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Abstract
We prove the existence of Local Uniformization for rational codimension one foli-
ations along rational rank one valuations, in any ambient dimension. This result is
consequence of the Truncated Local Uniformization of integrable formal differential
1-forms, that we also state and prove in the paper. Thanks to the truncated approach,
we perform a classical inductive procedure, based both in the control of the New-
ton Polygon and in the possibility of avoiding accumulations of values, given by the
existence of suitable Tschirnhausen transformations.
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1 Introduction

In this work, we obtain Local Uniformization for rational foliations in any ambient
dimension, along a rational valuation of rank one, as well as a Truncated Local Uni-
formization of formal integrable differential 1-forms.

Let us consider a birational class C of projective varieties over a characteristic zero
base field k. That is, we take a field extension K/k, where K is the field of rational
functions K = k(M) of any projective model M ∈ C. A rational foliationF over K/k
is any one-dimensional K -vector subspace of the Kähler differentials �K/k , whose
elements satisfy Frobenius integrability condition ω ∧ dω = 0.

In this paper we prove:

Theorem 1 Let F ⊂ �K/k be a rational foliation over K/k and consider a rank one
k-rational valuation ring R of K . There is a birational projective model M of K such
that F is simple at the center P of R in M.

This is a result of Local Uniformization in the sense of Zariski [31], where the
objects to be considered are rational foliations. Let us note that the case of a rational
function φ ∈ K is included, when we consider the differential ω = dφ; in this case
we obtain a classical Local Uniformization of the divisor div(φ).

The reduction of singularities of codimension one foliations is an open problem in
dimension bigger or equal than four. We have positive answers by Seidenberg [28] in
1968, for the two-dimensional case, and byCano [6] in 2004, for the three-dimensional
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case. This is in contrast with Hironaka’s results [21] of 1964, that provide a reduction
of singularities for algebraic varieties in characteristic zero and any dimension.

A rank one valuation R centered at a local ring O assigns to each nonzero f ∈ O
a nonnegative value, a non-negative real number in the case of a rank one valuation.
Several authors have studied the problem of extending the valuation R to another
valuation dominating the formal completion Ô , see for instance [16,20]. An important
fact is that we may have nonzero elements in Ô of infinite value with respect to R.
In our work, we use the valuation to assign values to differential forms over O . The
infinite value for a nonzero formal function only comes when it is a non-rational
function, see for instance the works on the implicit ideals [16,20]. However, when
we are considering 1-differential forms, the property of having infinite value may
appear even with differential forms having polynomial coefficients. An example of
this situation is when we consider the well known Euler’s Equation in dimension two
and the valuation given by its formal solution. This is a reason for making the hard
part of the proof in terms of formal objects and in a “truncated way”.

The meaning of “simple integrable 1-differential form” has been established in
previous works. In dimension two by Seidenberg [28] and in any dimension by
Cerveau–Mattei [12], Mattei–Moussu [23], Mattei [22], Cano–Cerveau [7] and Cano
[6] among others. The definition contains the case of the differential of a monomial
(normal crossings) and several versions of saddle-nodes.

As it is standard in reduction of singularities, a normal crossings divisor is present
in the definition of “final” points after reduction of singularities. It can be an excep-
tional divisor created along the reduction of singularities process, or also an originally
prescribed divisor (for instance, in arguments working by induction). Let us recall the
local definition of simple point for the case of a function. A function f is simple with
respect to a normal crossings divisor x1x2 · · · xr = 0 if one of the following properties
holds:

• The function is a monomial in x times a unit U . That is f = U xa.
• There is a new local coordinate y and a unit U such that f = Uybxa.

In the first case, that we call the corner case, the zeroes of f are contained in the
divisor; in the second case, that we call trace case, the set of zeroes of f contains
y = 0. When f is a rational function, we can avoid trace points along the valuation
ring R; otherwise, the value of f would be infinity. Nevertheless, it is possible to
get trace points for a rational differential 1-form; in the two dimensional case, this
indicates the presence of a formal non-rational invariant curve.

The definition of a simple formal integrable differential 1-form ω is compatible
with the above one given for functions, in the sense that that if f is not a unit and
it is simple, then d f will be simple. The precise definition, the existence of normal
formal forms and other properties may be found in [5–7,19], where “simple points”
are “pre-simple points” with a diophantine additional condition, that is automatically
satisfied in the case of functions.

By a paper of Fernández-Duque [19], it is possible to get only simple singularities
when we start with pre-simple ones in any dimension; in other words, we can globally
obtain the diophantine condition that makes the difference between pre-simples and
simples. This means that it is only necessary to obtain pre-simple points in Theorem
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1. We recall that ω is pre-simple with respect to the divisor x1x2 · · · xr = 0, if it can
be written in a logarithmic way as ω = f ω∗, where

ω∗ =
r∑

i=1

ai
dxi
xi

+
m−r∑

j=1

b jdy j

and one of the following properties holds:

(a) There is a unit among the coefficients a1, a2, . . . , ar .
(b) There is a unit among the coefficients b j or there is a coefficient ai whose linear

part is not a linear combination of x1, x2, . . . , xr .

In case a), we have a pre-simple corner; otherwise, we have a pre-simple trace point.
There are several results concerning the reduction of singularities of codimension

one singular foliations and dynamical systems given by vector fields in dimension
bigger that two. For vector fields over three dimensional ambient spaces:we haveLocal
Uniformization type results in [5,11], a global reduction of singularities in the real case
by Panazzolo [26] and in terms of stacks and orbifolds, by Panazzolo–McQuillan [24].
In general dimension, there are papers of Belotto [3,4] where he performs reduction of
singularities of ideals and varieties conditioned to simple foliations. Related problems
are themonomialization ofmorphisms byCutkosky [15], the reduction of first integrals
of dynamical systems [2] or theworks ofAbramovich [1]. Someof the “extra” technical
difficulties in that problems are of the same nature as some of those we encounter in
the case of foliations. Surprisingly, this is also true with respect to the known results
for the three dimensional case of schemes in positive or mixed characteristic [13,14].

In this paper, we consider k-rational valuations of rank one. In classical Zariski’s
approach, this is the case where the problem is concentrated: one can pass to the case
of a general valuation, following for instance the paper [25]. In the case or rational
foliations, there are new difficulties when we consider general valuations, that we plan
to solve in a forthcoming paper.

Anyway, the k-rational valuations of rank one have a geometrical and dynamical
interpretation in the real case, that has been considered in [10]. The fact of being
k-rational means that each time we blow-up, the center of the valuation is a k-rational
point, hence a “true” point. In the real case, we have valuations of this type given by
transcendental non oscillating curves, see [8–10]. The property of being of rank one
means that we cannot decompose the valuation; it may be interpreted by saying that
the curve has no flat contact with any hypersurface.

Let us give a few comments on the technical structure of this paper.
First of all, as it is ubiquitous in problems of local uniformization, for instance for

the positive characteristic case [30], we have to deal with the possibility of having “bad
accumulation of values”. In zero characteristic, the classical Tschirnhausen transfor-
mation is usually the tool that allows us to avoid the accumulation of values. A big
part of the paper is devoted to facilitate the use of Tschirnhausen transformations in
the case of integrable forms.

Instead of giving a direct proof of Theorem 1, we prove a statement of Truncated
Local Uniformization and we derive Theorem 1 from it. This has several advantages.
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The first one is that we can deal with infinite value objects and in fact the result is
valid for formal differential forms. Moreover, the structure of our induction process is
simplified, since it is possible to “decompose” a formal series with respect to groups
of variables and then we can apply induction to the coefficients.

Let us explain the Truncated Local Uniformization statements.
Let � be the value group of the valuation ν associated to R. We know that � ⊂ R,

since we are dealing with a rank one valuation. The truncated statements are relative
to a “truncation value” γ ∈ �.

Recall that we are always working with respect to a list

x = (x1, x2, . . . , xr )

of parameters that represents the prescribed divisor, that we call the independent
parameters. We require the values ν(xi ) to be a Q-basis of �⊗Z Q. The Q-dimension
r of �⊗Z Q is the so-called rational rank of the valuation. We complete x with a list
of “dependent parameters”

y = (y1, y2, . . . , ym−r )

to obtain a regular system of parameters of the local ring OM,P of M at the center
P of the valuation (this will always be possible, up to blow-ups). In this way we
have a parameterized local model A = (OA, x, y), where OA = OM,P . Most of the
technical results in the paper are stated in terms of parameterized local models.

Let us give the definition of truncated γ -final formal functions and truncated γ -final
formal differential 1-forms. Given a formal function

f =
∑

I

x I f I ( y),

we define the explicit value νA( f ) by νA( f ) = min{ν(x I ); f I ( y) �= 0}. We say that
f is γ -final if one of the following properties holds:

• Recessive case: νA( f ) > γ .
• Dominant case: νA( f ) ≤ γ and f I0(0) �= 0, where ν(x I0) = νA( f ).

The dominant case is very close to the definition of corner singularity: in fact, by
combinatorial blow-ups, concerning only the indepedent parameters x, we can obtain
the additional property that f = x I0U , where U is a unit. Now, let us consider a
formal 1-differential form ω, that we write in a logarithmic way as

ω =
r∑

i=1

fi
dxi
xi

+
m−r∑

j=1

g jdy j .

The explicit value νA(ω) is defined by νA(ω) = min{{νA( fi )}ri=1, {νA(g j )}m−r
j=1 }. We

say that ω is γ -final if one of the following properties holds:

• Recessive case: νA(ω) > γ .
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• Dominant case: νA(ω) ≤ γ and there is a coefficient fi with νA( fi ) = νA(ω)
such that fi is γ -final dominant.

The proof of the γ -truncated local uniformization goes by induction on the number
m − r of dependent variables y. Thus, we need a truncated version of Frobenius
integrability condition ω∧ dω = 0, compatible with the induction procedure. We say
that ω satisfies the γ -truncated Frobenius integrability condition if

νA(ω ∧ dω) ≥ 2γ.

Here we see one of the advantages of the case of a formal function f . The differential
d f trivially satisfies the integrability condition. Moreover, when we decompose f as
a power series in the last dependent variable, the coefficients are also formal functions
that also satisfies the integrability condition.

Note that Sect. 7 is devoted to the preparation procedure. It should not be neces-
sary for the case of a formal function, since in this case the preparation is a direct
consequence of the induction hypothesis.

The Truncated Local Uniformization may be stated as follows:

Theorem 2 Consider a nonsingular algebraic variety M over a characteristic zero
field k with field of rational functions K = k(M), and let R be a rank one k-rational
valuation ring of K . Fix a value γ in the value group of R. For any formal differential
1-form ω in the center P of R in M satisfying the γ -truncated Frobenius integrability
condition, there is a birational regular morphism π : M ′ → M, that is a composition
of blow-ups with non-singular centers, such that the transform π∗ω of ω is γ -final at
the center P ′ of R in M ′.

We first give the “local statement” Theorem 17 in Sect. 6. To see that Theorem 17
implies Theorem 2, it is enough to assure that the local centers of blow-ups can be
made global non-singular ones, just by performing additional blowing-ups external to
the centers of the valuation. This is a standard argument of reduction of singularities
that we do not detail in the text. Theorem 17 will be a consequence of Theorem 21,
that is a stronger inductive version of it.

We devote Sects. 6, 7, 8 and 9 to the proof of the Theorem 21. In Sect. 10, we show
how Theorem 21 implies Theorem 1, with arguments directly related to the proof of
Theorem 21.

Let us fix a real number γ ≥ 0, a locally parameterized model A and a formal
differential form ω. In order to obtain a γ -truncated local uniformization of ω, a
rough idea is to increase the explicit value νA(ω) while ω is not final dominant. As
Proposition 5.2 states, we can perform certain birational transformations to increase
the value, but we have to deal with the possibility of an accumulation of the explicit
values before arriving to the truncation limit given by γ . This is one of the classical
difficulties in Local Uniformization problems.

Let us give an idea of the structure of the proof of Theorem 21.
As we said, we do induction on the number of dependent variables in y that appear

in the expression of ω. If no dependent variables appear, we are done, since ω is auto-
matically γ -final. We rename the dependent variables that appear in the expression of
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ω as ( y≤	, z) = (y1, y2, . . . , y	, z) and we assume that we have γ -truncated local uni-
formization when only 	 dependent variables appear. Then, we make a decomposition
of ω as

ω =
∑

s≥0

zsωs, ωs = ηs + hs
dz

z
, ηs =

r∑

i=1

fis
dxi
xi

+
	∑

j=1

g jsdy j ,

where fis, g js, hs ∈ k[[x, y]]. Each ωs is the s-level of ω. Note that we could apply
induction to hs and ηs , but for this we need to control the explicit value of ηs ∧ dηs .
Note also that h0 = 0, since ω has no poles along z = 0; this feature is interesting in
some of our preparation arguments. Now,we draw aNewton PolygonNω ⊂ R

2≥0 from
the cloud of points (s, νA(ωs)), for s ≥ 0. The importance of the Newton Polygon in
the induction step is due to the following remark:

“If Nω has the only vertex (ρ, 0) and ω0 = η0 is γ -final, then ω is γ -final”.
The objective is to obtain ω with the above property, or such that νA(ω) > γ , after
suitable transformations A → A′ between parameterized local models.

Let us say a word about the transformations we use. They are of three types: blow-
ups in the independent variables, nested coordinate changes and Puiseux’s packages.

The blow-ups in the independent variables are blow-ups with centers xi = x j = 0
given by two independent variables. They are combinatorial along the valuation; we
can use them, for instance, to principalize ideals given by monomials in the variables
x.

The nested coordinate changes do not affect to the ambient space. They have the
form z′ = z + f , where f ∈ k[[x, y]] ∩ OA with νA( f ) ≥ ν(z). These coordinate
changes are necessary in order to avoid problems of accumulation of values.

We have already considered Puiseux’s packages in previous works [11]. They are
related with Perron’s transformations, the key polynomials of a valuation and binomial
ideals, see for instance [17,30,31]. In dimension two, they are close to the Puiseux’s
pairs of a plane branch. We can understand them through the rational contact function
� = zd/x p, which satisfies ν(�) = 0. The Puiseux’s package can be interpreted as a
local uniformization of the hypersurface

zd = λx p,

where λ ∈ k is such that ν(� − λ) > 0. The new variable z′ is z′ = � − λ. The
number d > 0 is called the ramification index of the Puiseux’s package. When d = 1,
the above hypersurface is non-singular and the equations defining the transformation
have an appropriate form; in fact, this is the case we encounter at the end of the proof.

Thus, we try to control the evolution of the Newton polygon after performing the
above transformations and taking into account the induction hypothesis. We proceed
in two steps. First, we perform a γ -preparation of ω. Second, once ω is γ -prepared,
we provide a control of the evolution of the critical height χA(ω), under Puiseux’s
packages and nested coordinate changes followed by γ -preparations.

Roughly speaking, the γ -preparation of ω consists in obtaining a situation where
the relevant levels areρ-final, with respect to the abscissaρ determined by the polygon.
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That is, the “important” part of the level may be read in the coordinates x. In order
to obtain the γ -preparation, we need to apply induction to some of the forms ηs . The
truncated integrability properties of ηs do not allow to get a direct γ -preparation.
We perform first an approximate preparation, thanks to the properties of truncated
integrability of the differential parts ηs of the levels. We complete the preparation, that
we call γ -strict preparation, thanks to some additional properties that are consequence
of the hypothesis of truncated integrability andDeRham-Saito type results of truncated
division. This part of the proof goes along Sects. 6, 7 and 8.

Once we have obtained a γ -preparation, we devote Sect. 9 to the control of the
behaviour of the Newton Polygon under Puiseux’s packages and nested coordinate
changes, followed by new γ -preparations. Roughly speaking, we do what is necessa-
ry in order to obtain a situationmodelled on the behaviour of Newton Polygon of plane
branches, when we perform a sequence of blow-ups associated to a Puiseux’s pair.

The shape of Newton Polygon is described by means of numerical invariants. The
most important for us is the critical height χA(ω). The critical segment is the vertex or
segment of contact between the Newton Polygon and the lines of slope −1/ν(z). The
critical vertex is the highest vertex in the critical segment, and χA(ω) is the ordinate
of the critical vertex.

The new critical height, after a Puiseux’s package, is lower or equal that the pre-
ceding one. If we are able to obtain strict inequalities, we are done. Thus, we have
to look at the cases when the critical height stabilizes at χ = χA′(ω) for any “nor-
malized transformation” (A, ω)→ (A′, ω). The stabilization implies the presence of
resonance conditions, that we call r1, r2a and r2b-υ. The resonance r1 occurs only
when χ = 1 and we can show that it happens “at most once”. The resonances r2 imply
that the ramification index, after the necessary γ -preparations, is equal to one; this is
a necessary property for our arguments.

In the case when χ = 2, we arrive to show quite directly the existence of a Tschirn-
hausen coordinate change that allows us to “cross the limit imposed by γ ”.

In the case χ = 1, we follow the same general ideas, but it is necessary for us to
use truncated cohomological results, namely a generalized and truncated version of
Poincar’s Lemma that we include in Sect. 4.

2 Formal Differential Forms in the Center of a Valuation

Let K/k be a field of rational functions over a base field k of characteristic zero. Along
all this paper, we consider a rational k-valuation ring k ⊂ R ⊂ K of rank one. That
is, the following properties hold:

• The natural mapping k → κ over the residual field κ of R is an isomorphism. In
particular, for any birational model M of K the center of R in M is a k-rational
point of M .

• The value group � = K ∗/R∗ of the valuation ν associated to R is isomorphic to
a subgroup of (R,+). Once for all, we fix an immersion � ⊂ R.
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Definition 2.1 A locally parameterized model A is given by A = (OA, x, y), where
OA is a regular local ring and

(x, y) = (x1, x2, . . . , xr , y1, y2, . . . , ym−r )

is a regular system of parameters of OA satisfying the following properties:

(1) There is a projective model M of K such thatOA = OM,P , where P is the center
of R in M .

(2) The values ν(x1), ν(x2), . . . , ν(xr ) give a Q-basis of � ⊗Z Q.

The parameters x are the independent parameters and y are the dependent parameters
of A.

Remark 3 Locally parameterized models exist, see [11].

Let us consider a locally parameterized model A = (OA, x, y).
Denote by�1

OA/k[log x] theOA-module of x-logarithmicKähler differentials, that
is the logarithmic Kähler differentials with respect to the monomial x1x2 · · · xr . We
recall that

�1
OA/k[log x] ⊃ �1

OA/k

and both are free modules of finite rank m = dim M , see for instance [18]. Let �1
A

denote the ÔA-module

�1
A = �1

OA/k[log x] ⊗OA ÔA ,

where ÔA is the completion of OA with respect to its maximal ideal mA. The ele-
ments of �1

A are called A-formal logarithmic differential 1-forms or simply formal
logarithmic differential 1-forms, if the reference to A is obvious.

Remark 4 Themodules�1
OA/k(log x) and�

1
A dependonly on the ideal (x1)generated

by the monomial x1 = x1x2 · · · xr .
For any p ≥ 0, the free ÔA-module �p

A is the p-th exterior power

�
p
A = �p�1

A (�0
A = ÔA).

The elements of�p
A are theA-formal logarithmic differential p-forms. Let�•

A denote
the direct sum ⊕p≥0�

p
A. We have a well defined exterior derivative

d : �p
A −→ �

p+1
A ,

as well as an exterior product α, β �→ α ∧ β in �•
A.

Remark 5 Note that the valuation ν is defined for the elements f ∈ K \ {0}. In
particular, we have ν( f ) < ∞ for any 0 �= f ∈ OA, since OA ⊂ K . For formal
functions f ∈ �0

A \ OA, the value ν( f ) is not defined.
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3 Explicit Values and Final Truncated Differential Forms

Let us consider a parameterized local model A = (OA; x, y).

3.1 Explicit Values

Given δ ∈ R≥0, we define the ideals IδA and Iδ+A of OA by

IδA = (x I ; ν(x I ) ≥ δ) and Iδ+A = (x I ; ν(x I ) > δ),

where x I = xi11 xi22 · · · xirr , for I = (i1, i2, . . . , ir ) ∈ Z
r≥0. We obtain a filtration of

OA that we call the explicit filtration. It depends only on the ideal (x1). In the same
way, the explicit filtration of ÔA = �0

A is given by the family of ideals

ÎδA = IδA�0
A and Îδ+A = Iδ+A �0

A .

Remark 6 Let VA ⊂ � ⊂ R be the set of values ν(x I ) for I ∈ Z
r≥0. It is a well ordered

subset of R≥0 isomorphic as an ordered set to the natural numbers. In particular, for
any δ ∈ R≥0 there are unique δ0, δ1 ∈ VA with δ ≤ δ0 ≤ δ1 such that

IδA = Iδ0A and Iδ+A = Iδ1A .

We have that δ = δ0 < δ1 if δ ∈ VA and δ < δ0 = δ1 if δ /∈ VA. Thus the family
of ideals {IδA; δ ∈ VA} gives the explicit filtration. Let us also note that for any

0 �= f ∈ �0
A, we have min{δ ∈ VA; f /∈ Îδ+A } = max{δ ∈ VA; f ∈ ÎδA}.

Definition 3.1 The explicit value νA( f ) of f ∈ �0
A, with f �= 0, is

νA( f ) = min{δ ∈ VA; f /∈ Îδ+A } = max{δ ∈ VA; f ∈ ÎδA}.

We put νA(0) = ∞ and νA(S) = min{νA( f ); f ∈ S}, for any subset S ⊂ ÔA.

Remark 7 Assume thatOA = OM,P , where M is a projective model of K and P is the
center of R in M . Since P is a k-rational point of M , there is a natural identification
�0
A = k[[x, y]], where k[[x, y]] stands for the formal series ring in the variables x, y

with coefficients in k. Write f ∈ �0
A as a formal series

f =
∑

I

f I x I , f I ∈ k[[ y]].

We have that νA( f ) = min{ν(x I ); f I �= 0}. For any f ∈ OA we have νA( f ) ≤
ν( f ). However, ν( f ) is not defined for f ∈ �0

A \ OA, see Remark 5.
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Let N be a free�0
A-module of finite rank. We extend the explicit filtration to N by

considering the family of submodules ÎδAN and Îδ+A N . The explicit value νA(a) of
a ∈ N is

νA(a) = min{δ ∈ VA; a /∈ Iδ+A N }.

If e1, e2, . . . , em is a �0
A-basis of N and

a = f1e1 + f2e2 + · · · + fmem,

we have that νA(a) = νA({ f1, f2, . . . , fm}) = νA(a), where a = ∑m
i=1 fi�0

A. Note
that the ideal a ⊂ �0

A does not depend on the choice of the basis.
From now on, we denote by νA the explicit order in the free �0

A-modules �p
A.

We have the following standard valuative properties:

(1) For any α, β ∈ �p
A we have νA(α + β) ≥ νA(α) + νA(β) and equality holds if

νA(α) �= νA(β).
(2) For any f ∈ �0

A and α ∈ �p
A we have νA( f α) = νA( f )+ νA(α).

(3) For any α ∈ �p
A and β ∈ �q

A we have νA(α ∧ β) ≥ νA(α)+ νA(β).
Next, we give the definition of the main technical objects in this paper:

Definition 3.2 Let A be a locally parameterized model. Consider ω ∈ �1
A and a real

number γ ∈ R. We say that (A, ω) is a γ -truncated formal foliated space if and only
if ω satisfies the γ -truncated integrability condition

νA(ω ∧ dω) ≥ 2γ.

A γ -truncated formal foliated space (A, ω) is also γ ′-truncated for any γ ′ ≤ γ . If ω
satisfies Frobenius integrability condition ω ∧ dω = 0, then (A, ω) is a γ -truncated
foliated space, for any γ ∈ R; in this case, we say that (A, ω) is a formal foliated
space. In particular, we have a formal foliated space (A, d f ) associated to a given
formal function f ∈ �0

A.

3.2 Final Truncated Differential Forms

For any δ ∈ VA, let GδA denote the quotient GδA = ÎδA/Îδ+A . The graded algebra
GA = ⊕δGδA, associated to the explicit filtration of �0

A, can be identified with a
weighted polynomial algebra

GA � �0
A/(x)[X1, X2, . . . , Xr ] ,

where we attach the weight ν(xi ) to each variable Xi . Take f ∈ �0
A. For any δ ≤

νA( f ), the explicit δ-initial form InδA( f ) is

InδA( f ) = f + Îδ+A ∈ GδA.
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We have InδA( f ) �= 0 if and only if δ = νA( f ).
Note that the 0-degree ring G0

A = �0
A/(x) of GA is a complete regular local ring

with maximal ideal mA = m̂A/(x) and residual field naturally isomorphic to k. In
particular, we have that

GA/mAGA � k[X1, X2, . . . , Xr ].

Let us introduce the definition of final formal functions.

Definition 3.3 Consider a real number γ ∈ R and a formal function f ∈ �0
A. We say

that (A, f ) is γ -final recessive if δ > γ , where δ = νA( f ). We say that (A, f ) is
γ -final dominant if δ ≤ γ and we have that

InδA( f ) /∈ mAGA.

We say that (A, f ) is γ -final if it is γ -final dominant or γ -final recessive.

Let us introduce some notations to facilitate the generalization of the above Definition
3.3 to higher order forms. We denote by C0A( f ) the G0

A-submodule of GδA generated
by InδA( f ), when δ = νA( f ). We also denote by c0A( f ) the image of C0A( f ) under
the natural morphism

GδA → GδA/mAGδA ⊂ GA/mAGA = k[X1, X2, . . . , Xr ]. (1)

Thus (A, f ) is γ -final dominant if and only if δ ≤ γ and c0A( f ) �= 0.

Remark 8 Consider a pair (A, f ) where 0 �= f ∈ �0
A = k[[x, y]]. Let δ denote the

value νA( f ). We can write f as

f = x I0 f I0 +
∑

ν(x I )>δ

x I f I , ν(x I0) = δ,

where f I0 , f I ∈ k[[ y]]. The pair (A, f ) is γ -final dominant if and only if δ ≤ γ and
f I0 is a unit in k[[ y]].
Consider an element ω ∈ �1

A and write it as

ω =
r∑

i=1

fi
dxi
xi

+
m−r∑

j=1

g jdy j .

We know that νA(ω) = νA({ f1, f2, . . . , fr , g1, g2, . . . , gm−r }). If δ = νA(ω), we
denote by C1A(ω) the G0

A-submodule of GδA generated by the initial forms

InδA( fi ) , i = 1, 2, . . . , r .

Let c1A(ω) be the image of C1A(ω) under the natural morphism in Eq. (1). We extend
Definition 3.3 to formal differential 1-forms ω ∈ �1

A as follows:
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Definition 3.4 Fix γ ∈ �. Take ω ∈ �1
A with νA(ω) = δ. We say that (A, ω) is

• γ -final dominant, if δ ≤ γ and c1A(ω) �= 0.
• γ -final recessive, if δ > γ .

We say that (A, ω) is γ -final if it is γ -final dominant or γ -final recessive.

3.3 Explicit Values Under Differentiation

We compare here the explicit value of dα ∈ �p+1
A with the explicit value of α ∈ �p

A.

Lemma 3.1 Let ∂ : �0
A → �0

A be a k-derivation of the form

∂ =
r∑

i=1

ai xi
∂

∂xi
+

m−r∑

j=1

b j
∂

∂ y j
, ai , b j ∈ �0

A.

For any f ∈ �0
A, we have νA(∂ f ) ≥ νA( f ).

Proof Write δ = νA( f ). Then f = ∑
ν(x I )≥δ x I f I and ∂ f = ∑

ν(x I )≥δ x I gI , where
gI =∂ f I + f I

∑r
j=1 i j a j and I =(i1, i2, . . . , ir ). Thus, we have that νA(∂ f )≥δ. ��

Proposition 3.1 Consider f ∈ �0
A and d f ∈ �1

A. We have νA(d f ) ≥ νA( f ). In the
case that f ∈ mA�0

A, then νA(d f ) = νA( f ). More generally, for any α ∈ �p
A we

have that νA(dα) ≥ νA(α).

Proof The first statement is a consequence of Lemma 3.1, since

d f =
r∑

i=1

xi
∂ f

∂xi

dxi
xi

+
m−r∑

j=1

∂ f

∂ y j
dy j .

Write δ = νA( f ) and f = ∑
ν(x I )≥δ x I f I . Assume that 0 �= f ∈ mA�0

A. If δ = 0,

we can write f = f0 + f̃ , where νA( f̃ ) > 0 and 0 �= f0 ∈ mA�0
A has a series

expansion

f0 =
∑

|J |>0
λJ yJ , λJ ∈ k.

Then d f0 �= 0 and νA(d f0) = 0. Since d f = d f0+d f̃ and νA(d f̃ ) > 0, we conclude
that νA(d f ) = 0. If δ > 0, there is I0 �= 0 such that ν(x I0) = δ and νA( f I0) = 0. We
write

f I0 = g0 + g̃0, νA(g̃0) > 0, 0 �= g0 ∈ k[[ y]].
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By the previous arguments, it is enough to see that νA(d(x I0g0)) = δ. Let us write
I0 = (i01 , i02 , . . . , i0r ) �= 0. We have

d(x I0g0) = x I0

(
g0

r∑

s=1

i0s
dxs
xs

+ dg0

)
= x I0

⎛

⎝g0

r∑

s=1

i0s
dxs
xs

+
m−r∑

j=1

∂g0
∂ y j

dy j

⎞

⎠ .

Then νA(d(x I0g0)) = δ. The last statement is direct from the formulas for dα. ��
Corollary 3.1 For any f ∈ mA�0

A, with f �= 0, we have that c0A( f ) �= 0 if and only
if c1A(d f ) �= 0. Thus (A, f ) is γ -final if and only if (A, d f ) is γ -final.

Proof Put δ = νA( f ) = νA(d f ). We can write

f = x I f I + f̃ ; ν(x I ) = δ, νA( f̃ ) > δ, f I ∈ C[[ y]].

Then c0A( f ) �= 0 is equivalent to saying that λ �= 0, where f I = λ+ ∑
|J |>0 f I ,J yJ .

On the other hand, we have d f = f I d(x I )+ x I d f I + d f̃ . Since νA(d f̃ ) > δ and
d(x I ) = x I ∑r

j=1 i j dx j/x j with I �= 0, we have that c1M(d f ) �= 0 is also equivalent
to λ �= 0. ��

4 Truncated Cohomological Statements

Next result is a truncated version of De Rham-Saito division [27].

Proposition 4.1 Let α ∈ �1
A be a 0-final dominant 1-form. For any β ∈ �1

A with

νA(α ∧ β) ≥ ρ, there are H ∈ �0
A and β̃ ∈ �1

A, with νA(β̃) ≥ ρ, such that

β = Hα + β̃.
Proof Let us write

α =
r∑

i=1

ai
dxi
xi

+
m−r∑

j=1

b jdy j and β =
r∑

i=1

fi
dxi
xi

+
m−r∑

j=1

g jdy j .

Since α is 0-final dominant, there is at least one unit between the coefficients
a1, a2, . . . , ar . Without lost of generality, we can assume that a1 is a unit. Since
νA(α ∧ β) ≥ ρ we have that

νA(a1 fi − ai f1) ≥ ρ for all i = 2, 3, . . . , r ,

νA(a1g j − b j f1) ≥ ρ for all j = 1, 2, . . . ,m − r .

The condition νA(a1 fi − ai f1) ≥ ρ is equivalent to νA( fi − Hai ) ≥ ρ where

H = f1/a1.
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So, there are functions f̃i with νA( f̃i ) ≥ ρ such that fi = Hai+ f̃i for i = 2, 3, . . . , r .
In the same way, there are functions g̃ j with νA(g̃ j ) ≥ ρ, such that g j = Hb j + g̃ j ,
for j = 1, 2, . . . , n − r . The 1-form

β̃ =
r∑

i=2

f̃i
dxi
xi

+
m−r∑

j=1

g̃ j dy j

satisfies that νA(β̃) ≥ ρ and β = Hα + β̃. ��
Given a p-form ξ ∈ �p

A and a vector μ = (μ1, μ2, . . . , μr ) ∈ C
r , we define the

μ-exterior derivative dμξ ∈ �p+1
A by the formula

dμξ = dxμ

xμ
∧ ξ + d(ξ),

(
where

dxμ

xμ
=

r∑

i=1

μi
dxi
xi

)
.

In the case μ = 0 we recover the usual exterior derivative d0 = d.

Remark 9 The definition of dμ comes from the formal relation d(xμξ) = xμdμ(ξ).
Note that x−μ is an integrant factor of ξ if and only if dμ(ξ) = 0, see [12].

Let us consider a “value of truncation” ρ ∈ R ∪ {+∞}, where the case ρ = +∞
means “no truncation”. In Proposition 4.2 below we state and prove a truncated μ-
multivaluated and logarithmic generalization of formal Poincará’s Lemma.

Consider a 1-form η ∈ �1
A and write it as η = ∑

I x
IηI , where

ηI =
r∑

i=1

aI
dxi
xi

+
n−r∑

j=1

bI dy j ; aI , bI ∈ k[[ y]].

We have a splitting η = η′ + η′′ with

η′ =
∑

ν(x I )<ρ

x IηI ; η′′ =
∑

ν(x I )≥ρ
x IηI .

In the case ρ = ∞, we put η′ = η and η′′ = 0. By Proposition 3.1, we know that
νA(η′′) ≥ ρ; we also have that νA(dη′′) ≥ ρ.
Proposition 4.2 Assume that νA(dμη) ≥ ρ. There are f ∈ �0

A, residues λ ∈ kr , and
η̃ ∈ �1

A such that

η = dμ f + x−μ dxλ

xλ
+ η̃, νA(η̃) ≥ ρ,

where λ = 0 if −μ /∈ Z
r≥0.
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Proof Let us note that dμ(η) = dμ(η
′) + dμ(η

′′) and νA(dμ(η
′′)) ≥ ρ. Hence

νA(dμ(η
′)) ≥ ρ. Moreover,

dμ(η
′) =

∑

ν(x I )<ρ

dμ(x IηI ) =
∑

ν(x I )<ρ

x I dI+μ(ηI ).

Since the coefficients of dI+μ(ηI ) belong to k[[ y]], the fact that νA(dμ(η
′)) ≥ ρ

implies that dμ(η
′) = 0. Moreover, since νA(dμ(η

′′)) ≥ ρ, it is enough to show that
there are λi and f such that

η′ = dμ f + dxλ

xλ
.

In other words, we have reduced the problem to the case ρ = ∞.
We know that dI+μ(ηI ) = 0 for any I such that ν(x I ) < ρ. Let us consider one

such I and put ρ = I + μ. Let us split ηI = η̃I + η∗
I where

η̃I =
r∑

i=1

fi
dxi
xi
, η∗

I =
n−r∑

j=1

g jdy j ,

where fi , g j ∈ k[[ y]] for any i, j . Note that

0 = dρηI = dxρ

xρ
∧ (η̃I + η∗

I )+ dη̃I + dη∗
I (2)

implies that dη∗
I = 0, since the coefficients of dρηI for dy j ∧ dys correspond exactly

to the coefficients of dη∗
I . By applying the standard formal Poincará’s Lemma, we find

F∗ ∈ k[[y]] such that dF∗ = η∗
I . Now, we have two cases to consider:

Case ρ �= 0: By Eq. (2), we deduce that

dxρ

xρ
∧ η̃I = 0,

just by looking to the coefficients of dρηI of the terms in (dxi/xi ) ∧ (dx	/x	). Since
ρ �= 0, the above proportionality implies that there is f I ∈ k[[ y]] such that

η̃I = f I
dxρ

xρ
.

Looking in Eq. (2) to the coefficients of (dxi/xi ) ∧ dy j we find that

dxρ

xρ
∧ d(F∗ − f I ) = 0.
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We conclude that dF∗ = d fI , since F∗, f I ∈ k[[ y]]. Finally, in this case we have that
ηI = dρ( f I ) and hence

x IηI = dμ

(
x I f I

)
.

Case μ = −I : We have that dηI = dη̃I + dη∗
I = 0. Recalling that dη∗

I = 0, we
conclude that dη̃I = 0. This implies that d fi = 0 for any i = 1, 2, . . . , r and hence
fi = λi ∈ k for any i = 1, 2, . . . , r . That is

η̃I = dxλ

xλ
; η∗

I = d fI ,

where f I = F∗ in this case. More precisely, we have

x IηI = x I dx
λ

xλ
+ dμ

(
x I f I

)
,

where we recall that μ = −I . Finally, let us put f = ∑
νA(x I )<ρ x

I f I . We have

η′ = dμ( f )+ x−μ dxλ

xλ
,

where λ = 0 if −μ /∈ Z
r≥0 (or νA(x−μ) ≥ ρ). This ends the proof. ��

Remark 10 Let us note that θ = dμ f + x−μdxλ/xλ satisfies Frobenius’ integrability
condition θ ∧ dθ = 0.

In a more general way, let us consider a 0-final dominant α ∈ �1
A such that dα = 0.

For any ξ ∈ �p
A we define the α-exterior derivative dα(ξ) by

dα(ξ) = α ∧ ξ + dξ.

By Proposition 4.2, the fact that dα = 0 implies that there is h ∈ �0
A and μ ∈ C

r

such that

α = dxμ

xμ
+ dh,

where μ �= 0 since α is 0-final dominant. We call dxμ/xμ the residual part of α
in A. Take an index i0 ∈ {1, 2, . . . , r} such that μi0 �= 0 and consider the unit
H = exp(h/μi0) ∈ ÔA. Let us put

μ̃ = μ

μi0
, x̃i0 = Hxi0 and x̃i = xi for i �= i0.
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We have

α

μi0
= dxμ̃

xμ̃
+ dH

H
= d x̃μ̃

x̃μ̃
�⇒ α = d x̃μ

x̃μ .

Corollary 4.1 Letα ∈ �1
A be 0-final dominantwith dα = 0 and residual part dxμ/xμ.

Let η ∈ �1
A be such that νA(dαη) ≥ ρ. We can decompose η as η = θ + η̃, where

νA(η̃) ≥ ρ and there is a formal function F ∈ �0
A such that θ has the form

θ = dαF + x̃−μ dxλ

xλ
,

where there is an index i0 with μi0 �= 0 and x̃i0 = Wxi0 , for a formal unit W and
x̃i = xi for i �= i0. Moreover, in the case that −μ /∈ Z≥0 we have λi = 0, for
i = 1, 2, . . . , r . In particular, we have θ ∧ dθ = 0.

Proof Follows from Proposition 4.2, noting that α = d x̃μ/x̃μ. That is, the derivative
dα is expressed in the new independent coordinates x̃ as dμ̃ and moreover, we recall
that νA is independent of the coordinate change x �→ x̃. ��

5 Transformations of Locally ParameterizedModels

The allowed transformations

A = (OA; x, y) → A′ = (OA′ ; x′, y′),

between locally parameterized models are finite compositions of the following types
of elementary allowed transformations:

• 	-coordinate changes.
• Independent blow-ups of locally parameterized models.
• 	-Puiseux’s packages of locally parameterized models.

5.1 Elementary Allowed Transformations

Let us describe the three types of elementary allowed transformations:

• Coordinate changes Consider an integer 1 ≤ 	 ≤ m − r and an element

f ∈ k[[x, y1, y2, . . . , y	−1]] ∩ OM,P ,

such that νA( f ) ≥ ν(y	). Let us put

y′
	 = y	 + f , y′

j = y j , j ∈ {1, 2, . . . ,m − r} \ {	}.
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We obtain a new locally parameterized model A′ = (OA′ ; x′, y′), where x′ = x
and OA′ = OA. Any transformation A → A′ as above is called an 	-coordinate
change, or a coordinate change in the dependent variable y	.

• Independent Blow-ups Consider a set {xi , x j } of two independent variables. Let
us note that ν(xi ) �= ν(x j ). Assume that ν(xi ) < ν(x j ). Let us select a projective
model M of K associated to A in the sense that OA = OM,P , where P is the
center of R in M . Denote Y ⊂ M the irreducible subvariety of M defined locally
a P by the equations xi = x j = 0. Let us consider the blow-up π : M ′ → M
with center Y and let P ′ ∈ M ′ be the center of R in M ′. We obtain a locally
parameterized model A′ associated to M ′, where OA′ = OM ′,P ′ , y′ = y and

x ′
j = x j/xi , x ′

s = xs, s ∈ {1, 2, . . . , r} \ { j}.

The transformation A → A′ is called the independent blow-up of A with center
in the coordinates {xi , x j }.

• Puiseux‘s Packages Let us consider an integer number 1 ≤ 	 ≤ m − r . An 	-
Puiseux’s package A → A′ is the composition of two transformations

A → Ã → A′

where Ã → A′ is an 	-blow-upwith translation andA → Ã is a finite composition
of independent blow-ups and 	-combinatorial blow-ups. Let us define these types
of blow-ups:

(1) An 	-combinatorial blow-up A → A∗ is given by the choice of an xi such
that ν(y	) �= ν(xi ). As before, we take a projective model M associated to A
and the blow-up π : M∗ → M of M with the center Y = (xi = y	 = 0). Let
P∗ be the center of R in M∗ and put OA∗ = OM∗,P∗ . To obtain the regular
system of parameters x∗, y∗ we have two cases:
(a) If ν(xi ) < ν(y	), we put x′ = x, y′

	 = y	/xi and y′
j = y j , for j �= 	.

(b) If ν(xi ) > ν(y	), we put y′ = y, x ′
i = xi/y	 and x ′

s = xs , for s �= i .
The case (a), where ν(xi ) < ν(y	), is called of transversal type.

(2) An 	-blow-up A → A∗ with translation is given by the choice of an xi such
that ν(y	) = ν(xi ). We take a projective model M associated to A and the
blow-up π : M∗ → M of M with the center Y = (xi = y	 = 0). Let P∗ be
the center of R in M∗ and put OA∗ = OM∗,P∗ . We obtain the regular system
of parameters x∗, y∗ as follows. Since ν(y	/xi ) = 0 and R defines a k-rational
valuation, there is a unique 0 �= λ ∈ k such that ν(y	/xi − λ) > 0. We put
x∗ = x, y∗

	 = y	/xi − λ and y∗
j = y j for j �= 	.

Remark 11 Let us note that an 	-combinatorial blow-up is not an allowed transforma-
tion itself. Nevertheless, an 	-blow-upwith translation defines an 	-Puiseux’s package.

The existence of at least one 	-Puiseux’s package A → A′ is proved in [11]. It is
related with the so called 	-contact rational function � of A. Since the values of the
independent parameters define a basis for � ⊗Z Q, there are unique integers d > 0
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and p = (p1, p2, . . . , pr ) ∈ Z
r such that d, p1, p2, . . . , pr are coprime and

ν
(
yd	 /x

p
)

= 0.

We put� = yd	 /x
p. The number d ≥ 1 is called the 	-ramification index ofA. There

is a unique 0 �= λ ∈ k such that ν(� − λ) > 0. Note that, in the case of a blow-up
with translation, the 	-contact rational function is given by y	/xi .

5.2 Equations for Puiseux’s Packages

Let� = yd	 /x
p be the 	-contact rational function ofA and take λ ∈ k with ν(�−λ) >

0. Consider an 	-Puiseux’s package

A → Ã → A′,

where A = (OA, x, y), Ã = (OÃ, x̃, ỹ), A′ = (OA′ , x′, y′). In this subsection we
recall formulas in [11] relating the parameters x, y, x̃, ỹ and x′, y′.

The relationship between x̃, ỹ and x′, y′ is given by x′ = x̃, y′
	 = � − λ, where

� = ỹ/x̃i0 and

y′
j = ỹ j for j = 1, 2, . . . ,m − r , j �= 	.

The relationship between x, y and x̃, ỹ is given by a (r+1)×(r+1)matrix B = (bi j ),
with nonnegative integer coefficients and det B = 1, such that

x1 = x̃b111 x̃b122 · · · x̃b1rr ỹb1r+1
	

x2 = x̃b211 x̃b222 · · · x̃b2rr ỹ
b2,r+1
	· · ·

xr = x̃br11 x̃br22 · · · x̃brrr ỹ
br ,r+1
	

y	 = x̃
br+1,1
1 x̃

br+1,2
2 · · · x̃br+1,r

r ỹ
br+1,r+1
	 ,

and moreover we have that y j = ỹ j for any j ∈ {1, 2, . . . ,m − r} \ {	}. Recalling
that � = ỹ	/x̃i0 = y′

	 + λ, we have

x1 = x ′c11
1 x ′c12

2 · · · x ′c1r
r �

c1,r+1
	

x2 = x ′c21
1 x ′c22

2 · · · x ′c2r
r �

c2,r+1
	· · ·

xr = x ′cr1
1 x ′cr2

2 · · · x ′crr
r �

cr ,r+1
	

y	 = x ′cr+1,1
1 x ′cr+1,2

2 · · · x ′cr+1,r
r �

cr+1,r+1
	

(3)

where csi0 = bsi0 + bs,r+1 for any s = 1, 2, . . . , r + 1 and c ji = b ji , if i �= i0. Note
that we also have that detC = 1 and the coefficients c ji of C are nonnegative integer
numbers.
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Remark 12 We have the following properties:

(1) Denote (−p1,−p2, . . . ,−pr , d) = (0, 0, . . . , 0, 1)C−1.
(2) Consider the r×r sub-matrixC0 ofC given byC0 = (ci j )1≤i, j≤r . Then detC0 �= 0

since it gives a base change matrix for the bases

{ν(x1), ν, (x2), . . . , ν(xr )}, and {ν(x ′
1), ν, (x

′
2), . . . , ν(x

′
r )}

of � ⊗Z Q in view of Eq. (3).
(3) We have ν(y	) > 0 and hence y	 is not a unit inOA′ . More precisely, we have that
νA′(yd	 ) = ν(x p) > 0 and thus νA′(y	) > 0. As a consequence of Proposition
3.1, we also have that νA′(dy	) = νA′(y	) > 0.

(4) The case d = 1 is relevant for our computations. The following properties are
equivalent

(i) d = 1.
(ii) The 	-combinatorial blow-ups in A → Ã are all of transversal type.
(iii) The matrix C has the form

C =
(
C0 0
p̃ 1

)
, p̃ = pC0. (4)

(5) The relationship between the differential forms are given by:

(
dx1
x1
,
dx2
x2
, · · · , dxr

xr
,
dy	
y	

)
=

(
dx̃1
x̃1
,
dx̃2
x̃2
, · · · , dx̃r

x̃r
,
d ỹ	
ỹ	

)
Bt

and

(
dx1
x1
,
dx2
x2
, · · · , dxr

xr
,
dy	
y	

)
=

(
dx ′

1

x ′
1
,
dx ′

2

x ′
2
, · · · , dx

′
r

x ′
r
,
d�

�

)
Ct , (5)

where we remark that d�/� = (1/(y′
	 + λ))dy′

	.

5.3 Stability Results

The use of allowed transformations in the Truncated Local Uniformization is justified
by the results in this subsection. We show that the critical values are not decreasing
under allowed transformations and that the stabilization of the critical value charac-
terize final situations.

Remark 13 Any allowed transformation A → A′ gives and injective morphism of
local ringsOA → OA′ and also an injective morphism of complete local rings�0

A →
�0
A′ . We also have induced inclusions

�
p
A ⊂ �p

A′
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that are compatible with the sum, the exterior product and the exterior differentiation.
In order to simplify notations along the paper, when we have ω ∈ �p

A, we write
ω ∈ �p

A′ to denote the transform of ω by the considered allowed transformation.

In this Sect. 5.3 we are interested both in functions and 1-forms, thus in elements
of �p

A, for p ∈ {0, 1}.
Lemma 5.1 LetA → A′ be an elementary allowed transformation. Consider a mono-
mial x I . We have x I = U ′x′ I ′

where U ′ ∈ OA′ is a unit. Moreover, if A → A′ is an
	-Puiseux’s package, then U ′ has the form

U ′ = (
y′
	 + λ)b ∈ k[[y′

	]],

where b ∈ Z and 0 �= λ ∈ k. Otherwise, we have that U ′ = 1.

Proof This result is a direct consequence of the description, given in Sects. 5.1 and
5.2, of the elementary allowed transformations. ��
Remark 14 In this paper we are interested in germs of functions and germs of differ-
ential 1-forms. That is, we mainly deal with elements α ∈ �p

A, for p = 0, 1. For this
reason, we have only defined c

p
A(α) for the degrees p = 0, 1.

Proposition 5.1 Let A → A′ be an allowed transformation and consider α ∈ �p
A.

We have νA′(α) ≥ νA(α). Moreover, if p ∈ {0, 1} and c
p
A(α) �= 0, then we have that

νA′(α) = νA(α) and c
p
A′(α) �= 0.

Proof IfA → A′ is an 	-coordinate change, we are done. Thus, we have only to solve
the cases of an independent blow-up or an 	-Puiseux’s package.

Put δ = νA(α). Let us prove that νA′(α) ≥ δ. By the properties of the explicit
order, we have only to consider the case α = f ∈ �0

A. Write f as a finite sum

f =
∑

ν(x I )≥δ
x I h I , hI ∈ k[[x, y]].

Now, it is enough to show that νA′(x I ) = ν(x I ). By Lemma 5.1, there is a unit U ′ in
OA′ such that x I = U ′x′ I ′

. This implies that νA′(x I ) = ν(x′ I ′
) = ν(x I ).

Let us prove the second statement. Assume that α = f ∈ ÔM,P . We know that
νA( f ) = δ and c0A( f ) �= 0 if and only if we can write

f = x I f I + f̃ ,

where f I ∈ k[[x, y]] is a unit, ν(x I ) = δ and νA( f̃ ) > δ. By Lemma 5.1 we can
write

f = x′ I ′
( f IU

′)+ f̃

and we are done since f IU ′ is a unit in k[[x′, y′]] and νA′( f̃ ) > δ.
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Assume now that α ∈ �1
A. Saying that νA(α) = δ and c1A(α) �= 0 is equivalent

to saying that if α = x Iβ + α̃, νA(α̃) > δ and ν(x I ) = δ, then νA(β) = 0 and
c1A(β) �= 0. Write α = x Iβ + α̃ as before. By Lemma 5.1 and the previous result, the
only thing we have to prove is that νA′β = 0 and c1A′(β) �= 0. Write

β =
r∑

s=1

fs
dxs
xs

+
m−r∑

j=1

g jdy j .

We know that there is a unit among the coefficients fs . In the case of an independent
blow-up, we have

β =
r∑

s=1

f ′
s
dx ′

s

x ′
s

+
m−r∑

j=1

g jdy
′
j ,

where ( f ′
1, f

′
2, . . . , f

′
r ) = ( f1, f2, . . . , fr )A and A is a matrix with det A = 1 and

nonnegative integer coefficients. Then, there is a unit between the coefficients f ′
s and

hence νE ′(β) = δ and c1A′(β) �= 0. In the case of an 	-Puiseux’s package, let us write

β =
r∑

s=1

fs
dxs
xs

+ g	y	
dy	
y	

+
∑

j �=	
g jdy j =

r∑

s=1

f ′
s
dx ′

s

x ′
s

+ g′
	

dy′
	

y′
	 + λ +

∑

j �=	
g′
j dy

′
j .

ByEq. (5), we have that ( f ′
1, f

′
2, . . . , f

′
r , g

′
	) = ( f1, f2, . . . , fr , y	g	)C . Let us denote

f̄ = f + m′�0
A′ ∈ k. We know that ȳ	 = 0. Thus

(
f̄ ′
1, f̄

′
2, . . . , f̄

′
r , ḡ

′
	

) = (
f̄1, f̄2, . . . , f̄r , 0

)
C,

and hence ( f̄ ′
1, f̄

′
2, . . . , f̄

′
r ) = ( f̄1, f̄2, . . . , f̄r )C0. Since detC0 �= 0, we conclude that

there is a unit among the f ′
s and thus νA′(β) = 0 and c1A′(β) �= 0. ��

Remark 15 In the case that p ≥ 1, it is possible to have that νA′(α) > νA(α). In two
variables x, y, the simplest example is the one given byα = dy under the tranformation
x = x ′, y = x ′(y + λ). In this case, we have that νA(α) = 0, moreover, in th
coordinates x ′, y′ we have that

α = x ′(y′ + λ)
{
dx ′

x ′ + dy′
}

and hence νA′(α) > 0 = νA(α).
Corollary 5.1 (Stability) Consider α ∈ �p

A with p ∈ {0, 1} and a real number γ ∈ R.
Let A → A′ be an allowed transformation. Then

• If (A, α) is γ -final recessive, then (A′, α) is also γ -final recessive.
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• If (A, α) is γ -final dominant with νA(α) = δ, then (A′, α) is also γ -final dominant
with νA′(α) = δ.

Proposition 5.2 Let 0 �= α ∈ �p
A with p ∈ {0, 1} be such that cpA(α) = 0. Consider

a sequence of allowed transformations

A = A0 → A1 → · · · → Am−r = A′

such that each A	−1 → A	 is an 	-Puiseux’s package. We have νA′(α) > νA(α).

Proof Put δ = νA(α), note that δ <∞, since α �= 0. Let us write α as

α = x IαI + α̃, νA(α̃) > δ, ν(x I ) = δ,

where, in addition, we write αI as follows:

αI =
m−r∑

s=1

ysβs, if p = 0; αI =
m−r∑

s=1

(ysβs + hsdys), if p = 1.

This is possible because cpA(α) = 0. The transforms in As−1 of ysβs and hs ys have
the form

y(s−1)
s β(s−1)

s and h(s−1)
s dy(s−1)

s .

By Remark 12, after performing the s-Puiseux’s package As−1 → As we have that
νAs (y

(s−1)
s ) > 0 and νAs (dy

(s−1)
s ) > 0. In this way, we obtain that νA′(αI ) > 0.

Hence νA′(α) > δ. ��
Remark 16 Let us fix a real number γ ≥ 0, a locally parameterized model A and
0 �= α ∈ �p

A, p ∈ {0, 1}. In order to obtain a γ -truncated local uniformization of α,
a rough idea is to increase the explicit value νA(α) while α is not final dominant. By
Proposition 5.2, we can increase the value, but we have to deal with the possibility of
an accumulation of the explicit values before arriving to the truncation limit given by
γ . This is one of the classical difficulties in Local Uniformization problems.

5.4 Final Forms and Independent Blow-ups

It is a classical result [15,21,29,31] that any monomial ideal in the independent vari-
ables becomes a principal ideal under a suitable sequence of independent blow-ups.
Let us state here these results in a useful way for the proof of the truncated local
uniformization of 1-forms.

Proposition 5.3 (Monomial Local Principalization) LetA be a locally parameterized
model. Consider a nonempty family

L = {mI = UI x I }I∈A, A ⊂ Z
r≥0,
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where UI is a unit in �0
A for any I ∈ A. Let I0 be the index in A such that ν(x I0)

is minimum. There is a transformation A → A′ obtained as a composition of finitely
many independent blow-ups such that the transformed list

L′ = {m′
I = U ′

I x
′ I ′ }I∈A

has the property that x′ I ′
0 divides any other m′

I .

Proof (See the above references). The proof may be done by succesive elimination of
vertices of the Newton Polyhedron of L. We leave the details to the reader. ��
Corollary 5.2 Consider a ρ-final dominant ω ∈ �1

A. There is an allowed transforma-
tionA → A′, obtained as a composition of finitely many independent blow-ups, such
that ω has the form

ω = x′ I ′
0ω′, ω′ ∈ �1

A′

where (A′, ω′) is 0-final dominant and ν(x′ I ′
0) = ρ.

Proof Write ω = x I0ωI0 + ∑
ν(x I )>ρ x

IωI , where ν(x I0) = ρ and ωI0 is 0-final

dominant and apply Proposition 5.3 to the list L = {x I ; ν(x I ) ≥ ρ}. ��

6 Truncated Local Uniformization

In Theorem 17 we state the Truncated Local Uniformization for 1-Forms:

Theorem 17 Consider aγ -truncated formal foliated space (A, ω). There is an allowed
transformation A → A′ such that (A′, ω) is γ -final.

We get also a Truncated Local Uniformization for Formal Functions as follows:

Theorem 18 Consider a formal function f ∈ �0
A and a real number γ ∈ R. There is

an allowed transformation A → A′ such that (A′, f ) is γ -final.

Theorem18maybe considered as an avatar of the classical Zariski’s LocalUniformiza-
tion in [31]. Note that Theorem 18 is a consequence of our main result Theorem 17,
when we consider the 1-form ω = d f .

6.1 Induction Structure

The proof of Theorem 17 goes by induction on the number IA(ω) of dependent vari-
ables involved in the formal 1-formω. To be precise, given s ∈ Z≥0 we have IA(ω) ≤ s
if and only

ω =
s∑

i=1

fi
dxi
xi

+
m−r∑

j=1

g jdy j
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satisfies that

• fi , g j ∈ k[[x, y1, y2, . . . , ys]], for i = 1, 2, . . . , r , j = 1, 2, . . . ,m − r .
• g j = 0, for any j = s + 1, s + 2, . . . ,m − r .

Remark 19 If IA(ω) = 0, then ω is γ -final for any γ ∈ R. Namely, write ω as

ω = x I0 dx
I0

x I0
+

∑

ν(x I )>δ

x I dx
I0

x I0
, νA(ω) = δ,

where ν(x I0) = δ, λI ∈ kr and λI0 �= 0. Then ω is γ -final dominant when γ ≤ δ and
it is γ -final recessive when γ > δ.

Definition 6.1 An allowed transformationA → A′ is called a 	-nested transformation
when it is a finite composition of independent blow-ups, 	′-coordinate changes and
	′-Puiseux’s packages, with 	′ ≤ 	.
Remark 20 If A → A′ is a IA(ω)-nested transformation, then IA′(ω) ≤ IA(ω).

The inductive version of Theorem 17 that we are going to prove is the following one:

Theorem 21 Consider a γ -truncated parameterized formal foliated space (A, ω).
There is an IA(ω)-nested transformation A → A′ such that (A′, ω) is γ -final.

6.2 Starting Situation for the Inductive Step

Next sections are devoted to the proof of Theorem 21 by induction on IA(ω). This is
the main technical part in this paper. The proof is divided in two parts. The first one
is the preparation procedure. In the second part, we provide a control of the critical
height, in a prepared situation, under “normalized” Puiseux’s packages and coordinate
changes.

The rest of this paper, except for the last section, is devoted to the inductive proof
of Theorem 21. By Remark 19, we know that Theorem 21 is true when we have
IA(ω) = 0. Thus, we supose that IA(ω) = 	 + 1 ≥ 1 and we take the induction
hypothesis that says that Theorem 21 is true when IA(ω) ≤ 	.

In order to avoid heavy notations, let us denote

y	+1 = z, y≤	 = (y1, y2, . . . , y	), y≥	+2 = (y	+2, y	+3, . . . , yn−r ),

in such a way that y = ( y≤	, z, y≥	+2). We decompose ω into levels as:

ω =
∑

s≥0

zsωs, ωs = ηs + hs
dz

z
, ηs =

r∑

i=1

fsi
dxi
xi

+
	∑

j=1

gs j dy j , (6)

h0 = 0. Moreover, we have that ηs ∈ �1
A with IA(ηs) ≤ 	, so we can apply the

induction hypothesis to ηs .
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The induction process assigns a special consideration to the (	 + 1)-th dependent
variable inA. For the sake of simplicity, and when no confusion arises, we frequently
say rational contact function or ramification index in reference to the (	+1)-rational
contact function or to the (	+ 1)-ramification index.

6.3 Newton Polygons

The 1-form ωs in Eq. (6) is called the s-level of ω in A. Let us note that zωs ∈ �1
A

and

νA(zωs) = min{νA(ηs), νA(hs)}.

The cloud of points ClA(ω) is defined by

ClA(ω) = {(νA(zωs), s); s ∈ Z≥0} ⊂ R≥0 × Z≥0 ⊂ R
2≥0.

The Newton Polygon NA(ω) is the positively convex hull of ClA(ω) in R
2≥0. That

is NA(ω) is the convex hull of ClA(ω) + R
2≥0 in R

2≥0. It has finitely many vertices,
each one belonging to the cloud of points. The main vertex is the vertex with highest
ordinate, it is also the vertex withminimal abscissa.We callmain height to the ordinate
of the main vertex. Let us note that the abscissa of the main vertex is equal to νA(ω).

Proposition 6.1 below highlights the inductive role of the Newton Polygon:

Proposition 6.1 Assume that NA(ω) has the only vertex (ρ, 0). Then ω is γ -final
dominant, respectively recessive, if and only if η0 is γ -final dominant, respectively
recessive. More precisely, we have νA(ω) = νA(η0) = ρ and c1A(ω) = c1A(η0).

Proof We already know that ρ = νA(ω). Since h0 = 0, we have that ρ = νA(η0).
Write ω = η0 + ω̃. We have that νA(ω̃) ≥ λ and since

ω̃ = z
∑

s≥1

zs−1ηs +
∑

s≥0

zshs+1dz

we conclude that c1A(η0 + ω̃) = c1A(η0). ��

The critical value ςA(ω) is defined by

ςA(ω) = min{α + sν(z); (α, s) ∈ ClA(ω)}.

The critical line LA(ω) is LA(ω) = {(a, b) ∈ R
2; a + bν(z) = ςA(ω)}, the critical

segment CA(ω) is the intersection CA(ω) = LA(ω)∩NA(ω) and finally, the critical
height χA(ω) is the ordinate of the highest vertex in the critical segment. This vertex
has the form (ςA(ω)− ν(z)χA(ω), χA(ω)) and is called the critical vertex.
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7 Statements of Strict Preparation

We introduce here the definitions and first results concerning the preparation process
of the γ -truncated formal foliated space (A, ω).
Definition 7.1 Given a real number δ ∈ R we say that the s-level ωs of (A, ω) is
• δ-dominant, if νA(zωs) ≤ δ and both (A, ηs) and (A, hs) are νA(zω)-final.
• δ-recessive, if νA(zωs) > δ.

It is called δ-final if it is δ-dominant or δ-recessive.

Remark 22 Let A → A′ be an 	-nested transformation. Then the decomposition into
levels given in Eq. (6) is valid both for (A, ω) and (A′, ω). Applying Proposition 5.1
to each level, we have that

NA′(ω) ⊂ NA(ω).

If ωs is λs-dominant for each vertex (λs, s), we have the equalityNA′(ω) = NA(ω).

Definition 7.2 We say that (A, ω) is γ -prepared if and only if each level ωs is (γ̃ −
sν(z))-final, where γ̃ = min{γ, ςA(ω)}.
Remark 23 If (A, ω) is γ -prepared and A → A′ is an 	-nested transformation, then
(A′, ω) is also γ -prepared. Moreover, we have same critical value and same critical
segment, that is ςA′(ω) = ςA(ω) and CA′(ω) = CA(ω). This is a consequence of
Proposition 5.1.

7.1 Maximally Dominant Truncated Foliated Spaces

The first step of the preparation process is to obtain a “maximally dominant polygon”.
To be precise, we say that (A, ω) is ρ-maximally dominant if and only if, for any
s ≥ 0, one of the following properties holds:

• The s-level ωs is (ρ − sν(z))-dominant.
• There is no 	-nested transformation A → A′ such that the s-level becomes (ρ −
sν(z))-dominant.

Remark 24 Let us note that if ρ′ ≤ ρ and (A, ω) is ρ-maximally dominant, then it is
also ρ′-maximally dominant.

In view of Propositions 5.1 and 5.2 and Remark 22 the property for an s-level of
being (ρ − sν(z))-dominant is stable under any 	-nested transformation A → A′. In
particular, the property of being ρ-maximally dominant is stable under further 	-nested
transformations.

Remark 25 Any γ -prepared (A, ω) is γ̃ -maximally dominant, where we denote γ̃ =
min{γ, ςA(ω)}.

The “dominant preparation” is given by Proposition 7.1 below:
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Proposition 7.1 There is an 	-nested transformation A → A′ such that (A′, ω) is
γ -maximally dominant.

Proof We have only to consider s-levels with 0 ≤ s ≤ γ /ν(z). This is a finite set.
Then, it is enough to consider an 	-nested transformation that produces the maximum
number of (γ − sν(z))-dominant levels. ��

7.2 Pseudo-Prepared and Strictly Prepared Situations

We say that (A, ω) is γ -pseudo prepared if and only if the following conditions hold:
• (A, ω) is γ -maximally dominant.
• For any s ≥ 0 we have that hs is (γ − sν(z))-final.
• The 0-level η0 is γ -final.

In view of Proposition 7.1 and using the induction hypothesis applied to formal func-
tions and to η0, there is an 	-nested transformation A → A′ such that (A′, ω) is
γ -pseudo prepared. Moreover, if (A, ω) is γ -pseudo prepared, then (A′, ω) is also
γ -pseudo prepared for any 	-nested transformation A → A′.

Definition 7.3 We say that (A, ω) is strictly γ -prepared if and only if it is both γ -
prepared and γ -pseudo prepared.

Remark 26 Although we only need a result of preparation for our purposes, we shall
give a proof of the existence of strict γ -preparation.

7.3 Preparation Theorem

Next Preparation Theorem 27 is the first step in inductive proof of Theorem 21.

Theorem 27 (Strict Preparation) Let (A, ω) be a γ -truncated formal foliated space
(A, ω) with IA(ω) = 	 + 1. There is an 	-nested transformation A → A′ such that
(A′, ω) is strictly γ -prepared.

When A → A′ is an 	-nested transformation as in Theorem 27, we will say that
(A, ω)→ (A′, ω) is a strict γ -preparation of (A, ω).

Let us note that, in order to prove Theorem 27, we can assume that (A, ω) is
γ -pseudo prepared. The next section is devoted to the proof of Theorem 27.

8 Preparation Process

In this section we give a proof of Theorem 27. In other words, we show the existence
of a strict γ -preparation for a given γ -truncated formal foliated space (A, ω), that
we suppose to be γ -pseudo prepared without loss of generality.

The γ -preparation will be done in two steps. First, we show that we can approx-
imate the Newton Polygon to the dominant Newton Polygon. Second, we use this
approximation to obtain the preparation.
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Remark 28 The preparation process is done under the induction hypothesis. More
precisely, we are going to apply induction hypothesis to the levels

ωs = ηs + hsdz/z,

in particular, to the 1-forms ηs and to the “horizontal coefficients” hs . The induction
hypothesis may be directly applied to the formal functions hs , since we do not need
to assure any additional property of truncated integrability (recall that dhs is Frobe-
nius integrable, since d(dhs) = 0). Nevertheless, when we consider the 1-forms ηs ,
we can only apply the induction hypothesis with respect to truncation values ρ for
which ηs satisfy the ρ-truncated integrability condition. The “previous” approximated
preparation is necessary due to this observation.

8.1 Dominant Newton Polygon

Assume that (A, ω) isγ -maximally dominant. Theγ -dominant cloudof pointsClγA(ω)
is defined by

ClγA(ω) = {(νA(zωs), s); the s − level ωs is(γ − sν(z))− dominant }.

See Definition 7.1.

Remark 29 Note that it is possible that ClγA(ω) = ∅. In this case we say that (A, ω)
is γ -totally recessive. Since we assume that (A, ω) is γ -maximally dominant, to be
totally recessivemeans that no s-levelmay be transformed into a (γ−sν(z))-dominant
level.

We obtain the following objects from the dominant cloud of points:

• The γ -dominant Newton PolygonN γ

A(ω) is the positively convex hull of Cl
γ

A(ω).
Note that N γ

A(ω) = ∅ if and only if ClγA(ω) = ∅.
• The γ -dominant critical value ςγA(ω) is defined by

ς
γ

A(ω) = min{α + sν(z); (α, s) ∈ ClγA(ω)}.

If ClγA(ω) �= ∅, then ςγA(ω) ≤ γ . If ClγA(ω) = ∅, we put ςγA(ω) = ∞.
• The γ -dominant critical line LγA(ω) is

LγA(ω) = {(a, b) ∈ R
2; a + bν(z) = ςγA(ω)}.

• The γ -dominant critical segment CγA(ω) is the intersection

CγA(ω) = LγA(ω) ∩ N γ

A(ω).
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• The γ -dominant critical height χγA(ω) is the ordinate of the highest vertex in the
γ -dominant critical segment. This vertex has the form

(
ς
γ

A(ω)− ν(z)χγA(ω), χγA(ω)
)

and is called the γ -dominant critical vertex.

Remark 30 Assume that (A, ω) is γ -maximally dominant. If A → A′ is an 	-nested
transformation, we have ClγA′(ω) = ClγA(ω). In particular

N γ

A′(ω) = N γ

A(ω), LγA′(ω) = LγA(ω), CγA′(ω) = CγA(ω), ς
γ

A(ω) = ςγA′(ω).

Moreover, we have ςA(ω) ≤ ςA′(ω) ≤ ςγA(ω) = ςγA′(ω).

The totally recessive case ClγA(ω) = ∅ corresponds to the property ςγA(ω) = ∞.
The dominant case ClγA(ω) �= ∅ corresponds to the property ςγA(ω) ≤ γ . Let us also
recall that we always have the property ςA(ω) ≤ ςγA(ω).
Proposition 8.1 Assume that (A, ω) is γ -maximally dominant. Then (A, ω) is γ -
prepared if and only if either ςA(ω) > γ or the following statements hold:

(a) ςA(ω) = ςγA(ω).
(b) L∩ClA(ω) = L∩ClγA(ω), where L = LγA(ω) = LA(ω).

In this case, we have that CγA(ω) = CA(ω) and the levels in the cloud of points
contributing to the critical segment are only dominant levels. In particular the critical
vertex corresponds to a dominant level.

Proof If ςA(ω) > γ we see that (A, ω) is γ -prepared by definition. Thus, we assume
ςA(ω) ≤ γ . If (A, ω) is γ -prepared, then each ωs is (ςA(ω) − sν(z))-final. Take a
level ωs such that νA(zωs) = ςA(ω) − sν(z), it is (ςA(ω) − sν(z))-dominant. This
shows a) and b). Conversely, assume a) and b). For any s-level ωs we have that

νA(zωs) ≥ ςA(ω)− sν(z).

If νA(zωs) > ςA(ω)− sν(z), the level is (ςA(ω)− sν(z))-recessive. If

νA(zωs) = ςA(ω)− sν(z),

the level is (ςA(ω)− sν(z))-dominant in view of b). ��
Corollary 8.1 Assume that (A, ω) is γ -maximally dominant and that one of the fol-
lowing two conditions holds

(i) : γ ≤ ςA(ω) and ςγA(ω) = ∞. (i i) : ςA(ω) = ςγA(ω) ≤ γ.

(This is equivalent to saying that ςA(ω) ≥ min{γ, ςγA(ω)}). Then, there is an 	-nested
transformation A → A′ such that (A′, ω) is γ -prepared.
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Proof If ςA(ω) > γ , we are done. Assume that ςγA(ω) = ∞ and ςA(ω) = γ .
Applying Proposition 5.2 we obtain the situation where ςA(ω) > γ and we are done.

IfςγA(ω) <∞, we haveςA(ω) = ςγA(ω) ≤ γ .We can also apply Proposition 5.2 to
the non dominant levelsωs such that (νA(zωs), s) ∈ L , where L = LγA(ω) = LA(ω).
In this way we obtain Property b) in Proposition 8.1. ��
Proposition 8.1 above and Corollary 8.1 show that we need to “approximate” the
critical segment to the γ -dominant critical segment in order to obtain a prepared
situation.

8.2 Truncated Integrability Condition

Here we develop the γ -truncable integrability condition in terms of levels. Consider
the level decomposition given in Eq. (6). Let us write

ω ∧ dω =
∑

	≥0

z	
(
�	 + dz

z
∧�	

)
,

where:

�	 =
∑

i+ j=	
ηi ∧ dη j , �	 =

∑

i+ j=	
jη j ∧ ηi + hidη j + ηi ∧ dh j . (7)

The condition νA(ω ∧ dω) ≥ 2γ is equivalent to saying that

νA(�	) ≥ 2γ and νA(�	) ≥ 2γ for any 	 ≥ 0. (8)

Lemma 8.1 below is our main tool in order to perform the “aproximated preparation”:

Lemma 8.1 Consider an integer number s ≥ 0 and let δ denote the value given by

2δ = min{2γ, min
s≥ j≥1

{νA(ηs− j )+ νA(ηs+ j )}}.

There is an 	-nested transformation A → A′ such that (A′, ηs) is δ-final.
Proof The fact that νA(�2s) ≥ 2γ implies that νA(ηs ∧ dηs) ≥ 2δ, recall that
νA(dηt ) ≥ νA(ηt ). We conclude by the induction hypothesis. ��

8.3 Planning Polygons

We give here useful facts concerning positively convex polygons. We need them to
get the approximate preparation from Lemma 8.1.

Let N ⊂ R
2≥0 be a positively convex polygon with vertices in R≥0 × Z≥0. For any

nonnegative integer number s, define the abscissa λN (s) ∈ Z≥0 ∪ {∞} by
λN (s) = min{λ; (λ, s) ∈ N }.
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Any N provides a non-increasing sequence {λN (s)}∞s=0 of abscissas and conversely.
Moreover N = ∅ if and only if λN (s) = ∞ for any s ≥ 0. The sharpness αN (s) is

αN (s) = λN (s − 1)+ λN (s + 1)− 2λN (s),

when λN (s) �= ∞. We put αN (s) = 0 when λN (s) = ∞. Note that αN (s) ≥ 0 and
that αN (s) > 0 if and only (λN (s), s) is a vertex of N . Moreover αN (s) = ∞ if and
only if (λN (s), s) is the leftmost vertex of N .

Given two real numbers ρ ≥ 0 and δ > 0, let us denote H+
δ (ρ), respectively

H−
δ (ρ), the set of points (α, β) inR

2≥0 such that α+δβ ≥ ρ, respectively α+δβ ≤ ρ.
We also put Lδ(ρ) = H+

δ (ρ) ∩ H−
δ (ρ).

Lemma 8.2 Take ρ, δ as above and consider ε > 0. Let h be the smallest integer
number such that h > ρ/δ and consider any θ > 0 with θ ≤ 2ε/(h+1)(h+2). Then,
any positively convex polygon N with vertices inR≥0×Z≥0 such that N �⊂ H+

δ (ρ−ε)
has a vertex (λN (s), s) with λN (s) < ρ − sδ and αN (s) ≥ θ .
Proof Suppose that the statement is false, so there is a positively convex polygon
N �⊂ H+

δ (ρ−ε) satisfying αs < θ for any s such that λs < ρ−sδ, where λs = λN (s),
αs = αN (s). Denote μs = λs − (ρ − sδ) for any s and consider the following two
nonnegative integers

b = min{s; μs < ε} and t = max{s; μs < 0}.

We have 0 < b ≤ t < h. Recall that μt+1 ≥ 0, μb < −ε and μb − μb−1 < 0. Let us
note that αs = (μs+1 − μs)− (μs − μs−1), for any s. We have

μt+1 = μb + (μb+1 − μb)+ · · · + (μt − μt−1)+ (μt+1 − μt )

= μb + (μb+1 − μb)+ · · · + 2(μt − μt−1)+ αt
= μb + (μb+1 − μb)+ · · · + 3(μt−1 − μt−2)+ 2αt−1 + αt
= · · ·
= μb + (t − b + 1)(μb − μb−1)+ (t − b + 1)αb + (t − b)αb+1 + · · · + αt .

We conclude that

μt+1 < −ε + (t − b + 1)(t − b + 2)

2
θ ≤ −ε + (h + 1)(h + 2)

2
θ ≤ 0.

This contradicts the fact that μt+1 ≥ 0. ��
Let us denote θδ,ρ(ε) = min{1, 2ε/(h + 1)(h + 2)}. We introduce now the kind

of operations that we perform in the approximate preparation process. Consider two
positively convex polygons N , N ′ ⊂ R

2≥0 whose vertices have integer ordinates.Given
and integer s ≥ 0, we say that N ′ is an s-planning of N if and only if N ′ is contained
in the positive convex hull of

(Vert(N ) \ {(λN (s), s)}) ∪ {(λN (s + 1), s + 1), (λN (s − 1), s − 1)},
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where Vert(N ) denotes the set of vertices of N . We say that N ′ has been obtained from
N by a (δ, ρ, ε)-planning operation if and only if N ′ is an s-planning of N , where
αN (s) ≥ θδ,ρ(ε) and λN (s) < ρ − sδ.

Corollary 8.2 Take δ, ρ, ε as above and a positively convex polygon N ⊂ R≥0 whose
vertices have integer ordinates. Given any sequence

N � N ′ � · · · � N (t)

of (δ, ρ, ε)-planning operations we have that either N (t) ⊂ H+
δ (ρ−ε) or it is possible

to perform a new (δ, ρ, ε)-planning operation N (t) � N (t+1) .

Proof Direct consequence of Lemma 8.2. ��
Lemma 8.3 Take δ, ρ, ε as above. There is bδ,ρ(ε) ∈ Z≥0 such that for any positively
convex polygon N ⊂ R≥0 whose vertices have integer ordinates and any sequence

N � N ′ � · · · � N (t)

of (δ, ρ, ε)-planning operations, we have that t ≤ bδ,ρ(ε).

Proof Given a polygon N , let us consider the numbers βN (s) defined by

βN (s) = max{0, ρ − sδ − λN (s)}.

We know that βN (s) = 0 for s < 0 and s ≥ h, where h is the smallest integer number
greater or equal than ρ/δ. If N � N ′ is a (δ, ρ, ε)-planning operation, we have that
βN ′(s) ≤ βN (s) for any s and moreover, there is an index s0 such that βN (s0) > 0
and

βN ′(s0) ≤ min{0, βN (s0)− θδ,ρ(ε)}.

The level s0 corresponds to the considered vertex in the operation N � N ′. With
these properties, it is enough to take bδ,ρ(ε) ≥ (h + 1)(ρ + 1)/θδ,ρ(ε). ��

8.4 Approximate Preparation

Proposition 8.2 and Corollary 8.3 provide the starting situation to get a prepared
situation. Both results are obtained by a “planning” of the Newton Polygon, that is
possible in view of Lemma 8.1.

Proposition 8.2 Consider a γ -pseudo prepared (A, ω) and fix ε > 0. There is an
	-nested transformation A → A′ such that ςA′(ω) > min{γ, ςγA(ω)− ε}.
Proof In order to simplify notation, let us denote N = NA(ω), δ = ν(z), ρ =
min{γ, ςγA(ω)− ε} and λs = λN (s) ≤ νA(zωs). Let us note that if ςγA(ω) = ∞, then
ρ = γ and if ςγA(ω) �= ∞ then ρ = ςγA(ω)− ε ≤ γ − ε < γ .
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Let us do an argument by contradiction, assuming that there is no 	-nested trans-
formation A → A′ such that ςA′(ω) > ρ.

Up to performing a suitable 	-nested transformation, the following properties hold:

(a) For any level s such that λs ≤ ρ − sδ there is no new nested transformation with
λ′
s > ρ − sδ. That is, we assume that we have the minimum possible number of

levels s with λs ≤ ρ − sδ.
(b) For any level s, we have that λs �= ρ − sδ. If we have a level s with λs = ρ − sδ,

it is not a dominant level and we can apply Proposition 5.2 to obtain λ′
s > γ − sδ

in contradiction with the minimality given in a).
(c) λ0 > ρ. Recall that η0 = ω0 is γ -final.
The above properties (a), (b) and (c) are still true under any further 	-nested trans-
formation. Let us choose ρ̃ such that ρ < ρ̃ < ς

γ

A(ω) such that for any s with
λs > ρ − sδ we have λs > ρ̃ − sδ. Note that this property is stable under any further
	-nested transformation. In view of the above reductions of the problem, we have the
following properties under any 	-nested transformation A → A′:

(i) λ0 > ρ̃ and λ′
0 > ρ̃.

(ii) For any s such that λs ≥ ρ − sδ, then λs > ρ̃ − sδ and λ′
s > ρ̃ − sδ.

(iii) For any s such that λs ≤ ρ − sδ, then λs < ρ − sδ and λ′
s < ρ − sδ.

Let us consider now the following “Planning Property”:

(P): For any s with λs ≤ ρ − sδ, there is an 	-nested transformation A → A′
such that the transformed Newton Polygon N ′ is an s-planning of N .

If (P) is true, we end as follows. Take ε = ρ̃ − ρ. By Lemma 8.2 we can perform
a (γ̃ , δ, ε)-transformation N ′ of N induced by an 	-nested transformation A → A′.
The transformed polygon N ′ is still in the same situation in view of properties i), ii)
and iii). We repeat indefinitely the operation. This contradicts Lemma 8.3.

Now, let us show that Property (P) holds. Take s such that λs ≤ ρ − sδ, note that
s ≥ 1. For any j ≥ 1 we have that

λs+1 + λs−1 ≤ λs+ j + λs− j ≤ νA(ηs+ j )+ νA(ηs− j ) ≤ νA(ηs+ j )+ νA(ηs− j ).

In particular, for any j ≥ 1 we have that

νA(ηs+ j ∧ dηs− j ) ≥ λs+1 + λs−1, νA(ηs− j ∧ dηs+ j ) ≥ λs+1 + λs−1.

Let us recall that νA(�2s) ≥ 2γ , see Eq. (8), and that

�2s = ηs ∧ dηs + �̃, �̃ =
∑

j �=0

ηs+ j ∧ dηs− j .

Since νA(�̃) ≥ λs+1 + λs−1, we deduce that

νA(ηs ∧ dηs) ≥ 2�, (9)
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where 2� = min{2γ, λs+1 + λs−1}.
Now, let us show that

νA(ηs ∧ dηs) < 2(ρ − sδ). (10)

If the inequality in (10) does not hold, by induction hypothesis, there is a suitable
	-nested transformation such that (A′, ηs) is (ρ − sδ)-final. Recalling that (A′, hs) is
also (ρ− sδ)-final, the level ωs is (ρ− sδ)-final with respect toA′. But we know that
λ′
s < ρ − sδ, in particular it should be a dominant level, contradiction with the fact

that ρ < ςγA(ω).
Then the inequality in (10) holds. We deduce that

2� = λs+1 + λs−1.

Indeed, the other possibility is that 2� = 2γ < λs+1 +λs−1; but in this case, we have

νA(ηs ∧ ηs) < 2(ρ − sδ) < 2γ = 2� < λs+1 + λs−1.

Hence, we have that νA(�2s) = νA(ηs ∧ηs), since νA(�̃) ≥ λs+1 +λs−1. We obtain
the contradiction 2γ ≤ νA(�2s) = νA(ηs ∧ ηs) < 2γ .

In view of (9) and (10), we have that � < ρ − sδ, namely

2� ≤ νA(ηs ∧ dηs) < 2(ρ − sδ).

Moreover, we see that � < γ − sδ, since ρ ≤ γ .
By a new application of the induction hypothesis in view of (9), we can perform

an 	-nested transformation A → A′ such that (A′, ηs) is �-final. Moreover, since
� < ρ− sδ we have that (A′, hs) is also �-final and hence (A′, ωs) is also �-final. We
know that (A, ωs) is not �-final dominant, since otherwise it would be (ρ − sδ)-final
dominant, but we know that ρ < ςγA(ω). We conclude that λ′

s ≥ (λs+1 +λs−1)/2 and
thus N ′ has been obtained by an s-planning of N . ��
Corollary 8.3 (Approximate Preparation) Let us assume that (A, ω) is γ -pseudo pre-
pared. We have the following properties:

• Recessive Preparation: If ςγA(ω) = ∞, there is an 	-nested transformation A →
A′ such that ςA′(ω) > γ . In particular (A′, ω) is γ -prepared.

• Approximate Preparation: Assume that ςγA(ω) �= ∞ and consider ε > 0. There is
an 	-nested transformation A → A′ such that ςA′(ω) > ςγA(ω)− ε.

8.5 Preparation

We complete here the proof of Theorem 27.
Denote ς = ς

γ

A(ω). By Corollary 8.3, we have only to consider the case when
ς �= ∞. Thus, we assume that ς < ∞ and hence ς ≤ γ . By Corollary 8.1, we have
only to show that ςA′(ω) = ς after a suitable 	-nested transformation A → A′.
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We follow an argument by contradiction, assuming that Theorem 27 does not hold
for a given (A, ω). Denote by s0 ≤ s1 the levels corresponding to the vertices of the
dominant critical segment and by [s0, s1] = {s; s0 ≤ s ≤ s1}. There is a positive
μ > 0 such that after a suitable 	-nested transformation, the following holds:

(1) The s0-level ωs0 is divisible by x I , with νA(x I ) = ς − s0δ. That is, we have

ηs0 = x Iη∗
s0 , hs0 = x I h∗

s0 .

(See Proposition 5.3).
(2) For any s-level such that νA(zωs) < ς − sδ and any 	-nested transformation

A → A′, we have that νA′(zωs) < ς − sδ.
(3) For any s-level we have that νA(hs) ≥ ς − sδ. Moreover, if νA(hs) > ς − sδ

then νA(hs) > ς − sδ + μ.
(4) For any s /∈ [s0, s1] such that νA(zωs) ≥ ς − sδ we have νA(zωs) > ς − sδ +μ

and νA′(zωs) > ς − sδ + μ after any further 	-nested transformation A → A′.
(5) For any s ∈ [s0, s1] we have one of the following situations:

(a) νA(zωs) = ς − sδ and this property is stable under any further 	-nested
transformation A → A′. This is the case for s = s0, s = s1 and the (ς − sδ)-
dominant levels with s ∈ [s0, s1].

(b) νA(zωs) < ς − sδ and this property is stable under any further 	-nested
transformation A → A′.

(c) νA(zωs) > ς − sδ + μ and this property is stable under any further 	-nested
transformation A → A′.

Moreover, in view of Corollary 8.3, given ε > 0 we can perform an 	-nested transfor-
mationA → A′ such that νA′(zωs) > ς − sδ− ε for any s and this property is stable
under any further 	-nested transformation A′ → A′′.

Let us note that our contradiction hypothesis states that there is at least one level
ωs such that νA(zωs) < ς − sδ. Let s̃ denote the minimum of the indices s such
that νA(zωs) < ς − sδ. We remark that s̃ ≥ 1 since the level ω0 = η0 is γ -final.
We consider the two main situations s̃ < s0 and s̃ > s0 that we call respectively the
recessive case and the dominant case.

Let us consider the recessive case s̃ < s0. Taking 0 < ε < μ and in view of the
fact that νA(�2s̃) ≥ 2γ , we deduce that

νA(ηs̃ ∧ dηs̃) ≥ 2(ς − s̃δ).

By induction hypothesis we can perform an 	-nested transformation in such a way
that the level s̃ should be (ς − s̃δ)-final. Since s̃ < s0, we obtain νA(ωs̃) > ς − sδ,
this is the desired contradiction.

Now, consider the dominant case s̃ > s0. For any j < s0 we have

νA(ηs̃+s0− j ∧ η j ) > ς̃, νA(hs̃+s0− j dη j ) > ς̃, νA(h jdηs̃+s0− j ) > ς̃,

νA(ηs̃+s0− j ∧ dh j ) > ς̃, νA(η j ∧ dhs̃+s0− j ) > ς̃,
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where ς̃ = 2ς − (s̃ + s0)δ + (μ− ε). Recalling that νA(�s̃+s0) ≥ 2γ , see Equation
(7), we deduce that

νA

⎛

⎝
s̃∑

j=s0

( jη j ∧ ηs̃+s0− j + hs̃+s0− j dη j + ηs̃+s0− j ∧ dh j )

⎞

⎠ > ς̃. (11)

Moreover, for any s0 ≤ j ≤ s̃ we have that νA(h j ) ≥ ς − jδ. Otherwise, by
performing an 	-nested transformation we can obtain that νA(zω j ) > ς − jδ − ε >
νA(h j ), contradicting the definition of the dominant abscissa. Noting that ν(zω j ) ≥
ς − jδ for any j < s̃, we conclude from Eq. (11) that

νA((s̃ − s0)ηs̃ ∧ ηs0 + hs0dηs̃ + ηs̃ ∧ dhs0) ≥ 2ς − (s̃ + s0)δ > 2(ς − s̃δ). (12)

Now, we are going to consider separately the cases where νA(hs0) > ς − s0δ and
νA(hs0) = ς − s0δ.

• Assume first that νA(hs0) > ς − s0δ and hence νA(hs0) > ς − s0δ + μ . In this
case, we have

νA(ηs̃ ∧ ηs0) ≥ 2ς − (s̃ + s0)δ. (13)

Moreover, ηs0 = x Iη∗
s0 where η

∗
s0 is 0-final dominant and νA(x I ) = ς−s0δ. Dividing

by x I in Eq. (13) we obtain

νA(ηs̃ ∧ η∗
s0) ≥ ς − s̃δ.

By Proposition 4.1, there is F ∈ k[[x, y1, y2, . . . , y	]] and η̃s̃ such that

ηs̃ = Fη∗
s0 + η̃s̃; νA(η̃s̃) > ς − s̃δ.

Up to a further 	-nested transformation (that does not affect to this general situation)
we have that F is (ς − s̃δ)-final and hence ηs̃ is also (ς − s̃δ)-final. In particular
νA(ηs̃) ≥ ς , this is the desired contradiction.

• Assume now that νA(hs0) = ς − s0δ. Let us show that after a suitable 	-nested
transformation we can assume that

ηs̃ = θ + η̃, νA(η̃) ≥ ς − s̃δ. (14)

where θ ∧ dθ = 0. This ends the proof as follows. By a suitable new 	-nested trans-
formation the integrable form θ may assumed to be (ς − s̃δ)-final. If νA(θ) < ς − s̃δ
we have that ηs̃ is (ς− s̃δ)-final dominant with νA(ηs̃) < ς− s̃δ. This is not possible.
Then, we necessarily have that νA(θ) ≥ ς − s̃δ and hence νA(ηs̃) ≥ ς − s̃δ. This is
the desired contradiction.
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Now, let us show that we can obtain the decomposition given in Equation (14). We
know that hs0 = h∗

s0x
I , where h∗

s0 ∈ ÔM,P is a unit and ν(x I ) = ς − s0δ. Let us take
α given by

α = (s0 − s̃)ηs0 − dhs0
hs0

= (s0 − s̃)η∗
s0 − dh∗

s0

h∗
s0

− dx I

x I
.

From Eq. (12) we have that

νA(α ∧ ηs̃ + dηs̃) ≥ ς − s̃δ. (15)

After a suitable 	-nested transformation, we have two possibilities:

(a) There is μ′ > 0 such that νA′(α) > μ′ for any further 	-nested trasformation.
(b) α is 0-final dominant.

− Assume that we are in the situation (a), that is νA(α) > μ′ > 0. By performing a
suitable 	-nested transformation associated to ε′ < μ′, we obtain νA(ηs̃) ≥ ς−s̃δ−ε′.
This implies that νA(α ∧ ηs̃) ≥ ς − s̃δ and by Eq. (15) we conclude that νA(dηs̃) ≥
ς − s̃δ. Applying Proposition 4.2, we find that

ηs̃ = θ + η̃, θ = d f + dxλ

xλ
, νA(η̃) ≥ ς − s̃δ.

We see that dθ = 0, in particular θ is integrable.
− Assume now that we are in the situation (b), that is α is 0-final dominant. We

can write α = β + β̃, where β is 0-final dominant with dβ = 0 and β̃ is not 0-
final dominant. To see this, it is enough to take as β the “residual part” of α. By
applying Proposition 5.2, after a suitable 	-nested transformation, we can assume that
νA(β̃) > μ′ > 0.Moreover, we can perform a new 	-nested transformation associated
to 0 < ε′ < μ′ in such a way that νA(ηs̃) ≥ ς − s̃δ − ε′. By Eq. (15) we conclude
that

νA(β ∧ ηs̃ + dηs̃) ≥ ς − s̃δ.

Note that dβηs̃ = β ∧ ηs̃ + dηs̃ By Corollary 4.1 we have that ηs̃ = θ + η̃, where
θ ∧ dθ = 0 and νA(η̃) ≥ ς − s̃δ.

This ends the proof of Preparation Theorem 27.

9 Control by the Critical Height

In this section we end the proof of Theorem 21.We take the assumptions and notations
as in Sect. 6. Thus, we fix 	 ≥ 0, we assume the induction hypothesis, that is, Theorem
21 is true for 1-forms ηwith IA(η) ≤ 	.We consider γ -truncated formal foliated space
(A, ω) with IA(ω) = 	+ 1 and we intend to show the existence of a (	+ 1)-nested
transformation A → B such that (B, ω) is γ -final.
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By Preparation Theorem 27, we start with a strictly γ -prepared (A, ω).
The proof of Theorem 21 follows from the control of the critical value ςA(ω) and

the critical height χA(ω) under a type of (	+ 1)-nested transformations that we call
normalized transformations.

Remark 31 If (A, ω) is strictly γ -prepared, the critical value and critical height deter-
mine the “dominant” ones as follows:

• If ςA(ω) ≤ γ , then ςγA(ω) = ςA(ω) and χγA(ω) = χA(ω).
• If ςA(ω) > γ , then ς

γ

A(ω) = ∞.

9.1 Normalized Transfomations

The normalized transformations are transformations between strictly γ -prepared γ -
truncated formal foliated spaces.

Definition 9.1 Consider a strictly γ -prepared (A, ω), with IA(ω) = 	 + 1. A trans-
formation (A, ω)→ (A�, ω) is said to be
• A normalizedPuiseux’s package, if it is composition of a (	+1)-Puiseux’s package
A → A′, followed by a strict γ -preparation (A′, ω)→ (A�, ω).

• A normalized coordinate change, if it is composition of a (	 + 1)-coordinate
changeA → A′ followed by a strict γ -preparation (A′, ω)→ (A�, ω), where the
ramification index of A is equal to one, or A′ = A.

A normalized transformation is a finite composition of normalized Puiseux’s packages
and normalized coordinate changes.

Remark 32 For any 	-nested transformationA → A� there is a normalized coordinate
change of a degenerate type

(A, ω)→ (A�, ω)

where the (	 + 1)-coordinate change is just the identity A′ = A. In particular, there
is a normalized transformation corresponding to any 0-nested transformation (finite
composition of independent blow-ups).

Remark 33 In Definition 9.1 the truncation value γ is implicit. When we need to
exhibit it, we say that (A, ω)→ (B, ω) is a γ -normalized transformation. This addi-
tional information is necessary in the last section, where we consider non-truncated
situations.

9.2 Control of the Critical Height and Critical Value

Let us state here the results we prove in next subsections, in order to prove Theorem
21. We start with a strictly γ -prepared (A, ω).
Proposition 9.1 Assume that ςA(ω) > γ and let (A, ω)→ (A�, ω) be a normalized
Puiseux’s package. Then (A�, ω) is γ -final.
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Proposition 9.2 Assume that χA(ω) = 0 and let (A, ω) → (A�, ω) be a normalized
Puiseux’s package. Then (A�, ω) is γ -final.
Proposition 9.3 Assume that ςA(ω) ≤ γ and let (A, ω) → (B, ω) be a normalized
transformation. Then either ςB(ω) > γ or χB(ω) ≤ χA(ω).

Once Propositions 9.1, 9.2 and 9.3 are proved, we focus in the strictly γ -prepared
(A, ω) forwhichwe haveςB(ω) ≤ γ andχB(ω) = χA(ω) ≥ 1, under any normalized
transformation (A, ω)→ (B, ω). This justifies next definition
Definition 9.2 Let χ ≥ 1 be an integer number. We say that (A, ω) has the prop-
erty of χ -fixed critical height if ςB(ω) ≤ γ and χB(ω) = χ , for any normalized
transformation (A, ω)→ (B, ω).

Because of the results in Propositions 9.1, 9.2 and 9.3, we see that Theorem 21 is
a consequence of Propositions 9.4 and 9.5 below:

Proposition 9.4 Let us consider an integer number χ ≥ 2. There is no strictly γ -
prepared (A, ω) with the property of χ -fixed critical height.

Proposition 9.5 There is no strictly γ -prepared (A, ω) with the property of 1-fixed
critical height.

When we have ςA� (ω) ≤ γ and χA� (ω) = χA(ω) ≥ 1 under a normalized
Puiseux’s package, we see that (A, ω) satisfies certain resonance conditions r1 or r2.
Condition r1 occurs “at most once” and only when χA(ω) = 1. On the other hand,
condition r2 implies that the ramification index of A is 1. In this way, we we obtain
situations where it is possible to perform Tschirnhausen transformations to “escape”
from a situation of χ -fixed critical height.

9.3 Reduced Part of a Level

We consider here a γ -truncated formal foliated space (A, ω), not necessarily strictly
γ -prepared. The reduced part ω̄As of the s-level ωs of (A, ω) appears in many of our
computations.

Let us recall the definition of the abscissa λA,ω(s) given in Sect. 8.3:

λA,ω(s) = λNA(ω)(s) = min{λ; (λ, s) ∈ NA(ω)}.

Note that λA,ω(s) = ςA(ω) − sν(z), when s corresponds to a level in the critical
segment. If νA(zωs) > λA,ω(s), we write ω̄As = 0. Assume νA(zωs) = λA,ω(s) and
write

ωs = x Iω∗
s + ω̃s, νA(ω̃s) > λA,ω(s), ν(x I ) = λA,ω(s),

where

0 �= ω∗
s =

r∑

i=1

f ∗
is
dxi
xi

+
	∑

j=1

g∗
jsdy j + h∗

s
dz

z
.
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Denote f̄ ∗
is, h̄

∗
s ∈ k the classes modulo the maximal ideal of k[[x, y≤	]]. Write

ω̄∗
s =

r∑

i=1

f̄ ∗
is
dxi
xi

+ h̄∗
s
dz

z
.

The reduced part ω̄As of the level ωs is defined by ω̄As = ω̄∗
s . Let us precise the nature

of ω̄As . If we consider the k-vector space �
1
A defined by

�
1
A = �1

A[log z]
m̂A�1

A[log z] + ∑	
j=1�

0
Ady j

,

then ω̄As ∈ �1
A; wewill not insist on this formalism.Anyway,we have an isomorphism

of k-vector spaces �
1
A → kr+1 such that the image vecAs (ω) of ωAs is the vector

vecAs (ω) =
(
f̄ ∗
1s, f̄

∗
2s, . . . , f̄

∗
rs, h̄

∗
s

)
∈ kr × k.

Remark 34 The level ωs is λA,ω(s)-dominant if and only if ω̄As �= 0 or, equivalently,
if and only if we have vecAs (ω) �= 0.

9.4 Effect of Coordinate Changes

In Proposition 9.6, we describe the effect of a coordinate change on the reduced part
of a level higher or equal than the critical height.

First, let us give some elementary remarks on positively convex polygons N ⊂ R
2≥0

given by a cloud of points inR≥0×Z≥0, se also Sect. 8.3. For any δ > 0, let us denote

ςδ(N ) = min{α + δβ; (α, β) ∈ N } = max{ρ; N ⊂ H+
δ (ρ)}.

The δ-critical vertex is the highest vertex of N such that α + δβ = ςδ(N ) and the
δ-critical height χδ(N ) is the ordinate of the δ-critical vertex.

Remark 35 If N = NA(ω) and δ = ν(z), then we have that ςA(ω) = ςδ(N ) and
χA(ω) = χδ(N ).
Lemma 9.1 Let N , N ′ ⊂ R

2≥0 be two positively convex polygons with vertices in
(R)≥0 × Z≥0. Let us consider δ0 > 0. The following statements are equivalent:

(1) ςδ(N ) = ςδ(N ′) for any δ ≤ δ0.
(2) χδ0(N ) = χδ0(N ′) and λs(N ) = λs(N ′) for any s ≥ χδ0(N ).
Proof It is a standard verification on positively convex polygons. ��
Proposition 9.6 Consider a γ -truncated foliated space (A, ω) and let A → A′ be a
(	+ 1)-coordinate change. Denote δ0 = ν(z), δ′0 = ν(z′). We have δ′0 ≥ δ0 and

ςδ(NA(ω)) = ςδ(NA′(ω)), for any δ ≤ δ0. (16)
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As a consequence, we have

(1) χA′(ω) = χδ′0(NA′(ω)) ≤ χδ0(NA′(ω)) = χA(ω).
(2) ςA′(ω) = ςδ′0(NA′(ω)) ≥ ςδ0(NA′(ω)) = ςδ0(NA(ω)) = ςA(ω).
(3) λA′,ω(s) = λA,ω(s), for any s ≥ χA(ω).
Moreover, we have vecAs (ω) = vecA′

s (ω), for any s ≥ χA(ω).
Proof Let us recall that z′ = z+ f , where νA( f ) ≥ ν(z) = δ0 and f ∈ k[[x, y]]∩OA.
In particular, we have ν( f ) ≥ νA( f ) ≥ ν(z) and thus ν(z′) ≥ ν(z). Let us also recall
that νA = νA′ .

Note that ω0 = η0 and

ztωt = (z′ − f )t−1
(
z′

(
ηt + ht

dz′

z′

)
− (

f ηt + htd f
))
, t ≥ 1.

Ifwewrite the level decomposition of (A′, ω) asω = ∑
s≥0 z

′sω′
s ,ω

′
s = η′

s+h′
sdz

′/z′,
we obtain formulas for ηs , hs , η′

s and h′
s as follows:

η′
s = ∑

t≥s c
t−1
s−1(− f )t−sηt − ∑

t−1≥s c
t−1
s (− f )t−s−1( f ηt + htd f ).

h′
s = ∑

t≥s c
t−1
s−1(− f )t−sht .

(17)

ηs = ∑
t≥s c

t−1
s−1 f

t−sη′
t − ∑

t−1≥s c
t−1
s f t−s−1( f η′

t + h′
t d f ).

hs = ∑
t≥s c

t−1
s−1 f

t−sh′
t .

(18)

where cab are the binomial coefficients.
Let us take δ ≤ δ0 = ν(z). In order to prove Eq. (16), let us first show that

ςδ(NA′(ω)) ≥ ςδ(NA(ω)). Taking into account Eq. (17) and the fact that νA( f ) =
νA(d f ) ≥ δ0, we have

sδ + νA′(η′
s) ≥ min

t≥s
{sδ + (t − s)δ0 + min{νA(ηt ), νA(ht )}}

≥ min
t≥s

{tδ + min{νA(ηt ), νA(ht )}},

and in the same way we have sδ + νA′(h′
s) ≥ mint≥s{tδ + νA(ht )}. Thus we get

min{sδ + νA′(η′
s), sδ + νA′(h′

s)} ≥ min
t≥s

{tδ + min{νA(ηt ), νA(ht )}}.

Now, we have

ςδ(NA′(ω)) = min
s

{sδ + min{νA′(η′
s), νA′(h′

s)}}
= min

s
{min{sδ + νA′(η′

s), sδ + νA′(h′
s)}}

≥ min
s

{min
t≥s

{tδ + min{νA(ηt ), νA(ht )}}}
= min

s
{sδ + min{νA(ηs), νA(hs)}} = ςδ(NA(ω)).
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By considering Eq. (18) we obtain in the same way that

ςδ(NA(ω)) ≥ ςδ(NA′(ω))

and then we have ςδ(NA(ω)) = ςδ(NA′(ω)). This proves Eq. (16). Properties (1), (2)
and (3) follow from Lemma 9.1.

Now, take s ≥ χA(ω) and let us show that vecAs (ω) = vecA′
s (ω). Let us denote

λt = λA,t (ω) = λA′,t (ω) for any t ≥ s. Let us take the following expressions for
t ≥ s:

(1) If νA(ηt , ht ) = λt , we denote

(ηt , ht ) = x It (η∗
t , h

∗
t )+ (η̃t , h̃t ),

where νA(η̃t , h̃t ) > λt and νA(x It ) = λt .
(2) If νA(ηt , ht ) > λt , we write (ηt , ht ) = (η̃t , h̃t ).
(3) If νA( f ) = ν(z), (recall that ν(z) = δ0) we write f = x J f ∗ + f̃ , where νA( f̃ ) >
ν(z) and ν(x J ) = δ0. (Let us note that, in this situation, the only possibility is that
the ramification index of A is one and the rational contact function is � = z/x p,
with p = J ).

(4) If νA f > δ0, we write f = f̃ .

Let us note that for t > s we have that λs − λt < (t − s)δ0. By Eq. (17), we conclude
that

η′
s = x Isη∗

s + η̃′
s, h′

s = x Is h∗
s + h̃′

s, νA′(η̃′
s), νA′(h̃′

s) > λs .

This shows that ω̄As = ω̄A′
s , for any s ≥ χ . We also get that vecAs (ω) = vecA′

s (ω),

since �
1
A = �1

A′ and the k-isomorphisms �
1
A → kr+1 and �

1
A′ → kr+1 coincide. ��

Next result proves Proposition 9.3 in the case of a normalized coordinate change:

Corollary 9.1 Assume that (A, ω) is strictly γ -prepared with ςA(ω) ≤ γ and that
(A, ω)→ (A�, ω) is a normalized coordinate change. If ςA� (ω) ≤ γ we have

ςA(ω) ≤ ςA� (ω), χA(ω) ≥ χA� (ω).

Proof Let A → A′ be the (	 + 1)-coordinate change that we follow by a strict γ -
preparation (A′, ω) → (A�, ω). In view of Proposition 9.6 and by Remark 34, the
critical vertex

(ςA(ω)− ν(z)χA(ω), χA(ω))

of (A, ω) is also a dominant vertex of NA′(ω). Since ν(z′) ≥ ν(z), this vertex is
preserved under the strict γ -preparation, and it is higher or equal than the new critical
height. ��
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9.5 The Critical Height Under a Puiseux’s Package

Let us take a strictly γ -prepared (A, ω) and consider a normalized Puiseux’s package

(A, ω)→ (A�, ω).

We recall that it is composed of an (	 + 1)-Puiseux’s package A → A′ followed by
a strict γ -preparation (A′, ω)→ (A�, ω).

Let us denote by� = zd/x p the contact rational function for the Puiseux’s package,
where the number “d” is the ramification index of the Puiseux’s package. We recall
that ν(�) = 0 and that � = z′ + λ, where 0 �= λ ∈ k is uniquely determined.

Let us recall the level decomposition ω = ∑
s z

sωs given in Eq. (6).

Proposition 9.7 We have νA� (ω) ≥ νA′(ω) ≥ ςA(ω).
Proof The stability results under a γ -strict preparation show that νA� (ω) ≥ νA′(ω).
To see that νA′(ω) ≥ ςA(ω) is enough to show that

νA′(zsωs) ≥ sν(z)+ min{νA(ηs), νA(hs)}.

Moreover, ν(z) = νA′(z), since z = U ′x′ I where U ′ is a unit in OA′ . Then, we have
only to see that νA′(ωs) ≥ min{νA(ηs), νA(hs)}. Let us note that

ωs = ηs + hs
dz

z
= ηs + hs

(
dx′ I

x′ I + dU ′

U ′

)
∈ �1

A′ .

Then νA′(ωs) ≥ min{νA′(ηs), νA′(hs)}. By Proposition 5.1 we have νA′(ηs) ≥
νA(ηs) and νA′(hs) ≥ νA(hs). This ends the proof. ��
Remark 36 We obtain Proposition 9.1 as a consequence of Proposition 9.7, just by
noting that νA′(ω′) ≥ ςA(ω) > γ .
Let us consider a number ρ smaller than or equal to the main abscissa νA(ω). We
define the ρ-dominant main height �

ρ

A(ω) by

�
ρ

A(ω) = min{s; νA(zωs) = ρ and ω̄As �= 0}.

In the rest of this subsection, we put ς = ςA(ω) and we assume that ς ≤ γ .
Lemma 9.2 We have either ςA� (ω) > γ or χA� (ω) ≤ �

ς

A′(ω).

Proof Let us note that ς ≤ νA′(ω) in view of Proposition 9.7. Then �
ς

A′(ω) makes
sense. Assume that ςA� (ω) ≤ γ and put �

′ = �
ς

A′(ω), that we suppose �
′ < ∞. In

particular, we have that ς = νA′(ω) is the main abscissa of NA(ω). We have two
possible situations:
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(a) ς > γ − �
′ν(z′). The main abscissa of NA′(ω) is ς and (ς, �′) ∈ NA′(ω). In

the process of γ -dominant preparation, see Sect. 7.1 and Proposition 7.1, we have
only to consider levels strictly under �. Since we assume that ςA� (ω) ≤ γ , the
critical vertex of (A�, ω) corresponds to one of that levels. Then χA� (ω) < �

′.
(b) ς ≤ γ − �

′ν(z′). In this case, the point (ς, �′) of the Newton Puiseux’s polygon
is persistent under the process of strict preparation A′ → A� as well as the main
abscissa ς . Then χA� (ω) ≤ �

′.

This ends the proof. ��
Remark 37 In the above proof, the only possibility to have χA� (ω) = �

′ is that (ς, �′)
is both the main and the critical vertex of NA� (ω).

Lemma 9.3 We have �
ς

A′(ω) ≤ χA(ω).
Remark 38 We obtain Proposition 9.3 for the case of a normalized Puiseux’s package
as a corollary of Lemmas 9.3 and 9.2. We also obtain Proposition 9.2, as follows: the
fact that �

ς

A′(ω) = 0 implies that ς is the main abscissa and (ς, 0) is the main vertex
that corresponds to a ς -final level. In view of Proposition 6.1 we have that (A′, ω) is
γ -final and thus (A�, ω) also is γ -final.
Let us start the proof of Lemma 9.3.

Denote δ = ν(z) and �
′ = �

ς

A′(ω). Let s0 and χ , with s0 ≤ χ be the ordinates
of the vertices of the dominant critical segment CA(ω). We recall that χ = χA(ω) is
the critical height of (A, ω). The case χ = 0 is straighforward and we leave it to the
reader. Thus we assume χ ≥ 1.

The proof follows from Lemmas 9.4, 9.5, 9.6, 9.7 and Proposition 9.8 below.

Lemma 9.4 For any decomposition ω = ω∗ + ω̃ where ςA(ω̃) > ς , we have

�
′ = �

ς

A′(ω) = �
ς

A′(ω∗).

Proof It is enough to remark that νA′(ω̃) > ς in view of Proposition 9.7. ��
Since (A, ω) is strictly γ -prepared, we can decomposeω = ω∗+ω̃where ςA(ω̃) >

ς and ω∗ may be expressed as follows

ω∗ =
χ∑

s=s0

zsx Isω∗
s , ω∗

s = η∗
s + h∗

s dz/z, η∗
s =

r∑

i=1

f ∗
s,i dxi/xi +

	∑

j=1

g∗
s, j dy j ,

with f ∗
s,i , g

∗
s, j , h

∗
s ∈ k[[ y�]] and the following properties hold:

(1) ω∗
s0 �= 0 �= ω∗

χ .
(2) If ω∗

s �= 0, then ν(x Is ) = ς − sδ.
(3) Each ω∗

s with ω
∗
s �= 0 is 0-final with respect to A and more precisely we have:

(a) If η∗
s �= 0 there is a unit among the coefficients f ∗

i,s , for i = 1, 2, . . . , r .
(b) If h∗

s �= 0 then h∗
s is a unit in k[[ y	]].
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Let us denote μs = h∗
s (0), the class of h

∗
s modulo the maximal ideal. In the same way,

we denote λs,i = f ∗
s,i (0). Now, we decompose ω∗

s = ω̄∗
s + ω̃∗

s , where

ω̄∗
s = dxλs

xλs
+ μs

dz

z
= ω̄As , λs = (λs,1, λs,2, . . . , λs,r ). (19)

We have that ω∗
s �= 0 if and only if ω̄∗

s �= 0. Note that ω̃∗
s is not 0-final dominant and

we can write it as

ω̃∗
s =

	∑

j=1

y j

(
r∑

i=1

f ∗
s,i, j

dxi
xi

+ h∗
s, j

dz

z

)
+ g∗

s, j dy j =
	∑

j=1

(
y jω

∗
s, j + g∗

s, j dy j
)
.

(20)

Let us write ω̄∗ = ∑χ
s=s0 z

sx Is ω̄∗
s and ω̃

∗ = ∑χ
s=s0 z

sx Is ω̃∗
s . Hence ω

∗ = ω̄∗ + ω̃∗.

Definition 9.3 We call ω̄∗ the reduced critical part of ω with respect to A.

Lemma 9.5 We have �
ς

A′(ω∗) = �
ς

A′(ω̄∗).

Proof By Eq. (20) and since νA′(ω̃∗) ≥ ς , we deduce that �ςA′(ω̃∗) = ∞. Noting that
ω∗ = ω̄∗ + ω̃∗, we conclude that �

ς

A′(ω∗) = �
ς

A′(ω̄∗). ��
By Lemmas 9.4 and 9.5 we have �

ς

A′(ω) = �
ς

A′(ω̄∗). Now, we are going to compute
�
ς

A′(ω̄∗). Recall that the rational contact function is given by � = zd/x p.

Lemma 9.6 We have ω̄∗ = zs0x Is0 ᾱ, ν(zs0 x Is0 ) = ς , where

ᾱ =
m1∑

m=0

�mω̄∗
s(m) ∈ �1

A′ ,

with s(m) = md + s0.

Proof For any index s such that ω̄∗
s �= 0, we have ν(zsx Is ) = ν(zs0 x Is0 ) = ς . This

implies that ν(zs−s0 x Is−Is0 ) = 0. Then, there is m(s) ∈ Z≥0 such that

zs−s0 x Is−Is0 = �m(s) = (
zd x− p)m(s).

That is s − s0 = m(s)d and Is − Is0 = −m(s) p. In particular m1d = χ − s0 and
Iχ − Is0 = −m1 p, where m1 = m(χ). Then, we can write ω̄∗ as

ω̄∗ = zs0x Is0

m1∑

m=0

�mω̄∗
s(m) = zs0x Is0

m1∑

m=0

�mω̄∗
s(m), s(m) = md + s0.

Denote ᾱ = ∑m1
m=0�

mω̄∗
s(m) ∈ �1

A′ .We have ω̄∗ = zs0x Is0 ᾱ. ��
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Remark 39 We have that �
ς

A′(ω̄∗) = �
0
A′(ᾱ), since in view of Eq. (3), there is q ∈ Z

and I ′ ∈ Z
r≥0 with ν(x′ I ′

) = ς such that ω̄∗ = (z′ + λ)q x′ I ′
ᾱ. Thus, in order to

compute �
ς (ω̄∗) it is enough to compute �

0
A′(ᾱ).

Let us introduce the k-vector subspace VA′ of �1
A′ whose elements are the 1-forms

β ∈ �1
A′ written as

β = dx′τ ′

x′τ ′ + ξ ′ d�
�
, τ ′ ∈ kr , ξ ′ ∈ k. (21)

Let us recall that � = z′ − λ and then k[�] ⊂ OA′ is isomorphic to a polynomial
ring in one variable over k. Consider the k[�]-submodule VA′ [�] ⊂ �1

A′ given by
the finite sums θ = ∑

i≥0�
iβi , where βi ∈ VA′ . Note that if θ ′ = ∑

i≥0�
iβ ′

i , we
have that θ = θ ′ if and only if βi = β ′

i for all i ≥ 0. Let us remark that any element
θ ∈ VA′ [�] may be written in a unique way as a finite sum

θ =
∑

i≥0

(�− λ)i β̃i , β̃i ∈ VA′ .

Next lemma provides a way to compute �
0
A′(θ) for any θ ∈ VA′ [�].

Lemma 9.7 Let us consider θ ∈ VA′ [�] written as

θ = (�− λ)a
b∑

i=0

(�− λ)iβi , 0 �= β0 = dx′τ ′

x′τ ′ + ξ ′ d�
�
.

We have

• If τ ′ �= 0, then �
0
A′(θ) = a.

• If τ ′ = 0, then �
0
A′(θ) = a + 1.

Proof It is enough to recall that �− λ = z′. ��
Lemma 9.8 We have ᾱ ∈ VA′ [�].
Proof It is enough to show that ω̄∗

s ∈ VA′ , for any s0 ≤ s ≤ χ . Write ω̄∗
s as in Eq.

(19). Recalling the matrix C in Eq. (5), we have

ω̄∗
s = dxλs

xλs
+ μs

dz

z
= dx′λ′

s

x′λ′
s

+ μ′
s
d�

�
∈ VA′ ,

where (λ′
s, μ

′
s) = (λs, μs)C . ��

Proposition 9.8 We have �
0
A′(ᾱ) ≤ χ . Moreover, if �

0
A′(ᾱ) = χ one of the following

two conditions “r1” or “r2” holds:
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r1: χ = 1, d ≥ 2, s0 = 1 and ᾱ = ξ ′d�/�, where ξ ′ ∈ k, ξ ′ �= 0.
r2: d = 1 and ᾱ has one of the forms:

r2-i: s0 = 0, ᾱ = (�− λ)χ (dxτ/xτ ).
r2-ii: s0 = 1, ᾱ = (�− λ)χ−1ξ ′d�/�, ξ ′ �= 0.
r2-iii: s0 = 0, ᾱ = (�− λ)χ (

(dxυ/xυ)+ (ξ ′/λ)(d(�− λ)/(�− λ))), ξ ′ �= 0.

Here “d” stands for the ramification index of the Puiseux’s package.

Proof Denote �
′ = �

0
A′(ᾱ) and let us write

ᾱ =
m1∑

m=0

�mω̄∗
s(m) = (�− λ)a

m1−a∑

i=0

(�− λ)iβi , (22)

where βi ∈ VA′ and 0 �= β0 = (dx′τ ′
/x′τ ′

) + ξ ′d�/�. Note that a ≤ m1. In view
of Lemma 9.7, there are two possibilities: �

′ = a and hence τ ′ �= 0 or �
′ = a + 1 and

hence τ ′ = 0.
(A) Case: �

′ = a. We have τ ′ �= 0. Recall that dm1 = χ − s0 and hence m1 ≤ χ .
Since a ≤ m1, we obtain that a = �

′ ≤ m1 ≤ χ . In this case we have that

�
′ = χ ⇔ a = m1 and m1 = χ ⇔ a = m1, d = 1 and s0 = 0.

This is equivalent to ᾱ = (� − λ)χβ0 and τ ′ �= 0. Moreover, since s0 = 0 we have
that s(0) = 0 and thus

ω̄∗
0 = ω̄∗

s(0) = (−λ)χβ0.

Recall that μ0 = 0 since ω̄ ∈ �A. Then, we have

dxλ0

xλ0
= dxλ′

0

xλ′
0

+ μ′
0
d�

�
= ω̄∗

0 = (−λ)χβ0.

Since d = 1, by Eq. (4), we have

C =
(
C0 0
p̃ 1

)
, p̃ = pC0, , (λ′

0, μ
′
0) = (λ0, μ0)C . (23)

and then μ′
0 = μ0 = 0. Thus, in this case A) we have that �′ = χ if and only if d = 1,

s0 = 0 and

ᾱ = (�− λ)χ
(
dx′τ ′

/x′τ ′)
.

Noting that dx′τ ′
/x′τ ′ = dxτ /xτ for τ = τ ′C−1

0 we have ᾱ = (�− λ)χ (dxτ /xτ ),
hence condition r2-i is satisfied.
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(B) Case: �
′ = a + 1. We have τ ′ = 0. Let us show first that �

′ ≤ χ . If m1 < χ

or a < m1 = χ we are done, since then a + 1 ≤ χ . The only remaining case is
a = m1 = χ , let us show that this situation leads to a contradiction andhence it does not
occur. Sincem1 = χ , we have s0 = 0 and d = 1. We have that s(m) = dm + s0 = m,
thus

ᾱ =
χ∑

m=0

�mω̄∗
s(m) = (�− λ)χβ0, (−λ)χβ0 = ω̄∗

0 .

Write

(−λ)χβ0 = ω̄∗
0 = dxλ0

xλ0
+ μ0

dz

z
= dx′λ′

0

x′λ′
0

+ μ′
0
d�

�
, (λ′

0, μ
′
0) = (λ0, μ0)C .

We know that λ′
0 = (−λ)χτ ′ = 0 and (−λ)χξ ′ = μ′

0 �= 0. On the other hand, note
that ω ∈ �1

A and hence h0 = 0. This implies that μ0 = 0. Now, since d = 1, we have
C as in by Eq. (23), and then μ′

0 = μ0 = 0. This is a contradiction.
Let us now characterize the situations when a + 1 = χ . We have two possibilities,

either a = m1 = χ − 1 or a + 1 = m1 = χ .
•Assumefirst that a = m1 = χ−1. Sincem1d = χ−s0 we haveχ(d−1) = d−s0.

If d = 1 we have s0 = 1 hence

ᾱ = (�− λ)χ−1ξ ′d�/�.

We obtain r2-ii. Let us consider now the case d ≥ 2. We have χ = (d − s0)/(d − 1),
hence s0 ≤ 1. If s0 = 1 we obtain χ = 1 and m1 = 0. We have

ᾱ = ω̄∗
1 = β0 = ξ ′d�/� ,

and this corresponds with property r1. In the case s0 = 0 we must have χ = d = 2
and m1 = 1. From Eq. (22) we obtain

ᾱ = φω∗
2 + ω∗

0 = (φ − λ)β0 , β0 = dx′τ ′

x′τ ′ + ξ dφ
φ
.

Write

ω∗
0 = dxλ0

xλ0
+ μ0

dz

z
= dx′λ′

0

x′λ′
0

+ μ′
0
d�

�
, (λ′

0, μ
′
0) = (λ0, μ0)C .

We know that μ0 = 0 so λ′
0 = λ0C0. On the other hand, we have that ω∗

0 = −λβ0
and hence

λ0C0 = −λτ ′ .
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Since β0 �= 0 we have ω∗
0 �= 0. Then μ0 = 0 implies λ0 �= 0. Since C0 is invertible,

we have that τ ′ �= 0. In this situation Lemma 9.7 assures that �
′ = a = χ − 1 < χ .

• Assume now that a + 1 = m1 = χ . Since m1 = χ , we have that s0 = 0 and
d = 1. We can write

ᾱ =
χ∑

m=0

�mω̄∗
s(m) = (�− λ)χ−1 ((φ − λ)β1 + β0) .

ByLemma 9.7we know that β0 = ξ ′d�/�. On the other hand, we have ω̄∗
0 = ω̄∗

s(0) =
(−λ)χ−1(β0 − λβ1). Let us write

β1 = dx′υ ′

x′υ ′ + ξ1 d�
�
, β0 − λβ1 = dx′−λυ ′

x′−λυ ′ + (ξ ′ − λξ1)d�
�
.

Recalling that d = 1 and μ0 = 0, we get that ξ ′ − λξ1 = μ′
0 = 0, see Eq. (23). Then,

we have that

(�− λ)β1 + β0 = (�− λ)dx
υ ′

xυ ′ + ξ
′

λ
�
d�

�
= (�− λ)

(
dxυ ′

xυ ′ + ξ
′

λ

d(�− λ)
�− λ

)
.

Let us denote υ = υ ′C−1
0 , see Equation (23). Then, we have that

ᾱ = (�− λ)χ (
(dxυ/xυ)+ (ξ ′/λ)(d(�− λ)/(�− λ)))

and we obtain condition r2-iii. ��
The proof of Lemma 9.3 is ended.
Let us complete the proof of Proposition 9.3. By Corollary 9.1 we know that Propo-

sition 9.3 is true for a normalized coordinate change. By Remark 38 we know that it is
true for a normalized Puiseux’s package.We deduce the result for a general normalized
transformation (A, ω)→ (B, ω), by noting that we always have that ςB(ω) ≥ ςA(ω).

9.6 Resonances

Conditions “r1” and “r2” in Proposition 9.8 are the properties that may produce a
stabilization of the critical height. Here we present them in terms of the reduced
critical part ω̄∗ and we describe their behaviour under normalized transformations.

Definition 9.4 Let (A, ω)be strictlyγ -preparedwithςγA(ω) ≤ γ . Consider the (	+1)-
rational contact function� = zd/xq ofA and let λ be the only scalar 0 �= λ ∈ k such
that ν(� − λ) > 0. Denote by χ the critical height χ = χA(ω) and assume χ ≥ 1.
Let ω̄∗ be the reduced critical part of (A, ω).
• We say that (A, ω) satisfies the resonant property r1 if and only if d ≥ 2, χ = 1
and ω̄∗ = ξ x I zd�/�, with ξ ∈ k, ξ �= 0 and I ∈ Z

r≥0.
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• We say that (A, ω) satisfies the resonant property r2 if and only if d = 1 and
there are ξ �= 0, I ∈ Z

r , 0 �= τ ∈ C
r and υ ∈ C

r such that one of the following
expressions holds:

– r2a ω̄∗ = x I (�− λ)χdxτ/xτ .
– r2b-υ ω̄∗ = ξ x I (�− λ)χ (dxυ/xυ + d(�− λ)/(�− λ)) .

Remark 40 Condition r2b-0 is equivalent to

ω̄∗ = ξ x I− pz(�− λ)χ−1 d�

�
, � = z/x p.

In a general way, condition r2b-υ is equivalent to

ω̄∗ = ξ x I−χ p(z − λx p)χ
(
dxυ− p

xυ− p + d(z − λx p)

(z − λx p)

)
, � = z/x p. (24)

Note that any ω̄∗ ∈ �1
A written as in Eq. (24) with I ∈ Z

r satisfies automatically that
I − χ p ∈ Z

r≥0, since the coefficient of dz is ξ x
I−χ p(z − λx p)χ−1.

We also have that r2b-υ is equivalent to

ω̄∗ = ξ x I−χ p(z − λx p)χ−1
(
z

(
dxυ− p

xυ− p + dz

z

)
− λx p dx

υ

xυ

)
, � = z/x p.

(25)

The reader can verify that conditions r1, respectively r2, coincide with the conditions
r1, respectively r2, stated in Proposition 9.8 in terms of ᾱ.

Remark 41 Let us write ω̄∗ = ∑χ
s=0 z

sω̄∗
s . Under the resonance conditions, the

reduced critical level ω̄∗
χ is obtained as follows:

r1 : ω̄∗
χ = ω̄∗

1 = ξ x I d�

�
= ξ x I

(
dzd

zd
− dx p

x p

)
, d ≥ 2. (26)

r2a : ω̄∗
χ = x I−χ p dx

τ

xτ
(27)

r2b-υ : ω̄∗
χ = ξ x I−χ p

(
dxυ− p

xυ− p + dz

z

)
(28)

There is an essential difference between the resonance conditions r1 and r2. In the
case of r1, the ramification index is d ≥ 2 and in the case of r2, we have d = 1.
On the other hand, the “bad resonance” r1 only occurs when χ = 1. In Propositions
9.9 and 9.10, we describe the possible transitions between the two types of resonance
when χ = 1. Roughtly speaking, the resonance r1 occurs “at most once” during our
local uniformization procedure.

Definition 9.5 We say that υ ∈ Q
r is A-negative if and only if ν(xυ) < 0.
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Proposition 9.9 Let (A, ω) be strictly γ -prepared with χ = χA(ω) = 1 and let
(A, ω)→ (A�, ω) be a normalized coordinate change. Assume that χA� (ω) = 1 and
(A�, ω) is resonant. We have
(1) (A, ω) satisfies r2a if and only if (A�, ω) satisfies r2a.
(2) If (A, ω) satisfies r2b-υ, where υ is notA-negative, then (A�, ω) satisfies r2b-υ�,

with υ� being also not A�-negative.
(3) If (A, ω) satisfies r2b-υ, where υ is not A-negative and υ �= 0, then (A�, ω)

satisfies r2b-υ�, with υ� �= 0.

Proof Recall that the coordinate change is given by z′ = z + f , where we have
f ∈ k[[x, y≤	]] ∩OA and νA( f ) ≥ ν(z). In this situation, we have that ω̄A1 and ω̄A′

1
have the same coefficients. More precisely

ω̄A1 = dxτ

xτ
+ ξ dz

z
, ω̄A′

1 = dxτ

xτ
+ ξ dz

′

z′
, ω̄A�1 = dx�τ

�

x�τ
� + ξ dz

′

z′
,

with τ � = τ A, where A is a matrix of non-negative integer coefficients such that
det A = 1, given by the property that ν(xμ) = ν(x�μA).

In view of Eqs. (26), (27) and (28) we conclude that Statement (1) is true and it
corresponds to the case ξ = 0.

Assume now that (A, ω) satisfies r2b-υ. In particular the ramification index is one
and � = z/x p. Since ξ �= 0, we deduce that (A�, ω) satisfies either r1 or r2b-υ�.
We have

υ − p = τ/ξ, υA − pA = τ �/ξ.

Write f = x p(μ+ f̃ ∗)+ f̃ , where μ ∈ k, νA( f̃ ) > ν(z) = ν(x p) and f̃ ∗ is in the
maximal ideal of �0

A. If μ �= λ, we have that ν(z′) = ν(z) and �′ = z′/x p. After a

strict γ -preparation the new ramification index is still one and we have�� = z′/x� p�

,
where p� = pA. We obtain the resonance condition r2b-υ�, where υ� = υA. Note
that υ� is not A�-negative, otherwise we would have

0 > ν
(
x�υ

�
)

= ν(xυ)

and υ should be A-negative, moreover if υ �= 0 we have 0 �= υ� = υA. This proves
Statements (2) and (3) in this case.

Assume now that μ = λ and hence ν(z′) > ν(z). Write the new rational contact
function as �� = z′d

�

/x� p
�

. If (A�, ω) satisfies r1, then d� ≥ 2. By Eq. (26), we
necessarily have that

− p� = d�τ �/ξ = d�(υA − pA).



18 Page 54 of 74 F. Cano , M. Fernández-Duque

This implies that υA = pA − ( p�/d�). Taking values, we obtain that

ν(xυ) = ν
(
x�υA

)
= ν

(
x� pA

)
− ν

(
x� p

�/d�
)

= ν(x p)− ν(z′) = ν(z)− ν(z′) < 0.

Thusυ should beA-negative. Sinceυ is notA-negative, we necessarily have condition
r2b-υ� for (A�, ω), in particular d� = 1. In order to prove Statements (2) and (3), we
have only to show that υ� �= 0 and υ� is not A�-negative. From Equation (28), we
deduce that υ� = τ �/ξ + p� = υA − pA + p� and hence

υA = υ� + pA − p�.

We have that υ ∈ Q
r if and only if υ� ∈ Q

r . In this case , taking values we have

ν
(
xυ

) = ν
(
x�υA

)
= ν

(
x�υ

�
)

+ ν(x p) − ν
(
x� p

�
)

= ν
(
x�υ

�
)

+ ν(z)− ν(z′).

That is, we have ν(xυ)−ν(x�υ� ) = ν(z)−ν(z′) < 0. If υ� isA�-negative or υ� = 0,
then υ isA-negative; hence υ� �= 0 and it is notA�-negative. We have Statements (2)
and (3). ��
Remark 42 In the situation of Proposition 9.9, note that if (A�, ω) satisfies r2a, then
also (A, ω) satisfies r2a. In particular, If (A, ω) satisfies r2b-υ it is not possible that
(A�, ω)would satisfy r2a, hence it satisfies r2-υ∗ or r1, this last possibility case only
occurs when υ is A-negative.

Proposition 9.10 Let (A, ω) be strictly γ -prepared with χA(ω) = 1. Consider a
normalized Puiseux’s package (A, ω)→ (A�, ω) and assume that (A�, ω) is resonant
with χA� (ω) = 1. We have

(1) If (A, ω) satisfies r2a, then (A�, ω) satisfies r2a.
(2) If (A, ω) satisfies r2b-υ, then (A�, ω) does not satisfy r2a.
(3) If (A, ω) satisfies r2b-υ and υ is not A-negative, then (A�, ω) satisfies r2b-υ�,

where υ� �= 0 is not A�-negative.
(4) If (A, ω) satisfies r1, then (A�, ω) satisfies r2b-υ�, where υ� �= 0 is not A�-

negative.

As a consequence, if (A�, ω) satisfies the resonance condition r1, then we necessarily
have that (A, ω) satisfies r2b-υ where υ is A-negative.

Proof With our hypothesis, the reduced 1-level ω̄A�1 is obtained only from ω̄A1 . More
precisely, we know that

ω̄A1 = dxτ

xτ
+ ξ dz

z
, ω̄A′

1 = dx′τ ′

x′τ ′ + ξ ′ dz′

z′
, ω̄A�1 = dx�τ

�

x�τ
� + ξ� dz

′

z′
,

where the following holds:
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(a) (τ ′, ξ ′) = (τ , ξ)C , where C is the matrix that appears in Eq. (3).
(b) (τ �, ξ�) = (τ ′A, ξ ′), where A is a matrix with nonnegative integer coefficients

and det A = 1.

Assume first that (A, ω) satisfies r2. Then the ramification index d of A is one.
Hence, the rational contact function is� = z/x p and the matrix C has the form given
in Eq. (4)

C =
(
C0 0
p̃ 1

)
, p̃ = pC0, C−1 =

(
C−1
0 0

− p 1

)
. (29)

In particular, we have ξ� = ξ ′ = ξ . Put C�0 = C0A. Let us recall that

ν(xμ) = ν(x′μC0) = ν(x�μC�0 ).

• If (A, ω) satisfies r2a, then ξ = ξ ′ = ξ� = 0. Then (A�, ω) satisfies r2a. This
proves Statement (1).

• If (A, ω) satisfies r2b, then ξ = ξ ′ = ξ� �= 0. Hence (A�, ω) does not satisfy
r2a. This proves Statement (2).

• Let us prove Statement (3). We assume that (A, ω) satisfies r2b-υ, where υ is not
A-negative. We know that ξ = ξ� �= 0 and that (A�, ω) does not satisfy r2a nor r1,
hence it satisfies r2b-υ�. Let us show that υ� �= 0 and it is notA�-negative, this proves
(2). Assume that υ� is A�-negative or υ� = 0. Let us note that υ� − p� = τ �/ξ�, on
the other hand, we have

τ �/ξ� = τ �/ξ = (τ + ξ p)C�0/ξ = (τ/ξ + p)C�0 = υC�0 .

Then we have υ� − p� = υC�0. We conclude that υ ∈ Q
r , moreover, taking values,

we have that

0 ≥ ν(x�υ� ) = ν(x�υC�0 )+ ν(x� p� ) = ν(xυ)+ ν(z′) > ν(xυ).

Then υ should be A-negative. This shows Statement (2).

• It remains to prove Statement (4). We assume that (A, ω) satisfies r1. Hence the
ramification index is d ≥ 2 and � = zd/x p. By Eq. (26), we have

τ/ξ = − p/d.

The matrix C has not the form in Eq. (29). Anyway, we have that

(τ ′, ξ ′) = (ξ/d)(− p, d)C = (ξ/d)(0, 1).

This implies that ξ� = ξ ′ �= 0 and τ ′ = 0, thus τ� = τ ′A = 0. In particular we
have neither r1 nor r2a. We get the resonance condition r2b-υ�, with υ� = p� and
ν(z′) = ν(x p� ) > 0. Thus υ� is not A�-negative and υ� �= 0. ��
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9.7 Never Ramified Cases and Horizontal Functions

Some of the results in this subsection may be considered as a truncated version of
ClassicalZariski’sLocalUniformization [31] for the case of formal functions, although
we add the property of respecting the normalized transformations used for the case of
foliations.

Definition 9.6 Consider (A, ω) with the property of χ -fixed critical height. We say
that (A, ω) isnever ramified if and only if for any normalized transformation (A, ω) →
(B, ω) the (	+ 1)-ramification index of B is equal to one.

In next subsections we will reduce our study to never ramified cases.
Let us define the horizontal coefficient HA,ω as follows. Write ω in A as

ω = η + hdz, η =
r∑

i=1

fi
dxi
xi

+
	∑

j=1

g jdy j .

Let HA,ω denote the coefficient h = ω(∂/∂z).
One important feature of never ramified situations is that the HA,ω is stable in the

following sense:

Lemma 9.9 Consider (A, ω) with the property of χ -fixed critical height and never
ramified. We have:

(1) If (A, ω)→ (B, ω) is a normalized coordinate change, then HB,ω = HA,ω.
(2) If (A, ω) → (B, ω) is a normalized Puiseux’s package and � = z/x p is the

contact rational function in A, then HB,ω = x pHA,ω.

Proof The cases of a coordinate change or a γ -strict preparation are straighforward
and left to the reader. If we consider a normalized Puiseux package, we necessarily
have that resonant condition r2 holds, since we are non ramified and χ -fixed. The
contact rational function is given by � = z/x p, where zB = �− λ. Noting that

hdz = zh

(
d�

�
+ dx p

x p

)
= x phdzB +

(
zB + λ

)
hdx p,

the result follows. ��
Let us consider a formal function F ∈ �0

A. Looking at Definition 3.3, we recall
that (A, F) is γ -final if either νA(F) > γ or F has the form

F = x IU + F̃, ν(x I ) = νA(F) ≤ γ, νA(F̃) > νA(F),

where U ∈ �0
A is a unit. We need a strong version of this concept, where we can

assume that F̃ = 0. We precise it in Definition 9.7 below:
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Definition 9.7 Consider a pair (A, F), where F ∈ �0
A is a formal function in A. We

say that (A, F) is strongly γ -final if either νA(F) > γ or F = x IU , where U is a
unit in �0

A that can be written as

U = ξ + Ũ , νA(Ũ ) > 0, 0 �= ξ ∈ k.

Let us note that to be strongly γ -final is stable under any nested transformation.

Proposition 9.11 Consider (A, ω) with the property of χ -fixed critical height and
never ramified. Take a formal function F ∈ k[[x, y≤	, z]] ⊂ �0

A. There is a normal-
ized transformation (A, ω)→ (B, ω) such that (B, F) is strongly γ -final.
Proof We give quick indications of the proof, that follows the same lines of the case
of 1-forms, without the difficulty of the preparation.

Let us note that the induction hypothesis allows us to make ρ-final any formal
function G ∈ k[[x, y≤	]] by means of an 	-nested transformation; to see this is
enough to consider the differential dG, in view of Corollary 3.1. Moreover, these
	-nested transformations may be “integrated” in a γ -strict preparation of (A, ω), just
by completing the γ -preparation.

Now, write

F =
∑

s≥0

zs Fs; Fs ∈ k[[x, y≤	]].

We can perform a γ -preparation of F by means of an 	-nested transformation. To do
this is enough to make γ -final one by one the levels Fs with s ≤ γ ν(z). This can be
done with a normalized transformation and hence we have ramification index equal
to one. Now, we have a critical vertex at height ξ . Assume that the critical height does
not drop. By a new normalized Puiseux’s package, we get the property that the main
vertex coincides with the critical vertex; moreover, this property remains true since
we assume that the critical height does not drop.

By making combinatorial independent blow-ups as in Proposition 5.3, we divide
F by x I with ν(x I ) = νAF . Once this division has been performed, we can assume
that Fξ is a unit. Up to performing additional 	-nested transformations, we can also
assume that

Fξ−i = Gi + G̃i , νA(G̃i ) > γ, Gi ∈ k[x, y≤	] ⊂ OA,

for i = 0, 1. This property is stable under any new 	-nested transformation. Let us
note that we are assuming that Fξ is a unit, hence G0 is also a unit. This allows us to
make a Tschirnhausen coordinate change

z′ = z + 1

ξ

G1

G0
.

Byclassical arguments,whenweperformanew (A, ω)- normalizedPuiseux’s package
A → B, either the critical height ξ drops ( when we are touching the “empty part”
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of the ξ − 1-level in the Newton Polygon ) or the value ν(zB) ≥ min{γ, ν(z)}. If
ν(zB) ≥ γ we are done, in the next transformation we get ςA(F) ≥ γ . Otherwise,
we see that ςB(F) ≥ ςA(F)+ ν(z). We end in a finite number of steps.

Once F is γ -final, we write F = ∑
I x

I FI . Nowwe perform a monomialization of
the ideal generated by the x I by means of independent combinatorial blow-ups. This
gives an expression of F as F = x IU , where U is a unit that we write U = ξ + Ũ
and Ũ is in the maximal ideal, by performing a normalized transformation containing
a j-Puiseux’s package for any j = 1, 2, . . . , 	 + 1 we obtain that νA(Ũ ) > 0, see
Proposition 5.2. ��

Corollary 9.2 Consider (A, ω) with the property of χ -fixed critical height and never
ramified. There is a normalized transformation (A, ω)→ (B, ω) such that (B, HB,ω)
is strongly γ -final. Moreover, this situation is stable under further normalized trans-
formations.

Proof It follows from Lemma 9.9 and Proposition 9.11. ��

Remark 43 Take (A, ω)with the property ofχ -fixed critical height and never ramified.
Assume that HA,ω is strongly γ -final and consider an (A, ω)-normalized transforma-
tion A → B. By Lemma 9.9, we see that

νB(HB,ω) ≥ νA(HA,ω).

In particular, if (A, HA,ω) is γ -final recessive, then (B, HB,ω) is also γ -final recessive.
Let us say that (A, ω) has γ -recessive horizontal stability if HA,ω is γ -final recessive.
On the other hand, we say that (A, ω) has γ -dominant horizontal stability if (B, HB,ω)
is γ -final dominant under any normalized transformation (A, ω)→ (B, ω). We con-
clude that there is a normalized transformation (A, ω)→ (B, ω) such that (B, ω) has
γ -recessive or γ -dominant horizontal stability.

9.8 First Steps in the Reduction to Critical Height One

Let us start the proof of Proposition 9.4. We look for a contradiction with the existence
of a γ -truncated formal foliated space (A, ω) with the property of χ -fixed critical
height, where χ ≥ 2. Thus, we assume we have such an (A, ω).

If (A, ω) → (B, ω) is a normalized transformation, then (B, ω) also have the
property of the χ -fixed critical height. Then (B, ω) has the resonance property r2,
since χ ≥ 2. In particular (A, ω) is never ramified, accordingly with Definition 9.6.

By Corollary 9.2 and Remark 43, we can make the following assumption:

A1: The horizontal coefficient HA,ω is stronglyγ -final and (A, ω)has theγ -recessive
or γ -dominant horizontal stability.

Note that A1 is stable under any new normalized transformations and thus (B, ω) also
satisfies A1, when (A, ω)→ (B, ω) is a normalized transformation.
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Lemma 9.10 Let (A, ω) → (B, ω) be a normalized transformation that contains at
least one normalized Puiseux’s package. Then

νB(ω) = ςB(ω)− χν(zB), (30)

where zB is the (	 + 1)-th dependent parameter in B. Moreover, the property in Eq.
(30) is stable under further normalized transformations.

Proof We leave to the reader the details of this verification, based on the arguments
in the proof of Proposition 9.3. ��
Then, we can make another assumption:

A2: νA(ω) = ςA(ω)− χν(z).
Note also that A2 is stable under new normalized transformations.

Remark 44 The property A2 is equivalent to saying that the critical vertex and the
main vertex coincide.

Let us decompose ω into levels ω = ∑
s≥0 z

sωs , ωs = ηs + hsdz/z, where we recall
that h = ∑

s≥1 hsz
s−1.

Lemma 9.11 We have νA(hχ ) > ςA(ω)− χν(z).
Proof This is obvious if νA(h) > γ . When h = U x J , we have

νA(hχ ) ≥ νA(h) = ν(x J ) ≥ ςA(ω)− ν(z) > ςA(ω)− χν(z),

recalling that χ ≥ 2. ��
Lemma 9.12 The resonance condition r2a is satisfied for (A, ω). That is, the reduced
critical part ω̄∗ of ω has the form

ω̄∗ = x I (z − λx p)χ
dxτ

xτ
. (31)

Proof We already know that the resonant condition r2 is satisfied. We have only to
show that condition r2b cannot occur. If r2b holds, the reduced part ω̄∗

χ of the χ -level
ωχ is given by

ω̄∗
χ = ξ x I−χ p

(
dxυ− p

xυ− p + dz

z

)
,

see Eq. (28). This implies that νA(hχ ) = ν(x I−χ p) = ςA(ω) − χν(z). This is not
compatible with the fact that νA(hχ ) > ν(x I ) = ςA(ω) − χν(z) stated in Lemma
9.11. Then we have r2a and Eq. (31) holds. ��
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By expanding the binomial (z − λx p)χ in Eq. (31), we see that each level ωs is
(ςA(ω)− sν(z))-final dominant, for s = 0, 1, . . . , χ . Let us write

ωs = x IsωIs ,s +
∑

ν(xK )>ν(x Is )

xKωK ,s,

whereωIs ,s is 0-final dominant and ν(x Is ) = ςA(ω)−sν(z), for s = 0, 1, . . . , χ .Up to
performing combinatorial blow-ups in the independent parameters x as in Proposition
5.3, we obtain that x Is divides each one of the xK and then we have

ωs = x Isβs and ν(x Is ) = ςA(ω)− sν(z) for s = 0, 1, . . . , χ,

where βs is 0-final dominant for s = 0, 1, . . . , χ . Let us write

βs = αs + Hs
dz

z
, ηs = x Isαs and hs = x Is Hs for s = 0, 1, . . . , χ.

Lemma 9.13 Let ε denote the value

ε = min{γ, νA(h)} − ςA(ω)+ ν(z).

We have ε > 0 and νA(Hs) ≥ ε for s = 0, 1, . . . , χ .

Proof If νA(h) > γ , we have ε = γ − ςA(ω) + ν(z) ≥ ν(z) > 0. Assume that
νA(h) ≤ γ . Then h = U x J where U is a unit in �0

A and hence νA(h) = ν(x J ).
Write h = ∑

s≥1 z
s−1hs , with hs ∈ k[[x, y≤	]]. We have that h1 = x J V1, where V1

is a unit in k[[x, y≤	]]. The 1-level ω1 of ω is given by

ω1 = η1 + h1dz/z = x I1
(
α1 + x J−I1V1dz/z

)
.

We necessarily have that ε = ν(x J−I1) > 0, otherwise we obtain an incompatibility
with Eq. (31). In fact, for any s = 0, 1, . . . , χ , we have that hs = x J Vs , where
Vs ∈ k[[x, y≤	]] and V0 = 0. We obtain that

Hs = x J−Is Vs, s = 0, 1, . . . , χ.

We know that H0 = 0 and hence νA(H0) = ∞ > ε. For s ≥ 1 we have

νA(Hs) = νA
(
x J−Is

) + νA(Vs) ≥ νA
(
x J−Is

) = νA(h)− ςA(ω)+ sν(z) ≥ ε.

This ends the proof. ��
Remark 45 Sinceβs = αs+Hsdz/z is 0-final dominant and νA(Hs) > ε, we conclude
that αs is 0-final dominant for s = 0, 1, . . . , χ .
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Lemma9.14belowprovides thekeypropertyweneed toperforma“useful”Tschirn-
hausen transformation. Let us note that we need to invoke the γ -truncated integrability
condition.

Lemma 9.14 For any 1 ≤ s ≤ χ , we have αs = Usα0 + α̃s , where Us is a unit in
k[[x, y≤	]] and νA(α̃s) ≥ min{ε, ν(z)}.
Proof Let us consider the description of the truncated integrability condition given in
Sect. 8.2. In particular, recall that νA(�s) ≥ 2γ , where

�s =
∑

i+ j=s

�i j , �i j = jη j ∧ ηi + hidη j + ηi ∧ dh j ,

see Eq. (7). For any 0 ≤ i, j ≤ s such that i + j = s we have

�i j = x Ii+I j�i j , �i j =
(
jα j ∧ αi + Hj (

dx Ii

x Ii
∧ αi )+ αi ∧ (Hj

dx I j

x I j
+ dHj )

)
.

Then �i j = (
jα j ∧ αi + ϑi j

)
, where νA(ϑi j ) ≥ ε. If i + j = s we have that

ν(x Ii+I j ) = 2ςA(ω)− sν(z).

In particular, there is Js such that Js = Ii + I j when i + j = s. Then

�s = x Js�s, �s =
∑

i+ j=s

( jα j ∧ αi )+ ϑs, ϑs =
∑

i+ j=s

ϑi j ,

where we have νA(ϑs) ≥ ε. Let us consider the following computation:

νA(�s) = νA(�s)− ν(x Js )

= νA(�s)− 2ςA(ω)+ sν(z) ≥ 2(γ − ςA(ω))+ sν(z) ≥ sν(z).

Then we have νA(�s) ≥ sν(z).
Now, let us start the proof by finite induction on 1 ≤ s ≤ χ . If s = 1, we have

�1 = α1 ∧ α0 + ϑ1. Hence α1 ∧ α0 = �1 − ϑ1. We deduce that

νA(α1 ∧ α0) ≥ min{ε, ν(z)}.

Recalling that α0 is 0-final dominant, we obtain U1 and α̃1 by Proposition 4.1.
Assume that 1 < s ≤ χ and that the result is true for 1 ≤ s′ < s. Denote

 s =
∑

1≤i, j≤s−1;i+ j=s

jα j ∧ αi =
∑

1≤i, j≤s−1;i+ j=s

j(Ujα0 + α̃ j ) ∧ (Uiα0 + α̃i ).

Note that νA( s) ≥ min{ε, ν(z)}. Now, we have sαs ∧ α0 = �s − ϑs −  s . This
implies that νA(α ∧ α0) ≥ min{ε, ν(z)} and we obtain Us and α̃s as for s = 1. ��
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9.9 Reduction to Critical Height One: Tschirnhausen Transformation

In this subsection, we end the proof of Proposition 9.4. Let us take the notations
and reductions in Sect. 9.8. We know that we may assume the following additional
properties:

A1: Then main vertex and the critical vertex coincide. This is equivalent to saying
that νA(ω) = ςA(ω)− χν(z).

A2: HA,ω is strongly γ -final and (A, ω) has the γ -recessive or γ -dominant horizontal
stability.

A3: Up to performing a 0-nested transformation, for any 0 ≤ s ≤ χ , we have
ωs = x Isβs , with βs being 0-final dominant and ν(x Is ) = ςA(ω)− sν(z).

The above properties are stable under any further normalized transformations. Let us
recall that a 0-nested transformation can be considered a normalized transformation,
see Remark 32.

By Lemma 9.13, for 0 ≤ s ≤ χ we know that

βs = αs + Hsdz/z,

with νA(Hs) ≥ min{ν(z), ε}, where ε > 0 is given by

ε = min{γ, νA(h)} − ςA(ω)+ ν(z).

In particular, each αs is 0-final dominant. We also know that there are units Us ∈
k[[x, y≤	]] such that

αs = Usα0 + α̃s, 1 ≤ s ≤ χ, νA(α̃s) ≥ min{ν(z), ε}.

Let us prepare the units Us to obtain a “Tschirnhausen coordinate change”.

Lemma 9.15 Up to performing an additional 	-nested transformation, the formal units
Us can be written as

Us = Ws + xK W̃s,

with ν(xK ) > γ , Ws ∈ k[x, y≤	] ⊂ OA and W̃s ∈ k[[x, y≤	]].
Proof Write Us ∈ k[[x, y≤	]] in a γ -truncated way as Us = Ws + W̃s , where Ws ∈
k[x, y≤	] ⊂ OA, and W̃s is a formal series that we write as

W̃s =
∑

ν(x I yK≤	)>γ

cI K x I yK≤	.

Let us perform an 	-nested transformation containing a j-Puiseux’s package for each
1 ≤ j ≤ 	. Then each of the cI K x I yK≤	 becomes a unit times a monomial in the inde-
pendent variables, see Proposition 5.2. We principalize the list of of such monomials
by using Proposition 5.3 and we are done. ��
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Let us perform the “Tschirnhausen type” coordinate change A → A′ defined by

z′ = z − Fx p, F = Wχ−1(χWχ )
−1 ∈ OA ∩ k[[x, y≤	]]

and let us consider a γ -strict preparation (A′, ω)→ (A�, ω). Lemma 9.16 below is a
key observation for finding the desired contradiction:

Lemma 9.16 We have ν(z�) ≥ ν(z)+ min{ε, ν(z)}.
Proof Let us write ω = η + hdz = η′ + hdz′, where η′ = η + hd(x pF). Consider
the decomposition in levels η = ∑∞

s=0 z
sηs and η′ = ∑∞

s=0 z
′sη′

s . We have that

η′
χ = ηχ + x pϑχ + d(x pF)ξχ ,

η′
χ−1 = ηχ−1 − χx pFηχ + x2 pϑχ−1 + d(x pF)ξχ−1 , (32)

where ϑi denotes the contribution to the new corresponding level coming from the
levels ηs with s > χ , and ξi denotes the contribution coming from h. We have that

νA(ϑi ) ≥ νA(ω) = νA(ηχ ) for i = χ − 1, χ. (33)

Since νA(h) ≥ ςA(ω)− ν(z)+ ε > νA(ηχ )+ ε we also have that

νA(ξi ) ≥ νA(ω) = νA(ηχ ) for i = χ − 1, χ . (34)

In particular we obtain

νA(η′
χ ) = νA(ηχ ) . (35)

By Lemmas 9.14 and 9.15, and taking into account that ηχ = x Iχ αχ and ηχ = x Iχ αχ ,
where x Iχ−1 = x Iχ+ p, we see that ηχ−1 − χx pFηχ can be written as

x Iχ−1
(
(Wχ−1 + xK W̃χ−1)α0 + α̃χ−1 − χF(

(Wχ + xK W̃χ+)α0 + α̃χ
))

= boldsymbolx Iχ−1
(
xK (W̃χ−1 − χFW̃χ )α0 + α̃χ−1 − χF α̃χ

)
.

Since νA(xK ) > γ and νA(α̃i ) > min{ε, ν(z)} we have

νA(ηχ−1 − χx pFηχ) ≥ ν(x Iχ−1)+ min{γ, ε, ν(z)}
= νA(ηχ )+ ν(z)+ min{ε, ν(z)} . (36)

Now, using (33), (34), (35) and (36) in (32) we obtain

νA(η′
χ−1) ≥ νA(η′

χ )+ ν(z)+ min{ν(z), ε} .

Finally, after performing the strict γ -preparation, we obtain

νA(η�χ−1) ≥ νA(η�χ )+ ν(z)+ min{ν(z), ε} .
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Note that condition r2 must be satisfied for (A�, ω). In particular, we necessary have
that ν(z�) = νA(η�χ−1)− νA(η�χ ), which is the desired property. ��
Now, let us see how to obtain the desired contradiction. We know that (A�, ω) has
the property of χ -fixed critical height, and moreover the main vertex and the critical
vertex are the same ones for (A, ω) and for (A�, ω). More precisely, they are both the
point

(ςA(ω)− χν(z), χ) = (ςA� (ω)− χν(z�), χ).

Since ςA(ω) − χν(z) = ςA� (ω) − χν(z�), and taking into account that χ ≥ 2, we
have that

ςA� (ω)− ν(z�) = ςA(ω)− ν(z)+ (χ − 1)(ν(z�)− ν(z))
≥ ςA(ω)− ν(z)+ (ν(z�)− ν(z)). (37)

By Lemma 9.16, Inequality (37) gives

ςA� (ω)− ν(z�) ≥ ςA(ω)− ν(z)+ min{ε, ν(z)} = min {ε + ςA(ω)− ν(z), ςA(ω)}
= min

{
min{γ, νA(h)}, ςA(ω)

} = min{γ, νA(h), ςA(ω)},
(38)

where we recall that ε = min{γ, νA(h)} − ςA(ω) + ν(z). On the other hand, since
(A�, ω) satisfies condition r2, we must have

ςA� (ω)− ν(z�) < min{γ, νA� (h)} = min{γ, νA(h)}, (39)

where the last equality is due to the fact that h is γ -final. From Inequalities (38) and
(39) we obtain

ςA� (ω)− ν(z�) ≥ ςA(ω).

Now, by Lemma 9.16 we know that ν(z�) > ν(z), hence

ςA� (ω) > ςA(ω)+ ν(z).

Assuming that (A, ω) has the property ofχ -fixed critical height, we can iterate the pro-
cedure performing Tschirnhausen transformations followed by strict γ -preparations.
We obtain a sequence of transformations

A� = A1� → A2� → · · · → An� → · · ·

such that

ν
(
z(i+1)�

)
> ν

(
zi�

)
and ςA(i+1)� (ω) > ςAi� (ω)+ ν(zi�)
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for each index i ≥ 1. Thus we have

ςA(i+1)� (ω) > ςA(ω)+ iν(z).

However, for any index j with ςA(ω)+( j−1)ν(z) > νA(h) = νA j� (h), the condition
r2 can not be satisfied in (A j�, ω).

We have just proved that (A, ω) does not satisfy the property of χ -fixed critical
height, hence the proof of Proposition 9.4 is ended.

9.10 Critical Height One

Here we give a proof of Proposition 9.5. Thus, we assume that (A, ω) has the property
of 1-fixed critical height and we look for a contradiction.

As a consequence of the study of the evolution of resonances, we can do a first
reduction. Let us first consider the following definitions:

• We say that (A, ω) is of an r2a-resonant persistent type if and only if (B, ω) is
r2a for any normalized transformation (A, ω)→ (B, ω).

• We say that (A, ω) is of an r2b+-resonant persistent type if and only if for any
normalized transformation (A, ω)→ (B, ω), we have that (B, ω) is r2b-υ, where
υ is not B-negative and υ �= 0.

• We say that (A, ω) is of an r2b×-resonant persistent type if and only if for any
normalized transformation (A, ω)→ (B, ω), we have that (B, ω) is r2b-υ, where
υ is B-negative.

Lemma 9.17 There is a normalized transformation (A, ω)→ (B, ω) such that (B, ω)
is of a resonant persistent type r2a, r2b+ or r2b×.

Proof Let us recall the statements of Propositions 9.9 and 9.10. If we can find a
normalized transformation (A, ω) → (B, ω) such that (B, ω) satisfies the resonant
condition r2a, we get the persistent type r2a. If there is a normalized transformation
(A, ω) → (B, ω) such that (B, ω) is r2b-υ, with υ being not B-negative, we obtain
the persistent type r2b+. If we can get the condition r1, we are in the case r2b+
after just one normalized Puiseux’s package. The only remaining possibility is to be
persistently in the case r2b-υ with “negative” υ, this is the case of the persistent type
r2b×. ��
Let us make the following assumption from now on:

P0: (A, ω) is of a persistent type r2a, r2b+ or r2b×.

Remark 46 In particular, for any normalized transformation (A, ω) → (B, ω) the
ramification index of B is equal to one. That is (A, ω) is never ramified.

With the same arguments as in Sect. 9.9, we assume the following additional prop-
erties (that are stable under any further normalized transformation):

P1: Then main vertex and the critical vertex coincide. This is equivalent to saying
that νA(ω) = ςA(ω)− ν(z).
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P2: HA,ω is strongly γ -final and (A, ω) has the γ -recessive or γ -dominant horizontal
stability.

P3: Up to a 0-nested transformattion, for s = 0, 1, we have ωs = x Isβs , with βs
being 0-final dominant and ν(x Is ) = ςA(ω)− sν(z).

Once we have the above reductions, we are no more interested in performing nor-
malized Puiseux’s packages. We look for a contradiction with the existence of (A, ω)
with the stated properties by performing only normalized coordinate changes. More
precisely, we will contradict the property ςA(ω) < γ .

Let us introduce a new reduction that is necessary in order to apply the truncated
cohomological results in Sect. 4. Recall that the levels ω0 and ω1 of (A, ω) are written
as ω0 = η0 and ω1 = η1 + h1dz/z, where h = ∑

s≥1 z
s−1hs . Moreover, we have that

ω1 = x I1β1, η1 = x I1α1, h1 = x I1H1, ω0 = η0 = x I0α0, with ν(x I0) = ςA(ω) ≤
γ and ν(x I0−I1) = ν(z) = ν(x p), where � = z/x p. In particular, we have that
I0 − I1 = p.

Lemma 9.18 Up to performing an 	-nested transformation, we have a decomposition

α1 = α∗
1 + α̃1,

where dα∗
1 = 0 and νA(α̃1) > 0.

Proof Write α1 = α∗
1 + α̃1, where dα∗

1 = 0 and α̃1 is not 0-final dominant. By
Proposition 5.2, we obtain νA(α̃1) > 0 by a suitable 	-nested transformation. ��
Recall that the 	-nested transformations are a degenerate type of normalized coordinate
changes, see Remark 32.

Lemma 9.19 Assume that α1 = α∗
1 + α̃1, where dα∗

1 = 0 and νA(α̃1) > 0. Let
(A, ω)→ (A�, ω) be a normalized coordinate change, containing a suitable 0-nested
transformation in order to get the property P3. The 1-level ω�1 of (A�, ω) is given by

ω�1 = x� I
�
1 α�1, where

α�1 = α�∗1 + α̃�1, νA� (α̃�1) ≥ min{ν(z), νA(α̃1)}

and d(α�∗1) = 0

Proof Left to the reader. ��
Remark 47 Write α1 = α∗

1 + α̃1, where νA(α̃1) > 0. Recall that (A, ω) is r2a or
r2b-υ, and that the contact rational function is � = z/x p. In view of Equation (25),
we have that the following statements are equivalent

• α1 is 0-final dominant.
• α∗

1 is 0-final dominant.
• (A, ω) is r2a or it is r2b-υ, with υ �= p.

From now on, we additionally assume the following property:

P4: α1 = α∗
1 + α̃1, where dα∗

1 = 0 and νA(α̃1) > 0.
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Proposition 9.12 below is the key observationwe need to find the desired contradiction:

Proposition 9.12 Assume that (A, ω) has the property of the 1-fixed critical height
and properties P0, P1, P2, P3 and P4. There is a procedure to obtain a positive real
number εA(ω) > 0 from (A, ω) with the following property: there is a normalized
coordinate change (A, ω) → (A�, ω) such that (A�, ω) satisfies the properties P0,
P1, P2, P3, P4, and moreover

ν(z�) ≥ ν(z)+ εA(ω), εA� (ω) ≥ εA(ω).

Proof In view of Eq. (8), we have that νA(�1) ≥ 2γ , where�1 = η1 ∧η0 +h1dη0 +
η0 ∧ dh1. By expanding �1, we obtain

�1 = x I1+I0
(
α1 ∧ α0 + H1

(
dx I0

x I0
∧ α0 + dα0

)
+ α0 ∧

(
H1

dx I1

x I1
+ dH1

))

= x I1+I0

((
α1 + H1

dx p

x p − dH1

)
∧ α0 + H1dα0

)
,

where we recall that p = I0 − I1. Since 2γ − ν(x I1+I0) ≥ ν(z), we have

νA
((
α1 + H1

dx p

x p − dH1

)
∧ α0 + H1dα0

)
≥ ν(z) . (40)

Let us consider the cases when (A, ω) is r2a, r2b+ or r2b×. We know that they are
independent situations and it is enough to show the existence of εA(ω)with the desired
properties in each of the three cases.

Assume that (A, ω) is r2a. Let us see that νA(H1) ≥ 0. Since the reduced form
ω̄∗
1 of the level is given by ω̄∗

1 = dxτ /xτ , it is not possible for H1 to be a unit, hence
νA(H1) > 0, since h = HA,ω is strongly γ -final. Then, in this case α1 is 0-final
dominant. Let us fix ε1 = εA(ω) > 0 such that

ε1 ≤ min{ν(z), νA(H1)}.

We have that νA(α1 ∧ α0) ≥ ε1, in view of Eq. (40). By the truncated proportionality
considered in Proposition 4.1, there is a unit U ∈ k[[x, y≤	]] and a 1-form α̃0 such
that

α0 = Uα1 + α̃0, νA(α̃0) ≥ ε1.

Up to perform an 	-nested transformation containing j-Puiseux’s packages for any
j = 1, 2, . . . , 	, we can assume that U ∈ k[x, y≤	] and hence U is a unit in OA (to
see this, write U = U∗ + Ũ , where U∗ is a polynomial and Ũ belongs to a enough
bigger power the maximal ideal such that we get νA(Ũ ) > ε1 by applying Proposition
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5.2). Now, we consider the coordinate change A → A′ given by

z′ = z +U∗x p.

We obtain that νA′(η′
0) ≥ νA′(η′

1)+ ν(z)+ ε1. After a strict γ -preparationA′ → A�
we must have

ν(z�) = νA� (η�0)− νA� (η�1) ≥ ν(z)+ ε1.

Moreover, we still have ε1 ≤ min{ν(z�), νA� (H1)}. This ends the proof of this case.
Assume that (A, ω) is r2b+ or r2b×. In particular (A, ω) is r2b-υ with υ �= 0.

In this situation H1 is a unit that we can write H1 = ξ + H̃1, with νA(H̃1) > 0 and
0 �= ξ ∈ k. We see this looking, as before, to the reduced part ω̄∗

1 of the 1-level ω1 ofω
inA. Let us recall the decomposition α1 = α∗

1 + α̃1, where dα∗
1 = 0 and νA(α̃1) > 0.

From Eq. (40), we obtain that

νA
((
ξ−1α∗

1 + dx p

x p

)
∧ α0 + dα0

)
≥ ε2 ,

where we denote ε2 = min{νA(α̃1), νA(H̃1), ν(z)}. Let us consider the 1-form σ
given by

σ = ξ−1α∗
1 + dx p/x p.

Looking at Eq. (25) we see that σ = dxυ/xυ + σ̃ , where σ̃ is not 0-final dominant.
Since υ �= 0, then σ is 0-final dominant. Moreover, we have that dσ = 0 and
νA(dσ (α0)) ≥ ε2. Thus, we can apply Corollary 4.1. We have two possibilities to
consider:

First case: υ /∈ Z
r≤0. By Corollary 4.1, there is a formal function U such that

α0 = Uσ + dU + α̃0, νA(α̃0) ≥ ε2.

Note that U must be a unit, since (A, ω) is r2b-υ. As before, we can assume that
U ∈ OA up to an additional 	-nested transformation and modulo γ -truncation, we do
not detail this part. Now, we perform the coordinate change

z′ = z + ξ−1U x p.

We obtain that νA′(η′
0) ≥ νA′(η′

1)+ ν(z)+ ε2. After a strict γ -preparationA′ → A�
we have

ν(z�) = νA� (η�0)− νA� (η�1) ≥ ν(z)+ ε2.

The situation repeats with the same ε2.
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Second case: υ ∈ Z
r≤0. Then Corollary 4.1 allows to write α0 as

α0 = Uσ + dU + x−υ
r∑

i=1

μi
dxi
xi

+ α̃0 , νA(α̃0) ≥ ε2 .

If all the μi = 0, we proceed as before. Assume that μ �= 0 and ν(x−υ) ≥ ε2.
Consider the coordinate change A → A′ given by z′ = z + ξ−1U x p. We have that

z
(
α1 + ξ dz

z

) + x pα0 = z′
(
α∗
1 + ξ dz

′

z′
) + x p−υ

r∑

i=1

μi
dxi
xi

+ x p(α̃0 − ξ−1U α̃1) .

(41)

Since ν(x−υ) ≥ ε2, by Eq. (41), we have that νA′(η′
0) ≥ νA′(η′

0) + ν(z) + ε2.
Therefore, after a strict γ -preparation A′ → A� we must have

ν(z�) = νE� (η�0)− νE� (η�1) ≥ ν(z)+ ε2.

Moreover, we can restart with the same ε2. It remains to consider the possibilityμ �= 0
and ν(x−υ) < ε2. Let us show that this situation does not happen. Since ν(x−υ) < ε2,
by Eq. (41) the new 0-level has the form

η′
0 = x I1+ p−υ

r∑

i=1

μi
dxi
xi

+ η̃′
0 , νA′

(
η̃′
0

)
> ν

(
x I1+ p−υ

)
.

Then η′
0 is ν(x

I1+ p−υ)-final dominant and thus (A′, ω) is strictly γ -prepared without
performing any 	-nested transformation. Since condition r2b is satisfied, we must
have that

ν(z′) = νA′
(
η′
0

) − νA′
(
η′
1

) = ν(x p−υ
)
.

Hence p′ = p− υ. This implies that υ ′ = 0, that is we obtain a resonance rb2-0, but
this does not occur when we are in the persistent situations r2b+ or r2b×. The proof
is completed. ��

By applying finitely many times Proposition 9.12, we obtain a normalized trans-
formation (A, ω)→ (B, ω) such that νB(zB) > γ . But we know that

ςB(ω) ≥ χB(ω)ν
(
zB

) = ν(zB)
> γ.

This is a contradiction. In this way, the proof of Proposition 9.5 is ended.
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10 Local Uniformization of Rational Foliations

In this section we show that Theorem 17 implies Theorem 1. More precisely, we show
how to obtain pre-simple points as they were defined in the Introduction. In view of
the results in [19], this is enough, since we can pass from pre-simple to simple points.

Before considering the proof of Theorem 1, we are going to develop a “non-
truncated” version of the results in Sect. 9.

10.1 Stable Foliated Spaces

Consider a parameterized formal foliated space (A, ω) with IA(ω) = 	 + 1. Recall
that ω ∧ dω = 0. We say that (A, ω) is γ -stable if and only if (A, ω) is strictly
γ -prepared and ςA(ω) ≤ γ . Note that if (A, ω) is γ -stable and γ ′ ≥ γ , then we also
have that (A, ω) is γ ′-stable. We say that (A, ω) is stable if and only if there is γ such
that (A, ω) is γ -stable. A stable normalized transformation is a transformation

(A, ω)→ (B, ω)

that is a normalized transformation with respect to a truncation value γ for which
(A, ω) and (B, ω) are γ -stable. In Lemma 10.1 we show that we have “enough”
stable normalized transformations:

Lemma 10.1 Let us assume that (A, ω) is γ0-stable and let A → A′ be a (	 + 1)-
Puiseux’s package or a (	 + 1)-coordinate change, assuming that the coordinate
change is trivial or the ramification index of A is one. There is γ1 ≥ γ0 such that if
we perform a strict γ1-preparation (A′, ω)→ (A1, ω), then (A1, ω) is γ1-stable and
moreover χA(ω) ≥ χA1(ω).

Proof Let ρ and ρ′ denote the values ν(z) and ν(z′) respectively, and let χ denote the
critical height χA(ω). In the case of a Puiseux’s package, it is enough to take γ1 ≥ γ0
with

γ1 ≥ νA(ω)+ χ0(ρ + ρ′).

In the case of a coordinate change, we take γ1 ≥ γ0 with γ1 ≥ νA(ω) + χ0ρ′. The
inequality χA(ω) ≥ χA1(ω) follows from Proposition 9.3, since (A, ω) → (A1, ω)

is a γ1-normalized transformation. ��
By Proposition 9.3, we know that χB(ω) ≤ χA(ω), for any stable normalized

trasformation (A, ω)→ (B, ω). We say that a stable (A, ω) has the property of non-
truncated χ0-fixed critical height if and only if χB(ω) = χ0 for any stable normalized
transformation (A, ω)→ (B, ω).

Proposition 10.1 Consider a stable (A, ω)with the property of non-truncatedχ0-fixed
critical height, where χ0 ≥ 2. Up to performing a stable normalized transformation
(A, ω)→ (A�, ω) we get that (A�, ω) satisfies the following property:
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“For any stable normalized transformation (A�, ω) → (B, ω) and any γ ∈ R,
we have that (B, HB(ω)) is not γ -final dominant.”

Proof It is enough to work like in Sects. 9.8 and 9.9, with the following adaptations:

• About the results in Sect. 9.8: We assumed that the horizontal coefficient HB(ω)
was γ -final. Instead of that, we use that HB(ω) is a monomial times a unit. In
Lemma 9.13, when we define the value ε, we must put

ε = νA(HB(ω))− ςB(ω)+ ν(zB),

instead of ε = min{γ, νA(HB(ω))} − ςB(ω)+ ν(zB).
• About results in Sect. 9.9: Every time ε appears, recall that it is defined without
taking any value γ into account. In the last part of Sect. 9.9, we find a contradiction
by increasing the value of the (l + 1)-th dependent parameter until ςB(n) (ω) > γ .
Instead of this, the contradiction appears when

ςB(n) (ω)− ν(zB
(n)
) ≥ νB(n) (HB(ω)).

��
Proposition 10.2 Consider a stable (A, ω) with the property of non-truncated 1-fixed
critical height. There is a stable normalized transformation (A, ω) → (B, ω) such
that (B, ω) has the resonance property r2a or r2b.
Proof Consequence of Lemma 9.17. ��
Remark 48 The cases of r2a or r2bwith χA(ω) = 1 correspond to pre-simple points,
when the critical vertex coincide with the main vertex, up to perform independent
blow-ups to allow a division by a monomial.

10.2 Rational Foliations

Let us start with a projective variety variety M , with K = k(M) and an rational
codimension one foliation F ⊂ �K/k . Up to performing appropriate blow-ups, we
can assume that the center P of R in M is a non-singular point of M and we have a
locally parameterized model A = (OA; x, y) adapted to R such that OM,P = OA.
Now, we consider a nonzero differential 1-form ω ∈ �1

A ∩ F . Let us remark that

ω ∈ �1
OA/k[log x] ⊂ �1

A.

Then ω is a Frobenius integrable rational differential 1-form. In particular, we see that
the coefficients ofω belong toOA ⊂ K . Our objective is to perform blow-ups of M to
get thatω satisfies the definition of pre-simple point given in the Introduction. The kind
of blow-ups we perform are indicated by the corresponding allowed transformations
of locally parameterized models, hence the centers of the blow-ups are non-singular
and of codimension two, when we localise the situation at the center of the valuation.
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We have a parameterized formal foliated space (A, ω), hence it is γ -truncated for
any γ ∈ R. Thus we are in the conditions of Theorem 17, for any γ ∈ R. Applying
Theorem 17, there are two possibilities:

(a) There are ρ ∈ R and an allowed transformation A → A′ such that (A′, ω) is
ρ-final dominant.

(b) For any ρ ∈ R, there is an allowed transformation A → A′ such that (A′, ω) is
ρ-final recessive.

In case (a), we perform independent blow-ups A′ → A′′, as in Proposition 5.3, to
obtain thatω = x′′ I ω̃, where ω̃ ∈ �1

A′′ is 0-final dominant. This situation corresponds
with a pre-simple corner as defined in the Introduction.

It remains to consider the case (b). This case corresponds to a situation of “infinite
value” of ω, in particular it does not appear when ω = d f , for f ∈ OA. Nevertheless,
it can happen for instance for an Euler’s Equation, where the differential form is of
polynomial type.

Let uswork by induction on IA(ω), see Sect. 6.1. If IA(ω) = 0,we end byCorollary
5.2 and in fact we are in the case a). Assume IA(ω) = 	+ 1, and take notations as in
Sect. 6.1. Let us write

ω =
r∑

i=1

fi
dxi
xi

+
	∑

j=1

g jdy j + hdz ,

where z is the last dependent parameter we consider. Recall that h ∈ OA ⊂ K and
thus we have ν(h) <∞, or h = 0.

If h = 0, the integrability condition ω ∧ dω = 0 shows the existence of rational
function F and a rational 1-differential form η such that IA(η) ≤ 	 and

ω = Fη.

We end by induction.
Then, we can suppose that h �= 0 and hence ν(h) <∞. Consider the (formal) level

decomposition

ω =
∞∑

s=0

ωs =
∞∑

s=0

zs(ηs + hs
dz

z
) .

For any index s, we can apply Theorem 18 to hs . We have two options:

(i) There are ρ ∈ R and an 	-nested transformation A → B such that (B, hs) is
ρ-final dominant.

(ii) For any ρ ∈ R, there is an 	-nested transformation A → B such that (B, hs) is
ρ-final recessive.

Let us denote k0 = min{s; hs satisfies i)}. Let us check that k0 < ∞. Suppose that
k0 = ∞ and let ρ = ν(h). Consider an 	-nested transformation A → B such that hs
is ρ-final recessive for any s ≤ ρ/ν(z). After a (	+ 1)-Puiseux’s package B → C we
get νC(h) > ρ = ν(h), which is a contradiction.
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By performing an 	-nested transformation, we assume that (A, hk0) is ρ0-final
dominant, where we take ρ0 = νA(hk0).

Take γ1 > ρ0 + k0ν(z). Since (A, ω) satisfies the γ1-truncated integrability condi-
tion, by Theorem 27 there is a strict γ1-preparationA → A1 of ω. The abscissa of the
k0-level of (A1, ω) is smaller or equal than ρ0 = νA(hk0) = νA1(hk0). This implies
that

ςA1(ω) ≤ γ1.
Then (A1, ω) is stable and we are able to apply Propositions 10.1 and 10.2.

Up to a stable normalized transformation, we can assume that (A1, ω) has the
property of χ0-fixed critical height.

The case χ0 ≥ 2 does not happen. Indeed, by Proposition 10.1, the critical height
cannot stabilize in χ0 ≥ 2, since the horizontal coefficient h is nonzero and belongs
to the local ring OA ⊂ K . Then, it has a well defined finite value and thus we can
transform it into a unit times a monomial. To see this, we can apply Proposition 9.11
with respect to γ with γ > ν(h).

Note that χ0 ≥ 1 since we are in case b), see also Proposition 9.2. If χ0 = 1, by
Proposition 10.2 and Remark 48 we get a pre-simple point.

The proof of Theorem 1 is ended.
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