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a b s t r a c t 

In this paper, an inventory model for multiple products with stochastic demands is de- 

veloped. The scheduling period or inventory cycle is known and prescribed. Demands are 

independent random variables and they follow power patterns throughout the inventory 

cycle. For each product, an aggregate cycle demand is realized first and then the demand 

is released to the inventory system gradually according to power patterns within a cycle. 

These demand patterns express different ways of drawing units from inventory and can 

be a good approach to modelling customer demands in inventory systems. Shortages are 

allowed and they are fully backlogged. It is assumed that the warehouse where the items 

are stored has a limited capacity. For this inventory system, we determine the inventory 

policy that maximizes the expected profit per unit time. An efficient algorithmic approach 

is proposed to calculate the optimal inventory levels at the beginning of the inventory 

cycle and to obtain the maximum expected profit per unit time. This inventory model is 

applicable to on-line sales of a wide variety of products. In this type of sales, customers 

do not receive the products at the time of purchase, but sellers deliver goods a few days 

later. Also, this model can be used to represent inventories of products for in-shop sales 

when the withdrawal of items from the inventory is not at the purchasing time, but occurs 

in a period after the sale of the products. This inventory model extends various inventory 

systems studied by other authors. Numerical examples are introduced to illustrate the the- 

oretical results presented in this work. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
1. Introduction 

Inventory management refers to decision making on the process of ordering, storing, and holding items in any company. 

This process includes the management of raw materials, components, and finished products, as well as warehousing and 

processing such items. Companies can use different inventory management methods according to the type of business or 

product being analysed. One of these management methods takes the economic order quantity into account. This model 
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is used in inventory management by calculating the number of units a company should order or produce to replenish the

inventory, minimizing the total cost of its inventory, while it is assumed that consumer demand is constant, and no short-

ages are allowed. Another of the management methods considers a prescribed scheduling period and seeks to determine 

the optimal inventory level of every item at the beginning of the inventory cycle. This model is called an order-level model

and allows shortages in the inventory. Shortages occur when there is not enough stock to satisfy customer demand. In this

case, shortages may be backordered or be lost sales. We assume in this work that shortages are completely backordered. 

This means that customers would be willing to wait for the delivery of new merchandise to meet their demands. The costs

of inventory in the model include holding, backlogging, and ordering costs. The order-level model seeks to ensure that the 

right amount of inventory is ordered per batch, so a company does not have to make orders very frequently, does not have

too many shortages and there is not an excess of inventory sitting on hand. 

1.1. Problem statement 

This article considers a multi-item inventory system with a known scheduling period. The planning horizon does not 

need to be finite, nor do the demands need to be integers. Demands are independent random variables, and they follow

power patterns throughout the inventory cycle. For each product, an aggregate cycle demand is realized first and then 

the demand is released to the inventory system gradually according to power patterns within a cycle. Thus, if the power

demand pattern indexes of products tend to infinite, then we get the multi-item newsboy problem. Therefore, this paper 

extends the newsvendor model. The inventory system is developed assuming full backlogging, that is, the backorders are 

satisfied with the arrival of the next replenishment. According to the assumptions of the inventory system, a mathematical 

model is presented to determine the optimal inventory policy that maximizes the expected profit per unit time. Thus, the 

optimal inventory levels at the beginning of the inventory cycle, the economic lot sizes, the reorder points, the minimum 

expected inventory cost, and the maximum expected profit per unit time are established. In addition, when the warehouse 

space required for the storage of products has a limited capacity, a new optimal policy for the inventory system is proposed.

Hence, this last policy extends the optimal solution of the newsvendor problem with a single linear resource constraint. 

The assumption of limited storage allows realistic inventory models to be analysed and this assumption provides a more 

complete approach to the management decision-making. 

The model studied in this article can be adapted and applied to several real situations of the management and com-

mercialization of products. For example, the on-line sale of clothing, accessories or footwear products requires that the 

distribution of the products to customers does not take place at the time of purchase, but rather it takes place a few days

later. The same occurs with the on-line sale of products with high-tech components such as cell phones, computers, tablets, 

etc., where an aggregate demand is first requested for each product and then the demand is released from the inventory

gradually within the inventory cycle. In addition, other real examples, where this stock management model is suitable, arise 

in the sale of household appliances such as refrigerators, washing machines, dryers, dishwashers, etc. In these cases, after 

customers confirm the purchase of any of these products, the supply of the same and, consequently, their extraction from 

the inventory, are performed in days after the sale. Therefore, the inventory model studied in this article can be adapted

and applied to the management and commercialization of these products. 

1.2. Literature review 

1.2.1. Stochastic demand 

The classical inventory models assume that customer demand is known and constant throughout time. However, in a 

lot of real systems, demand for an item may be uncertain and must be considered a random variable. One of the most

well-known inventory problems where random demand for the product is assumed is the so-called newsboy problem or 

newsvendor problem. This inventory model considers a single decision period and represents the situation faced by a news- 

paper vendor who must decide how many newspapers to stock in the face of uncertain demand and knowing that unsold

newspapers will be worthless at the end of the day. The optimal stocking quantity or inventory level of the newsvendor

which minimizes the expected cost is the value of the generalized inverse cumulative distribution function at a critical 

point. This critical point represents the ratio or proportion between the unit backlogging cost and the sum of the unit

holding cost and the unit backlogging cost. Several works have studied the newsboy problem considering various additional 

characteristics that condition the search for the optimal solution. Qin et al. [1] examined specific extensions of the newsven-

dor problem in the context of modelling customer demand, supplier costs, and the buyer risk profile. Choi [2] presented in

a handbook different models, extensions, and applications of the newsvendor problem. Watt and Vázquez [3] studied the 

standard newsboy problem under two assumptions: the wholesaler is an expected profit maximiser who sets the wholesale 

price optimally and then considers the salvage value at which the newsboy can return unsold items to the wholesaler, and

that the salvage value is a choice variable of the newsboy, and thus, it acts as a standard insurance device. Mitra [4] stud-

ied the newsvendor problem assuming that the salvage/clearance price is a decision variable. He presented three stochastic 

inventory models considering that the seasonal demand and end-of-season demand can be endogenous or exogenous. Surti 

et al. [5] studied the cause of the deviation of the newsvendor ordering from the optimal risk-neutral behaviour. They ex-

plored the prospect theory as possible explanation to this deviation. Our work extends the inventory model of the newsboy 

problem, allowing that the extraction of items from the inventory is not done instantly, but items are extracted from the
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inventory throughout the inventory cycle. In addition, the inventory model is analysed considering a storage capacity con- 

straint. 

Many researchers have also analysed other models where demands are stochastic and follow certain probability dis- 

tributions during the inventory cycle. Girlich [6] considered an EOQ model with non-linear demand patterns and proved 

that, under certain conditions, Harris’ formula for optimal lot size was correct even in the stochastic case. Eynan and Kropp

[7] analysed a periodic review system under stochastic demand with variable stock-out costs. Sana [8] developed an eco- 

nomic order quantity model for stochastic demand when the capacity of own warehouse is limited and a rented warehouse 

can be used, if needed. Chuang and Chiang [9] empirically tested the classic EOQ model, with respect to its original form

and assumptions, in the U.S. automobile industry. They proved that demand uncertainty has a highly significant impact on 

order quantity. Maddah and Noueihed [10] considered a variant of the EOQ model, assuming that demand was generated 

from a renewal stochastic process. They showed that the optimal order quantity that minimizes the expected inventory cost 

follows the classic EOQ formula. More recently, Liao and Deng [11] developed an evolved environmental sustainability EOQ 

model to optimize the environmental indexes in remanufacturing systems under uncertainties in both acquisition quantity 

and market demand. Dos Santos and Oliveira [12] developed an inventory management model with periodic review policy 

under demand uncertainty with the possibility of considering partial backorder. Zhang et al. [13] analysed the problem of 

the inventory decision of a single type of building material under the dual constraints of stochastic demand and the carbon

cap-and-trade mechanism. Sarkar et al. [14] developed a two-echelon supply chain model with shortages under stochastic 

lead time which is assumed to be a function of order quantity and production rate. 

1.2.2. Power demand pattern 

To meet customer demand, items are usually withdrawn from inventory at a constant rate per unit time. However, there 

exist other ways or alternatives to remove quantities from the inventory. Naddor [15] proposed a function dependent on 

time to represent diverse ways to take out stock units. This function, which describes the behaviour of demand during the

inventory cycle, is known as the power demand pattern. It is a time-dependent power function, which is appropriate to 

describe the variation of the inventory level over time. This demand pattern represents different ways to take out units 

from inventory and extends the classical constant demand rate. Therefore, the power demand pattern may represent other 

situations where customer demands are initially low and then increase during the inventory cycle, or when demands are 

high at the beginning of the inventory cycle and then decrease gradually over time. Thus, the power demand pattern can

be a good approach to represent customer demand in the modelling of inventory systems. 

Several inventory models that assume a power demand pattern during the inventory cycle have been analysed by differ- 

ent researchers. Thus, Lee and Wu [16] proposed an economic order quantity model for items with deterioration, shortages, 

and a power demand pattern. Singh et al. [17] analysed an inventory model for perishable items with power demand and

considering partial backordering. Rajeswari and Vanjikkodi [18] developed a deteriorating inventory model with power de- 

mand and partial backlogging. Sicilia et al. [19] studied several deterministic inventory systems with power demand pattern. 

Mishra and Singh [20] presented a computational approach on a partial backlogging inventory model for queued customers 

with power demand and quadratic deterioration. Sicilia et al. [21] studied an economic order quantity model for a power de-

mand pattern system with deteriorating items. Sicilia et al. [22] developed an inventory model for deteriorating items with 

shortages and time-varying demand. Sicilia et al. [23] presented the optimal policy for an inventory system with power 

demand, backlogged shortages and production rate proportional to demand rate. Sicilia et al. [24] studied optimal inven- 

tory policies for uniform replenishment systems with time-dependent demand. Later, Tripathi et al. [25] proposed inventory 

models with power demand and inventory-induced demand with holding cost functions. San-José et al. [26] studied the 

optimal inventory policy under power demand pattern and partial backlogging. More recently, San-José et al. [27] devel- 

oped an inventory system with demand dependent on both time and price, assuming backlogged shortages. Keshavarzfard 

et al. [28] analysed the optimization of imperfect economic manufacturing models with a power demand rate dependent 

production rate. San-José et al. [29] analysed the optimal price and quantity under power demand pattern and non-linear 

holding cost. San-José et al. [30] studied an inventory system with discrete scheduling period, time-dependent demand and 

backlogged shortages. Adaraniwon and Omar [31] presented an inventory model for delayed deteriorating items with power 

demand considering shortages and lost sales. San-José et al. [32] developed the best pricing and optimal policy for an in-

ventory system under time-and-price-dependent demand and backordering. In these above papers, many of the inventory 

systems refer to deterministic systems with a single product. However, in this work, we study a probabilistic multi-item 

inventory system and develop the optimal inventory policy for this system. 

1.2.3. Multi-item inventory system 

Several researchers have analysed multi-product inventory systems. Nahmias and Schmidt [33] developed various ef- 

ficient heuristic solution procedures for the multi-item newsboy problem subject to a single constraint, which expresses 

limited storage capacity or bounded budget. Lau and Lau [34] presented formulations and solution procedures for handling 

multiple newsboy-type products under one resource-capacity constraint and when multiple resource constraints are con- 

sidered. Zhang [35] analysed the multi-product newsboy problem with supplier quantity discounts and a budget constraint. 

Nia et al. [36] developed a multi-item multi-constraint EOQ model with shortage for a single-supplier single-buyer supply 

chain under green vendor managed inventory policy. Cárdenas-Barrón and Sana [37] presented a multi-item EOQ model in 

a two-layer supply chain where demand is sensitive to the promotional effort from a collaborative perspective. Dordevic 
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Fig. 1. Graphic of the net inventory level for the i th item considering stochastic demand and a power demand pattern with index n i > 1 throughout the 

inventory cycle. 

 

 

 

 

 

 

et al. [38] developed the static time-continuous multiproduct EOQ-based inventory problem with storage space constraints, 

modelled as a combinatorial optimization problem and approximately solved using two heuristics. More recently, Malik 

and Sarkar [39] considered a continuous-review inventory model for multi-items, assuming stochastic lead time and service 

level and storage space constraints. Hormozzadefighalati et al. [40] developed a spatial model for a multi-product supplier 

selection model with service level and budget constraints. Khouja et al. [41] developed two heuristics for optimizing the 

newsvendor’s response to new in-season demand information for a multi-product single-period problem. 

1.3. Outline of the article 

The paper is structured as follows. Section 2 introduces the properties of the inventory system to be studied, presents

the notation used in the article and describes the evolution of the inventory level of each product. Section 3 analyses the

probabilistic inventory model for multiple items with power demand patterns and fixed scheduling period. Next, the equiv- 

alence of the problems on the maximization of the expected profit per unit time and the minimization of the expected

inventory cost per unit time is established. Thus, the problem of minimizing the expected total inventory cost per unit 

time for the full backlogging probabilistic inventory model is formulated and the optimal solution for this problem is de- 

veloped. Section 4 determines the optimal inventory policy for the probabilistic multi-item system with power demand 

patterns when there exists limited storage capacity. An efficient algorithm is presented to solve this inventory problem. 

Section 5 describes the optimal inventory levels when demands follow Pareto distributions. Numerical examples to illus- 

trate the theoretical results previously obtained are introduced in Section 6 . A sensitivity analysis of the optimal inventory

policies is presented in Section 7 . Some managerial insights are commented in Section 8 . Finally, in Section 9 , we discuss

some aspects of the optimal inventory policy proposed in this paper and present some future research lines in inventory 

management. 

The flow chart of Fig. 1 shows the steps that have been taken in doing this paper. 

2. Hypotheses and notation of the inventory system 

The paper deals with a multi-item inventory system in which the demand for products is not known with certainty. This

system works under the following hypothesis or characteristics: 

- The inventory system considers several different items. 

- Items are jointly replenished every certain time-period or inventory cycle. This scheduling period is known and pre- 

scribed. 
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- The replenishment is instantaneous for all the products. 

- The lead time of each item is insignificant or null. 

- Shortages are allowed and fully backlogged. 

- Demands for items are random variables that follow known probability distributions. 

- Items are withdrawn throughout the period following power demand patterns. 

- A probabilistic order-level multi-item system is analysed, in which the optimal inventory level for each item at the 

beginning of the inventory cycle must be determined. 

- Three costs are considered in the inventory system: the expected holding cost, the expected shortage cost and the 

expected replenishing cost. 

- The aim is to maximize the expected profit per unit time. 

2.1. Notation 

Next, we present the notation of the inventory system that is developed throughout the article: 

- Let N be the number of items considered in the inventory system. 

- Let T 0 represent the length of the scheduling period or inventory cycle. Items are jointly replenished every T 0 time

units. 

- Let Q i denote the replenishment quantity or lot size of the i th item, with i = 1 , 2 , . . . , N. This amount is equal to the

demanded quantity during the inventory cycle. 

- Let S i represent the inventory level of the item i at the beginning of each inventory cycle, with i = 1 , 2 , . . . , N. For each

item i , the stock of this product goes up to the level S i after the replenishment size Q i is included in the inven-

tory. These quantities S i are unknown values and should be determined so that the expected profit per unit time is

maximized. 

- Let s i be the replacement level or reorder point of the product i , with i = 1 , 2 , . . . , N; that is, s i = S i − Q i . 

- Let h i be the holding cost per unit time of a unit in stock of the i th item, with i = 1 , 2 , . . . , N. 

- Let A represent the replenishing or ordering cost. It is a known constant and independent of the quantity ordered for

each item. 

- Let ω i denote the unit backlogging cost per unit time of the i th article, for i = 1 , 2 , . . . , N. 

- Let p i be the unit selling price of the item i , with i = 1 , 2 , . . . , N. 

- Let c i be the unit purchasing price of the item i , for i = 1 , 2 , . . . , N. Obviously, it is assumed that c i < p i , for i =
1 , 2 , . . . , N. 

- Let v i designate the storage space required per unit of the item i , with i = 1 , 2 , . . . , N. 

- Let W denote the total space available in the warehouse to store the items. 

- Let X i be the total demand along the inventory cycle T 0 of the i th item ( i = 1 , 2 , . . . , N). It is a nonnegative random

variable with probability density function f i (x i ) defined on the interval [ a i , b i ) , with a i = inf { x i ≥ 0 : f i (x i ) > 0 } and

b i = sup { x i ≥ 0 : f i (x i ) > 0 } . The cumulative distribution function of X i is denoted by F i (x i ) . We assume that X i (with

i = 1 , 2 , . . . , N) are independent random variables. Let μi denote the average demand of the item i during the period

T 0 . 

- Demand accumulated up to time t for the i th item is denoted by D i (t) , with 0 ≤ t < T 0 . It is assumed that this demand

is time-dependent and is given by 

D i (t) = X i 

(
t 

T 0 

)1 /n i 

, i = 1 , 2 , . . . , N (1) 

For the i th article, the value n i represents the index of demand pattern, with n i > 0 . If the demand pattern index of the

i th item is n i > 1 , then a greater part of the demand occurs at the beginning of the period. Thus, if we consider that

n i tends to infinity, then the demand is totally concentrated at beginning of the inventory cycle (newsvendor case). If 

n i = 1 , the demand rate is constant throughout the scheduling period. When n i < 1 , a larger portion of the demand

occurs toward the end of the inventory cycle. Hence, if we suppose n i → 0 , then the demand is totally concentrated

at the end of the inventory cycle. 

From (1) , the demand rate at time t (with 0 < t < T 0 ) for the i − th item ( i = 1 , 2 , . . . , N) is 

D 

′ 
i (t) = 

X i 

T 0 n i 

(
t 

T 0 

) 1 −n i 
n i 

(2) 

This demand rate is known as the power demand pattern. Several authors, such as Naddor [15] , Lee and Wu [16] ,

Tripathi et al. [25] , Keshavarzfard et al. [28] , and San-José et al. [32] , have developed inventory systems considering

this type of demand pattern when demand is deterministic. However, in this paper, power demand patterns with 

stochastic demands are assumed. 

- Let AQ i (X i , S i ) designate the average quantity held in stock of the item i during the period T 0 . 

- Let AB i (X i , S i ) denote the average backlogging of the item i during the period T 0 . 

- Let RC be the replenishing cost per unit time. 
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- Let EQ i (S i ) be the expected average quantity held in stock of the item i during the period T 0 . 

- Let EB i (S i ) be the expected average backlogging of the item i during the period T 0 . 

- Let EHC(S 1 , S 2 , . . . , S N ) represent the expected total holding cost per unit time. 

- Let EBC(S 1 , S 2 , . . . , S N ) denote the expected total backlogging cost per unit time. 

- Let ERC be the expected replenishing cost per unit time. 

- Let C(S 1 , S 2 , . . . , S N ) denote the expected total inventory cost per unit time. 

- Let EP (S 1 , S 2 , . . . , S N ) represent the expected profit per unit time. 

2.2. Evolution and behaviour of the inventory system over time 

In this section, we analyse the fluctuations in the stock of items throughout the inventory cycle. The net inventory level

I i (t) for the i th item at time t , with 0 ≤ t < T 0 , is understood as the difference between the stock level at the beginning of

the inventory cycle and the demand accumulated up to time t , that is, 

I i (t) = S i − X i 

(
t 

T 0 

)1 /n i 

, 0 ≤ t < T 0 (3) 

The net inventory level I i (t) is a continuous and differentiable function on the time interval [0 , T 0 ) . This function starts with

I i (0) = S i units and is decreasing due to demand throughout the inventory cycle. 

Since b i represents the superior extreme of the demand X i , the inventory level S i must be less than or equal to b i . If b i 
is a finite value and S i is greater than b i , then there would be an unnecessary excessive amount in stock of item i , and the

holding cost could be reduced by considering an inventory level S i less than or equal to b i in the system. 

If the demand X i is less than or equal to the inventory level S i , then no shortages occur in the system. However, if the

demand X i is greater than the inventory level S i , there exists a time τi in which the inventory level of the i th product drops

to zero. Next, the inventory level continues to decrease, and shortages occur. If x i is a realization of demand during the

period T 0 , then the net inventory level I i (t) of the item i decreases until it reaches the value s i at the end of the inventory

cycle, and the inventory is replenished with a lot size of Q i = x i units. Thus, if the demanded amount x i is greater than

the inventory level S i , the quantity s i = S i − x i is negative and −s i represents the demand for the i th item which is not met

(backorders). The replenishment quantity Q i increases the stock up to level S i and the behaviour of the inventory level is

repeated on the next scheduling period. 

Fig. 2 displays the fluctuations of the inventory level for the i th product during the inventory cycle, when demand is

stochastic and follows a power demand pattern with index n i > 1 . That is, the way by which quantities are taken out of the

inventory follows the time-dependent power function given by (2) with an index greater than one. 

In the following paragraphs, we analyse the probabilistic inventory model for the system with multiple products and 

present the optimal inventory policy when shortages are fully backordered. We then develop the optimal policy assuming 

that a constraint on the storage capacity is also incorporated into the model. 

3. Inventory model for multiple items with stochastic demands, power demand patterns, fixed scheduling period and 

fully backlogged shortages 

From Fig. 2 , it can be seen that, for any item i , the average quantity held in stock AQ i (X i , S i ) and the average backlogging

AB i (X i , S i ) depend on the inventory level S i and on the demand X i . Thus, considering the relative values of the demand X i 
and the inventory level S i at the beginning of the period T 0 , two possible situations arise in this system: (i) X i ≤ S i and (ii)

X i > S i . Both situations are shown in Fig. 2 . In the first case, when X i ≤ S i , the average quantity in inventory I 1 (X i , S i ) of the

item i for a demand X i is 

AQ i (X i , S i ) = 

1 

T 0 

∫ T 0 

0 

I i (t) dt = 

1 

T 0 

∫ T 0 

0 

(
S i − X i 

(
t 

T 0 

)1 /n i 
)

dt = S i −
X i n i 

n i + 1 

(4) 

In this case, there are no shortages in the system. Thus, the average shortage AB i (X i , S i ) is zero. 

In the second case, when X i > S i , we have to calculate the time in which the inventory level I i (t) is zero for each item i .

Thus, if τi denotes the point in time when the i th item inventory level drops to zero, then I i (τi ) = 0 and, from (3) , we have

τi = 

S n i 
i 

T 0 

X 

n i 
i 

, i = 1 , 2 , . . . , N (5) 

Hence, from (5) , the average quantity held in stock is 

AQ i (X i , S i ) = 

1 

T 0 

∫ τi 

0 

I i (t) dt = 

1 

T 0 

∫ τi 

0 

(
S i − X i 

(
t 

T 0 

)1 /n i 
)

dt = 

S i 
n i + 1 

(
S i 
X i 

)n i 

(6) 

The average backlogging is 

AB i (X i , S i ) = 

1 

T 0 

∫ T 0 

τi 

( −I i (t) ) dt = 

−1 

T 0 

∫ T 0 

τi 

(
S i − X i 

(
t 

T 0 

)1 /n i 
)

dt = 

n i X i 

n i + 1 

+ 

S i 
n i + 1 

(
S i 
X i 

)n i 

− S i (7) 
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Fig. 2. Research framework flow chart. 
Summarizing, from (4) and (6) , the average amount held in the inventory for item i is 

AQ i (X i , S i ) = 

{
S i − X i n i 

n i +1 
, X i ≤ S i 

S i 
n i +1 

(
S i 
X i 

)n i 
, X i > S i 

(8) 

and, from (7) , the average shortage is 

AB i (X i , S i ) = 

{
0 , X i ≤ S i 
n i X i 
n i +1 

+ 

S i 
n i +1 

(
S i 
X i 

)n i − S i , X i > S i 
(9) 

Therefore, from (8) , the expected average amount in the inventory EQ i (S i ) is 

EQ i (S i ) = E [ AQ i (S i ) ] = 

∫ S i 

0 

(
S i −

x i n i 

n i + 1 

)
f i (x i ) dx i + 

∫ ∞ 

S 

S i 
n i + 1 

(
S i 
x i 

)n i 

f i (x i ) dx i (10) 

i 
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and, from (9) , the expected average shortage EB i (S i ) is 

EB i (S i ) = E [ AB i (S i ) ] = 

∫ ∞ 

S i 

(
n i x i 

n i + 1 

+ 

S i 
n i + 1 

(
S i 
x i 

)n i 

− S i 

)
f i (x i ) dx i (11) 

For each item i = 1 , 2 , . . . , N, the holding cost per unit time is h i EQ i (S i ) and the backlogging cost per unit time is ω i EB i (S i ) .

Thus, the expected total holding cost is given by 

EHC(S 1 , . . . , S N ) = 

N ∑ 

i =1 

h i EQ i (S i ) 

= 

N ∑ 

i =1 

h i 

[∫ S i 

0 

(
S i −

x i n i 

n i + 1 

)
f i (x i ) dx i + 

∫ ∞ 

S i 

S i 
n i + 1 

(
S i 
x i 

)n i 

f i (x i ) dx i 

]
(12) 

and the expected total backlogging cost is 

EBC(S 1 , . . . , S N ) = 

N ∑ 

i =1 

ω i EB i (S i ) = 

N ∑ 

i =1 

ω i 

[∫ ∞ 

S i 

(
n i x i 

n i + 1 

+ 

S i 
n i + 1 

(
S i 
x i 

)n i 

− S i 

)
f i (x i ) dx i 

]
(13) 

The replenishing cost per unit time is 

RC = 

{
0 , if X i = 0 for all i = 1 , 2 , . . . , N 

A/T 0 , othe rwise 

Then, the expected replenishing cost is 

ERC = θ
A 

T 0 

where θ is the probability given by 

θ = 1 − Pr { X 1 = 0 , X 2 = 0 , . . . , X N = 0 } = 1 −
N ∏ 

i =1 

Pr { X i = 0 } 

Notice that if the demands are continuous random variables, the probabilities of such demands to be zero are always null.

Therefore, in this case, the expected replenishing cost is A/T 0 . 

The expected total inventory cost per unit time of the system is the sum of the above costs, that is 

C(S 1 , . . . , S N ) = EHC(S 1 , . . . , S N ) + EBC(S 1 , . . . , S N ) + ERC = 

= 

N ∑ 

i =1 

h i 

∫ S i 

0 

(
S i −

x i n i 

n i + 1 

)
f i (x i ) dx i + 

N ∑ 

i =1 

( h i + ω i ) 

∫ ∞ 

S i 

S i 
n i + 1 

(
S i 
x i 

)n i 

f i (x i ) dx i 

+ 

N ∑ 

i =1 

ω i 

∫ ∞ 

S i 

(
n i x i 

n i + 1 

− S i 

)
f i (x i ) dx i + θ

A 

T 0 
(14) 

Now, as the ordered quantity for item i or lot size Q i is equal to the demanded quantity X i , then E[ Q i ] = E[ X i ] . Thus, the

expected benefit per unit time obtained from the sale of items in each inventory cycle is given by 

E 

[ 

N ∑ 

i =1 

( p i − c i ) Q i 

T 0 

] 

= 

N ∑ 

i =1 

( p i − c i ) 

T 0 
E ( Q i ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi 

The expected profit EP (S 1 , . . . , S N ) per unit time during each inventory cycle is the difference between the expected benefit

per unit time due to the sale of items and the expected total inventory cost per unit time given by (14) , that is 

EP (S 1 , . . . , S N ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi − C(S 1 , . . . , S N ) (15) 

The aim is to maximize the above profit per unit time, which is equivalent to minimizing the expected inventory cost

per unit time. Thus, the objective consists in determining the optimal values of the initial inventory levels S i (i = 1 , 2 , . . . , N)

such that the cost function C(S 1 , . . . , S N ) given in (14) is minimized on the region � = { (S 1 , . . . , S N ) /b i ≥ S i ≥ 0 , with i =
1 , 2 , . . . , N} . 
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3.1. Optimal policy 

To find the optimal policy that minimizes the expected inventory cost per unit time shown in (14) , we first need to prove

the following result. 

Proposition 1. For each item i , with i = 1 , 2 , . . . , N, the function 

Z i (S i ) = 

∫ ∞ 

S i 

(
1 −

(
S i 
x i 

)n i 
)

f i (x i ) dx i (16) 

defined on the interval [0 , ∞ ) is a continuous function, which takes values in the interval (0,1]. In addition, this function is strictly

decreasing on [0 , b i ) . 

Proof. See the Appendix . �

Notice that the function Z i (S i ) given by (16) can be rewritten as 

Z i (S i ) = 1 −
(

F i (S i ) + 

∫ ∞ 

S i 

(
S i 
x i 

)n i 

f i (x i ) dx i 

)

Next, we prove the convexity of the expected inventory cost function and present the conditions that must satisfy the 

optimal inventory levels when there is no limitation on the storage space. 

Theorem 1. 

(i) The expected inventory cost C(S 1 , . . . , S N ) proposed in ( 14 ) is a strictly convex function on the set { (S 1 , . . . , S N ) /b i > S i > 0 ,

with i = 1 , 2 , . . . , N} . 
(ii) The optimal inventory levels S 0 

i 
, with i = 1 , 2 , . . . , N, that minimize the inventory cost function C(S 1 , . . . , S N ) must satisfy

the constraints ∫ ∞ 

S i 

(
1 −

(
S i 
x i 

)n i 
)

f i (x i ) dx i = 

h i 

h i + ω i 

, i = 1 , 2 , . . . , N (17) 

Moreover, the point (S 0 
1 
, . . . , S 0 

N 
) ∈ Int ( �) . 

Proof. See the Appendix . �

From Proposition 1 , the Eq. (17) is equivalent to 

Z i (S i ) = 

h i 

h i + ω i 

, i = 1 , 2 , . . . , N (18) 

and, from Theorem 1 , Eq. (18) has a unique solution S 0 
i 

, for each i = 1 , 2 , . . . , N. 

Thus, the optimal inventory levels are given by 

S 0 i = Z −1 
i 

(
h i 

h i + ω i 
)
, i = 1 , 2 , . . . , N (19) 

The Eq. (18) is equivalent to 

F i (S i ) + 

∫ ∞ 

S i 

(
S i 
x i 

)n i 

f i (x i ) dx i = 

ω i 

h i + ω i 

, i = 1 , 2 , . . . , N 

That is, the optimality condition for the inventory level S i of the item i is that the ratio ω i / (h i + ω i ) is equal to the expected

value of m (X i , S i ) , where m (X i , S i ) is the function defined as m (X i , S i ) = min 

{
1 , 

(
S i 
X i 

)n i 
}

. 

From (12) and (19) , the minimum expected holding cost per unit time is 

EHC(S 0 1 , . . . , S 
0 
N ) = 

N ∑ 

i =1 

h i EQ i (S 0 i ) 

= 

N ∑ 

i =1 

h i 

[
n i 

n i + 1 

∫ S 0 
i 

0 

(
S 0 i − x i 

)
f i (x i ) dx i + 

S 0 
i 
ω i 

( n i + 1 ) ( h i + ω i ) 

]
(20) 

From (13) and (19) , and considering that the average demand for the product i is μi , the minimum expected backlogging

cost per unit time is 
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EBC(S 0 1 , . . . , S 
0 
N ) = 

N ∑ 

i =1 

ω i EB i (S 0 i ) 

= 

N ∑ 

i =1 

ω i 

[
n i 

n i + 1 

∫ S 0 
i 

0 

(
S 0 i − x i 

)
f i (x i ) dx i + 

n i 

n i + 1 

(
μi − S 0 i 

)
− S 0 

i 
h i 

( n i + 1 ) ( h i + ω i ) 

]
(21) 

From (14) and (19) , the minimum expected inventory cost per unit time is given by 

C 0 = C(S 0 1 , . . . , S 
0 
N ) = 

N ∑ 

i =1 

( h i + ω i ) 
n i 

n i + 1 

∫ S 0 
i 

0 

(
S 0 i − x i 

)
f i (x i ) dx i 

+ 

N ∑ 

i =1 

ω i 

n i 

n i + 1 

(
μi − S 0 i 

)
+ θ

A 

T 0 
(22) 

From (15) and (22) , the maximum expected profit EP 0 per unit time is given by 

E P 0 = E P (S 0 1 , . . . , S 
0 
N ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi − C(S 0 1 , . . . , S 

0 
N ) 

Therefore, the inventory policy given by (19) and (22) is the optimal solution for the inventory problem when either

there is no limit to the storage capacity, or when the optimal inventory levels do not fill the available warehouse capacity. 

3.2. Specific cases 

(i) If the power demand pattern indices are n i = 1 , for all i = 1 , 2 , . . . , N, then the inventory policy coincides with the

optimal policy for a probabilistic multi-item inventory system with constant demands, fixed scheduling period, back- 

logged shortages, and assuming that backlogging costs are equal for all the items (Chikán [ 42 , pages 320 − 321 ]). 

(ii) (ii) If we have only a single article, that is, if we assume N = 1 , then the optimal policy is equivalent to the optimal

policy for a probabilistic inventory system with fixed inventory cycle, fully backlogged shortages and power demand 

pattern (Chikán [42 , pages 175 − 176 ]). 

(iii) Considering both conditions simultaneously, that is, if N = 1 and n 1 = 1 , then the optimal policy obtained coincides

with the efficient policy for the inventory system with a single article, stochastic demand, instantaneous replen- 

ishment, fixed scheduling period, fully backlogged shortages, and uniform demand pattern (see Naddor [ 15 , pages 

130 − 135 ] and Chikán [ 42 , pages 173 − 174 ]). 

(iv) If, for each product i , we consider that the power demand pattern index n i tends to infinite, then the expected total

inventory cost per unit time given in (14) is reduced to 

C(S 1 , . . . , S N ) = 

N ∑ 

i =1 

h i 

∫ S i 

0 
( S i − x i ) f i (x i ) dx i + 

N ∑ 

i =1 

ω i 

∫ ∞ 

S i 

( x i − S i ) f i (x i ) dx i + θ
A 

T 0 

For each item i , with i = 1 , 2 , . . . , N, the function (16) becomes 

Z i (S i ) = 

∫ ∞ 

S i 

f i (x i ) dx i = 1 − F i (S i ) 

Thus, in this case, the optimal inventory policy given by (19) coincides with the well-known solution of the newsven-

dor problem. 

4. Inventory model for multiple items with stochastic demands, power demand patterns, backlogged shortages, and 

limited storage 

In this section, we study the optimal policy for the probabilistic multi-item inventory system with power demands and 

full backlogging, assuming that the inventory cycle is fixed and the total storage space available in the warehouse is limited.

Let W be the total available space in the warehouse for all N items. Considering that v i represents the unit space of item

i , with i = 1 , 2 , . . . , N, and S i is the initial inventory level of the i th item, then the total volume of the N items must be less

than or equal to the available storage space W . Thus, the following condition must be satisfied 

N ∑ 

i =1 

v i S i ≤ W (23) 

The objective function C(S 1 , . . . , S N ) for this inventory system is proposed in (14) , but now we additionally consider the

constraint of limited storage given in (23) . Thus, the new inventory problem is 
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min C ( S 1 , . . . , S N ) = 

∑ N 
i =1 h i 

∫ S i 
0 

(
S i − x i n i 

n i +1 

)
f i ( x i ) dx i + 

∑ N 
i =1 ( h i + ω i ) 

∫ ∞ 

S i 

S i 
n i +1 

(
S i 
x i 

)n i 
f i ( x i ) dx i 

+ 

∑ N 
i =1 ω i 

∫ ∞ 

S i 

(
n i x i 

n i +1 
− S i 

)
f i ( x i ) dx i + θ A 

T 0 

subj ect to 
∑ N 

i =1 v i S i ≤ W 

0 ≤ S i , for i = 1 , 2 , . . . , N 

(24) 

4.1. Optimal policy for the multi-item system with limited storage 

If the inventory levels S 0 
i 

, with i = 1 , 2 , . . . , N, determined by (19) , satisfy the constraint (23) , then they will be the opti-

mal inventory levels. 

Otherwise, as the cost function C(S 1 , . . . , S N ) is a convex function on the region �, if the levels S 0 
i 

, with i = 1 , 2 , . . . , N,

do not satisfy the limited storage constraint, it is clear that the optimal inventory levels for this system with limited storage

must hold the equality in (23) . Hence, we can now use the Lagrangian multipliers technique to obtain the optimal inventory

levels S ∗
i 
, for i = 1 , 2 , . . . , N. From the problem (24) , the Lagrangian function L is given by the following expression 

L (S 1 , . . . , S N , λ) = C(S 1 , . . . , S N ) + λ

( 

N ∑ 

i =1 

v i S i − W 

) 

, 

where λ is the Lagrangian multiplier. Hence, for an optimal solution, we have to calculate the partial derivatives of 

L (S 1 , . . . , S N , λ) with respect to the variables S i (for i = 1 , 2 , . . . , N), and the multiplier λ. This leads to 

∂L 

∂S i 
= ( h i + ω i ) 

(∫ S i 

0 

f i (x i ) dx i + 

∫ ∞ 

S i 

(
S i 
x i 

)n i 

f i (x i ) dx i 

)
− ω i + λv i , i = 1 , 2 , . . . , N (25) 

∂L 

∂λ
= 

N ∑ 

i =1 

v i S i − W (26) 

Equating (25) to zero, we obtain ∫ S i 

0 

f i (x i ) dx i + 

∫ ∞ 

S i 

(
S i 
x i 

)n i 

f i (x i ) dx i = 

ω i − λv i 
h i + ω i 

, i = 1 , 2 , . . . , N 

This condition is equivalent to ∫ ∞ 

S i 

(
1 −

(
S i 
x i 

)n i 
)

f i (x i ) dx i = 

h i + λv i 
h i + ω i 

, i = 1 , 2 , . . . , N (27) 

Taking into account the function Z i (S i ) defined in (16) , the above Eq. (27) leads to 

Z i (S i ) = 

h i + λv i 
h i + ω i 

, i = 1 , 2 , . . . , N (28) 

From Proposition 1 , the function Z i (S i ) is strictly positive and decreasing on [0 , b i ) and takes values in the interval (0 , 1] .

Thus, to find a solution to Eq. (28) for each item, the right side of this equation must be less than or equal to one. Hence

the multiplier λ has to be less than or equal to ω i / v i , for any item i . Moreover, if λ were greater than ω i / v i for some item i ,

then the level S i for this item must be zero. Given a value of λ, let S i (λ) be the inventory level that solves the Eq. (28) for

each item i , that is 

S i ( λ) = 

{
Z −1 

i 

(
h i + λv i 
h i + ω i 

)
, if λ ≤ ω i / v i 

0 , if λ > ω i / v i 
(29) 

The inventory level S i (λ) for each item i must be greater than or equal to zero. Note that if λ = 0 , then Eq. (28) is reduced

to Eq. (18) . Therefore, the inventory levels S i (0) obtained from (29) are equal to levels S 0 
i 

, given in (19) , with i = 1 , 2 , . . . , N. 

From (26) , the inventory levels S i (λ) given in (29) must meet the condition 

N ∑ 

i =1 

v i S i (λ) = W 

Let g(λ) be the function defined by 

g(λ) = 

∑ 

i ∈ I(λ) 

v i S i (λ) − W (30) 

on the interval [0 , ∞ ) , with I(λ) = { i/ω i − λv i ≥ 0 and 1 ≤ i ≤ N} . 
The next result characterizes the optimal inventory policy when the inventory levels S 0 

i 
do not satisfy the constraint of

limited storage. 
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Theorem 2. The function g(λ) given by (30) is a continuous and strictly decreasing function. Moreover, if g(0) > 0 , then the

function g(λ) has a unique positive root λ∗ and, from (29) , the optimal inventory level of item i is given by S i (λ
∗) . 

Proof. See the Appendix . �

As, in this section, we have assumed that the inventory levels S 0 
i 

given in (19) , with i = 1 , 2 , . . . , N, do not meet the

constraint (23) , then g(0) > 0 . Therefore, in this case, from Theorem 2 , the equation g(λ) = 0 always has a unique positive

solution λ∗ on the interval 
[
0 , max 1 ≤i ≤N { ω i / v i } 

]
. Once the value of λ∗ has been determined, the optimal inventory levels 

S ∗
i 

= S i (λ
∗) , for i = 1 , 2 , . . . , N can be calculated from Eq. (29) . 

Suppose that the optimal inventory level of item i is S ∗
i 

= S i (λ
∗) , the minimum expected holding cost per unit time is 

EHC ∗ = EHC(S ∗1 , . . . , S 
∗
N ) 

= 

N ∑ 

i =1 

h i n i 

n i + 1 

∫ S ∗
i 

0 

(
S ∗i − x i 

)
f i (x i ) dx i + 

N ∑ 

i =1 

h i 

( ω i − λ∗v i ) S ∗i 
( n i + 1 ) ( h i + ω i ) 

(31) 

Considering that the average demand of the product i is μi , the minimum expected backlogging cost per unit time is 

EBC ∗ = EBC(S ∗1 , . . . , S 
∗
N ) 

= 

N ∑ 

i =1 

ω i n i 

n i + 1 

∫ S ∗
i 

0 

(
S ∗i − x i 

)
f i (x i ) dx i + 

N ∑ 

i =1 

ω i n i 

n i + 1 

(
μi − S ∗i 

)
−

N ∑ 

i =1 

ω i 

( h i + λ∗v i ) S ∗i 
( n i + 1 ) ( h i + ω i ) 

(32) 

Therefore, the minimum expected inventory cost per unit time is given by 

C ∗ = C(S ∗1 , . . . , S 
∗
N ) 

= 

N ∑ 

i =1 

( h i + ω i ) n i 

n i + 1 

∫ S ∗
i 

0 

(
S ∗i − x i 

)
f i (x i ) dx i + 

N ∑ 

i =1 

ω i n i 

n i + 1 

(
μi − S ∗i 

)
−

N ∑ 

i =1 

λ∗v i 
n i + 1 

S ∗i + θ
A 

T 0 
(33) 

From (15) and (33) , the maximum expected profit EP ∗ per unit time is given by 

E P ∗ = E P (S ∗1 , . . . , S 
∗
N ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi − C(S ∗1 , . . . , S 

∗
N ) 

4.2. Algorithmic procedure 

Considering the previous results, we present an efficient procedure ( Algorithm 1 ) to solve the inventory problem formu- 

lated in (24) for the probabilistic multi-item system with power demand patterns, backlogged shortages, and limited storage. 

The minimum of the expected inventory cost C(S 1 , . . . , S N ) subject to the constraints is also provided by this procedure. 

Algorithm 1 gives the optimal inventory levels S ∗
i 
, for i = 1 , 2 , . . . , N. Moreover, in each inventory cycle, the replenishing

quantity or lot size Q i for the i th item must be equal to the demanded quantity on the period T 0 . Thus, assuming that x i is

a realization of the demand X i of the item i during the period T 0 , then the lot sizes are Q 

∗
i 

= x i , for i = 1 , 2 , . . . , N; and the

reorder points are s ∗
i 

= S ∗
i 

− Q 

∗
i 

= S ∗
i 

− x i , for i = 1 , 2 , . . . , N. 

Note that the non-linear equation g(λ) = 0 , with λ in the interval (λ j−1 , λ j ] , can be solved using some numerical proce-

dure such as the secant method or the bisection method (see Stoer and Bulirsch [43] ). 

In the following section, we illustrate the previous algorithmic procedure considering that demands follow certain prob- 

ability distributions. 

Algorithm 1. 
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Step 1 . From (19) , calculate S 0 i = S i (0) = Z −1 
i 

(
h i 

h i + ω i 
)
, for every i = 1 , . . . , N. 

From (30) , calculate g(0) . 

Step 2 . If g(0) ≤ 0 , then λ∗ = 0 and S ∗
i 

= S 0 
i 
, for i = 1 , 2 , . . . , N. Go to Step 8. 

Else, go to Step 3. 

Step 3 . Let j = 0 , λ0 = 0 , I 1 = { 1 , . . . , N} . 
Step 4 . Calculate 

j = j + 1 

λ j = min i ∈ I j { ω i v i 
} 

I j+1 = I j − { i ∈ I j /λ j = 

ω i 
v i 

} 
From (29) , calculate S i (λ j ) = Z −1 

i 

(
h i + λ j v i 
h i + ω i 

)
, for every i ∈ I j . 

From (30) , get g(λ j ) . 

Step 5 . If g(λ j ) ≤ 0 , then go to Step 6. 

Otherwise, come back to the beginning of Step 4. 

Step 6. Obtain λ∗ = arg λ j−1 <λ≤λ j 
{ g(λ) = 0 } . 

Step 7. For i = 1 to N do 

S ∗
i 

= S i (λ
∗) for i ∈ I j 

S ∗
i 

= 0 for i / ∈ I j 
Step 8 . From (33) , calculate the minimum expected inventory cost C ∗ = C(S ∗1 , . . . , S 

∗
N ) . 

From (15) , obtain the maximum expected profit E P ∗ = E P(S ∗1 , . . . , S 
∗
N ) . 

5. Special demands: Pareto distributions 

In the next paragraphs, we apply the methodology proposed in the above sections to stochastic customer demands, which 

follow Pareto probability distributions. 

Let us consider an inventory system with N items where the replacement of the products is carried out jointly every T 0 
time units. Shortages are allowed and completely backlogged. Item i is taken out of the inventory following a power demand

pattern given by (2) . The demand X i of each item i follows a Pareto distribution on the period T 0 . Thus, for the item i , the

probability density of the demand f i (x i ) is 

f i ( x i ) = 

αi η
αi 

i 

x 
αi +1 

i 

, for all x i ≥ ηi with αi > 2 , i = 1 , 2 , . . . , N (34) 

where ηi is the scale parameter and αi is the shape parameter. Let μi be the average demand of the item i during the period

T 0 . These average demands are 

μi = 

αi ηi 

αi − 1 

, i = 1 , 2 , . . . , N (35) 

For each item i = 1 , 2 , . . . , N, the function Z i (S i ) given in (16) depends on the relative values of S i , and ηi . Thus, we have 

Z i (S i ) = 

{
1 − αi 

αi + n i 
(

S i 
ηi 

)n i 
, S i ≤ ηi 

n i 
αi + n i 

(
ηi 

S i 

)αi 
, S i > ηi 

(36) 

Note that 

Z i (ηi ) = 

n i 

αi + n i 

, i = 1 , 2 , . . . , N (37) 

Therefore, from (19) , the optimal inventory levels are 

S i 
0 = Z i 

−1 

(
h i 

h i + ω i 

)
= 

{ 

ηi 

(
( αi + n i ) ω i 
αi ( h i + ω i ) 

)1 /n i 
, 

n i 
αi + n i ≤

h i 
h i + ω i 

ηi 

(
n i ( h i + ω i ) 
h i ( αi + n i ) 

)1 /αi 

, 
n i 

αi + n i > 

h i 
h i + ω i 

, i = 1 , 2 , . . . , N (38) 

The minimum expected inventory cost per unit time C 0 is given by (22) . Before calculating this expected inventory cost,

we first need to evaluate the integral ∫ S 0 
i 

0 

(
S 0 i − x i 

)
f i (x i ) dx i = 

{
0 , S 0 

i 
≤ ηi 

η
αi 
i 

αi −1 

(
S 0 

i 

)−αi +1 + S 0 
i 

− αi ηi 

αi −1 
, S 0 

i 
> ηi 

(39) 
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Note that the value of this integral depends on the relative values of S 0 
i 

and ηi . Now, to calculate the minimum cost,

we need to partition the set of item indices I = { 1 , 2 , . . . , N} into two sets, which are denoted by J 1 = { i ∈ I/S 0 
i 

≤ ηi } and

J 2 = { i ∈ I/S 0 
i 

> ηi } . From (22) and (39) , we have 

C 0 = 

∑ 

i ∈ J 2 
( h i + ω i ) 

n i 

n i + 1 

(
ηαi 

i 

αi − 1 

(
S 0 i 

)−αi +1 + S 0 i −
αi ηi 

αi − 1 

)

+ 

N ∑ 

i =1 

ω i 

n i μi 

n i + 1 

−
∑ 

i ∈ J 1 
ω i 

n i S 
0 
i 

n i + 1 

−
∑ 

i ∈ J 2 
ω i 

n i S 
0 
i 

n i + 1 

+ θ
A 

T 0 
(40) 

Substituting the optimal inventory levels given by (38) in the above equation, we obtain the minimum expected cost per

unit time 

C 0 = 

∑ 

i ∈ J 2 

αi h i ηi 

αi − 1 

(
n i ( h i + ω i ) 

h i ( αi + n i ) 

)1 /αi 

−
∑ 

i ∈ J 1 

ω i n i ηi 

n i + 1 

(
( αi + n i ) ω i 

αi ( h i + ω i ) 

)1 /n i 

+ 

N ∑ 

i =1 

ω i n i μi 

n i + 1 

−
∑ 

i ∈ J 2 

( h i + ω i ) n i αi ηi 

( n i + 1 ) ( αi − 1 ) 
+ θ

A 

T 0 
(41) 

From (15) and (41) , the maximum expected profit per unit time is 

E P 0 = E P (S 0 1 , . . . , S 
0 
N ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi − C 0 

We now study the optimal policy for the probabilistic multi-item inventory system with power demand patterns, fixed 

inventory cycle, full backlogging, demands following Pareto distributions and assuming that the total storage space available 

in the warehouse is limited. 

From Algorithm 1 presented in Section 4 , in steps 1 and 2, we check if the inventory levels S 0 
i 

given by (38) satisfy the

storage constraint (23) . 

If the levels S 0 
i 

meet this constraint, then they are the optimal inventory levels and the minimum inventory cost per unit

time is given by (41) . 

However, if the levels S 0 
i 

do not satisfy the storage constraint, then, in Step 3, we set j = 0 , λ0 = 0 , I 1 = { 1 , . . . , N} .
Next, we must obtain the new values S i (λ) according to (29) . Given a value of λ, the inventory level S i (λ) that solves

the Eq. (28) for each item i is 

S i (λ) = Z −1 
i 

(
h i + λv i 
h i + ω i 

)
= 

{ 

ηi 

(
( αi + n i ) ( ω i −λv i ) 

αi ( h i + ω i ) 
)1 /n i 

, 
n i 

αi + n i ≤
h i + λv i 
h i + ω i 

ηi 

(
n i ( h i + ω i ) 

( h i + λv i ) ( αi + n i ) 
)1 /αi 

, 
n i 

αi + n i > 

h i + λv i 
h i + ω i 

(42) 

Following Algorithm 1 , in Step 4, we successively calculate the values j = j + 1 , λ j = min i ∈ I j { ω i v i 
} , I j+1 = I j − { i ∈ I j /λ j =

ω i 
v i 

} , and, from (42) , the levels S i (λ j ) for every i ∈ I j up to g(λ j ) ≤ 0 , with g(λ) given in (30) . Next, for these Pareto distri-

butions, we determine the value λ∗
P 

such that λ∗
P 

= arg λ j−1 <λ≤λ j 
{ g(λ) = 0 } . The optimal inventory levels are determined by

S ∗i = S i ( λ
∗
P ) , if i ∈ I j and S ∗i = 0 , if i / ∈ I j . 

Thus, from (42) , we have 

S ∗i = S i (λ
∗
P ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ηi 

(
( αi + n i ) ( ω i −λ∗

P v i ) 
αi ( h i + ω i ) 

)1 /n i 

, 
n i 

αi + n i ≤
h i + λ∗

P v i 
h i + ω i 

ηi 

(
n i ( h i + ω i ) 

( h i + λ∗
P 
v i ) ( αi + n i ) 

)1 /αi 

, 
n i 

αi + n i > 

h i + λ∗
P v i 

h i + ω i 

(43) 

From (33) , the minimum expected inventory cost is given by 

C ∗ = C(S ∗1 , . . . , S 
∗
N ) = 

N ∑ 

i =1 

( h i + ω i ) n i 

n i + 1 

∫ S ∗
i 

0 

(
S ∗i − x i 

)
f i (x i ) dx i 

+ 

N ∑ 

i =1 

ω i n i 

n i + 1 

(
μi − S ∗i 

)
−

N ∑ 

i =1 

λ∗
P v i 

n i + 1 

S ∗i + θ
A 

T 0 
(44) 

Similarly to (39) , we have ∫ S ∗
i 

0 

(
S ∗i − x i 

)
f i (x i ) dx i = 

{
0 , S ∗

i 
≤ ηi 

η
αi 
i 

α −1 

(
S ∗

i 

)−αi +1 + S ∗
i 
− αi ηi 

α −1 
, S ∗

i 
> ηi 

(45) 
i i 
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Table 1 

Input parameters for an inventory system with N = 6 items whose demands follow different power pattern indices. 

Holding cost 

h i ($/unit and 

time) 

Shortage cost 

ω i ($/unit and 

time) 

Demand pat 

tern index 

n i 

Purchasing cost 

c i ($/unit) 

Selling price 

p i ($/unit) 

Volume or unit 

storage space 

v i (m 

3 ) 

Item 1 $2 . 8 $6 . 2 1.6 $4 $7 0.5 

Item 2 $1 . 5 $4 . 2 0.4 $7 $11 0.7 

Item 3 $3 . 0 $8 . 0 2.0 $2 $5 0.6 

Item 4 $2 . 4 $3 . 5 1.0 $8 $12 0.8 

Item 5 $1 . 2 $4 . 0 0.5 $5 $8 0.4 

Item 6 $3 . 6 $5 . 4 0.8 $3 $6 0.6 

The ordering cost is A = $120 per order 

 

 

 

 

 

 

 

 

 

Now, to calculate the minimum expected cost, we need to partition the set of item indices I = { 1 , 2 , . . . , N} into two sets,

which are denoted by K 1 = { i ∈ I/S ∗
i 

≤ ηi } and K 2 = { i ∈ I/S ∗
i 

> ηi } . Also, the inequality S ∗
i 

≤ ηi is equivalent to the inequality

n i / ( αi + n i ) ≤
(
h i + λ∗

P 
v i 

)
/ ( h i + ω i ) . 

Thus, the minimum expected cost C ∗, given in (44) , is 

C ∗ = 

∑ 

i ∈ K 2 
( h i + ω i ) 

n i 

n i + 1 

(
ηαi 

i 

αi − 1 

(
S ∗i 

)−αi +1 + S ∗i −
αi ηi 

αi − 1 

)
+ 

N ∑ 

i =1 

ω i 

n i μi 

n i + 1 

−
∑ 

i ∈ K 1 
ω i 

n i S 
∗
i 

n i + 1 

−
∑ 

i ∈ K 2 
ω i 

n i S 
∗
i 

n i + 1 

−
N ∑ 

i =1 

λ∗
P v i 

n i + 1 

S ∗i + θ
A 

T 0 
(46) 

Considering (43) , the minimum expected cost is reduced to 

C ∗ = 

∑ 

i ∈ K 2 
h i 

αi S 
∗
i 

αi − 1 

−
∑ 

i ∈ K 2 
( h i + ω i ) 

n i αi ηi 

( n i + 1 ) ( αi − 1 ) 
−

∑ 

i ∈ K 1 
ω i 

n i S 
∗
i 

n i + 1 

+ 

N ∑ 

i =1 

ω i 

n i μi 

n i + 1 

−
N ∑ 

i =1 

λ∗
P v i 

n i + 1 

S ∗i + θ
A 

T 0 
(47) 

From (15) and (47) , the maximum expected profit EP ∗ per unit time is given by 

E P ∗ = E P (S ∗1 , . . . , S 
∗
N ) = 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi − C ∗

In the next section, we present some numerical examples to illustrate the applicability of the theoretical results obtained 

for the inventory model proposed in this article. 

6. Numerical results 

Let us suppose a company dedicated to the sell and distribution of building materials. It sells, among others, six different

types of gravel. The inventory manager wants to maximize the expected profit from the storage and sale of these items.

It can be assumed that the inventory system satisfies the assumptions made in this article. Thus, demands are random 

variables and shortages are allowed and backlogged. We study the inventory control of these items. For reasons of strategic 

planning, the company jointly replenishes the products every month. Thus, the scheduling period or inventory cycle is fixed 

and is equal to T 0 = 1 / 12 = 0 . 0833333 years. The replenishing cost is A = $120 per order. For each of the six items, the

carrying cost h i per unit time, the shortage cost ω i per unit time, the demand pattern index n i , the purchasing cost c i , the

selling price p i , and the volume or unit space v i , with i = 1 , 2 , . . . , 6 , are shown in Table 1 . 

Let us assume that the demand of the i th item follows a Pareto distribution with mean μi , shape parameter αi and scale

parameter ηi , for i = 1 , 2 , . . . , 6 . Table 2 displays the values of these parameters for the six items. As all the random variables

X i are continuous, we have Pr (X i = 0) = 0 , for all i = 1 , 2 , . . . , N. Hence, the expected replenishing cost is ERC = A/T 0 . 

In the following paragraphs, we calculate the optimal inventory policy for the multi-item inventory system with Pareto 

stochastic demands, power demand patterns and backlogged shortages. 

We first need to calculate, for each item i = 1 , 2 , . . . , 6 , the values of the ratios h i / (h i + ω i ) and n i / (n i + αi ) . These values

are shown in Table 3 . 

Next, we present below the optimal inventory policy for the multi-item inventory system with fixed inventory cycle and 

fully backlogged shortages, considering different storage capacities. 
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Table 2 

Parameters of the Pareto distributions for the inventory system with N = 6 items. 

Scale parameter 

ηi 

Shape parameter 

αi 

Average demand 

μi 

Item 1 20 units 5 25 units 

Item 2 8 units 5 10 units 

Item 3 45 units 10 50 units 

Item 4 6 units 4 8 units 

Item 5 35 units 8 40 units 

Item 6 75 units 4 100 units 

Table 3 

Values of the ratios h i / (h i + ω i ) and n i / (n i + αi ) for the N = 6 items. 

Ratio 

h i / (h i + ω i ) 

Ratio 

n i / (n i + αi ) 

Item 1 0.311111 0.242424 

Item 2 0.263158 0.0740741 

Item 3 0.272727 0.166667 

Item 4 0.406780 0.2 

Item 5 0.230769 0.0588235 

Item 6 0 . 4 0.166667 

Table 4 

Optimal inventory levels at the beginning of the inventory cycle for the system with W = 100 m 

3 . 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

S 0 
i 

= 18 . 8466 S 0 2 = 4 . 51945 S 0 3 = 42 . 0389 S 0 4 = 4 . 44915 S 0 5 = 23 . 3797 S 0 6 = 49 . 7424 

 

 

 

 

 

 

 

 

 

6.1. Multiple-item inventory system with a storage capacity of W = 100 cubic meters 

We now suppose that the items can be stored in a warehouse with a capacity of W = 100 cubic meters. To obtain the

optimal inventory policy, we first calculate the values S 0 
i 

given by (38) , that is, the solution for the inventory problem when

there is no limitation on the storage capacity. 

From Table 3 , the ratios satisfy h i / (h i + ω i ) ≥ n i / (n i + αi ) for any item i = 1 , 2 , . . . , 6 . Hence, from (38) , the inventory

levels S 0 
i 

are obtained by 

S 0 i = ηi 

(
( αi + n i ) ω i 

αi ( h i + ω i ) 

)1 /n i 

, i = 1 , 2 , . . . , 6 

These inventory levels are shown in Table 4 . 

Now, we have 
∑ N 

i =1 v i S 0 i 
= 80 . 5669 . As this value is less than the capacity W = 100 , we conclude that this is the optimal

inventory policy. 

Next, we calculate the minimum expected inventory cost. For that, we first determine the sets J 1 = { i ∈ I/S 0 
i 

≤ ηi } =
{ 1 , 2 , . . . , 6 } and J 2 = { i ∈ I/S 0 

i 
> ηi } = ∅ . Thus, from (41) , the expected total inventory cost is C 0 = $1661 . 51 per year. 

In addition, from (20) and (38) , the expected holding cost is $125 . 369 per year; and from (21) and (38) , the expected

shortage cost is $96 . 1367 per year. The expected ordering cost is A/T 0 = $1440 per year. 

Now, taking into account the input parameters shown in Tables 1 and 2 , the expected benefit per unit time obtained

from the sale of items in each inventory cycle is given by 

E 

[ 

N ∑ 

i =1 

( p i − c i ) Q i 

T 0 

] 

= 

N ∑ 

i =1 

( p i − c i ) 

T 0 
μi = $8604 per year 

Thus, from (15) , the maximum expected profit per unit time is $6942 . 49 per year. 

6.2. Multi-item system with storage capacity limited to W = 60 cubic meters 

Now, we consider that the items are stored in a warehouse with a capacity of W = 60 cubic meters. In this situation, the

inventory policy given in Table 4 does not satisfy the constraint of limited storage capacity proposed in (23) . 

Thus, we must follow Algorithm 1 proposed in Section 4.2 to find the optimal policy. For that, let ω i / v i be the unit

backlogging cost per storage space of each item i , with i = 1 , 2 , . . . , 6 . These ratios are shown in Table 5 . 
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Table 5 

Unit backlogging cost per storage space of the items considered in the inventory system. 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

ω 1 / v 1 = 12 . 4 ω 2 / v 2 = 6 ω 3 / v 3 = 13 . 333 ω 4 / v 4 = 4 . 375 ω 5 / v 5 = 10 ω 6 / v 6 = 9 

Table 6 

Inventory levels S i (λ1 ) associated with the multiplier λ1 in the multi-item in- 

ventory system. 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

S i (λ1 ) = 14.3589 0.1725 34.4585 0 7.3975 21.6428 

Table 7 

Optimal inventory levels at the beginning of the inventory cycle for the system when 

W = 60 m 

3 . 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

S ∗
i 

= S i (λ
∗) = 16.5723 1.34415 38.2312 2.10406 13.8402 34.3582 

Table 8 

Optimal inventory levels at the beginning of the inventory cycle for the system when 

W = 30 m 

3 . 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

S ∗
i 

= S i (λ
∗) = 11.5880 0 29.6396 0 2.53777 9.01186 

 

 

 

 

 

C

 

 

 

 

 

 

W  

 

 

 

 

As, in this case, the condition (23) is not hold, from step 3 we have j = 0 , λ0 = 0 , I 1 = { 1 , . . . , 6 } . Next, from step 4

we calculate j = 1 , λ1 = min 1 ≤i ≤6 { ω i v i 
} = 

ω 4 
v 4 

= 4 . 375 , I 2 = { 1 , 2 , 3 , 5 , 6 } . From (42) , we must calculate the values of S i (λ) , for

i = 1 , 2 , . . . , 6 . As λ > 0 , from Table 3 , the ratios satisfy ( h i + λv i ) / (h i + ω i ) ≥ n i / (n i + αi ) for any item i = 1 , 2 , . . . , 6 . 

Hence, from (42) , the inventory levels S i (λ1 ) are obtained by 

S i (λ1 ) = ηi 

(
( αi + n i ) ( ω i − λ1 v i ) 

αi ( h i + ω i ) 

)1 /n i 

, i = 1 , 2 , . . . , 6 

These inventory levels for the multiplier λ1 are shown in Table 6 . 

As 
∑ 

i ∈ I 1 v i S i (λ1 ) = 43 . 9200 < W = 60 , we have to go to step 6. Then, we calculate the multiplier solving the equation 

λ∗ = arg λ0 <λ≤λ1 

{ ∑ 

i ∈ I 1 
v i S i (λ) = W 

} 

= arg 0 <λ≤4 . 375 

{ ∑ 

i ∈ I 1 
v i ηi 

(
( αi + n i ) ( ω i − λv i ) 

αi ( h i + ω i ) 

)1 /n i 

= 60 

} 

Thus, we obtain λ∗ = 2 . 30601 . Next, from (43) , we calculate the values S ∗
i 

= S i (λ
∗) , for i = 1 , 2 , . . . , 6 . These optimal inven-

tory levels are displayed in Table 7 . From (47) , we can calculate the minimum expected inventory cost C ∗. For that, we first

determine the sets K 1 = { i ∈ I/S ∗
i 

≤ ηi } = { 1 , 2 , . . . , 6 } and K 2 = { i ∈ I/S ∗
i 

> ηi } = ∅ . Thus, the expected total inventory cost is

 

∗ = $1684 . 65 per year. 

Also, from (31) and (43) , we have that the expected holding cost is $71 . 5844 per year; and, from (32) and (43) , the

expected shortage cost is $173 . 070 per year. The expected ordering cost is the same, A/T 0 = $1440 per year. Hence, from

(15) , the maximum expected profit per unit time is $6919 . 35 per year. 

6.3. Multiple-item system with storage capacity limited to W = 30 cubic meters 

Finally, suppose that the items are stored in a warehouse with a capacity of W = 30 cubic meters. Obviously, the values

S 0 
i 
, with i = 1 , 2 , . . . , N, given in (38) do not satisfy the constraint (23) . So, we have to apply Algorithm 1 to obtain the

optimal inventory policy. Following the procedure, steps 1 − 3 are similar to the above system with storage capacity W = 60

cubic meters. From step 4, we have j = 1 , λ1 = min 1 ≤i ≤6 { ω i v i 
} = 

ω 4 
v 4 

= 4 . 375 , I 2 = { 1 , 2 , 3 , 5 , 6 } and 

∑ 

i ∈ I 1 v i S i (λ1 ) = 43 . 9200 >

 = 30 . Then, we calculate j = 2 , λ2 = min i ∈ I 2 { ω i v i 
} = 

ω 2 
v 2 

= 6 , I 3 = { 1 , 3 , 5 , 6 } and 

∑ 

i ∈ I 2 v i S i (λ2 ) = 33 . 9944 > W = 30 . Next,

we continue with j = 3 , λ3 = min i ∈ I 3 { ω i v i 
} = 

ω 6 
v 6 

= 9 , I 4 = { 1 , 3 , 5 } and 

∑ 

i ∈ I 3 v i S i (λ3 ) = 18 . 6705 < W = 30 . Then, we go to step

5 and calculate λ∗ = arg λ2 <λ≤λ3 

{∑ 

i ∈ I 3 v i S i (λ) = W 

}
= 6 . 70537 . Next, in step 6, we determine the optimal inventory levels

by S ∗
i 

= S i (λ
∗) for i ∈ I 3 , and S ∗2 = S ∗4 = 0 . These optimal inventory levels are displayed in Table 8 . 

Next, we determine the sets K 1 = { i ∈ I/S ∗
i 

≤ ηi } = { 1 , 2 , . . . , 6 } and K 2 = { i ∈ I/S ∗
i 

> ηi } = ∅ . Thus, the expected total inven-

tory cost is C ∗ = $1814 . 71 per year. In addition, from (31) and (43) , we have that the expected holding cost is $17 . 9353 per
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Table 9 

Effects of the parameters h i , ω i , v i and ηi on the optimal multi-item inventory policy. 


 
S ∗1 (%) 
S ∗2 (%) 
S ∗3 (%) 
S ∗4 (%) 
S ∗5 (%) 
S ∗6 (%) 
EHC ∗(%) 
EBC ∗(%) 
C ∗(%) 
EP ∗(%) 

h i +40% −1 . 93865 34.7471 −1 . 22104 23.6727 4.71667 −2 . 64758 36.8864 1.09395 1.67976 −0 . 408972 

+20% −1 . 01506 17.5670 −0 . 634173 12.7894 2.48401 −1 . 39949 18.5578 0.545407 0.844592 −0 . 205633 

+10% −0 . 519822 8.82159 −0 . 323349 6.66199 1.27575 −0 . 720462 9.31130 0.271724 0.423571 −0 . 103127 

−10% 0.546356 −8 . 87074 0.336649 −7 . 26709 −1 . 34841 0.766156 −9 . 38514 −0 . 268233 −0 . 426350 0.103804 

−20% 1.12144 −17 . 7572 0.687448 −15 . 2225 −2 . 77507 1.58296 −18 . 8548 −0 . 531075 −0 . 855739 0.208347 

−40% 8.05869 −38 . 4764 1.16624 −36 . 7043 −7 . 37007 2.19545 −37 . 6423 −1 . 10062 −1 . 71257 0.416959 

ω i +40% 1.63908 −25 . 3559 1.00010 −22 . 6635 −4 . 06479 2.32774 2.13199 38.9496 4.09200 −0 . 996281 

+20% 0.926406 −14 . 7957 0.568888 −12 . 4885 −2 . 29045 1.30473 1.17424 19.4670 2.04980 −0 . 499064 

+10% 0.495535 −8 . 06311 0.305473 −6 . 57936 −1 . 22268 0.69449 0.618506 9.73156 1.02603 −0 . 249809 

−10% −0 . 576029 9.79751 −0 . 358490 7.36803 1.41325 −0 . 797883 −0 . 692431 −9 . 72815 −1 . 02882 0.250488 

−20% −1 . 25402 21.9042 −0 . 785113 15.6718 3.06433 −1 . 72464 −1 . 47258 −19 . 4539 −2 . 06113 0.501825 

−40% −3 . 04842 56.8450 −1 . 93858 35.8735 7.35980 −4 . 11769 −3 . 36879 −38 . 9092 −4 . 14041 1.00807 

v i +40% −14 . 3499 −89 . 8701 −10 . 6096 −107 . 095 −49 . 3039 −39 . 4973 −47 . 0226 53.0080 3.44758 −0 . 839383 

+20% −7 . 95959 −64 . 5578 −5 . 85970 −60 . 6320 −29 . 9508 −22 . 8485 −29 . 3390 29.0354 1.73622 −0 . 422719 

+10% −4 . 21365 −39 . 4603 −3 . 09426 −32 . 4733 −16 . 7022 −12 . 3846 −16 . 6375 15.2005 0.854633 −0 . 208078 

−10% 4.78795 61.8242 3.49513 37.9078 21.4267 14.8543 22.2882 −16 . 5785 −0 . 756093 0.184086 

−20% 10.2965 159.281 7.48936 82.8231 49.5044 32.9638 52.9808 −34 . 3417 −1 . 27677 0.310855 

−40% 13.7232 236.231 9.95988 111.456 68.9260 44.7760 75.1349 −44 . 4520 −1 . 37406 0.334541 

ηi +40% 19.9102 −85 . 8182 25.1466 −10 0 . 0 0 0 −29 . 0255 −15 . 2963 −25 . 8386 113.784 10.5915 47.1601 

+20% 10.4485 −57 . 4693 12.9684 −52 . 7584 −15 . 9409 −7 . 41824 −15 . 2068 54.8425 4.98797 23.6550 

+10% 5.36498 −33 . 4063 6.59632 −25 . 7206 −8 . 37247 −3 . 62305 −8 . 30126 26.7206 2.39235 11.8522 

−10% −5 . 69084 45.6418 −6 . 85438 24.1170 9.28406 3.36887 10.0593 −24 . 9207 −2 . 13273 −11 . 9154 

−20% −11 . 7628 107.425 −14 . 0085 46.2585 19.6035 6.37102 22.3846 −47 . 4734 −3 . 92592 −23 . 9136 

−40% −31 . 7661 101.739 −34 . 0241 26.8733 1.35559 −13 . 1344 5.08094 −66 . 6712 −6 . 63344 −48 . 1238 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

year; and, from (32) and (43) , the expected shortage cost is $356 . 775 per year. The expected ordering cost is A/T 0 = $1440

per year. In this case, from (15) , the expected profit per unit time is $6789 . 29 per year. 

It is possible to draw the following useful findings from the numerical results. Obviously, if the storage capacity W 

increases, then the optimal stock levels also increase. When the storage capacity W decreases, the optimal policy suggests 

that, for some items, it is better not to held stock at the beginning of the inventory cycle. 

It can be also seen that if the storage capacity is W = 100 m 

3 then the maximum expected profit is $6942 . 49 per year,

while when the capacity is W = 60 m 

3 the maximum expected profit is $6919 . 35 per year. That is, the increasing of the

storage capacity from 60 m 

3 to 100 m 

3 provides an expected growth of the revenue of only $23 . 14 per year. In the same

way, the gain of the storage capacity from 30 m 

3 to 100 m 

3 provides an increase of the expected profit from $6789 . 29 to

$6942 . 49 per year, that is, only $153 . 20 per year. This kind of reasoning could be useful for the decision-makers to afford

or not investments for increasing their storage capacity. 

These illustrative examples suppose that the demands follow Pareto probability distributions. Then the formulas deduced 

in Section 5 are applied. It is important to remark that similar reasoning could be performed if the demands follow other

probability distributions, because the methodology proposed in Sections 3 and 4 is suitable and can be applied to any

probability distribution. 

7. Sensitivity analysis 

In this section, we analyse the fluctuations of the optimal inventory policies when changes in some parameters of the 

multi-item inventory system are allowed. Initially, we consider the same parameters as in Section 6.2 . Next, we calculate

the variations, in percentage terms, of the optimal inventory policies, assuming that the value of each considered input 

parameter has changed by ±40% , ±20% , and ±10% . The results obtained can be seen in Table 9 . From these results, we can

establish the following observations: 

1. If the unit holding costs h i increase, then the optimal inventory levels of items 1, 3 and 6 decrease, while the optimal

inventory levels of items 2, 4 and 5 increase. Also, if the parameters h i increase, then the expected holding cost EHC ∗,

the expected backlogging cost EBC ∗ and the expected total cost C ∗ go up, while the expected profit EP ∗ goes down. 

2. If the unit backlogging costs ω i increase, then the optimal inventory levels of items 1, 3 and 6 increase, while the

optimal inventory levels of items 2, 4 and 5 decrease. In addition, if the parameters ω i increase, then the expected

holding cost EHC ∗, the expected backlogging cost EBC ∗ and the expected total cost C ∗ go up, while the expected profit

EP ∗ goes down. 

3. If the unit volumes of items v i increase, then all the optimal inventory levels S ∗
i 

decrease. Also, if the parameters v i 
increase, then the expected holding cost EHC ∗ and the expected profit EP ∗ decrease, while the expected backlogging 

cost EBC ∗ and the expected total cost C ∗ go up. 
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4. If the scale parameters ηi of the Pareto distributions increase, then the optimal inventory levels S ∗1 and S ∗3 increase, 

while the rest of optimal inventory levels decrease. In addition, if the parameters ηi increase, then the expected 

holding cost EHC ∗ go down, while the expected backlogging cost EBC ∗, the expected total cost C ∗ and the expected

profit EP ∗ go up. 

8. Managerial insights 

With the globalization world trade and the rise of the internet and telecommunications, online sales of a wide variety of

products have grown notably in recent years. The common feature of all these online sales is that customers do not receive

the products at the time of purchase, but sellers deliver the goods a few days later. This situation also happens in many

other in-shop sales, when the customers do not receive the purchased goods immediately. Therefore, the withdrawal of 

items from the inventory is not instantaneous at the purchasing time, but occurs in a period after the sale of the products. 

These situations contrast with traditional models, as for example in the newsboy problem, where the realization of the 

demand in the inventory occurs at the same moment of purchase of the product, which leads to an immediate decreasing

of the inventory level of the products. 

To study these inventory systems, the model analysed in this work provides an approach for managers to find the optimal

inventory levels for all the products. The proposed method also allows the decision-makers to compare the performance of 

different configurations of their inventory systems. Thus, the managers could decide whether it is suitable or not to afford 

new investments to modify the inventory system configurations, as can be to rent a larger warehouse to increase the storage

capacity. 

From the results proposed in this paper, the following managerial implications can be commented. When the storage 

capacity is fairly small, it can happen that the inventory levels of some products were zero. It does not mean that such

products were off commercialization. Simply, these products are kept in sale, but they are not stored in stock. To meet the

demand of these products the manager asks to the provider the required quantity by the customers. 

Supposing that the optimal initial inventory level of some product was zero, if the storage capacity diminishes, then 

such optimal initial inventory level remains zero. If the storage capacity decreases even more, it is possible that the optimal

initial inventory levels of more items become zero too. An increasing of the warehouse capacity could be a way to achieve

strictly positive values for the optimal initial inventory levels of these products. 

From the sensitivity analysis, the results show that the largest increase in the total cost of the system occurs when the

scaling parameters of the Pareto distributions are increased. 

It is also observed that if unit holding costs h i are increased by up to 40% , then the increase in the total cost C ∗ is very

small (less than 2% ) and the decrease in the expected benefit EP ∗ is even smaller (less than 1% ). 

In addition, from the results of the sensitivity analysis, it can be checked that if the unit costs of backlogging ω i are

increased by up to 40% , then the increase in the total cost is small (less than 5% ) and the decrease in the expected benefit

is less than 1% . 

It can also be seen that a 40% increase in item volumes leads to an increase in the total cost of less than 4% and a

decrease in the expected profit of less than 1% . 

In summary, from the previous results it can be deduced that the variation of the parameters h i , ω i and v i does not have

a great impact on the cost of the system, and its effect is very small on the expected benefit. However, if we increase the

scale parameters of the demand distributions then, although the total cost of the system increases, the expected benefit of 

inventory management is significantly increased. 

Determining optimal policies to manage multi-item inventory systems with stochastic demands, backlogged shortages, 

and limited storage capacity, is an important decision that affects the economic survival of many firms, their business, 

job offers, and services. That happens because these firms require the efficient management of inventory systems with 

the characteristics previously mentioned. From practical point of view, the proposed approach provides the managers a 

procedure to manage these inventory systems. 

9. Conclusions 

The main contribution of this paper consists in developing the optimal inventory policy for multi-item inventory systems 

with stochastic demands, fixed scheduling period, backlogged shortages, and power demand patterns, assuming that the 

storage space available in the warehouse is limited. From the point of view of decision-making, incorporating stochastic 

demands and power demand patterns may help to better fit the evolution of the inventory levels of the products. Moreover,

considering multiple items and incorporating backlogging allows more realistic inventory models to be designed. All these 

assumptions extend and add new contributions to other papers previously analysed. The results obtained have a direct 

impact on the inventory policy to follow, reducing the expected costs of inventory management. 

A probabilistic inventory model has been formulated to take decisions that will maximize the expected profit per unit 

time. In this inventory model, demands of the items are not exactly known, but it is assumed that they follow certain prob-

ability distributions. The ways by which quantities are taken out of the inventory follow a time-dependent power function. 

Each of these functions represents the temporal concentration of customer demand for each item throughout the scheduling 

period and they are known as power demand patterns. 
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To solve the probabilistic multi-item inventory problem, we must calculate the initial inventory levels that maximize the 

expected inventory management profit of all the products. First, we determine the optimal inventory policy for a probabilis- 

tic inventory system with full backlogging, without considering the capacity of the warehouse, achieving the optimal stock 

levels. The optimal solution depends on the demand probability distributions, the input parameters, and the power demand 

pattern index of each item, i.e., the optimal policy depends on the behaviour of customer demand for each product during

the inventory cycle. 

Next, we analyse the model for the probabilistic multi-item inventory system with power demand patterns and full 

backlogging, when the warehouse used to store the items has a fixed capacity. In this situation, to obtain the optimal

inventory policy we have developed an efficient algorithm. 

Future research would be to study the probabilistic inventory system for multiple items considering a deterioration rate 

for items and power demand patterns. Another research line may be to analyse the probabilistic inventory system for multi- 

ple items and power demand patterns, assuming that shortages are lost sales. Finally, it would also be interesting to develop

the optimal policy for the multi-item inventory system with stochastic demands and power demand patterns, supposing 

that replenishments of the products are not instantaneous and there exists a production rate for each item in the inventory

model. 
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Appendix 

In this appendix, we give the proofs of the main results proposed in the paper. 

Proof of Proposition 1 . 

Z i (S i ) is a strictly positive function which takes values in the interval [0,1] when S i ≥ 0 , because 

0 ≤ 1 −
(

S i 
x i 

)n i 

≤ 1 , for all x i ≥ S i 

This function is continuous and differentiable on the interval (0 , b i ) . Thus, its derivative is 

Z ′ i (S i ) = −n i S 
n i −1 
i 

∫ ∞ 

S i 

1 

x n i 
i 

f i (x i ) dx i < 0 

Therefore, the function Z i (S i ) is strictly decreasing on the interval [0 , b i ) . Moreover, for each item i , if b i is a finite value,

then Z i (S i ) = 0 for all S i ≥ b i . Also, the function Z i (S i ) satisfies Z i (0) = 

∫ ∞ 

0 f i (x i ) dx i = 1 and lim S i →∞ 

Z i (S i ) = 0 . 

Proof of Theorem 1 . 

(i) The cost function (14) is a continuous function and twice differentiable. Thus, the first partial derivatives of the cost 

function C(S 1 , . . . , S N ) with respect to the variables S i ( i = 1 , 2 , . . . , N) are: 

∂C 

∂S i 
= ( h i + ω i ) 

∫ S i 

0 

f i (x i ) dx i + ( h i + ω i ) 

∫ ∞ 

S i 

(
S i 
x i 

)n i 

f i (x i ) dx i − ω i , i = 1 , 2 , . . . , N 

The second partial derivatives of the cost function C(S 1 , . . . , S N ) are given by 

∂ 2 C 

∂S 2 
i 

= ( h i + ω i ) 

∫ ∞ 

S i 

n i S 
n i −1 
i 

x n i 
i 

f i (x i ) dx i , i = 1 , 2 , . . . , N 

∂ 2 C 

∂ S i ∂ S j 
= 0 , i, j = 1 , 2 , . . . , N and i 
 = j 

Thus, the Hessian H = H(S 1 , S 2 , . . . , S N ) is given by 

H = 

∏ N 

i =1 
( h i + ω i ) 

∫ ∞ 

S i 

n i S 
n i −1 
i 

x n i 
i 

f i (x i ) dx i 

Therefore, as the second partial derivatives of the cost function with respect to S i , for 0 < S i < b i and i = 1 , 2 , . . . , N,

are always positive and the Hessian is also positive, the cost function (14) is a strictly convex function on the interior

of �. 

(ii) Equating to zero the first partial derivatives of C(S 1 , . . . , S N ) with respect to the variables S i , we can get the optimal

inventory levels (S 0 
1 
, S 0 

2 
, . . . , S 0 

N 
) . These optimal levels are obtained by solving the integral equation given in (17) for

each item i = 1 , 2 , . . . , N. From Proposition 1 , Z (S ) is a strictly positive and decreasing function on [0 , b ) , which takes
i i i 
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values in the interval (0 , 1] . As the ratio h i / (h i + ω i ) is a positive value less than one, then the Eq. (17) has a unique

positive solution S 0 
i 

for each i = 1 , 2 , . . . , N. 

Moreover, the above levels are always strictly positive values and less than b i (that is, b i > S 0 
i 

> 0 , for i = 1 , 2 , . . . , N).

Thus, the optimal inventory policy (S 0 
1 
, S 0 

2 
, . . . , S 0 

N 
) belongs to the interior of the region �. 

Proof of Theorem 2 . 

From Proposition 1 and (29) , g(λ) is a continuous function on the interval [0 , ∞ ) . Next, we prove that g(λ) is a strictly

decreasing function on the interval (0 , λmax ) , with λmax = max 1 ≤i ≤N { ω i v i 
} . 

Let 0 < λ1 < λ2 ≤ λmax , then I(λ2 ) ⊆ I(λ1 ) and, from Proposition 1 , we have S i (λ1 ) > S i (λ2 ) , for i ∈ I ( λ1 ) . Thus, we obtain

∑ 

i ∈ I ( λ1 ) 

v i S i (λ1 ) > 

∑ 

i ∈ I ( λ2 ) 

v i S i (λ2 ) 

Consequently, from (30) , we get g(λ1 ) > g(λ2 ) . Moreover, from (29) and (30) , g(λ) = −W < 0 for λ ≥ max 1 ≤i ≤N { ω i v i 
} . There-

fore, if g(0) > 0 , as g(λ) is a strictly decreasing function, it is deduced that the function g(λ) has a unique root λ∗ in the

interval (0 , λmax ) . 
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