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Abstract: Ultraviolet (UV) radiation plays a key role in different planetary mechanisms, thus
necessitating a worldwide analysis of this solar spectrum interval. This study offers a worldwide and
long-term analysis of ozone radiative forcing (ORF) in the UV-B range between 1979 and 2014. The
method uses monthly total ozone column (TOC) values obtained from the ERA-Interim reanalysis
data collection and radiative transfer simulations. A global mean ORF of 0.011 Wm−2 is obtained,
with marked differences between mid-latitude and tropical areas. The mid-latitude belts in the
Northern and Southern Hemispheres exhibit the following statistically significant ORF trends between
1982 and 2014 with respect to pre-1980 values: 0.007 Wm−2 per decade in the 60–45◦S belt and
around 0.004 Wm−2 per decade in the 45–30◦S and 45–60◦N belts. The increase observed in the
net UV-B radiation levels at the troposphere might have relevant photochemical effects that impact
climate change.

Keywords: ozone radiative forcing; long-term trends; ultraviolet radiation; radiative transfer
simulations; reanalysis data; global analysis

1. Introduction

The evolution of the atmospheric ozone layer over the last few decades has been analysed in
depth because of the key role it plays in planetary climate change [1,2] as well as the shortwave and
longwave radiative budget [3]. Ozone radiative forcing (ORF) is defined as the change in net radiative
flux at the tropopause caused by ozone changes throughout the atmosphere [4]. The small spectral
region between 280 and 320 nm (UV-B range) represents less than 2% of the entire solar extraterrestrial
spectrum (280–3000 nm), but it is responsible for a significant proportion (~13%) of the shortwave
ORF [5] caused by strong absorption in the Hartley band. Furthermore, UV-B radiation changes may
affect tropospheric and stratospheric dynamics (e.g., planetary wave propagation) and have relevant
implications such as the variation in the Arctic Oscillation pattern [6]. Additionally, UV-B variations
related to ozone changes can induce substantial effects in tropospheric chemistry (e.g., a decrease in
CH4 and CO growth rates), thus affecting the tropospheric radiative budget [7,8].

In this framework, the present study analyses worldwide ORF in the UV-B range over the last
three decades (1979–2014) from radiative transfer simulations using the global database of total ozone
column (TOC) provided by ERA-Interim reanalysis project [9] as input. Although several works have
already evaluated shortwave ORF from the late 1970s onward [4,10–13], the present study should be
considered as complementary since it focuses on the UV-B range that has not been evaluated globally in
detail up to now. This article is thus expected to improve current understanding of the radiative effects
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of worldwide ozone changes and have potential implications in different fields such as atmospheric
chemistry, global radiative budget, and photobiology.

2. Materials and Methods

The TOC data used in this study were obtained from the ERA-Interim reanalysis provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF) between 1979 and 2014. A
comprehensive description of this data collection was performed by Dee et al. [9]. Daily and monthly
TOC values were obtained by averaging the 6 h data in a fixed grid of 1.5◦. The reliability of this
collection has been evidenced by such authors as Dragani [14], who obtained a deviation of ±5 Dobson
units (DUs) from the reference ground-based values (about ±3%).

The net (down minus up) UV-B fluxes at the tropopause were simulated under cloud- and
aerosol-free conditions by the uvspec model included in the libRadtran 1.7 software package [15].
The accuracy of UV simulations when using this model has been shown to yield excellent results in
both cloud-free and overcast conditions [16]. Several lookup tables (LUTs) have been created with
this model in order to easily obtain hourly net UV-B values as a function of geographical position
and atmospheric parameters. The geographical coordinates (latitude/longitude) determine the use
of different atmospheric models (tropical, mid-latitudes summer/winter, subarctic summer/winter,
and U.S. Standard) [15] with different vertical profiles of temperature, pressure, and density of gases
used as input in the simulations. One LUT is evaluated for each of these six atmospheric models. The
net UV-B levels, outputs of the simulations, were obtained at the corresponding tropopause height of
each atmospheric profile used in the simulations. Tropopause height is calculated as the lowest height
at which the temperature lapse rate reaches 2 K km−1. In each LUT, solar zenith angle (SZA) values
ranged between 0◦ and 90◦ at 2◦ steps, while TOC values ranged from 100 to 500 DU at 20 DU steps.
Furthermore, 18 surface albedo types were selected to cover all of the types over the Earth using the
classification provided by the International Geosphere Biosphere Programme (IGBP). Other general
inputs were extraterrestrial irradiance taken from Gueymard [17], DIScrete ORdinate Radiative Transfer
solver version ’c’ used with eight streams (see ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/),
and cloud- and aerosol-free conditions were considered in all simulations. Hence, monthly UV-B
radiation values were computed with the six LUTs as follows: firstly, the right atmospheric model was
selected taking into account the geographical coordinates, which also determine the surface albedo
value attributed by an IGBP map; secondly, in order to reduce the required computation time, the
monthly mean of TOC from ERA-Interim reanalysis for each grid point was considered; and finally, all
of the hourly average SZAs for an “average day” of the month considered were used in the calculations.
Further details about the options used in the simulations are described by the libRadtran user’s guide
(www.libradtran.org/doc/libRadtran.pdf).

Ozone radiative forcing is evaluated as the difference of net UV-B simulations at the tropopause
level in all the grid points of the reanalysis data for two different time periods, assuming all atmospheric
constituents to be invariable except the TOC. In order to minimize the impact of possible extreme TOC
data in the years selected, the average of the UV-B simulated values corresponding to three consecutive
years was used rather than just one particular year. Three different periods, which included one leap
year, were selected in the calculations—per1: 1979–1981 (background period), per2: 1994–1996 (middle
period), and per3: 2012–2014 (present-day period). It can be assumed that the ozone layer during the
background period was only weakly affected by ozone-depleting substances, while the middle period
was selected in order to analyse the well-documented stabilization and incipient recovery of TOC
values after the mid-1990s [18]. The ORF was evaluated in each pair of periods following the scheme

ORF2-1 = (UVnet)per2 − (UVnet)per1, (1)

ORF3-2 = (UVnet)per3 − (UVnet)per2, (2)

ORF3-1 = (UVnet)per3 − (UVnet)per1 (3)

ftp://climate1.gsfc.nasa.gov/wiscombe/Multiple_Scatt/
www.libradtran.org/doc/libRadtran.pdf


Remote Sens. 2020, 12, 436 3 of 9

To better understand the changes in UV levels in the different periods, the relative changes
between these periods were also evaluated following ((UVnet)X − (UVnet)Y)/(UVnet)Y, where X and Y
are the corresponding per1, per2, and per3 in the ORF evaluations. These results are presented in the
Supplementary Material (Figure S1).

3. Results

3.1. Ozone Radiative Forcing in Three Different Periods

The three periods analysed in this paper distinguished between two different evolutions.
Figure 1a shows the radiative changes observed between the background and middle periods
(ORF2-1, Equation (1)). The entire grid showed positive ORF2-1 values below 0.06 Wm−2 with a mean
(± one standard deviation) global value of 0.017 ± 0.008 Wm−2, indicating a clear decline in TOC
values worldwide until the mid-1990s (i.e., less ozone implies greater UV-B radiation levels reaching
the troposphere/surface system). Some areas were highlighted by a slightly greater change in ozone
forcing. For instance, the Antarctica region showed the strongest change, concurring with the ozone
depletion observed in this area [19]. This change implies that net UV-B fluxes at the tropopause height
increased by up to 15–20% in this area (see Figure S1a). Other continental and ocean areas, such as
Europe–Atlantic–US, Asia, South America, and Africa, also exhibited notable changes in the ORF. No
(or only a weak) long-term decline in TOC around the equatorial region was observed in accordance
with the discussion of the halogen-induced ozone loss trends by Shepherd et al. [20]. These ORF
changes were due to increases in net UV-B fluxes at the tropopause height of up to 10% in some areas
of the world compared to those values in the background period.

This situation was reverted when the ORF was determined between per2 (middle) and per3
(present-day) periods (ORF3-2, Equation (2)). Figure 1b shows that almost the whole planet experienced
negative ORF values, with a mean global value of −0.005 ± 0.006 W m−2. Hence, net UV-B radiation
levels at the tropopause were lower in the 2010s than in the 1990s. This decrease presents “minimum”
values of −5% in Antarctica (see Figure S1b). It should be noted that the Southern Hemisphere showed
weaker, even positive, ORF values between 30◦ and 60◦S. Hence, ozone recovery was by no means
spatially uniform, and there were regions under the influence of a persistent slight depletion of the
ozone column (with a slight increase in UV levels at the tropopause of below 5%). Overall, the observed
trends in TOC since 1996 were stable in different latitudinal belts [21] and were in line with the findings
of ORF3-2 presented in this study.

The net radiative change between the background and present-day periods, given by Equation (3)
(ORF3-1), exhibited a clear latitudinal pattern (see Figure 1c). The equatorial region was identified by
the observation of negative ORF values below 0.03 Wm−2 in absolute terms. Hence, this area showed
a lower impact of the ozone depletion phenomenon, even with a small over-recovery of the ozone
layer compared to pre-1980 values, and leading to a slight decrease in net UV-B radiation levels at
the tropopause. In contrast, the area beyond the Tropics of Cancer and Capricorn has evidenced a
decline in atmospheric ozone and the consequent increase in UV-B radiation levels, exceeding 0.03
Wm−2 in certain areas. The relative increase in net UV-B levels at the tropopause can present values
of >10% in some areas of the world, although again the maximum increase, around 15–20%, was
observed in Antarctica (see Figure S1c). Hence, global mean ORF3-1 showed a value of 0.011 ± 0.0012
Wm−2 as a result of the balance between positive and negative contributions associated with this
latitudinal behaviour.



Remote Sens. 2020, 12, 436 4 of 9
Remote Sens. 2020, 12, 436 4 of 9 

 

 
Figure 1. Ozone radiative forcing (ORF; in W m−2) for three different periods: (a) ORF2-1 between 1979–
1981 and 1994–1996, (b) ORF3-2 between 1994–1996 and 2012–2014, and (c) ORF3-1 between 1979–1981 
and 2012–2014. See Equations (1)–(3). 

3.2. Long-term Trends of Ozone Radiative Forcing 

For a better understanding of how ORF has evolved over the last three decades, the ORF was 
also obtained as the difference between each particular year from 1982 and the background period 
(1979–1981, per1). Several latitudinal belts in the Northern and Southern Hemispheres were averaged 
each 15° to obtain the ORF temporal trend between 1982 and 2014. Figure 2 shows the yearly ORF 
values in the 60–45°S, 45–30°S, 30–45°N, and 45–60°N areas. The results for the four belts in the 
equatorial region (30°N–30°S) were not statistically significant (large p values) and were not shown 
in this study for the sake of brevity. Figure 2 highlights the similarities and discrepancies over the 

Figure 1. Ozone radiative forcing (ORF; in W m−2) for three different periods: (a) ORF2-1 between
1979–1981 and 1994–1996, (b) ORF3-2 between 1994–1996 and 2012–2014, and (c) ORF3-1 between
1979–1981 and 2012–2014. See Equations (1)–(3).

3.2. Long-Term Trends of Ozone Radiative Forcing

For a better understanding of how ORF has evolved over the last three decades, the ORF was
also obtained as the difference between each particular year from 1982 and the background period
(1979–1981, per1). Several latitudinal belts in the Northern and Southern Hemispheres were averaged
each 15◦ to obtain the ORF temporal trend between 1982 and 2014. Figure 2 shows the yearly ORF
values in the 60–45◦S, 45–30◦S, 30–45◦N, and 45–60◦N areas. The results for the four belts in the
equatorial region (30◦N–30◦S) were not statistically significant (large p values) and were not shown
in this study for the sake of brevity. Figure 2 highlights the similarities and discrepancies over the
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planet as a whole. The ORF evolution in the first 15 years seemed to be similar, with some maxima and
minima occurring at the same time (e.g., 1985, 1990, 1991, 1993, and 1994). Global phenomena affecting
the whole planet may lie behind this behaviour. Bodeker et al. [22] described the TOC anomaly in 1985
observed in Southern Hemisphere sites as being due to the influence of the quasi-biennial oscillation
(QBO), which affected transport mechanisms. This dynamic effect was supported in this study with
ORF values above 0.02 Wm−2, although it was also visible in the 30–45◦N belt. However, this was not
in line with the increase in mean ozone mass for this year observed by Bodeker et al. [23] over a wider
northern area (between 30◦N and 60◦N). The dynamic features of 1985 were also found in 1997 and
2006 [22]. These latter years presented a clearer separation between northern and southern areas when
ORF values were analysed.

Remote Sens. 2020, 12, 436 5 of 9 

 

planet as a whole. The ORF evolution in the first 15 years seemed to be similar, with some maxima 
and minima occurring at the same time (e.g., 1985, 1990, 1991, 1993, and 1994). Global phenomena 
affecting the whole planet may lie behind this behaviour. Bodeker et al. [22] described the TOC 
anomaly in 1985 observed in Southern Hemisphere sites as being due to the influence of the quasi-
biennial oscillation (QBO), which affected transport mechanisms. This dynamic effect was supported 
in this study with ORF values above 0.02 Wm−2, although it was also visible in the 30–45°N belt. 
However, this was not in line with the increase in mean ozone mass for this year observed by Bodeker 
et al. [23] over a wider northern area (between 30°N and 60°N). The dynamic features of 1985 were 
also found in 1997 and 2006 [22]. These latter years presented a clearer separation between northern 
and southern areas when ORF values were analysed.  

 

Figure 2. Evolution of yearly ORF in the UV-B range at four latitudinal bands. 

As regards the Northern Hemisphere, the cold winters of 1999, 2002, and 2004 were 
characterized by Arctic ozone losses [24–26]. These years presented an increase in ORF values 
compared to the previous years, which was visible in the 30-60°N area.  

Stratospheric aerosols injected by volcanic eruptions presented clear fingerprints in the TOC 
evolution [27]. The effects, caused by the large amount of sulphate aerosols in the atmosphere, can 
last several years after the eruption and enhance the difference between the Northern and Southern 
Hemispheres. Previous studies analysing the impact of the two major eruptions (El Chichón, 1982, in 
Mexico; Mt. Pinatubo, 1991, in the Philippines) reported a stratospheric ozone decline in the Northern 
Hemisphere [28–31] and also in the troposphere [32], whereas the Southern Hemisphere showed no 
ozone deficit [33]. Ozone loss can, thus, be counteracted by enhanced ozone global transport [34,35]. 
The fingerprints of volcanic eruptions were also evident in ORF evolution, albeit for the years 
following the volcanic eruptions, which was in line with the TOC changes after these eruptions 
[30,31,36]. Hence, the increased ORF values in the 1982-1983 and 1991–1993 periods at all latitudes, 
including tropical regions, can be understood by the ozone-induced effects of the El Chichón and 
Pinatubo eruptions.  

The year 2010 was notable for an ORF value close to zero for middle and high latitudes in the 
Northern Hemisphere (i.e., large TOC similar to the background period). This particular year 
exhibited the coexistence of a persistent negative phase of the North Atlantic Oscillation (NAO) and 
an easterly wind-shear phase of the QBO [37,38], which caused large TOC values in the Northern 
Hemisphere and a large number of events with high TOC values (minihighs) at many ground-based 
sites [39]. These conditions led to ORF values below 0.005 Wm−2 in the northern middle and high 
latitudes. The year 2011 exhibited a different pattern, with weak stratospheric wave activity and a 
strong, positive phase of the Arctic Oscillation [40,41], which caused lower TOC levels than in 2010 
[42]. This effect led to an increase in ORF values up to 0.02 Wm−2 in the 30–60°N belt in 2011. 

Figure 2. Evolution of yearly ORF in the UV-B range at four latitudinal bands.

As regards the Northern Hemisphere, the cold winters of 1999, 2002, and 2004 were characterized
by Arctic ozone losses [24–26]. These years presented an increase in ORF values compared to the
previous years, which was visible in the 30–60◦N area.

Stratospheric aerosols injected by volcanic eruptions presented clear fingerprints in the TOC
evolution [27]. The effects, caused by the large amount of sulphate aerosols in the atmosphere, can
last several years after the eruption and enhance the difference between the Northern and Southern
Hemispheres. Previous studies analysing the impact of the two major eruptions (El Chichón, 1982, in
Mexico; Mt. Pinatubo, 1991, in the Philippines) reported a stratospheric ozone decline in the Northern
Hemisphere [28–31] and also in the troposphere [32], whereas the Southern Hemisphere showed no
ozone deficit [33]. Ozone loss can, thus, be counteracted by enhanced ozone global transport [34,35].
The fingerprints of volcanic eruptions were also evident in ORF evolution, albeit for the years following
the volcanic eruptions, which was in line with the TOC changes after these eruptions [30,31,36]. Hence,
the increased ORF values in the 1982-1983 and 1991–1993 periods at all latitudes, including tropical
regions, can be understood by the ozone-induced effects of the El Chichón and Pinatubo eruptions.

The year 2010 was notable for an ORF value close to zero for middle and high latitudes in the
Northern Hemisphere (i.e., large TOC similar to the background period). This particular year exhibited
the coexistence of a persistent negative phase of the North Atlantic Oscillation (NAO) and an easterly
wind-shear phase of the QBO [37,38], which caused large TOC values in the Northern Hemisphere and
a large number of events with high TOC values (minihighs) at many ground-based sites [39]. These
conditions led to ORF values below 0.005 Wm−2 in the northern middle and high latitudes. The year
2011 exhibited a different pattern, with weak stratospheric wave activity and a strong, positive phase
of the Arctic Oscillation [40,41], which caused lower TOC levels than in 2010 [42]. This effect led to an
increase in ORF values up to 0.02 Wm−2 in the 30–60◦N belt in 2011.
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Other differences were also observed between Northern and Southern Hemispheres. For instance,
in 1987, northern areas exhibited greater ORF values than southern areas (i.e., a greater decline in
TOC values). After the mid-1990s, the differences between the two hemispheres intensified, and ORF
values for the southern mid-latitudes (60–30◦S) were, in general, greater than those for the northern
belts. In particular, the highest ORF values were recorded between 2004 and 2009, with values around
0.04 Wm−2 for the Southern Hemisphere. In the period 1996–2002, the 60–45◦S area still displayed an
ORF of over 0.02 Wm−2, while other parts of the globe presented ORF values around 0.01 Wm−2 since
TOC values were close to the background period. For instance, the greatest stratospheric warming
observed in the South Pole was in 2002 and caused higher TOC values during winter and spring [24],
and this was noticeable in this study with the smallest ORF value (around 0.02 Wm−2) since 1991 for
the 60–45◦S belt.

Weak planetary wave activity led to a relatively colder stratosphere as well as one of the largest
and deepest Antarctic ozone holes in 2006 [43]. This effect was visible in the ORF data with the
maximum value (~0.045 Wm−2) for the Southern mid-latitudes (30–60◦S) analysed in this study.

Long-term trends of yearly ORF values were evaluated with the Sen and Mann–Kendall tests [44,45].
The results are summarized in Table 1. As can be seen from Figure 2, the 60–45◦S belt showed the
greatest increase in ORF values, with a rate of 0.007 Wm−2 (27.4%) per decade (with a significance
level of 100%). Positive rates were also obtained by models related to changes in tropospheric
chemistry [46,47]. Rates of about 0.004 Wm−2 (22–26%) per decade were obtained for the other areas,
with a similar ORF evolution being obtained over the last few decades. All the trends obtained for ORF
were in line with the findings reported by Weber et al. [21] for total ozone in different latitudinal belts
in the period 1979–2016. These authors also proved the contribution to ozone temporal rates of various
factors such as solar cycle and QBO, among others. The increases in net UV-B radiation levels reaching
the troposphere in middle and high latitudes of both hemispheres might have relevant photochemical
effects on this layer, such as the acceleration of certain key photolysis rates [48], affecting its oxidation
capacity and, consequently, with potential effects over the control of the removal processes of certain
greenhouse gases, such as methane [7].

Table 1. ORF trends between 1982 and 2014 (considering 1979–1981 as a reference) in four different
latitudinal belts. Statistically significant trends are highlighted in bold.

Latitudinal Band
Trend

(W m−2 per
decade)

Relative Trend
(% per decade) p-Value 95% Confidence Interval

(W m−2 per decade)

60–45◦S 0.0070 27.4% <0.001 [0.0040, 0.0100]
45–30◦S 0.0043 22.6% 0.026 [0.0007, 0.0070]
30–45◦N 0.0027 15.6% 0.110 [0.0005, 0.0064]
45–60◦N 0.0041 26.6% 0.011 [0.0009, 0.0070]

4. Conclusions

Radiation changes due to changes in ozone content were investigated in this study. Ozone
radiative forcing for aerosol- and cloud-free conditions was evaluated worldwide considering a
background period (1979–1981) as reference. Overall, the mid-latitude areas of both hemispheres
showed a decrease in the ozone column from the background period to the present day, which sparked
an increase in net UV-B radiation at the tropopause of between 0.03 and 0.06 Wm−2 for most areas.
Tropical latitudes showed a different evolution, with a slight increase in TOC and consequent decrease
in net UV-B radiation levels of up to −0.04 Wm−2. Hence, global mean ORF reached a value of 0.011
Wm−2. The impact of global scale phenomena affecting TOC values also controlled ORF changes
on a year-to-year scale. The mid-latitude 30–45◦ and 45–60◦ belts in the Northern and Southern
Hemispheres exhibited a positive ORF trend between 1982 and 2014, with the largest trend being 0.007
Wm−2 (27%) per decade for the 45–60◦S belt. This value indicates the noncomplete recovery of TOC
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levels in this southern sector compared to pre-1980 values. In contrast, northern areas presented low
ORF values (usually <0.02 Wm−2), indicating similar TOC values in the 2010s to those found in the
1979–1981 period, probably resulting from the successful implementation of the Montreal Protocol in
1989 and subsequent agreements, which limited the injection of chlorine and bromine compounds
into the atmosphere. Further investigation is needed to determine the long-term UV solar radiation
changes due to ozone under more real sky conditions, including the effects of clouds and aerosols.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/436/s1,
Figure S1: UV change (%): (a) ((UVnet)per2 − (UVnet)per1)/(UVnet)per1; (b) ((UVnet)per3 − (UVnet)per2)/(UVnet)per2;
and (c) ((UVnet)per3 − UVnet)per1)/(UVnet)per1. The periods are per1: 1979–1981 (background period), per2:
1994–1996 (middle period), and per3: 2012–2014 (present-day period).
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