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Abstract

The robust H, observer-based control design is addressed here for non-linear Takagi-Sugeno (T-S) fuzzy systems with
time-varying delays, subject to uncertainties and external disturbances. This is motivated by the quadruple-tank with time
delay control problem. The observer design methodology is based on constructing an appropriate Lyapunov—Krasovskii
functional (LKF) for an augmented system formed from the original and the delayed states. The bilinear terms are
transferred to the linear matrix inequalities, thanks to a change of variables which can be solved in one step. Furthermore,
by employing the £, performance index, the adverse effects of persistent bounded disturbances is largely avoided. The
proposed method has the advantage of relating the controller and Lyapunov function to both the original and delayed states.
Then, the controller and observer gains are obtained simultaneously by solving these inequalities with off-the-shelf
software (Yalmip/MATLAB toolbox). Finally, an application to a simulated quadruple-tank system with time delay is
carried out to demonstrate the benefits of the proposed technique, showing a compromise between controller simplicity and
robustness that outperforms previous approaches.

Keywords Observer-based control - Quadruple-tank system - Takagi—Sugeno (T-S) fuzzy systems - Time-varying delays -
H, performance - Uncertainty - Linear matrix inequalities (LMIs)

1 Introduction

Ghali Naami, Mohamed Ouahi, Abdelhamid Rabhi, Fernando . .
Tadeo and Viet Long Bui Tuan contributed equally to this Takagi-Sugeno (T-S) systems are a kind of the fuzzy sys

work. tem introduced in Tanaka and Wang (2004) to facilitate the
use of fuzzy system tools for some nonlinear systems.
Because of the effective representation of a nonlinear
system as a set of local linear models that are interpolated
by nonlinear functions, T-S fuzzy methods have proved
useful in a variety of problems (Ammar et al. 2018; Tuan
VLB, and Hajjaji 2018; Chaibi et al. 2019; Naami et al.
2019; Ejegwa 2020; Yang et al. 2020; Saif et al. 2020;
Dutta and Doley 2021; Zhang and Huang 2021; Kchaou
and Jerbi 2021; Ech-charqy et al. 2020; D’Urso 2017,
Najariyan et al. 2017). Stability analysis and controller
design can then be handled with this technique (Takagi and
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Sugeno 1985; Tanaka et al. 1998) for nonlinear systems
(Xie et al. (2020)), by an equivalent combination of linear
systems. In this context, they have been shown to be useful
as universal approximators in (Buckley (1992)) and (Castro
(1995)), making possible to extend classical linear model
techniques to a wide range of problems, including stabi-
lization, observation, regulation and filtering.
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Over the last few decades, many research approaches
have studied the observer-based control in the context of
disturbances or noises that might create instabilities in
nonlinear closed-loop systems (Wang et al. 2021). This
control is often obtained under the assumption that the
entire state vector can be accessed by output measurement.
This is complex in practice when there are disturbances
(Wang and Lam (2021)), or when some of the external
disturbances to the system are unavailable (Wei and Ma
(2021)). In several studies, the problem of constructing
observers for systems with noise has been solved by using
the H, filtering approach (Tuan VLB, and Hajjaji 2018;
Xie et al. 2019; Naami et al. 2021). Moreover, (He et al.
(2021)) developed some important works on stabilisation
for T-S fuzzy descriptor systems. Recently, a straightfor-
ward method for observer-based H,, control for discrete-
time Takagi—Sugeno (T-S) fuzzy systems has been pre-
sented (Chang et al. (2015); Zhi (2021)). An observer-
based controller as an alternative to direct static state
feedback is discussed in (Chang et al. (2016); Mahmoud
et al. (2021)). We also point out (Shahbazzadeh et al.
(2021)) where dynamic output feedback controller was
described for Lipschitz nonlinear systems under input sat-
uration. On the other hand, the H,, observer design for
uncertain one-sided Lipschitz systems with time-varying
delay (albeit without taking the controller into account) is
proposed in (Yan et al. (2020)).

In such context, the presence of parametric uncertain-
ties, make the stabilization of the system more compli-
cated. As a result, attention is being paid to uncertain
processes. For example, the authors in (Salehifar et al.
(2021)) have been investigated the problem of robust
observer-based control for one-sided Lipschitz nonlinear
systems subject to parametric uncertainties and external
disturbances. Several other articles have addressed the
stable stabilization problem of uncertain Takagi—Sugeno
(T-S) fuzzy models (Ahammed and Azeem 2019; Dong
et al. 2021; Zhu et al. 2021). In (Islam et al. (2020)), the
robust controller design for an uncertain fuzzy system with
time-varying time-delay was investigated using a fuzzy
functional observer. Several results dealing with observer-
based controller design method for Lipschitz nonlinear
systems with uncertain parameters and disturbances have
also been published (Zemouche et al. 2017; Rastegari et al.
2019; Yang et al. 2021; Dinh 2021). Among them we
emphasize (Xu et al. (2019)), based on minimizing an
index related to the state estimation performance, to opti-
mize the actual value of the uncertainty. Furthermore,
using a fuzzy description of the uncertainty bound, the
optimal design of the controller is envisaged in (Yang et al.
(2021)), using a comprehensive fuzzy performance index
that involves the performance and the control cost.

@ Springer

The present work focuses on the design of H, observer-
based controllers for delayed continuous-time Takagi—
Sugeno fuzzy systems, in the presence of parameter
uncertainties and external disturbances. The research is
motivated by a process composed of four interconnected
tanks; the model of this process is also used to demonstrate
the approach. There are some previous studies on observer-
based controllers for fuzzy systems: for instance, in (Tuan
VLB et al. (2019)), these controllers were applied to a
similar quadruple-tank system; in (Naami et al. (2021)),
the robust H,, control problem was studied with parameter
uncertainties. However, these previous studies did not take
into account the time delay, motivating this work. The
main contribution of this paper is then the proposal of a
direct approach for designing H,, observer-based con-
trollers for T-S fuzzy systems with uncertainties, external
disturbances and time-varying delays. The approach is
based on proposing a Lyapunov—Krasovskii functional
with time-delay information . Based on it, a controller is
proposed based on using both the original state and the
time-delay state. Using this approach allows to develop
stability conditions expressed as LMIs, so the design con-
ditions are also expressed as LMIs. The solution of these
LMIs makes it possible to obtain the observer and con-
troller gains.

The paper is organised as follows. Section 2 describes
the mathematical modelling of the fuzzy quadruple-tank
systems with time delay, and some previous results. Sec-
tion 3 presents the main contributions , describing the
observer-based controller and the design methodology.
Section 4 provides the application to the quadruple-tank
system with time delay. Finally, the paper draws some
conclusions.

Notation The following standard notation are used in
the paper. The superscript ()T represent the matrix trans-
pose. P > 0 means that P is a symmetric positive definite
matrix, and H, = {P+ PT}. The symbol * denotes a
symmetric block. I denotes the identity matrix with
appropriate dimensions.

2 Model description and preliminaries
2.1 Fuzzy quadruple-tank systems

Figure 1 shows the schematic diagram of the quadruple-
tank model with disturbances (Johansson and Nunes
(1998)). The process is composed of four identical cylin-
drical tanks numbered 1-4, and a reservoir 5. The two
pumps transfer the water from the reservoir to tank-3 and
tank-4. The objective is to control the liquid levels in tank-
3 and tank-4, by the observation of the dynamic states of
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Fig. 1 Schematic Diagram of the Quadruple-Tank Systems

tank-1 and tank-2. A delay in the inputs of the system is
introduced to make the control problem more challenging
(Shah and Patel (2019)). The continuous-time nonlinear
system is represented by the following equations:

(0 = —A— Vg0 1) + A— V2gn(t— d(0) + ”f{ﬂﬂ (- d(n)

0(0) =~ 22 2 + A— V2gxlt—d0) + %f’%(r —d(r)
%(1) = — /%z 2g03(1) + %ﬂz(l —d(1)

R (0
B0 =~ V2 + PR dlo)

(1)

where x;(7) is the liquid level in the tank number k, A, is
the cross sectional area of tank k, dy is the cross-sectional
area of the outlet of tank &, g is the gravity constant, 1;(¢) €
[0, 1] is the valve flow proportion, and ¥;(¢) is the control

signal of pump j, with the gain k~79j. The parameters of the
process are condensed in Table 1. The measured output
signals y(f) € R?, correspond in this study to the levels of
tanks 1 and 2. d(¢) is the time it takes for the liquid to move
to tank-1 from tank-3, tank-2 from tank-4, tank-1 from
pump-1, tank-4 from pump-1, tank-2 from pump-2, tank-3

from pump-2, and tank-3 and tank-4. This delay satisfies
that:

0<d(t)<d (2a)
d(r)y < o<l (2b)

The nonlinear terms Fj(r) = /x(¢) of the level in the
tank-k Vk = 1, ...,4, the following sector rules apply:

If x,(1) is Ny Then Fy (1) = Cp1x(1)

If x;(¢) is N, Then Fk(t) = épzzxk(l‘)

with Ny and N, the fuzzy sets.

As a result, the following is the T-S Fuzzy model:

Fi(t) = (01 (%) Crz1 + ¢(xi) Craa)xi (1) 3)

It should be noted that the membership functions (MFs) are
Oi(x .

o;(x) = ) (%) . j=12k=1,...4 @)

2
Zj:l 90k
with the following properties:
2
Z@j(Xk):l, QDj()Ck)G[O, 1]7 j:1727 k=1,...,4
j=1

(5)
where

éj(xk) = ! =

N
(6)

Remark 1 The rules (3) are generalized to calculate only
@;(x1), j = 1,2, by using the same fuzzy form and non-

j=12k=1,...,4

4aj

linear function characteristics of the model. Thanks to this,
the number of membership functions is reduced from 8 to
2. Table 2 details the fuzzy parameters.

Time-varying parameters 7, (¢) and 1,(¢) are:

Table 1 Parameters of the

process Parameters Concept (Unit) Values
Ay AL Areas of tanks 1.3 (m?) 2,8 x 1073
Ay Ay Areas of tanks 2,4 (m?) 3.2 %1073
dp1, ap3 Areas of outlet in tanks 1,3 (m?) 7.1 %107
Ap2, Apa Areas of outlet in tanks 2,4 (m?) 5.7 %x107°°
ky, Coefficient of pump-i, i = 1,2 (ml V=-'s7") 3.33,3.35
X; The liquid level in tank-i (m)
n; The gain of flow at valve i
9 The voltage control signal of pump i (V)

@ Springer
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Table 2 Parameters of membership functions

Parameters Concept Values

aj Width of MFs 0.0021

a 0.3078

b 0.7219

by 5.3137

3] Center of MFs —0.1656
& 0.3155
Cra1 Coefficient of fuzzy set in region N; 2.389x10°
Crn Coefficient of fuzzy set in region N, 0.8149

5 m 5 (1= m ()

Hl(t) = o 02(1) = ) )

7 m) 5 (I —ny(1))

0y =22, datr) = ™)

The quadruple-tank system can be expressed by the
uncertain T-S Fuzzy model in (3) by:

50 =3 mlo() (A + A1)
=1
+ (Ag, + AA (0)x(r — d(2)) + Biu(t)} + w(r) ®)

¥(1) = (C + AC()x(1)

where p;(¢(1)) is the grade of membership of ¢(1), x() €
R" is the state vector, y(r) € R? is the output vector, u(t) €
R” is the input vector, w(z) € [4 is the unknown exogenous
disturbance, A; € R, A, € R¥", B; ¢ R™" and C; €
RP*" (i =1,...,m), are known constant matrices. Finally,
AA;(t), Ay () (i=1,...,m) and AC(¢) are unknown
matrices that represent model uncertainty.

Throughout the paper, the following assumptions are
used:

Assumption 1 The pairs (A;,B;), (A;,C), (Ag4,B;) and
(A4,C) (i=1,...,m), are stabilisable and detectable,
respectively.

Assumption 2 The matrices AA,(z), AA,(t) (i=1,...,m)
and AC(¢) are unknown matrices that represent time-
varying model uncertainties, as follows:

AA;(t) = MiF(t)N;, AAy, (t) = M1 Fi(t)Nigy
AC(I) = Mm+an1+l(t)Nm+]

with

©)

@ Springer

FlOF(t) <1, Yk=1,2,....,(m+1) (10)

The control scheme can also minimize disturbance
attenuation from the pump to tank levels, assuming that the
disturbance can be described as follows:

w(r) = 1072x

[1.25in(20mt) 2.5cos(10mt) —2.8sin(16mt) 3.7sin(21mr) )"

Using (1), the following are the nominal constant
matrices:

—ap1 @CFZj 0 0 0
Apl
0 —apy/ 2gCsz 0 0
Ai _ A]12
0 0 —a3V2¢Cry 0
Ap3
0 0 0 —dp4 \/@CFZj
L Ap4 m
0 0 42 V28Cry o |
Ayl
0 0 0 apav/28Cr
Ag, = Ap ;
0 0 0 0
K 0 0 0o |

Ifi=1,....4Then j=1,And i=5,...,m Then j = 2,
with m = 8.

1 ~
- o
Bl.5: } BZ,GZ Ap2 )
0 0 0 0
L O 0] L0 0 |
_ _ [0 0]
0 0
0 0
0 0
B37 = -, Big = 0 0
37 2%, 4.8
0 2
Ap3 }
0o 0 | ks
Ap4 i

1 0 0 0
and C =
0 1 0 0

The observer-based controller is as follows:
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System Dynamics

Disturbance w(t)
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()
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Gain observer

Fig. 2 The structural scheme of the fuzzy system

(t) = ; wi(e(){Aix(r) (11)

+ A x(t —d(t)) + Biu(r) + Li(y(r) — Cx(2)) }

and the following controller is used for the system (8):
u(t) = =Y wop(0)){ (K (r) + Ky &(e — d(1)} (12)
=1

where L; € R”P, K; € R™" and Ky € R™" (i,j=
l,...,m) are the observer and the controller gains,
respectively, to be calculated, and X(¢) € R" is the esti-
mation of x(¢) provided by the observer.

Let us define e(f) = x(¢) — X(¢), the dynamics of e(r)
which can be obtained as follows:

ét) =D me)[(Ai — LiC)e(r) + Age(t — d(1))
i=1
+(AA, — L,AC)X([)
+AA x(r — d(1))] + w(1)
(13)
By using the controller (12), then the system (8) in closed-
loop is:
O =3 u00) > mo0)[(A) - M) — BK))e(r) + BiKe(r)
i=1 j=1
+BiKye(t —d(t)) + (Ay, — AAg (1) — BiKj)x(t — d(1)) + w(t)]
(14)

Following this, the augmented system can be written as
follows:

{A,- — BiK; + AA(r) é<[l)§i1(j } [x(t)]

AA,‘(I‘) — L,AC(t) A,‘ — L,C e(t)
Aj <(r)
mo - — DKy, AA 1\ @A
) STl

i=1 j—=1

2.2 Problem statement

The main objective of the paper is to design a robust
observer-based control design in the presence of process
delays and disturbances, such that augmented system (15)
is asymptotically stable and satisfies that

Il
(), =7

(16)

2.3 Preliminaries

The following lemmas are required to provide the main
results in the following section.

Lemma 1 (Lien (2004)) VY o, positive constant, and real
matrices M, N, and F € R of appropriate dimensions,
such that FT(t)F(t) < I, the following holds:

1
MFN + NTFTMT < —MMT + oN'N (17)
0

Lemma 2 (Chang et al. (2015)) For matrices T, Q, U, and

W, with appropriate dimensions, and scalar { the
inequality,
T+W' Q' +0wW<0 (18)
is satisfied if the following condition holds:
T o+w'uT
o+ Wi (19)
x —(U-tur

Lemma 3 (Dong et al. (2017)) For any constant matrix
Z=27">0 and scalar h>0 such that the following
integrations are well defined, then

@ Springer
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[ ewzei< ([ o)z [ esa

0 t
/ £ ()2¢E(s)dsd0 <
—h Jt+0

2 0 pt T 0 ot
- — dsd0 dsd0).
h? (/—h t+0 $(s)ds ) Z(/—h 40 <(s)dsd0)

3 Main results
3.1 Robust observer-based control design

This section aims to investigate the stability problem of
system (8) in the presence of uncertainties and
disturbances.

Theorem 1 The robust observer-based system (15) is
asymptotically stable with H., performance, for given
scalars v, {,, {, and positive scalars oy > 0 (k=1,...,m),
if there exist symmetric positive-definite matrices
P,P5,0(,05,R|,R, € R"" and unknown matrices
S1,8 € R™", le,sz e R™" W; e R"™*P, (l,] =1,.. .,m)
satisfying the following LMIs:

_Yl Elg 513 a blT aj bg )
¥  HBo 0 0 0 0 0
* * 533 O O 0 0
* * * — ol 0 0 0
1 <O,
* * * * ——1 0 0
g1
* * * * * — oal 0
1
* * * * * * ——1
L oy |
(20)
where
Yu+Tu Ap+To 0 0 P
* ng ? 0 0
Y'l = * * B ERI (1) )
* * * - ?Rz 0
* * * * — yzl

_ 42
Y1 = A+ Al +Q1+Q2+dR1+7R2 +1,

Expn =—(01+ Q1) + 00y,

PiA; 0

Au=1" P.A; — WiC |’

@ Springer

PA, 0
Ap = [ 10 . PoA, ], T\ =HAEn},
Ty, = HAE},
_BZ, BZ
En = { 0 ! 0 ! }
—B;Z, BZ
Ep = [ 0 : 02}
[ (¢ (P1B; — B;S») |
0
] 2
212 = V43 )
0
0
. O -
[P0
r=1T ol
[ 52(PlBi —B;S1) —Z{ |
z{
- 0
=13 = 0 )
0
. 0 -
[ (&(PiB —BiS) — 2T\ ]
z{
- 0
=3 = 0 )
0
. 0 -

Yo = (18 — (S,
Y33 = 58 — OST,

and the gains of the controller and observer can be
obtained as K; = Sl_'Zl, Ky = Sz_lZg and L; = PZ_IW,-.

Proof The following L-K functional is used to demon-
strate the result:
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V(1) = " ()Pe(t) + J_z<" (5)@ic(s)ds + [y <" (5)Qac(s)ds
+ [0 J o ST ()RiE (5)dsdO
+ 200y 1o €T (9)RaS(s)dsdO

(21)

The time derivative of V() along the trajectory of (15) is
the following:

{0 (PAy + ATPY(0) + T (0(PA,,

()} +<(0Qis() <1~ d
+T(0)02¢(1) = (1 — o)™ (1 — d(1)
Qos(t —d(t)) +ds" (s)Ric(s)

)
(5)Ric(; )m”’7 T($)Rac(s)

+AL P)S(t

7]{ d‘
f ft+®> s

c(s)dsd®
(22)

By Lemma 3, it is obtained that

<303 wlo)n o)

(1) (PA; + ALP)S(1) + ¢ (1) (PAq,
+AL P)(E = d(1) } + T (0[01 + 021:()

— 't —d)Qic(t — d)
— (1 —0)c" (1 —d(1))Qac(t — d(1)) + " (s)

_ &
|:de + 7R2:| Q(S)

A ow)'n( [ o0
([, o)
(] [ o)

Following that, it is now shown that for any w(r) €
L,[0, 00) of the T-S system with parametric uncertainty (8),
the following condition must be fulfilled:

J(c(2), w(r) = /OOO [c(t)"c(t) — ()" w(r)]dr <0 (24)

—~

Under null initial conditions, the Lyapunov function fulfill
V(0) =0 and V(oco) > 0, which leads to:

J(e(1), wl1)) = /0c [V(e(t) + (1) <(t) = 7*w(e) w(o)]dr — V(o0)

0

w(r)]dt
(25)

J(e(0)w(n)) < /0 T V) + <7< — Pw(n)”

To achieve the attenuation level in (16), we must fulfill
inequality in the following:

V(1)) + (1) () = 7*w(t) w(r) <0 (26)
Combining (23) and (26), we have:
V(i <y'Qy (27)
where /T
=[@  Se—aw) [T ds [ S e (5)dsaO |
Y= wlo®))we)
i=1 j=1
BRETHR S 0 0 i
Y 0 0 0
* 22 X (28)
* * — ERI 0 0 <0,
1
* * * — ?Rz O
L * * * * — y21_
. _ &
Ty = PA; +A~§P + 01+ 0 +dR + ?szﬂbSPQ
Y, = PI‘{d,-ﬂ Yo = —(Q1 + Q) + 00
After that, Eq. (28) can be rewritten as follows:
Y =7, + Y+ Ya<0, (29)

[ Y11 A 0 0 P
* Ygz 0 0 0
1
where Y, = | © T le 0
1
* * * ?Rz 0
| * * * * — yzl_

_ 42
Y =An +A1T1+Q1+Q2+dR1+7R2 +1,

@ Springer



Granular Computing

AL | PrA 0

=190 PA; — WiC |’
PA; O

/\12—[ 0 PzAd,]’

0 P
Yy Ap 0 0 0
R * 0O 0 0 O
Y, = | x * 0 0 0],
* *x % 0 0
* * x *x 0
Y, Ap 0 0 0
~ * 0O 0 0 O
TA = * * 0 0 O )
* * * 0 0
* * *x *x 0
Y‘ll_/illﬁL/i{]v Y'n:/inJr/ilTn
- —P,BK; P,BK;
Au=| "5, f}
< [ —P\BiK; P\BK,
Ap = 10 4 0 d’}
A o [ PlAAi(t) 0
= _PQAA,'([) — RAC(I) 0
/{ . [ PlAAd,(l) 0
2= _PzAAd/.(t) —RAC(I‘) ol

Using non-singular matrices S1,S, and defining K; =
871215, Ky = S;'Zy; it is possible to show that,
P1BK; = (P\B;i—B:iS1)S;'Z + BiZy,

B - (30)
PIBK; = (P\B;—B;S$:)S;'Z +BiZ,.

Then, using Eq. (30), inequality (29) is equivalent to:

@ Springer

R
——

Y=+ Ys+H,.

(PlBi - BiS1>

SH(=zi Z1) 0 0 0 0]

Xy

P\B; — B;S>
("™
0
+H. 0 510 (=22 Z) 0 0 0],<0
0 e
0
_—
Xi
(31)
where
(Y +Tn An+To 0 0 P
* Yzz 0 0 0
1
Y] _ * * —ERI (1)
* * * —dﬁRz 0
L * * * * —yzl_
T\ = HAEn}, Ty, = HAEn},
—-B;Z, B;Z —B;7Z, B;Z
En:[ dl 101}, E12:|: 012 102}

Using Lemma 2, inequality (31) can be guaranteed by
the following condition:

Yo Yi+Ya+T C]{(1+X2T~Sg (32)
* — 08— 48T
(cl (P\B; — BiS»)
0
_ -zr
where {1 X, +X2TS§ = ( zr )
0
0
L O -

then
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Y+ Ya+T  &X) +XIsT
* *5152*5155

<PIB,- — B;S, )
0

+ H, S0 (=zi Z) 0 0 0]p<0

Xy

o O

(=]

(33)

Lemma 2 makes possible to verify (33), using the matrix
condition of inequality:

Y+ Yy OX +XIST GX3 + XTST
Y= * ~ 08— (SY 0 <0
x x — 081 - 5sST
(34)
where

0Xs + X1 ST =

Taking into account the special structure of
AA;(1),AA4 (1), AC(t) and integrating Lemma 3, we obtain

PM;
PoM;

Ypo=2

[=Eell el =]

Pan1+l
PoMyy

+2

S O O O

Fn1+l([)[(1\7zn+l 0) (Nm+i+l 0) 0 0 0}

+2

(35)

We have the inequality:

Ya < oYYl + o7 Yo YT + o2 Y3 YL + 65 ' Ya YL
(36)

for any ¢; > 0 and g, > 0, such that

i\ ]
PyM;
Yl = 8 ,
0
L O -
Ya=[(N, 0) (Ng 0) 0 0 0],
< 0 )
—W:M;
0
Yy = 0 ,
0
L 0
Yi=[(N;, 0) (0 0) 0 0 0]

Adding (36) to (34) and applying the Schur complement,
inequality (20) can be achieved immediately, completing
the proof. O

Remark 2 The approach introduced in Theorem 1 requires
only one step, making it much easier to implement than the
two-step LMI method in (Zemouche et al. (2017)), and
than the methods based on cone-complementary algorithm
linearisation, such as (Tuan VLB, and Hajjaji (2018); Tuan
VLB et al. (2019)).

Remark 3 Comparing with earlier works in (Tuan VLB,
and Hajjaji (2018); Tuan VLB et al. (2019); Naami et al.
(2021)), an observer-based control design methodology for
T-S fuzzy systems is proposed: these previous studies use
Lyapunov functions related only to the original state, and
unrelated to the delayed state. However, in many applica-
tions the process delay is a major concern, as it is
responsible for the deterioration in the performance. From
the above analysis, we can infer that the result presented in
this study is more general and practical for real
applications.

Remark 4 The following optimisation can be used to find
the optimal performance index 7y:
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min 7y,
{S.Z. Pl>0,P2>0,Q1>0,Q2>0,R1>0,R2>O,LMI(20)
(37)

4 Simulation results and discussions

To compensate for the inherent differences between system
states and measurement outputs, an uncertain model is
used. The uncertainty matrices for the fuzzy quadruple-
tank system (1) are then the following:

M;=[01 01 01 0.1],
Vi = 2,[0.1 0.1 0.1 0.1],
Ipir =01 0.1],

My = Jny1]0.1 0.1],

fori=1,...,8, and m = 8.

Choosing time-varying delay d(t) = 0.66 + 0.5sin(t),
0<d(f) <2 and the parameter constant values are
Jie[1,120], i=1,....8, m=8, {; = 0.001, {, = 0.002.
The simulation starting from the initial conditions x(0) =

[0.34 0.140.41 0.31]T, x(0) =10.21 0.01 0.22
0.10]",
respectively.

Some simulation results are given in Figs. 3 and 4.
Figure 3 shows the evolution of the measured levels
(x1,x2), although Fig. 4 illustrates the evolution of the
unmeasured states (x3,x4). Despite the existence of model
uncertainties and disturbances, the observer estimates
adequately the level of the four tanks, as seen in these
figures.

Now, by using the YALMIP toolbox (Lofberg (2004)) in
Matlab (Higham and Higham (2005)), the LMI (20) in
Theorem 1 can be solved, obtaining the following con-
troller gains:

234 —3421"
~759  —2.15
Ki=58'Zu=| 35 438 |
3.57 1.56
—1.47 —1521"
_ 216  —224
Ky=S87"Zn=| 55 465 |
7.25 1.25
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Fig. 3 Evolution of measurable
states and its estimation
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Fig. 4 Evolution of
unmeasurable states and its
estimation
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Fig. 5 Evolution of the

estimation errors of tank levels

Fig. 6 Evolution of the pump
control signals
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The flow distribution rate in the tanks is considered,
based on the position of the control valves 7, () and #,(?),
which will be modified according to the following rules:

If t,(p) = 0,...,20 Then 5, (¢) + n,(¢) € [1,2], MP

If 1,(p) = 20, ...,120 Then 1, (1) + n,(r) € [0, 1], NMP

If £,(p) = 120, ...,220 Then 1, (1) + 1,(t) € [1,2], MP

If #(p) =220,...,300 Then #,(z)+n,(¢) €[0,1],

NMP

@ Springer
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where MP is Minimum Phase setting (Johansson
(1997)), and NMP is No-Minimum Phase setting. Using
the setting rules, the estimation error of each tank level is
presented in Fig. 5. Figure 6 shows the control signals of
the observer-based controller designed using the approach
in this paper. The results demonstrate the closed-loop sta-
bility and the reduction of tracking errors in various situ-
ations, including in the presence of parameter uncertainties
and perturbations.

5 Conclusions

This paper has proposed a direct approach to design robust
observer-based controllers for T-S fuzzy systems with
time-varying delays in the presence of parameter uncer-
tainties and admissible external disturbances. Lyapunov-
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Krasovskii functional have been used to ensure the robust
asymptotic stability, making possible to then select both
the controller and observer gains in a single step, by
solving a set of LMIs. This methodology ensures that the
closed-loop system is robust asymptotically stable with a
certain performance ). The results reported in this paper are
also relevant from the perspective of discrete-time state
estimation. The approach was demonstrated using a sim-
ulated quadruple tank laboratory process: an observer-
based controller was developed, and tested in simulation, to
show the effectiveness of the proposed approach. It must be
pointed out that the functional used in this article does not
include the integral of the derivative, but this issue appears
in the application, contributing to non-linear terms that are
more complex. This merits further research.
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