x1), f2(x2)〉, �)

k(x1, k2) �→
n1∑ n2∑

k(αi, βj)xi−1
1 xj−1

2 ,
(13)
i j
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where . denotes ordinary polynomial multiplication modulo f1(x1), f2(x2) and � de-
notes the component-wise multiplication. We define the inner product 〈 , 〉� over 
R′[x1, x2]/〈f1(x1), f2(x2)〉 as in (7). The dual of the polycyclic code C with respect to 
this inner product is denoted by C⊥� , and furthermore, we define trace inner product on 
Rf1,f2 as

〈k1(x1, x2), k2(x1, x2)〉tr = trace(M(k1(x1, x2)k2(x1, x2))). (14)

Since V is non-singular, then trace inner product is non-degenerate. Denote the trace 
dual of the multivariable code C by C⊥tr . The following result is proven as Proposition 3.2.

Proposition 6.2. Let k1(x1, x2), k2(x1, x2) ∈ Rf1,f2 , then

〈k1(x1, x2), k2(x1, x2)〉tr = 0 ⇐⇒ 〈MSf1,f2(k1(x1, x2), ), MSf1,f2(k2(x1, x2), )〉� = 0

Lemma 6.3 ([21]). There is a complete set of central orthogonal idempotents in Rf1,f2 .

The proof of the result follows from Proposition 3.7 and Remark 5 in [21] where an 
explicit construction of such idempotents is made.

Taking into account the previous result and the proof of Theorem 3.3 it is easy to 
proof the following theorem.

Theorem 6.4. Let R be a finite chain ring. If C is a multivariable code in Rf1f2 we have

C⊥tr = C⊥� = Ann(C).

Assume that {ek}k∈K is the complete set of centrally orthogonal idempotents in 
Rf1,f2 . Also assume that f1 =

∏
i∈I pi and f2 =

∏
j∈J qj are pairwise coprime decomposi-

tions of f1, f2 and {ei}i∈I and {ej}j∈J are the complete set of centrally orthogonal idem-
potents in Rf1 and Rf2 , respectively. Let us set Ui ⊆ M1,n1(R, f1) as Ui = ker pi(Ef1)
and Uj ⊆ M1,n2(R, f2) as Uj = ker qj(Ef2). We know that Rf1f2

∼= Rf1 ⊗Rf2 , thus by 
CRT theorem, Proposition 4.1 and the distributivity of tensor product over direct sum 
we have ⊕

k∈K

Rf1,f2ek
∼= Rf1,f2

∼= (
⊕
i∈I

Rf1ei) ⊗ (
⊕
j∈J

Rf2ej)

=
⊕
i∈I

⊕
j∈J

(Rf1ei ⊗Rf2ej).

Note that a primitive central idempotent in A ⊗ B is the tensor product of primitive 
central idempotents of A and B, and therefore with above notations, we have following 
results similar to Proposition 4.1 and Theorem 4.2.
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Proposition 6.5.

1. For ek there is pi and qj such that Rf1,f2ek
∼= Ann(pi) ⊗Ann(qj).

2. c ∈ Rf1,f2ek if and only if ekc = c.
3. M(ek) is the generator matrix of the multivariable serial code Rf1,f2ek.
4. M(ek) is invariant under multiplication by matrices En

f1
⊗Em

f2
, where 0 � n � n1−1

and 0 � m � n2 − 1. Moreover {M(ek)}k∈K are idempotent matrices and pairwise 
orthogonal.

5. The image of a multivariable serial code under M is an invariant ideal under mul-
tiplication by all En

f1
⊗Em

f2
, where 0 � n � n1 − 1 and 0 � m � n2 − 1.

6. Ui ⊗ Uj
∼= Rf1,f2ek for some i, j.

Theorem 6.6. We have

Rf1,f2
∼=

⊕
i∈I

⊕
j∈J

(Ui ⊗ Uj)

1. Each of the above summands is an indecomposable multivariable serial code with 
En

f1
⊗ Em

f2
-invariant image in Mn1(R, f1) ⊗Mn2(R, f2) for all 0 � n � n1 − 1, 0 �

m � n2 − 1.
2. Each multivariable serial code C ⊆ Rf1,f2 can be seen as a direct sum of Ui ⊗Uj for 

some indices i, j.
3. If a serial code C decomposes as C ∼=

⊕
i∈I1

⊕
j∈J1

Ui ⊗ Uj, for I1 ⊆ I, J2 ⊆ J , then

C⊥tr ∼=

⎛
⎝⊕

i∈I1

⊕
j∈J1

Ui ⊗ Uj

⎞
⎠

c

=
⊕
i/∈I1

⊕
j /∈J1

Ui ⊗ Uj

Remark 6.7. Note that during this section we only needed the ring R to be a chain ring 
in those parts where those results of the construction of the idempotents in [21] where 
needed.

Now we return to the general case where R is local ring. Assume that polynomials 
f1(x1), h1(x1) ∈ R[x1] have the same degree of n1 and f2(x2), h2(x2) ∈ R[x2] have the 
same degree of n2. The main question is that when multivariable codes over rings Rf1,f2

and Rh1,h2 are isometric. We know that

Rf1,f2
∼= Mn1(R, f1) ⊗Mn2(R, f2) ∼= M1,n1(R, f1) ⊗M1,n2(R, f2).

Moreover, we know that the tensor product of two submodules of free modules 
M1,n1(R, f1), M1,n2(R, f2), is a submodule of their tensor product. Now applying Corol-
lary 5.5, we conclude that
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Proposition 6.8.

1. Let f1(x1) = xn1
1 − λ1 and ω1 = ωix

i
1 where (n1, i) = 1, λ1, ωi ∈ R∗.

Also let f2(x2) = xn2
2 − λ2 and ω2 = ωjx

j
2 where (n2, j) = 1, λ2, ωj ∈ R∗. Then 

R[x1, x2]/〈f1(x1), f2(x1)〉 and R[x1, x2]/〈xn1
1 − ωn1

i λ1, x
n2
2 − ωn2

j λ2〉 are isometric.
2. Let f1(x1) = xn1

1 − λ1 and ω1 = ωix
i
1 where (n1, i) = 1, λ1, ωi ∈ R∗.

Also let f2(x2) = xn2
2 − λ2x2 and ω2 = ωjx

j
2 where (n2 − 1, j) = 1, λ2, ωj ∈ R∗. 

Then R[x1, x2]/〈f1(x1), f2(x1)〉 and R[x1, x2]/〈xn1
1 − ωn1

i λ1, x
n2
2 − ωn2−1

j λj
2x2〉 are 

isometric.
3. Let f1(x1) = xn1

1 − λ1x1 and ω1 = ωix
i
1 where (n1 − 1, i) = 1, λ1, ωi ∈ R∗.

Also let f2(x2) = xn2
2 − λ2x2 and ω2 = ωjx

j
2 where (n2 − 1, j) = 1, λ2, ωj ∈ R∗. 

Then R[x1, x2]/〈f1(x1), f2(x1)〉 and R[x1, x2]/〈xn1
1 − ωn1−1

i λi
1x1, x

n2
2 − ωn2−1

j λj
2x2〉

are isometric.

7. Conclusions

In the present paper, we have developed a transform approach to polycyclic codes 
under the hypothesis that the polynomial defining the ambient space is multiplicity free 
which is equivalent, in the cyclic codes case, to the coprimality of the length and the 
alphabet size. We have also extended that approach to multivariable serial codes under 
an equivalent hypothesis. The main open problem is to derive a similar approach for the 
repeated root case, at least for the case when the ambient space is a principal ideal ring 
[20].
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