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Abstract: This article analyses the reduction of energy consumption following the installation of
district heating (DH) in the Miguel Delibes campus at the University of Valladolid (Spain), in terms
of historical consumption and climate variables data. In order to achieve this goal, consumption
models are carried out for each building, enabling the comparison of actual data with those foreseen
in the model. This paper shows the statistical method used to accept these models, selecting the
most influential climate variables data obtained by the models from the consumption baselines
in the buildings at the Miguel Delibes campus through to the linear regression equations with a
confidence level of 95%. This study shows that the best variables correlated with consumption are the
degree-days for 58% of buildings and the average temperature for the remaining 42%. The savings
obtained to date with this third generation network have been significantly higher than the 21%
average for 33% of the campus buildings. In the case of 17% of the buildings, there was a significant
increase in consumption of 20%, and in the case of the remaining 50% of the buildings, no significant
differences were found between consumption before and after installation of district heating.

Keywords: district heating; energy efficiency; baseline model; energy prediction; verification

1. Introduction

The building sector consumes more than a third of the world’s energy and is responsible for
30% of all CO2 emissions. These emissions were 9.0 Gt CO2-eq in 2016 [1]. In order to reduce these
emissions, the European Union (EU) has established the target for 2050 of reducing greenhouse gas
emissions by 80% compared to 1990 levels [2]. The aim is to limit the increase in global temperature
to 2 ◦C by 2050 [3]. This objective requires that emissions in 2030 compared to 2005, are limited or
reduced in all developed country parties, but by different percentages, from 0% in Bulgaria to 40% in
Luxembourg through to 26% in Spain [3,4].

The building sector in Spain has an approximate weight of 30% in final energy consumption,
distributed at 18.5% in the residential building sector and 12.5% in the non-residential sector integrated
by retail trade, services and public administration [5]. More than 65% of this consumption is used to
supply heating needs, with 82% of the individual heating systems and the remaining 8% of central
heating. The energy sources used mostly in heating are electricity (46%) and natural gas (32%) [6].
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In front of individual and central heating systems for a single building, urban heat networks allow
an easy change from fossil fuel to a renewable one, such as biomass, allowing the use of other renewable
energies like: solar thermal, geothermal, urban solid waste and residual energy from other nearby
processes. In addition, it can offer versatility to the energy system by cheaply storing thermal energy,
for instance in hot water tanks, and reducing heating cost, especially in densely populated urban areas
that have a concentrated heat demand. All of this makes it one of the best alternatives to improve the
environmental behaviour of cities, as demonstrated in numerous European programs [7–9].

Therefore, it seems logical to assume that district heating (DH), since it is generated in
large-scale power plants, will be more economical and efficient than heating generated in individual
installations [10], as has been demonstrated in Seoul, Switzerland, Sweden, Poland, Denmark and
Lucerne in Italy [11–16]. However, the energy efficiency of heating networks depends on a number of
factors that can undermine the efficiency with which they are planned. Such factors include regulation,
heat loss in distribution, or water leaks [17,18]. Along with these drawbacks, these systems must
often compete with dominant technologies such as natural gas networks, as is the case in the United
Kingdom and Latvia [19,20].

The first district energy system dates back to the 14th century [21]. Nowadays, four generations
of heating networks are considered: the first generation (1880–1930) characterised by the use of steam
as a thermal fluid, the second (1930–1980) in which steam was replaced by high temperature water
channelled through concrete pipes, the third (1980–2020) based on the average water temperature in
prefabricated pipes buried directly in the ground, and the fourth, the future generation (2020–2050),
which will focus on low temperature distribution, supplying below 50 ◦C and return close to 20 ◦C or
between 70 ◦C and 30 ◦C, using waste heat, municipal solid waste, renewable energies, and possibly
combined with cogeneration plants and integrated into smart energy grids [21–31]. The system will be
optimal for new buildings, constructed using near-Zero Energy Building (nZEB) guidelines and high
energy efficiency standards [32,33].

According to ADHAC (Spanish Association of Heating and Cooling Networks), by the end of
2017 Europe accounted for 64.1% of the world’s heating grids, which means more than 5000 grids,
with more than 425 GW of power and more than 200,000 km of pipes laid. In the EU, district heating
provides 9% of heating. The main fuel was gas (40%), followed by coal (29%) and biomass (16%) [34].
In Spain, district heating provides a non-representative percentage of the heating necessities; there are
only 352 heating networks with 1280 MW of power installed, where more than 60% were concentrated
between Madrid and Catalonia. In Castilla y León, a region located in the centre of the peninsula,
there are 56 networks with a total installed power of 92.7 MW [35]. One of these grids, with a power of
14.1 MW, is that of the University of Valladolid (UVA). This network was built in 2015 to satisfy a heat
demand of 22,000 MWh/year. It consists of two rings: one that connects the 12 buildings that make up
the Miguel Delibes campus and the other that is connected by 11 buildings on the Esgueva campus
together with four buildings of the regional authorities, making a total of 27 buildings, which offers
the possibility of connecting more adjacent buildings.

The generation system consists of three 4.7 MW biomass boilers. The facilities with the 1800 m3

storage silo (540 tons of wood shavings) have a constructed area of 1418 m2. The wood chips are fed
via a screw conveyor or a movable floor to the boilers.

This DH consists of 11,200 m of buried steel pipe, most of which is pre-insulated, with a diameter
of between 32 and 350 mm. The system uses water as a thermal fluid at a maximum temperature of
109 ◦C, returning the boilers to temperatures above 60 ◦C. There are two 40,000 L backups. The design
conditions are 90 ◦C/70 ◦C in the network primary and 80 ◦C/65 ◦C in the connected secondary
building. The thermal difference considered for the calculation of the substations was 15 ◦C, between
the exchanger of the substation and the circuit of each building, making it a third-generation network,
built at a cost of five million euros. The aim is to avoid the production of 6800 tons of CO2 per year
and obtain an economic saving of 30%, together with an annual reduction in heating consumption
of at least 15%. This paper focuses on the district heating part of the Miguel Delibes campus, which
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has 12 connected buildings. Table 1 shows the names, use of the building, installed power and heat
exchange power of its installed facilities. These buildings have a capacity of 8.89 MW (Figure 1).
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Figure 1. Miguel Delibes Campus. Buildings connected to district heating (DH).

All buildings were initially operated on natural gas. Depending on the heating program, three
types of buildings are distinguished:

• Educational buildings, which use heating just weekdays from 6:00 a.m. to 10:00 p.m., and stop
over the Christmas period from 24 December to 8 January.

• Residential buildings, which are working all week and use heating 24/7.
• Sports buildings, which are working the whole week with heating from 10 a.m. to 2 p.m. and

from 4 p.m. to 10 p.m.

Heating is switched on for all the buildings from 15 October to 15 May every year.
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The main objective is to model the energy consumption of district heating on the Miguel Delibes
campus at the University of Valladolid and compare it with actual consumption to assess whether the
energy savings proposed in the project had been carried out. In order to achieve this general objective,
the following issues, in consecutive order, must be answered: determining the most influential variables
in the heating consumption of buildings, by modeling the consumption of buildings on a baseline
based on the variables indicated; and obtaining the expected consumption by modifying the value of
the most influential variables.

Table 1. Buildings, installed thermal power and heat exchanger power in their facilities.

Ref. Name of the Building
Type of

Building

Thermal
Installed

Power (kW)

Heat Exchanger
Substation
Power (kW)

Total
Built-Up
Area (m2)

Outside Air
Flow (L/s)

D3 CTTA Building (Centre for the Transfer
of Applied Technologies) Educational 348.0 342.0 5487 4600

D5 IOBA Building (University Institute of
Applied Ophthalmology) Educational 81.4 80.0 4146 3400

D10 Languages School Educational 325.6 326.0 5636 4700

D1 Cardenal Mendoza University
apartments Residential 1554.4 1454.0 17,616 14,600

D2 Cardenal Mendoza University
apartments (Library) Educational 40.9 42.0 464 400

D4 Miguel Delibes classroom (Library) Educational 860.0 1140.0 14,541 12,100

D6 Science School Educational 1162.8 1120.0 19,137 15,900

D8 QUIFIMA building (Building of Fine
Chemistry and Advanced Materials) Educational 465.1 460.0 5610 4700

D9 Education School (Gymnasium) Sports 507.0 504.0 3673 3000

D11 Education School Building Educational 1000.0 1000.0 14,943 12,400

D12 R + D Building Educational 802.3 802.0 7412 6200

D7 IT School Educational 1953.5 1620.0 20,179 16,700

DELIBES TOTAL
12 Buildings. Miguel Delibes Campus 9101.0 8890.0 118,843 98,700

2. Methodology

The method applied in this study is based on the statistical analysis of consumption before and
after the installation of the network. To achieve this, the steps shown in Figure 2 were followed.

As in Sathayea, the study was based on the application of a system that examines the difference
between consumption before and after the implementation of a specific project, constructing a baseline
that represents the expected consumption if the project had not been carried out [36].

Below are the steps to follow in the research with the 12 buildings of the Miguel Delibes campus.
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•Obtaining and treating climate variables (data every 30 minutes from 2012 to 2017). [Internet, updated 16/03/2018]. Available at: 
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•Analysis of independent variables that correlate with consumption.
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4
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2.1. Obtaining and Processing Data on Climatic Variables

The variables are independent parameters to model the expected consumption in each building,
and were obtained every 30 min over the last five years at a weather station located in Zamadueñas
(Valladolid), property of the Instituto Tecnológico Agrario de Castilla y León (Spain), and were related
to the following variables: temperatures—average, average daytime, maximums and minimums.

• Degree-days: on 15 ◦C and 20 ◦C basis.
• Relative humidity: average, daily, maximums and minimums.
• Radiation: radiation intensity.
• Wind speed: average, daily, night-time and maximums.
• Wind path.
• Accumulated rainfall.
• Hours of sunlight.

The forecast of the expected demand generally depends on the outdoor temperature, when the
buildings will be occupied and the indoor set point temperature. User habits and indoor temperatures
were not included as independent variables in the study, since they hardly varied throughout the
periods analysed.

In this paper, temperatures, humidity, velocities, wind trajectory and precipitations were processed
to obtain monthly averages, maximums, minimums and accumulated. The results are shown in Figure 3.
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Figure 3. Climatological data used by the study variables. (a) DD, (b) Temperature, (c) Humidity,
(d) Velocity, (e) Precipitation and sun hours, (f) Radiation and wind distance.
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In the case of degree-days, as given by Equation (1):

DDBasemonth =
n

∑
i=1

(Base − Ti) (1)

where:

Base = 15 ◦C or 18 ◦C
Ti = Temperatures measured by period below 15 ◦C or 18 ◦C
n = Number of month periods

The degree-days are values that express accumulated temperature differences; they are calculated
according to the UNE-EN ISO 15927-6: 2009 standard [37]. Its calculation is based on the concept
of base temperature, from which the building needs to be heated. This variable has been used in
numerous studies [38–42].

2.2. Obtaining the Heating Consumption before and after the District Heating Is Installed

Data on monthly heating consumption were collected between 2012 and 2017, corresponding
to the 12 buildings on the Miguel Delibes campus. The district heating was built in 2015, so that the
heating seasons from October 2012 to May 2013 and from October 2013 to May 2014 were considered
the reference periods before the installation of the network, and the seasons 2015–2016 and 2016–2017
the periods after its installation.

Following option C of the IPMVP (International Performance Measurement and Verification
Protocol) [43], corresponding to verification of saving with statistical adjustment of the entire
installation, these consumption data were taken from energy invoices and from the counters available
in the boiler rooms of thermal power stations. The results obtained are shown in Figure 4.
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Figure 4. Heat consumption data.

The total consumption of the two campaigns prior to the start-up of the network was
14,286,109 kWh, compared to 12,558,748 kWh in the two campaigns subsequent to the installation of the
heating network.
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The season from October 2014 to May 2015 is considered to be the period of the first start-up of
the district heating and the data has not been analysed. Figure 5 shows the total monthly consumption
profile analysed. This is the usual profile of heating demand in the city of Valladolid, where the months
with the highest demand are from November to March.Energies 2018, 11, x FOR PEER REVIEW  7 of 20 
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2.3. Statistical Analysis of Variables Correlated to Consumption

The statistical study was performed using SPSS software [44], and statistical inference techniques
were used throughout the process, establishing a 95% trust level.

A first step was to determine the independent climatic variables for each building and with specific
weight in the regression analysis, the dependent variable being the consumption of each building
during the period from October 2012 to May 2014. Using the stepwise method, the independent
variable is chosen which, in addition to meeting the highest input tolerance (its significance level is
≤0.05), correlates in absolute value with the dependent variable (has the highest absolute value of
the partial correlation). The independent variable is then chosen which, in addition to meeting the
input tolerance, has the next highest partial correlation coefficient (in absolute value). Each time a
new variable is included in the model, the previously selected variables are re-evaluated to determine
whether they still meet the output tolerance (with the lowest regression coefficient in absolute value,
level of significance ≥0.1). If a chosen variable meets the output tolerance, it is eliminated from the
model, since the regression or elimination is already explained by the rest of the variables and lacks a
specific contribution of its own. The process stops when there are no variables that meet the input
tolerance and the variables chosen do not meet the output tolerance [45].

The D3 building model has been built in a single step (Table 2) by entering variable GD15 with
t = 8.851, a partial correlation of 0.921 and a level of a significance (Sig.) = 0.000 (≤0.05). As the
remaining variables do not meet the tolerance input of Sig. ≤ 0.05, no more variables could be
introduced into the model.

• The statistic t and its meaning (Sig.) are used to check that the regression coefficient equals zero in
the model. Sig. > 0.05 implies that the slope of the independent variables in the regression model
is equal to zero, and does not meet the input tolerance in the model.

• Partial correlation studies the relation between two quantitative variables by controlling for or
eliminating the effect of third variables in the linear regression model. The higher the absolute
value, the greater the relation between the dependent variable and the independent variable.

• Tolerance is a collinear statistic that looks for a relation between independent variables. If the
tolerance is less than 0.1, there is a high degree of collinearity and the variable must be removed
from the model.
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Table 2. Inputs and deleted variables in the model D3 Building.

Variables Entered

Model t Sig. Partial Correlation
Collinearity Statistics

Tolerance

1 DD15 8.851 0.000 0.921 1.000

Variables Removed

Model t Sig. Partial Correlation
Collinearity Statistics

Tolerance

1

DD20 −1.245 0.235 −0.326 0.004
T_average 0.006 0.995 0.002 0.017

T_average_day −0.712 0.489 −0.194 0.033
T_max −0.951 0.359 −0.255 0.050
T_min 0.872 0.399 0.235 0.075

RH (Relative Humidity) 0.797 0.440 0.216 0.419
RH_average_day 0.878 0.396 0.237 0.374

RH_max 0.527 0.607 0.145 0.573
RH_min 0.992 0.339 0.265 0.346

Radiation −0.230 0.822 −0.064 0.392
V 1.493 0.159 0.383 0.890

V_day 1.325 0.208 0.345 0.958
V_night 1.705 0.112 0.428 0.770
V_max 1.097 0.293 0.291 0.985

Wind_distance 1.493 0.159 0.383 0.890
Accumulated_Precipitation −0.032 0.975 −0.009 0.996

Sun_hours −0.512 0.618 −0.140 0.417

Dependent variable: kWh_D3, Predictors: DD15.

2.4. Obtaining Regression Models

The objective is to find some regression models that represent the consumption trends of each
building, verifying the statistical hypotheses of the simple and multiple linear regression. There are a
great number of studies that also use this kind of model [46–51].

In one-variable models, simple linear regression is (2):

kWh = c + β1 × Variable (2)

For multivariable or multiple regression models that contain more than one or regression, the
equation is (3):

kWh = β0 + β1 × Variable1 + β2 × Variable2 (3)

Once the regression model for predicting consumption has been obtained, the hypotheses of the
model should be tested:

• Linearity of the variables.
• Normality of variables residues using the Shapiro-Wilk test for small samples.
• Independence of the residues using the Durbin-Watson statistic.
• Homogeneity of variance, checking the absence of correlation between residues, predictions and

independent variables. The multiple linear regression models also prove this.
• Lack of multicollinearity in independent variables, analysing condition indeces, according to

collinearity diagnoses.

An example is given below, showing compliance of the assumptions for the simple linear
regression model for building D3, which is (4):

kWh_D3 = −6854.944 + 192.51 GD15 (4)
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Table 3 shows the slope (B) obtained a value of Sig. = 0.000, which indicates that the null hypothesis
that the slope is equal to zero is rejected and evidences the linearity between the dependent variable
(kWhD3) and the independent variable (GD15). The positive value of the slope indicates a direct
relation between consumption and GD15.

The statistics of the Shapiro-Wilk test for small sizes (n < 30) and the statistics of the residuals
show a value of Sig. > 0.05 (Table 4), which allow us to accept the null hypothesis of the normality
of variables.

Table 5 shows the Durbin-Watson statistic to determine the presence of autocorrelation between
the residual corresponding to each observation and the previous one. According to Savin and
White [52], for a sample size of 16 observations if the test statistic is greater 1.37092, there is
no correlation.

Table 3. Compliance with linearity assumption and coefficients of the simple linear regression model.
D3 building.

Model B t Sig.

1
(Constant) −6854.944 −1.324 0.207
DD15 192.510 8.851 0.000

Table 4. Compliance with normality assumption (Shapiro-Wilk).

Variables and Residuals
Shapiro-Wilk

Statistics df Sig.

kWh_D3 0.931 16 0.251
DD15 0.953 16 0.541

Unstandardized Residual 0.945 16 0.414
Standardized Residual 0.945 16 0.414

Table 5. Compliance with the assumption of no autocorrelation.

Model Summary b

Model R R Square Adjusted R Square Durbin-Watson

1 0.921 a 0.848 0.838 2.559
a Predictors: (Constant), DD15; b dependent variable: kWh_D3.

R: Pearson linear correlation coefficient measures the degree of linear relations between variables.
Values of R > 0 indicate a direct linear relation between variables. Values of R < 0 indicate an inverse
linear relation between variables. Values close to the unit indicate almost perfect correlations, whereas
values close to zero indicate the variables are not correlated.

R2: the linear determination coefficient measures the part of the variation of the dependent
variable that can be explained by variations of the independent variables.

R2 adjusted: linear determination coefficient over the number of independent variables included
in the model and the sample size. It is used to compare regressions of the same sample size but with
different number of regressors. Reduces the coefficient for very small samples with many independent
variables (5).

R2 adjusted = 1 − [(N − 1) (1 − R2)/(N − k − 1)] (5)

where: N is the sample size and k the number of regressors
In order to check homoscedasticity, the linear determination coefficient (R2) between residuals

and predictions (R2 = 0) and between residuals and the independent variable (R2 = 3.33 × 10−16) is
calculated. As shown in Figure 6, these are close to zero.
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Figure 6. Compliance of homoscedasticity of residuals. D3 building.

The scatter plot is a totally random point cloud, which shows neither trends nor patterns in the
graphical representation. Consequently, the hypothesis of linearity and homoscedasticity is accepted.

For building D1, the supposed lack of multiple collinearity in the independent variable was also
tested in the multiple linear regression model, represented by the Equation (6):

kWhD1 = 271,370.906 − 20,045.184 T_average + 50,568.513 V_night (6)

This model corresponds to model 2, shown in Table 6.
If two independent variables are closely correlated with each other and included in the model,

certainly neither is likely to be statistically significant. However, if only one of them is included,
it could prove to be statistically significant. To assess whether the model becomes unstable when a
new variable is introduced, collinearity indices are evaluated. Following the studies of Belsley, Kuh,
and Welsch, both with observed and simulated data, the problem of multicollinearity is severe when
the condition index takes a value between 20 and 30 [53].

Table 7 shows the condition index for model 2, which is multiple linear regression, is 12.192, below
20. In addition, the tolerance shown in Table 6 takes a value of 0.738, close to the unit (the higher the
tolerance, the lower the collinearity), so that it can be deduced that there is no multiple collinearity
between the two independent variables.

Table 6. Linear regression models. D1 building.

Coefficients a

Model
Non-Standardized Coefficients

t Sig.
Collinearity Statistics

B Tolerance

1
(Constant) 391,037.854 13.525 0.000
T_average −23,838.939 −7.408 0.000 1.000

2
(Constant) 271,370.906 4.659 0.001
T_average −20,045.184 −6.154 0.000 0.738
V_night 50,568.513 2.278 0.042 0.738

a Dependent Variable: kWh_D1.

Table 7. Verification of the assumption of lack of multicollinearity between variables. D1 building.

Collinearity Diagnostics a

Model Dimension Condition Index

1
1 1.000
2 4.823

2
1 1.000
2 3.915
3 12.192

a Dependent Variable: kWh_D1.
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2.5. Prediction of Expected Consumption

For the periods following construction of the network, using regression models and climate
variables for subsequent periods, consumption without the district heating was predicted, and the
accumulated consumption was calculated. This consumption was compared to the actual accumulated
consumption. Table 8 shows the current consumption of building D3, corresponding to the period
of the district heating from November 2015 to May 2017 and the values foreseen for the same period
using the linear regression equation shown in Table 3.

Table 8. Current and predicted consumption for building D3, from November 2015 to May 2017.

Date DD15 Real Value (kWh) Predicted Values (kWh)

15 November 208.36 28,683 33,257
15 December 300.09 50,191 50,916

16 January 271.93 38,231 45,495
16 February 266.36 68,430 44,423

16 March 276.34 41,775 46,343
16 April 181.04 24,655 27,998
16 May 99.34 7268 12,268

16 October 97.34 3,711 11,883
16 November 245.69 35,452 40,443
16 December 337.25 45,615 58,069

17 January 386.98 47,454 67,643
17 February 226.76 33,104 36,799

17 March 203.17 26,179 32,257
17 April 129.72 16,672 18,118
17 May 54.86 12,122 3706

Total 479,543 529,618
Mean 31,969.4667 35,307.8667

It can be seen in Table 8 and Figure 7 how the 15-month average of the actual consumption is
31,969 kWh during the two seasons following the installation of the district heating, while the 15-month
average of expected consumption for these seasons if installation had not been built, was 35,307 kWh,
3338 kWh higher than actual consumption, representing a saving of 9.5%. However, as will be seen
below, the priority saving is in fact not statistically significant.
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2.6. Statistical Verification of Significant Differences

An analysis was carried out to ascertain whether the difference between the predicted
consumption, had the network not been built, and the actual consumption after it had been built,
was statistically significant, at a confidence level of 95%.

The t-Student test was used in the study for related samples, which is considered particularly
suited to compare the means of two groups when there is some relation between the individuals in the
two groups. In this study, the relation was that consumption was associated to the same facility but
during different periods of time.

Therefore, if the variables are distributed normally and the statistical significance is 0.05, it can
be said that there are some significant differences. On the contrary, the null hypothesis that the two
means are equal is not rejected, and the differences found are not considered statistically significant
and do not go beyond what could be expected at random [54]. All of this assumes accepting a 5% error
risk or, put differently, a confidence level of 95%.

The following shows how the differences found between the actual and predicted consumption
of building D3 are not significant.

In line with the Shapiro–Wilk normality test, (Table 9) both the variables that represent actual
consumption and those representing predicted consumption are distributed according to a normal
distribution as a result of Sig. > 0.05, such that the null hypothesis of normality is accepted.

Table 10 shows that the forecast average consumption is 35,308 kWh, which compares with the
actual average consumption of 31,969 kWh, which may lead one to believe that there is a difference of
3338 kWh between the averages.

Table 11 shows that the difference found is not significant (value of Sig. > 0.05), such that we
accept the null hypothesis of equal means. However, we are not in a position to say whether or not the
difference found is due to more than mere chance.

Table 9. Test of normality for real and predicted consumption D3 building.

kWh
Kolmogorov-Smirnov a Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

kWh_real 0.085 15 0.200 * 0.980 15 0.969
kWh_predicted 0.100 15 0.200 * 0.976 15 0.933

* This is a lower bound of the true significance; a Lilliefors significance correction.

Table 10. Actual and predicted average consumption D3 building.

Paired Samples Statistics

kWh Mean N Std. Deviation Std Error Mean

Par 1
kWh_predicted 35,307.8667 15 18,097.26058 4672.69259

kWh_real 31,969.4667 15 17,668.79051 4562.06209

Table 11. Paired samples test D3 building.

Paired Samples Test

kWh
Paired Differences

t df Sig. (2-Tailedl)
Mean Std. Deviation Std. Error Mean

kWh_predicted—
kWh_real 3338.40000 9703.90931 2505.53861 1.332 14 0.204
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2.7. Exploring the Possible Causes to Explain the Results Obtained

As a final step in the study, an analysis was carried out of the possible causes that might justify
the statistical results of the existence or other wise of significant differences before and after the district
heating works.

3. Results

The regression models found, which allow the consumption of each building to be explained in
terms of the explanatory independent variables, are shown in Table 12. For building D1 (Apartments),
a multiple regression model was found that predicted expected consumption with greater correlation.
Table 12 includes the independent terms and the slopes of the regression variables (β), the Pearson
linear correlation coefficients (R), and the linear determination coefficients between the variables (R2).

In seven of the 12 buildings, in other words 58.3% of the campus buildings, the explanatory
variable found was degree-day on a 15 ◦C basis; the remaining 41.7% correlated better with mean
temperature, and in building D1, in the regression multiple model, a new variable is introduced:
nocturnal wind speed.

The absolute correlation value between the independent variables was between 0.896 and 0.999,
and was positive for the models explained with the grade-day variable on a basis of 15 ◦C and negative
for the mean temperature variables. The determination coefficient was between 0.802 and 0.998, so,
accepting a risk error of 5%, the models found a predicted expected consumption with an accuracy
probability greater than 80%., Figure 8 shows the linear regression model for building D3 (CTTA),
displaying the consumption in kWh of the study period when the district heating was operating, and
the straight line of consumption obtained with the explanatory variable.
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Figure 8. Linear regression model. D3 building (Centre for the Transfer of Applied Technologies
(CTTA)).

From the baselines of the regression models found and the climatic variables for the 2015–2017
periods, the expected or predicted consumption was obtained and compared with the actual
consumption obtained in those periods. Figure 9 shows the results of actual consumption and forecast
consumption (dashed line) for the periods following the installation of the district heating in several
of the buildings on the Miguel Delibes campus. Building D3 (CTTA), where hardly any variation is
observed, building D5 (University Institute of Applied Ophthalmology (IOBA)), where an increase in
real consumption is observed with respect to the forecast, and building D1 (Apartments), where energy
savings are observed.
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Table 12. Regression models.

Ref.
Simple Model Multivariable Model

Variable Constant β R R2 Variable_1 Variable_2 Constant β1 β2 R R2

D3 DD15 −6854.944 192.510 0.921 0.848
D5 DD15 −653.894 56.535 0.993 0.986
D10 T_average 66,791.063 −4393.782 −0.896 0.802
D1 T_average 391,037.854 −23,838.939 −0.899 0.808 T_average V_night 271,370.906 −20,045.184 50,568.513 −0.931 0.866
D2 DD15 −663.338 38.971 0.985 0.970
D4 T_average 271,046.123 −17,453.026 −0.940 0.884
D6 DD15 −6540.157 656.818 0.995 0.989
D8 T_average 91,484.52 −5414.100 −0.906 0.821
D9 DD15 −654.602 139.864 0.999 0.997
D11 T_average 187,840.052 −12,648.948 −0.898 0.807
D12 DD15 −663.549 173.214 0.999 0.998
D7 DD15 −6543.072 733.335 0.996 0.991
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Figure 9. Graphs of real and predicted consumption. D3, D5 and D1 buildings.

The differences found for each building and each of the facilities are shown in Tables 13 and 14.
The differences that turned out to be statistically significant are shaded. The savings that appear as
negative are the increases in consumption.
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Table 13. Simple linear regression model.

Ref. Independent
Variables

% Savings
2016–2017 Significant % Savings

2016 Significant % Savings
2017 Significant

D3 DD15 9.5% NO 0.6% NO 18.1% NO
D5 DD15 −16.1% YES −20.1% NO −12.0% NO

D10 T_average 5.2% NO 5.8% NO 4.5% NO
D1 T_average 20.0% YES 18.5% YES 21.6% YES
D2 DD15 30.6% YES 27.6% NO 34.4% YES
D4 T_average 15.7% YES 19.4% NO 11.7% NO
D6 DD15 −11.1% NO −16.0% NO −6.4% NO
D8 T_average −11.9% NO −1.8% NO −23.0% YES
D9 DD15 0.9% NO 3.7% NO −1.9% NO

D11 T_average 13.6% NO 12.9% NO 14.4% NO
D12 DD15 18.9% YES 12.2% NO 25.7% YES
D7 DD15 10.9% NO 7.8% NO 13.9% NO

Table 14. Multiple regression model.

Ref. Independent
Variable 1

Independent
Variable 2

% Savings
2016–2017 Significant % Savings

2016 Significant % Savings
2017 Significant

D1 T_average V_night 24.8% YES 26.5% YES 22.8% YES

The significant savings differences in the simple linear regression analysis appear in buildings
D1 (Apartments), D2 (Apartment Library), D4 (Teaching Block Library) and D12 (Research and
Development (R&D) building), obtaining average savings of 21.3% (20.0% in D1, 30.6% in D2, 15.7% in
D4, and 18.9% in D12). When applying the multiple regression model to the D1 building, significant
savings in consumption continue to emerge, going from 20% in the simple model to 24.8% in the
multiple model.

In two buildings: D5 (IOBA) and D8 (Building of Fine Chemistry and Advanced Materials
(QUIFIMA)), statistically significant increases in consumption are observed; 16.1% for the 2016 season
and 2017 in D5 and 23% for D8, although only in the 2017 season, reflecting an average increase in
consumption of 20% for these buildings.

For the other six buildings, the differences found are not statistically significant.
Buildings D1, D2, D4 and D12 are buildings that are not used for teaching, so the time of use is

extended to seven days a week and even to holiday periods in some cases.

4. Discussion

All the buildings studied used natural gas boilers as an initial system and in 50% of them no
statistically significant differences were found between consumption before and after the installation of
the heating network. Although this analysis did not reveal significant energy savings in all buildings,
what is undeniable are the economic savings and emission savings achieved by substituting natural
gas by biomass. This study analyses the viability of district heating in terms of predicting the expected
heat demand, using as independent variables only the climatic data of the moment, and with a risk
error equal to or less than 5%.

The results for the two heating seasons obtained to develop the baseline models (16 months)
indicate that the regression mainly uses degree-days (58.3%) and mean temperature (41.7%) to establish
its model, without taking into consideration the remaining variables such as: relative humidity,
radiation, rainfall or wind speed. According to Granderson [55], a reference period of over 12 months
does not guarantee a lower error.

The appropriateness of using district heating could be discussed depending on the initial system
in operation to meet demand. As reflected in Ulseth’s work [56], this information is important in order
to plan a district and conducting the financial feasibility study without making too many mistakes.
In Norway, the use of heating networks to heat houses with heat pumps that were also used to meet
the demand for domestic hot water was questioned. Other studies have even assessed the feasibility of
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using electricity as a source for a municipal district heating system with low local emissions, although
this would clearly not be economically feasible given the current price of electricity [57].

The next step being taken in the UVA network is the use of solar thermal energy for domestic
hot water (DHW), as Winterscheid presented in his studies [58]. This would certainly improve the
energy efficiency of the grid and would also be the logical step for the gradual conversion to a fourth
generation grid, as Pavicevic explained in his work on a district heating system in Zagreb [59].

Given the layout of university and regional administration buildings that are close to the grid,
but not yet connected, and that there are heating systems with different thermal jumps, new buildings
can be cascaded, rather than parallel, as in the case of the proposal presented by Mertz [60]. Buildings
that require lower temperatures (buildings with all-air systems) could be connected to the exit of
buildings that require higher temperatures (hospitals or clinics).

5. Conclusions

The case study provides an example of how district heating by biomass can improve a city’s
environmental performance. The level of energy efficiency can still clearly be improved, since the
savings obtained to date in the district heating system of the Miguel Delibes campus, where 12
buildings have been evaluated, is higher than 21% in 33% of the buildings. Overall, the district heating
has achieved a significant reduction in CO2 emissions (6800 tons of CO2) according to the UVA, having
changed natural gas for biomass (wood chips), also obtaining a significant economic saving of more
than 30%.

The UVA district heating has achieved a reduction in installed power, going from 59 natural gas
boilers with a total installed power of 27.4 MW to three boilers of 4.7 MW each, representing a total
power of 14.1 MW.

A consumption model has been obtained for the Miguel Delibes university campus, which consists
of 12 buildings and has an initial installed power of 9 MW, with a risk of error of 5%, and which has
exceeded all statistical requirements to validate this type of model.

The response variable used to generate the models was natural gas consumption data for the
12 buildings from October 2012 to May 2014 and the climatic conditions in the area were used as an
explanatory variable.

In 58% of the buildings, the variable that best correlates in the model found for the baseline
was the grade-day, while for the remaining 42% it was the mean temperature. Variables such as
relative humidity, rain, radiation or wind speed were not significant in the simple linear regression
models found.

The absolute value of the correlation between the independent variables was between 0.896
and 0.99, and was positive for the models with the base explanatory variable of 15 degree-days and
negative for the models with the mean temperature explanatory variable.

For 33% of the campus buildings, the savings obtained to date with this third generation is
significant and above the 21% average. For 17% of the campus buildings, there is a significant increase
in consumption, with an estimated average of around 20%. For the remaining 50% of the buildings,
no significant differences were found in consumption before and after the installation of district heating.
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