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Abstract: This paper presents a real-time air quality monitoring system based on Internet of Things. Air
quality is particularly relevant for enhanced living environments and well-being. The Environmental
Protection Agency and the World Health Organization have acknowledged the material impact of
air quality on public health and defined standards and policies to regulate and improve air quality.
However, there is a significant need for cost-effective methods to monitor and control air quality which
provide modularity, scalability, portability, easy installation and configuration features, and mobile
computing technologies integration. The proposed method allows the measuring and mapping of air
quality levels considering the spatial-temporal information. This system incorporates a cyber-physical
system for data collection and mobile computing software for data consulting. Moreover, this method
provides a cost-effective and efficient solution for air quality supervision and can be installed in
vehicles to monitor air quality while travelling. The results obtained confirm the implementation
of the system and present a relevant contribution to enhanced living environments in smart cities.
This supervision solution provides real-time identification of unhealthy behaviours and supports the
planning of possible interventions to increase air quality.

Keywords: air quality; enhanced living environments; internet of things; mobile computing; mobile health

1. Introduction

Internet of Things (IoT) paradigm is related to the connection of physical objects to the Internet.
These objects should be pervasive and ubiquitous by supporting reliable sensing capabilities. Moreover,
these devices can be handled via unique addresses, support cooperation capabilities and provide
ubiquitous and pervasive applications [1,2]. There is clear evidence of the increase of IoT systems and
their adoption for several daily routine activities. People’s homes are being invaded by IoT products
for surveillance, environmental monitoring, energy consumption analysis and home automation.
Regarding the healthcare field, IoT technologies provide effective and efficient methods for enhanced

Sensors 2020, 20, 720; doi:10.3390/s20030720 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5834-6571
https://orcid.org/0000-0002-8620-3671
https://orcid.org/0000-0003-2759-3224
https://orcid.org/0000-0002-9356-1186
https://orcid.org/0000-0003-3134-7720
http://dx.doi.org/10.3390/s20030720
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/3/720?type=check_update&version=2


Sensors 2020, 20, 720 2 of 20

living environments (ELE) and wellbeing [3]. The IoT systems will provide a relevant evolution of
the healthcare field and will bring several social benefits [4,5]. Numerous activities that, in the past,
could only be done by healthcare staff can be automated using IoT technologies. Therefore, the cost
of healthcare can be decreased, and at the same time, IoT systems allow remote patient monitoring
and data consulting anytime and anywhere [6]. Furthermore, IoT is closely related to several research
fields in this context, such as mobile health (mHealth) and ambient assisted living (AAL).

AAL research programs aim to develop services and products to create ELE to improve health
and wellbeing, particularly for the elderly [7,8]. In total, 20% of the population will be aged 60 years or
older in 2050 [9]. This will lead to an increase in healthcare service costs, a lack of caregivers and a
relevant social impact. AAL projects aim to keep people’s autonomy and independence. Moreover,
87% of people desire to stay in their residences and assume the high cost of nursing care instead of
being sent to nursing homes [10].

mHealth is a research field which aims to develop cost-effective healthcare services using mobile
computing technologies [11]. The mHealth projects are enhanced healthcare systems which aim to
promote the relationship between patient and medical staff [12]. The design of mHealth systems
to promote health and well-being has increased in the past few years [13]. The mHealth research
programs have to focus on pervasive methodologies to address the user requirements and promote the
acceptance of these systems [14].

Combining IoT, AAL and mHealth domains is possible to develop cyber-physical systems (CPS)
with significant capabilities for sensing and connecting [15–17]. The recent enhancements in embedded
systems, networks, sensors and actuators meet the requirements for the development of real-time
supervision solutions for ELE [18]. A cyber-physical system is an integration of computing technologies
which connect the cyber world to physical processes through communication technologies and is
closely related to the IoT concept [19]. CPS are built on top of embedded technologies and incorporate
several sensors to monitor and control the physical environment. Moreover, the data collected are
stored on remote servers to be processed and analyzed. The CPS allow the creation of remote real-time
monitoring solutions for ELE by providing efficient methods for data collection and transmission.
However, the development of smart systems for ELE based on IoT and mHealth through CPS has
design and implementation challenges such as human–computer interaction, information architecture,
interoperability and accessibility [20]. Furthermore, there are also security and privacy issues as the
collected data are exceptionally sensible and the confidentiality of that information must be ensured.
Despite all the advantages of these systems, technology should never replace human care as human
contact is also essential. Technology should be only used as an essential and useful complement to
personal care.

Mobile computing technologies in general and smartphones in particular incorporate significant
communication technologies as well as a high processing power. On the one hand, smartphones
incorporate several sensors for ambient data collection, such as an accelerometer, Global Positioning
System (GPS), gyroscope, camera, microphone and a proximity sensor. Moreover, mobile devices
support relevant communication protocols such as Near Field Communication (NFC) and Bluetooth
Low Energy (BLE). Smartphones are used for several applications related to AAL and mHealth,
such as activity recognition and physical activities analysis [21,22]. Smartphones incorporate both
short-range such as Bluetooth and Wi-Fi as well as long-range such as GPRS, 3G/4G communication
technologies [23]. On the other hand, smartphone usage in the western world has increased. These
mobile computing technologies support daily routine tasks and offer a diversity of applications such as
communication, education, data visualization and analytics [24]. On the other hand, people typically
spend more time using smartphones when compared with other devices, such as personal laptops [25].
Smartphones support a pervasive connection to the Internet, and these devices introduced several
changes in people’s daily routine [26].

First, due to socio-economic development, air pollution is increasing in developing countries,
which leads to significant health impacts [27–29]. The emission of several air pollutants in Europe and
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the United States has decreased in the past decades [30,31]. Nevertheless, most people live in cities
where air quality problems persist since ozone (O3), nitrogen dioxide (NO2), and particulate matter
(PM) exposure values lead to relevant health risks and are estimated to reduce life expectancy [32].
Consequently, air pollution remains a critical problem worldwide [33].

Several epidemiologic research studies state numerous adverse health effects associated with air
quality, such as premature death, respiratory, and cardiovascular disease [34]. Air quality assumes
a significant responsibility in human exposure to pollutants and is particularly relevant for specific
groups such as older adults, students, and people with disabilities [35]. Secondly, numerous research
studies noted the negative impacts on health and well-being, particularly on children and older adults
related to reduced air quality levels. Poor air quality levels is a critical global health challenge and
can be compared to the use of tobacco and sexually transmitted diseases [28]. The Environmental
Protection Agency (EPA) stated that indoor air quality (IAQ) pollutants levels can be up to 100 times
greater when compared with outdoor air quality and ranked poor air quality in the top 5 environmental
risks to global health and well-being [36]. Every year, air quality concentration levels are responsible
for 3.2 million deaths and a relevant increase in heart and asthma attacks, dementia, as well as
cancer [37,38]. The consequences of poor air quality are most severe in developing countries where
there is no regulation to control pollutants emissions. However, air quality levels are also a problem in
developed countries. Every year in the USA, approximately 60,000 premature deaths are reported and
linked to reduced air quality levels and the healthcare costs related to air quality diseases in healthcare
costs reach $150 billion [39]. According to the European Environment Agency, in 2016, air pollution was
responsible for 400,000 premature deaths in the European Union (EU). PM caused 412,000 premature
deaths in 41 European countries, and 374,000 occurred in the EU [40]. Moreover, the cost related to
the air pollutant emissions effect caused by industrial facilities in 2012 has been estimated as at least
59 to 189 billion euros in the EU [41]. Even in locations with good air quality, levels are reported in
situations of short-term exposure which conduct relevant health symptoms related to sensitive groups
such as elderly and children with asthma and cardiovascular problems [42,43]. Living environments
include numerous types of spaces and locations, such as workplaces, clinics, public service centres,
faculties, leisure spaces, vehicles, cabins, and outdoor locations [44]. Notably, a significant percentage
of indoor environments have a high number of occupants. Taking into consideration all the problems
and consequences from reduced air quality exposure, the indoor and outdoor air should be monitored
in real time using CPS to improve the health and well-being of the occupants [45]. Furthermore,
specific legislation requirements must be created to act in real time in order to promote public health
and well-being. By applying efficient and effective monitoring methods, it is possible to identify
inadequate air quality concentrations in useful time and plan interventions for ELE and well-being [46].
Regarding the afore-mentioned facts, air quality sensing is a relevant public health problem which must
be addressed by several fields of research but mainly by the technological field. Air quality sensing
is a relevant factor to be monitored and controlled not only inside buildings but also inside vehicles.
Scalable, modular and easy-to-install methods are required to detect poor air quality scenarios.

Carbon dioxide (CO2) is one of the greenhouse gases assumed as the primary cause of global
warming and environmental degradation [47]. Moreover, the CO2 concentration level is a relevant
indicator of air quality conditions [48,49]. It is produced in large quantities, is relatively easy to quantify,
and can be used to evaluate the degradation of the air quality as a whole [50–52]. Numerous authorities
define the thresholds for CO2 in different countries [53,54]. Concentrations between 250 and 350 ppm
are defined as normal outdoor air levels. The concentration commonly measured for occupied indoor
spaces ranges from 350 to 1000 ppm. Poor air quality values for CO2 associated with complaints of
drowsiness are defined from 1000 to 2000 ppm. From 2000 to 5000 ppm, CO2 levels are related to
several health symptoms such as headaches and increased heart rate. Values higher than 5000 ppm are
associated with unusual air conditions with high levels of other air pollutants.

The primary source of CO2 emissions in urban areas is related to the use of fossil fuels such as
petroleum, hydrocarbons and natural gas [55,56]. Electricity production is also responsible for the
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emission of high quantities of CO2 if the power source is fossil fuels [57,58]. Moreover, transportation
and industry must also be taken into consideration regarding CO2 emissions [59].

This document proposes an air quality supervision system based on IoT for ELE. The proposed
method incorporates a cyber-physical system for air quality monitoring and applies mobile computing
technologies to measure and map the air quality levels taking into account the spatial-temporal
information. The proposed architecture incorporates a data acquisition prototype and provides a mobile
application for data consulting. This cyber-physical system incorporates an ESP32 microcontroller
as the processing and communication unit and uses an MH-Z14 CO2 sensor. The collected data are
transmitted to a smartphone through BLE, which collects the GPS data and uploads all the information
to a backend application. The collected data can also be accessed using the mobile application
developed by the authors. Furthermore, this information can be consulted by the building and city
manager in real time for air quality assessment. These data can be analyzed to plan interventions to
create ELE. The proposed solution is portable and can be easily installed and configured, not only
to provide air quality supervision in indoor environments where GPS is available, such as vehicle
cabins, but also to monitoring outdoor air quality. Moreover, the proposed solution can be installed
on top of vehicles to map and measure the air quality in real time. Numerous air quality monitoring
systems have been proposed by several research studies available in the literature. These methods
incorporate open-source technologies for processing and data transmission and microsensors for data
acquisition, but also provide mobile applications for data consulting [60–67]. However, these methods
do not provide a portable solution to monitor air quality inside vehicles and do not correlate the
air quality levels with geographic coordinates. The main contribution of this paper is to propose a
low-cost IoT method to monitor air quality which can be easily installed and configured to supervise
vehicles on the move and store the collected values in a structured database, for supporting decision
making on possible interventions to promote public health. The main objectives of the manuscript
were to present the design and development of a portable real-time data acquisition system for air
quality measurement and mapping and to test the proposed IoT approach and system architecture.
Furthermore, another relevant objective was to create a reliable stream of air quality data to assist the
decision making on possible interventions for ELE and to support the clinical evaluation by correlating
the patient health conditions with the air quality data of their living environment.

The rest of this document is organized as follows: Section 2 introduces the related work; Section 3
describes the methods and materials used in the design and development of the proposed architecture;
Section 4 presents the results of the research conducted, and Section 5 concludes the paper.

2. Background

Smart cities incorporate technology to increase efficiency, sustainability, and economic development
for ELE [68]. The creation of a smart city is based on relevant concepts, such as IoT, CPS and mobile
computing technologies to improve health and well-being. Regarding the relevant open issues of
present-day urban environments, the smart city concept is an effective method to address these
challenges [69]. Moreover, the smart city should be considered as an emerging approach to address
relevant urban problems originating from population growth and economic activities [70]. However,
the implementation of smart cities has numerous challenges, such as the interoperability of different
technologies, but also privacy and ethical problems. IoT architectures can be incorporated in smart cities
through the development of new daily routine services to increase city efficiency and sustainability [71].
Furthermore, IoT systems can provide interoperability to smart cities as IoT can be used to develop
unified urban scale systems [72].

Smart homes are ELE which lead to several benefits for human life. The main goal of smart homes
is to allow and maximize the benefits of technology for everyone in order to improve public health
and safety [73]. Recent technology advances allow a decrease in the cost of smart homes and the
development of smart environments and intelligent sensors for real-time data acquisition, transmission,
and storage [74]. IoT architectures are developed to incorporate smart devices for data collection and
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mobile computing technologies which are used for data consulting [75]. Smart homes must include air
quality sensing for ELE and to promote health and well-being. The smart home design must take into
consideration older adults to promote effective care and improve safety [76].

The implementation and correlation of different areas of knowledge, such as smart cities, smart
homes, mobile computing, IoT and CPS, will lead to smart living, which will bring multiple benefits for
everyone [77]. Smart homes, combined with IoT and mobile computing, already integrate numerous
benefits in the smart city context [78]. The real-time sensing features enabled by ELE provide immediate
alerts based on environmental conditions sensing, which can automatically trigger appropriate
interventions to improve public health and safety. Air quality monitoring systems can be used to
provide real-time data in both outdoor and indoor living environments to design intervention strategies
in a useful time to increase productivity and well-being. Moreover, these data can be consulted by
doctors and city managers to correlate environmental conditions with people’s symptoms for enhanced
public health and safety.

Numerous open-source IoT methodologies for air-quality sensing incorporate cost-effective
sensors for data collection and mobile applications for data access anywhere and anytime, are proposed
by research studies available in the literature. A real-time CO2 monitoring system composed of a
cyber-physical system for ambient data acquisition and web and mobile software compatibility for
data consulting is proposed by [64]. This system is a modular, scalable, and low-cost monitoring
system which can be wirelessly connected to the Internet using Wi-Fi. The principal purpose of the
proposed method is to provide an effective IAQ assessment to anticipate technical interventions for
enhanced health and well-being. The iAir is an IoT system for real-time IAQ supervision based on the
ESP8266 microcontroller, which is used as a communication and processing unit [63]. This system
incorporates a MICS-6814 metal oxide semiconductor sensor which provides carbon monoxide (CO),
ethanol, NO2, propane and methane supervision. The proposed method incorporates a mobile
application for data access and real-time notifications and is based on open-source technologies.
The acquisition system is connected to the Internet through Wi-Fi and provides easy installation
features. A smartwatch-based application for IAQ data consulting is proposed by [79]. This solution
incorporates a hardware prototype for data collection and transmission and is based on open-source
technologies. The processing unit is based on the Arduino UNO microcontroller and several sensors
are used for temperature, humidity, CO2, light, and PM monitoring. The data collected are stored in
the ThingSpeak cloud platform. The smartwatch application provides pervasive and ubiquitous access
to real-time notifications. The AirPlus is a real-time indoor environmental quality monitoring system
which incorporates mobile computing software for data consulting and notifications [80]. The system
sensor unit is composed of a PMS5003ST sensor that can monitor formaldehyde (CH2O), temperature,
relative humidity and PM. The proposed architecture incorporates an acquisition system for data
sensing purposes and wireless communication and smartphone application for data visualization and
analytics. The main goal is to provide an efficient dataset to plan interventions to improve residents’
productivity and health. Moreover, this dataset can be accessed to associate occupants’ health symptoms
with their indoor living conditions. An IoT architecture for IAQ supervision which incorporates cost-
effective air quality, temperature and humidity sensors is proposed by [81]. This system integrates a
Raspberry Pi 2 microcontroller and the data collected are saved in a cloud platform. The proposed
system provides real-time air quality index data, incorporates e-mail notification features, as well as
web compatibility for data consulting. The authors of [82] present an end-to-end IAQ supervision
system which provides CO2, CO, sulfur dioxide (SO2), NO2, O3, chlorine (Cl2), temperature, and
humidity monitoring. The monitored data are stored in the Emoncms open-source IoT platform for
real-time supervision and long-term storage. This solution uses a hybrid IoT/WSN architecture, the
gateway is based on Raspberry Pi, and the sensor nodes are based on the Waspmote microcontroller.

Using real-time air quality monitoring systems, it is possible to identify unhealthy outdoor and
indoor scenarios which can be assertively intervened. The proposed solution provides a useful tool for
air quality management for ELE of smart cities. CO2 assessment leads to several benefits for public
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health and productivity as the city, or building manager can improve the air quality by planning
interventions to decrease the pollution load [83].

Exposure to Air Pollution

Exposure can be defined as the contact between an airborne pollutant and a surface of the human
body. Therefore, this phenomenon requires two events at the same time: an airborne contaminant
considering a particular location and time, and the presence of an individual at that location and
time [84]. Air pollution exposure also affects beneficial and healthy practices, such as bicycling in urban
areas [85]. A study conducted in central city neighbourhoods on the Island of Montreal concluded that
cyclists’ exposure levels to air pollution are significant and can be associated with health and safety
risks [86].

Air pollution mapping and measurement have several challenges [87]. On the one hand, several
pollutants affect air quality at different levels. On the other hand, there are several limitations regarding
the insufficient funding and political questions in the design of aggressive policies for air pollutant
emission reduction [88]. Mapping real-time air quality using mobile computing technologies promote
higher spatial coverage when compared to fixed air quality stations. The fixed stations have relevant
limitations since the monitoring data do not provide a continuous time-series of measurements [88].
Moreover, the fixed air quality stations typically have relatively long measurement times, such as
an hour or even more [89]. These fixed stations present another significant limitation since they are
typically installed in background locations at a relative distance from busy roads and can provide a
distorted impression of air pollution exposure [89].

The use of mobile computing technologies, in general, and smartphones, in particular, to handle
and process air pollution exposure data lead to several advantages. On the one hand, smartphones are
widely used by most people. On the other hand, they include several sensors and communication
protocols for data transmission. Furthermore, the mobile devices have processing capacities which
enable the visualization and analysis of air pollution measurement data [90].

3. Materials and Methods

Air quality is a fundamental challenge for public health and well-being as it is accountable for
several health symptoms [91]. Air pollution depends on the concentration of numerous chemical
components such as, radon decay products, CO, CH2O, NO2, and aeroallergens which are correlated
to health complications [92]. Therefore, air quality must be measured in real-time to provide a
spatial-temporal dataset for enhanced data analytics and visualization.

On the one hand, temperature and humidity monitoring systems are already integrated into our
daily routine as they are incorporated both in outdoor spaces and in the cabin of vehicles as people are
more sensitive to these types of parameters. Poor thermal comfort conditions are easily detected by
people [93]. On the other hand, poor air quality scenarios are only detected by people under extreme
conditions. Typically, poor air quality is detected by short-term exposure effects such as eyes, nose,
and throat irritation, coughing, chest tightness and shortness of breath [94].

It is essential to adopt effective systems to monitor air quality to alert the user in real time and
provide effective behavioural changes for ELE. This is particularly relevant for several specific groups,
such as people with cardiovascular disease, coronary artery disease or heart failure, specific lung
diseases such as asthma or chronic obstructive pulmonary disease problems, pregnant women, older
adults and people under the age of 14 years [95–98].

Taking into account this critical public health challenge, the authors propose a portable air quality
monitoring system which can measure and map the CO2 concentration in real-time and incorporate
mobile computing technologies for data analytics and visualization considering the geographical
coordinates. The hardware prototype does the data collection and they are sent by BLE to the mobile
phone, which is responsible for the communication of the data to a backend.NET application for data
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storage using an MS SQL Server database. For data consulting, a mobile application was created using
the Swift programming language (Figure 1).
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Figure 1. System architecture.

This solution provides a dataset of CO2 concentration in real-time which can aid the city or
building manager in providing an efficient air quality assessment regarding the detailed spatial-temporal
information of indoor or outdoor spaces, as well as in the projection of strategies and policies to increase
people’s health and well-being. The system is distributed into three segments: the cyber-physical
system, which is responsible for data collection, a mobile computing system which supports the data
upload, and a backend application which is responsible for data storage. The cyber-physical system
prototype is represented in Figure 2.
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Figure 2. Cyber-physical system.

This cyber-physical system is based on the ESP32 microcontroller and uses a Heltec Lora 32;
an IoT dev-board developed by Heltec Automation, which integrates an ESP32 and supports Wi-Fi,
BLE and LoRa communication technologies, a Li-Po battery management system and 0.96” OLED.
The ESP32 is a 240 MHz Tensilica LX6 dual-core with 520 KB SRAM, and the LoRa chip is an SX1276.
This microcontroller incorporates 3 UART; 2 SPI and I2C inputs, a 12 bits ADC, an 8-bits DAC and
29 general GPIO for sensor and actuators connections. The display is a 0.96 inch 128 × 64 OLED,
which incorporates an 8 MB SPI FLASH, a micro USB for data programming and the microcontroller
dimensions are 50.2 × 25.5 × 9.74 mm.

The sensing unit is designed using the DFRobot CO2 analogue infrared sensor. This sensor can
measure CO2 data from 0 to 5000 ppm. It is based on non-dispersive infrared technology and has a
five-year service life. Moreover, this sensor integrates temperature compensation and support analogue
output. It has several relevant specifications, such as high stability, low power consumption, fast
response, high sensitivity and long life. Table 1 presents the complete sensor specification.
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Table 1. MH-Z14 sensor specification.

Specification Value

Operating Voltage 4.5 ~ 5.5V DC
Average Current <60mA at 5V

Peak Current 150mA at 5V
Output Signal 0.4–2 V

Measuring Range 0~5000 ppm
Accuracy ± (50ppm 3% reading)

Preheating Time 3 min
Response Time 120s

Working Temperature 0 ~ 50 °C
Working Humidity 0 ~ 95%

Sensor lifespan >5 years
Size 37 mm × 69 mm

The selection of the MH-Z14 CO2 sensor module was conducted considering not only the cost of
the system but also the accuracy of the monitored data. This sensor accuracy is enough considering
the thresholds defined for the CO2 levels by the competent authorities. The proposed solution can
be improved by adding other sensors to monitor specific chemical compounds and air pollutants.
Moreover, it is relevant to mention that the main objective of the research was to test the proposed IoT
approach and system architecture. The hardware cost is an estimated € 85.76 (Table 2).

Table 2. Cost of the system.

Component Cost

ESP32 24.15 €
MH-Z14 52.11 €

Cables and box 9.50 €
Total 85.76 €

On the one hand, CO2 levels are relevant for indoor and outdoor air quality assessment. High levels
of CO2 inside classrooms have been studied for several years [99–103]. On the other hand, outdoor air
quality depends on the concentration of several substances such as particles, NO2, hydrocarbons, CO
and O3, which derive from combustion sources [104]. Outdoor air quality not only depends on the
pollutant emissions, but it also affected by the current ventilation and meteorological conditions [105].
Low wind and low convention promote the accumulation of pollutants. In these scenarios, the levels
of CO2 also increase [106]. Therefore, a direct relation between CO2 and outdoor pollution produced
by traffic and industry is also verified [107].

Air quality assessment can be done using multiple sensors to monitor each air pollutant [108].
However, the design of a cost-effective system that incorporates numerous sensors is not possible since
the addition of sensors will increase the overall cost of the system. The use of various sensors also
increases maintenance procedures [109]. PM sensors are based on optical sensors which need to be
regularly cleaned to provide accurate readings [110]. Nitrogen sensors need to be frequently calibrated
and replaced [111]. Furthermore, cost-effective sensors for the dedicated monitoring of each chemical
composition presented in the air do not exist.

Nowadays, CO2 sensors are reliable, accurate and maintenance-free [112]. CO2 sensors can be used
to provide an efficient and practical association between combustion-related emissions and outdoor air
quality conditions. The correlation between outdoor air quality and the particular concentration of air
pollutants depends on their source as diesel cars produce higher emissions of nitrogen dioxide than
gasoline vehicles, for example [113]. This relation also depends on the season and the urban area [114].
Nevertheless, high levels of CO2 are always a sign of high pollutant emissions considering the air
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exchange, which is therefore, an indication of the high risk for pollutants. Likewise, a low CO2 level
indicates that air pollutants are not accumulated and reveals good air quality scenarios [115].

In particular scenarios and applications, there is no significant need for high accuracy solutions
because a qualitative assessment is sufficient to promote health and well-being. However, the proposed
system incorporates a reliable CO2 sensor to address the applications where accuracy is relevant. More
important than the accuracy properties is to provide a portable solution for IAQ monitoring, which can
map and measure the CO2 levels in both indoor and outdoor environments. The cyber-physical system
firmware was developed using the Arduino Core which is an open-source framework which offers
Arduino functions and libraries support for the ESP32 microcontroller. This hardware is responsible for
data acquisition and uses built-in BLE technology to communicate with a smartphone. The smartphone
is responsible for GPS data handling. Moreover, the mobile application uses web services for data
transmission and storage on an MS SQL Server. The proposed method records the CO2 levels every
120 seconds (Figure 3). For testing proposes, a smartphone application was created using Swift
programming language and Xcode Integrated Development Environment. This mobile application
supports iOS 12 and above. This app, named AirSensingMobile, offers real-time data access and turns
possible to check the location where this data is recorded.
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BLE is a wireless communication technology developed for battery-powered systems [116].
BLE uses the 2.4 GHz radio frequency band and consumes less power than ZigBee [117,118]. BLE
technology is the most used communication technology for the connection of hardware accessories
with mobile phones [119]. Consequently, BLE communication technology is a suitable approach
for IoT applications and was selected to provide data communication between the cyber-physical
system and the mobile application. The Core Bluetooth is Apple’s framework to send and receive
messages using BLE technology on iOS applications. GPS is a space-based satellite navigation system
which provides location and time information anywhere on Earth. This positioning system is used
for several applications in military, civil, and commercial fields. Today, the majority of smartphones
support GPS features, on iOS operating systems. CoreLocation is the framework responsible for GPS
data acquisition.

Most of the air quality monitoring systems for indoor and outdoor environments available in the
market are expensive and do not support spatial-temporal properties. Some of these solutions provide
only data consulting on the equipment’s display or provide data download procedures for further
analysis. However, portability and real-time data sharing are relevant to provide healthy environments
for the occupants. Furthermore, the location of the data collected is crucial in specific fields, such as
the vehicles’ cabins monitoring. Thus, the proposed method presents a portable air quality monitoring
system with integrated wireless communication technology which provides an effective method to
map and measure the air quality levels for further analysis to plan interventions for ELE.

4. Results and Discussion

The proposed solution was developed to provide air quality sensing in both indoor and outdoor
environments. The mobile application offers data consulting in terms of geographic location. For
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testing purposes, the cyber-physical system was powered using a 5V 10,000 mA power bank. Real-time
air quality supervision must be considered as a relevant tool to support decision-making not only
to plan behavioural changes inside buildings but also to ensure healthy outdoor conditions through
the correct planning and flow of traffic. Usually, the outdoor air quality levels are not measured in
real-time using mobile air pollution monitoring technologies. The outdoor air quality is typically
monitored by stationary monitoring units with a fixed location. These monitoring units have a high
cost of installation and operation [88]. However, real-time monitoring procedures applied outdoor
can help the identification of specific locations where the air quality conditions are defective to
improve public health and safety. Nowadays, mobile phones usage time in the western world has
increased considerably. Smartphones are used for numerous daily routine activities and support
several communication technologies but also significant processing power and data visualization tools.
The majority of smartphones incorporate GPS [120]. In total, 70% of the Netherlands population and
90% of adolescents have smartphones [121]; 40% of the German population use a smartphone [122],
and in the United Kingdom, 51% of adults also have smartphones [123].

Furthermore, mobile computing technologies have offered ubiquitous Internet connection which
leads to numerous daily routine changes. Therefore, a mobile application was proposed to provide
an effective method for the user to carry their air quality sensing data for continuous use. Figure 4a
presents the last data collected by the system. Thus, the user can consult the CO2 data collected but
also check the BLE RSSI from the connection between the cyber-physical system and the smartphone.
Figure 4b shows the corresponding location from the data collected. Using this method, it is possible
to measure and map the air quality sensing in real-time for ELE in smart cities.
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The proposed method supports numerous advantages regarding modularity, size, portability,
cost-effective and easy installation. The mobile application provides an easy and accessible method
for data analysis and visualization. On the one hand, the proposed architecture provides a relevant
dataset for environmental management. Using the proposed system, it is possible to detect defective
air quality scenarios and plan interventions for ELE. Therefore, this mobile computing solution can be
assumed as a relevant decision-making tool to define strategies to increase air quality conditions and
to guarantee the efficiency of these methods.
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Figure 5 presents the mapping of the monitored locations in the tests conducted. The numbers
of Figure 5 represented the exact location where the CO2 concentrations were measured. The details
regarding the latitude, longitude, CO2 level and time of the data collection are presented in Table 3.Sensors 2020, 20, x FOR PEER REVIEW 11 of 20 
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Table 3. Measurement of CO2 concentrations during the tests performed.

Marker Latitude Longitude CO2 (ppm) Date and Time

1 40.41641 −7.70737 511 14 December 2019 17:02
2 40.41651 −7.70725 481 14 December 2019 17:04
3 40.41663 −7.70712 484 14 December 2019 17:06
4 40.41663 −7.70712 439 14 December 2019 17:08
5 40.41684 −7.70684 460 14 December 2019 17:10
6 40.41692 −7.7067 424 14 December 2019 17:12
7 40.41701 −7.70654 510 14 December 2019 17:14
8 40.41707 −7.7064 501 14 December 2019 17:16
9 40.41715 −7.70627 511 14 December 2019 17:18
10 40.4172 −7.70617 670 14 December 2019 17:20
11 40.41725 −7.70605 716 14 December 2019 17:22
12 40.4173 −7.70594 531 14 December 2019 17:24
13 40.41736 −7.70586 453 14 December 2019 17:26

On the other hand, real-time data assessment allows us to conclude that typically the air quality is
under demanded standards. The data collected during the tests conducted states that under certain
conditions and during some specific times of the day, air quality levels can be very different from healthy
standards. Real-time air quality monitoring methods combined with the use of mobile computing
technologies for data consulting, increase the population’s attention to the critical air quality problem
and supports them to preserve healthier environmental conditions.

Air quality sensing is a relevant requirement for enhanced public health and well-being. Consequently,
the design and development of new cost-effective methods for air quality monitoring based on open-
source and mobile computing technologies are a trending research theme. Table 4 presents a summarized
comparison review of the air quality supervision solutions described above.
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Table 4. Summarised comparison review of air quality monitoring solutions.

MCU Sensors Unit Architecture Low
Cost Open-Source Connectivity Data

Consulting GPS Portability

ESP8266 [64] CO2 IoT
√ √

Wi-Fi Web/Mobile × ×

ESP8266 [63]
NH3, CO, NO2 C3H8,
C4H10, CH4, H2 and

C2H5OH
IoT

√ √
Wi-Fi Mobile × ×

Arduino
UNO [79]

CO2, PM, light,
temperature and
relative humidity

IoT
√ √

Wi-Fi/BLE Smartwatch × ×

ESP8266 [80]
PM, CH2O,

temperature and
relative humidity

IoT
√ √

Wi-Fi Web/Mobile × ×

Raspberry Pi
2 [81]

air quality index,
temperature, relative

humidity
IoT

√ √
Wi-Fi Web × ×

Waspmote
(sensor node)

Raspberry Pi 2
(coordinator) [82]

CO2, CO, SO2, NO2,
O3, Cl2,

temperature, and
relative humidity

WSN/IoT
√ √

Wi-Fi Web × ×

Proposed
method CO2 IoT

√ √
BLE Mobile

√ √

MCU: microcontroller;
√

: support; ×: does not support.

Regarding the systems presented in Table 4, the proposed method incorporates several advantages.
Compared to the architecture proposed by the authors of [82], which is based on wireless sensor
networks (WSN), the proposed method eliminates the necessity to configure the sensor nodes and
gateways. Moreover, the proposed system supports easy installation as it is only necessary to configure
the BLE communication between the cyber-physical system and the mobile device. Furthermore,
the proposed method provides air quality measurement and mapping. The geographical location of
the monitored data leads to a significant advantage as it is possible to track the air quality evolution
on the move. This system can be installed outside vehicles to monitor air quality while travelling.
This functionality is not incorporated in any of the methods described in Table 4 as none of the systems
support portability. The proposed system is based on the ESP32 microcontroller. First, the ESP32
supports Wi-Fi, BLE and LoRa communication technologies. Second, this microcontroller supports
240 MHz of clock speed which contrasting with the 16 MHz of the Arduino [79] and the 80 MHz of the
ESP8266 [63,64,80].

The air quality supervision conducted in most places is based on random sampling using high-cost
professional equipment. Nevertheless, the information collected by those kinds of systems is limited
as they are devoid of spatiotemporal behaviour. The air quality monitoring systems presented
by [124–128] are portable and incorporate information storage on the device itself but do not support
real-time data consulting features or mobile computing compatibility. These portable solutions have
high-cost and require specific procedures using proprietary software to extract the data collected for
further analysis and visualization. Table 5 presents a summary of the portable solutions available in
the market.

Table 5. Portable CO2 monitoring systems available on the market.

Solution name Range (ppm) Resolution (ppm) Error (ppm) Price (EUR)

DZSF AR8200 [124] 350–9999 5 ± (30 + 5% reading) 377.38
Reeseiy CO2 [125] 0–9999 1 ± (30 + 5% reading) 111.42

VOLTCRAFT CM 100 [126] 0–4000 1 ±5% of reading 302.78
ROTRONIC CP11 [127] 0–5000 1 ± (30 + 5% reading) 373.39

Extech CO230 [128] 0–9999 1 ± (50 + 5% reading) 239.00
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The solutions presented in Table 5 provide portability features; however, the data collected
cannot be consulted in real-time to be consulted by the authorities to support decision making on
possible interventions for enhanced public health. These solutions present accurate relative readings
and efficient sensor range and resolution. The maximum sensor error value depends on the sensor
measurement range since the accuracy of the sensor is directly influenced by the sensor reading value.
Considering a CO2 concentration of 1000 ppm, the maximum error value is 50 ppm VOLTCRAFT CM
100 [126]; is 80 ppm for the DZSF AR8200 [124], Reeseiy CO2 [125] and ROTRONIC CP11 [127]; and
is 100 ppm for the Extech CO230 [128]. In the worst-case scenario, the maximum error value is 200
ppm for the VOLTCRAFT CM 100 [126]; is 280 ppm for the ROTRONIC CP11 [127]; 530 ppm for the
DZSF AR8200 [124] and Reeseiy CO2 [125]; and is 550 ppm for the Extech CO230 [128]. However,
the proposed solutions available on the market require data extraction and classification procedures
before can be analyzed. Accordingly, the design of a portable air quality monitoring methods based
on state-of-the-art open-source technologies that provide real-time data sharing and spatiotemporal
information is essential to promote public health.

Therefore, the method proposed by the authors is a reliable and effective solution for real-time air
quality systems which combine portability, scalability and modularity features as essential benefits
related to current solutions. The selection of the sensor was conducted, taking into consideration the
accuracy and cost of the system. The principal objective of the study was to validate the IoT approach.
Consequently, the focus of the research was the design and development of portable real-time data
acquisition system for air quality measurement and mapping. The CO2 sensor was chosen because
this type of gas can be used for both indoor and outdoor air quality assessment. Moreover, the CO2

data can support clinical analysis conducted by health professionals. In the future, air quality sensing
will be incorporated in every living environment as it allows an accurate validation of healthy living
environments for enhanced public health and well-being.

The proposed method can be used to monitor the air quality inside vehicles on the move to
create a dataset which will be relevant to identify poor air quality scenarios in particular locations
and often to better understand the effect and implications of the outdoor air quality parameters
on the vehicle’s occupants. In particular, air quality monitoring is of utmost importance in public
transports due to the number of occupants and also the ventilation methods used in this kind of
vehicles. The proposed system can be easily installed inside public vehicles to perceive the IAQ,
considering not only the location of the vehicle but also the number of occupants with reference to the
spatiotemporal information. This data will open a relevant discussion to the quality perceived inside
public vehicles at specific hours of the day and promote policies to promote public health.

Based on the results achieved the proposed method can be assumed as an effective method for
real-time air quality assessment. Moreover, air quality data can be investigated to detect poor air
quality patterns for effective intervention planning in smart cities. Furthermore, these data can be
used to correlate the identification of multiple defective situations with the population’s habits and
behaviours that reduce air quality. The principal objective of the presented system is the creation of a
practical tool kit to guarantee and cost-effectively promote air quality standards. This solution provides
a relevant dataset to support interventions and can be used for clinical decision support. Air quality
data can be used to support medical reports because it is possible to correlate the health complications
of specific groups of people who share the same living environment with the location air quality data.

Nevertheless, the main limitation of the proposed method is associated with the main challenge
of the standard GPS systems and relies on the post-processing of the GPS data. In most indoor
environments, it is not possible to collect GPS data when the satellite signal is down. However, the
use of mobile technologies brings a significant advantage since it is possible to get using the Internet
provider when GPS data reception fails. Furthermore, the proposed method has limitations associated
with the sensors used. The main limitations of the air pollution sensor employed in this study are
related to its preheating and response time.
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5. Conclusions

IoT, AAL and mHealth research fields contribute to the design and development of enhanced
architectures for smart living and public health. Moreover, the relevant capabilities for sensing and
connecting provided by mobile computing technologies provide an adequate structural base for
real-time monitoring methods. This document has proposed a real-time air quality monitoring system
based on IoT, which incorporates a cyber-physical system for data collection and mobile computing
software for data consulting. This architecture makes possible the measurement and mapping of air
quality levels considering the spatial-temporal information. The proposed method connects different
technological fields as IoT, mHealth, AAL and mobile computing. Further, this solution provides
a low-cost and efficient method for air quality monitoring and integrates a smartphone application
for data access and enhanced data analysis. The main contribution of this paper is the proposal of
a low-cost system which can be easily installed and configurated inside vehicles to monitor IAQ
on the move. The proposed methods incorporate numerous benefits when associated with other
supervision solutions such as modularity, portability, easy installation and configuration, as well as
mobile computing technologies integration. The collected data can support the design of strategies
and policies to increase air quality. The tests conducted confirm the implementation of the proposed
architecture and present a relevant contribution to the air quality supervision systems available in
the literature. However, the proposed method has limitations and needs additional experimental
validation to increase sensor calibration and accuracy.

In the future, numerous improvements are planned to adjust this method to particular use cases
such as the installation of the system on the exterior of public vehicles which are always moving
around the city and can measure and map air quality in real-time. In this context, it will be possible to
monitor the city air quality continually considering the geographical coordinates to create a relevant
dataset which can be used to regulate traffic at specific hours of the day and promote public health.
It is also planned to perform additional tests to evaluate the accuracy of the sensors with different
types of technologies. Air quality monitoring allows the detection of unhealthy behaviours in real-time
and should be incorporated in all living environments and be a fundamental part of the daily routine
to promote health and well-being. The authors believe that architectures like the one proposed will
provide ELE in smart cities.
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