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Resumen en castellano

Introducción

Uno de los problemas centrales de las matemáticas es la resolución de ecuaciones.
Éstas pueden ser de muy diversos tipos: algebraicas, diferenciales, funcionales,
etc. Asimismo, en cada uno de estos tipos podemos distinguir varias clases. Así,
por ejemplo, una ecuación diferencial puede ser ordinaria, en derivadas parciales,
lineal, etc.

La primera pregunta que cabe hacerse al enfrentarse con este problema es la
siguiente: ¿qué entendemos por resolver una ecuación? La respuesta no es trivial
ni es única; depende del contexto en que trabajemos. Así, por ejemplo, resolver
una ecuación puede interpretarse de las siguientes formas:

1. Demostrar la existencia de una solución. Para ello es preciso definir con
precisión qué entendemos por solución o, lo que viene a ser un problema
equivalente, en qué espacio vamos a buscar las soluciones.

2. Describir de manera explícita una solución. De nuevo, es importante precisar
lo que entendemos por solución explícita. Por el momento nos quedaremos
con la idea intuitiva de que se trata de una solución que se puede obtener en
un número finito de pasos a partir de objetos conocidos.

3. Aproximar una solución. En ocasiones puede ocurrir que la descripción ex-
plícita de una solución sea imposible o, al menos, muy laboriosa. Para efectos
prácticos puede ser suficiente una aproximación numérica o en otros térmi-
nos, por ejemplo, la truncación de una serie solución.

Según el contexto, y eventualmente el problema, cualquiera de las nociones de
solución anteriores puede ser válida. Estas tres nociones están mencionadas en su
orden lógico, pero históricamente surgieron en orden inverso. Ya en Mesopotamia
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y Egipto había interés por resolver problemas que en términos modernos equival-
drían a la resolución de ecuaciones polinómicas de primer y segundo grado, pero
carecían, según [BM91, p. 41], “de una distinción clara entre resultados exactos y
aproximados”. Los matemáticos griegos dedicaron importantes esfuerzos a la re-
solución de problemas geométricos, lo que para ellos significaba1 constructibilidad
por medio de regla y compás. En términos modernos, estos instrumentos son ca-
paces de hacer construcciones equivalentes a resolver una cadena de ecuaciones de
primer y segundo grado.

Introducido el lenguaje algebraico en el Renacimiento, el interés por resolver
ecuaciones de grados superiores se incrementó, llegando a resolver las ecuaciones
de tercer y cuarto grado. En los métodos de resolución, estas soluciones aparecen
descritas en términos de radicales, involucrando eventualmente raíces de índice par
de números negativos, las cuales fueron introducidas por Cardano en su Ars Magna
[Car1545], no sin cierta controversia. Supone un avance conceptual destacado el
hecho de considerar la existencia de soluciones (complejas) en espacios distintos
del de los coeficientes de las ecuaciones (números reales), comparable sólo a la
introducción de los irracionales tras la demostración de la irracionalidad de las
raíces cuadradas de los números primos.

Dos hitos notables en el capítulo de la solución de las ecuaciones algebraicas
son la demostración del Teorema Fundamental del Álgebra por Gauss2 y la de la
imposibilidad de construir soluciones de la quíntica por Abel.3 El primer resulta-
do es de índole existencial; el segundo es de naturaleza constructiva: establece la
imposibilidad de la existencia de una construcción explícita finita, en términos de
radicales, que permita resolver la ecuación general de quinto grado. Destaquemos
aquí que, para generalizar este resultado, resulta básica la construcción de Galois4
del grupo de simetrías asociado a una ecuación algebraica. Tales garantía de exis-
tencia e imposibilidad de construcción por radicales abren la puerta a los métodos
aproximativos para las ecuaciones de grado 5 en adelante. En §2.1.4 se considera

1Ésta es la llamada geometría plana de los griegos; cfr. [PH1876, lib. III, prop. 4, p. 55].
2K.F. Gauss dio la primera demostración válida del Teorema Fundamental del Álgebra en su

tesis doctoral [Gau1799], con el descriptivo título “nueva demostración del teorema [que afirma
que] toda función algebraica racional entera [i.e., polinomio] de una variable se puede descompo-
ner en factores reales de primer o segundo grado”. Todavía publicaría otras tres demostraciones
más de este teorema.

3N.H. Abel publicó la imposibilidad de resolver por radicales la ecuación general de grado 5
en la resumida memoria [Abe1824] “sobre las ecuaciones algebraicas donde se demuestra la im-
posibilidad de la resolución de la ecuación general de quinto grado”. Posteriormente publicaría
versiones más amplias.

4É. Galois remitió su memoria “sobre las condiciones de resolubilidad de las ecuaciones por
radicales” a la Academia de Ciencias de París, pero fue rechazada. Varios años después de su
prematura muerte, la publicó Liouville en [Gal1846].
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varios tales métodos de aproximación de raíces de polinomios.

Nos ocupamos ahora del terreno de las ecuaciones diferenciales. De nuevo, las
tres nociones de solución anteriormente citadas tienen sentido. Consideremos, por
ejemplo, la ecuación diferencial más simple, que no es más que y′ = f , donde f es
una función expresable en términos conocidos. Como bien sabe todo estudiante de
primer año, la continuidad de la función f es suficiente para garantizar la existencia
de una solución de dicha ecuación, que será de la forma

y(x) =

∫ x

x0

f(t) dt,

tomada la integral anterior en el sentido de Riemann. (Extensiones de esta integral
permiten abordar el problema para funciones f más generales.) Esto responde a
la noción existencial de la solución, pero, incluso en el caso de funciones f sencillas
(expresadas en términos elementales5), la búsqueda de una primitiva en términos
finitos se convierte en un problema altamente no trivial.

En 1833, Liouville presenta la memoria sobre “la integración de una clase de
funciones trascendentes”, publicada en [Lio1835], en la que determina para qué
funciones, compuestas de algebraicas y primitivas de algebraicas, se puede obtener
una primitiva expresable en términos finitos: «Si P es una función algebraica de x
e y1, . . . , ym, con yi primitiva de algebraica de x e y1, . . . , ym, y P admite una pri-
mitiva en términos finitos (composición de funciones algebraicas, exponenciales y
logaritmos) de x e y1, . . . , ym, entonces la primitiva de P (respecto a x) es combina-
ción lineal de funciones algebraicas y logaritmos de algebraicas de x e y1, . . . , ym.»
Como él mismo indica en [Lio1835, p. 94], este teorema “debe ser considerado co-
mo fundamental en la teoría de funciones de una variable”. Aplica Liouville este
resultado a probar que “la integral

∫
ex/x dx, la cual ha interesado enormemente

a los geómetras, no es expresable en términos finitos”; cf. [Lio1835, §VIII]. Asimis-
mo, Liouville muestra que la ecuación diferencial lineal y′′ − y = −1/x no admite
solución de este tipo. Los resultados anteriores resultan ser la base del algoritmo
de Risch, presentado en 1968 [Ris68, Ris69, Ris70], para la determinación de si
una función elemental admite una primitiva elemental y calcularla si la admite.

Con respecto a ecuaciones diferenciales lineales de forma más compleja que y′ =
f , Liouville mismo se plantea, entre otros problemas, la búsqueda de soluciones
algebraicas. Para una ecuación de primer orden, el problema no es más complejo
que el del cálculo de primitivas, expuesto anteriormente. Con respecto a la ecuación

5Una función elemental es, explicado informalmente, composición de algebraicas, exponen-
ciales y logaritmos. Esta noción se puede formalizar de manera similar a como se hace con la
noción de función liouvilliana en §1.1.3. La terminología de funciones elementales es de Ritt,
cfr. [Rit48], quien traduce los resultados de Liouville a lenguaje algebraico; Liouville se refiere a
ellas como “en términos finitos”.
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de segundo orden, H. Schwarz determina en 1871, publicado en [Sch1872], criterios
para que la ecuación hipergeométrica de Gauss

x(x− 1)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0

tenga soluciones algebraicas, en términos de a, b y c. Otros resultados de esta
índole fueron obtenidos, y un estudio sistemático del problema llegó con la teoría
de Galois diferencial, desarrollada por Ritt, Kolchin, Kaplansky y Ramis, entre
otros autores. Imitando la teoría de Galois clásica de las ecuaciones algebraicas,
se construye un grupo de Galois diferencial asociado a una ecuación diferencial
lineal. Este grupo resulta ser un grupo algebraico de matrices. La existencia de un
sistema fundamental de soluciones expresables en un número finito de extensiones
algebraicas, cuadraturas y exponenciales de cuadraturas (i.e., soluciones liouvillia-
nas) resulta ser equivalente a que la componente de la identidad (la componente
conexa en la topología de Zariski donde está la matriz identidad) del grupo de Ga-
lois sea resoluble. En términos matriciales, esto equivale a que dicha componente
sea conjugada a un subgrupo de matrices triangulares.

Empleando estas técnicas, J. Kovacic obtiene en 1979 (y publica en [Kov86]) el
primer algoritmo completo para determinar la existencia de soluciones liouvillianas
de una ecuación diferencial lineal de segundo orden sobre las funciones racionales.
El algoritmo se basa en el estudio fino de los subgrupos algebraicos de SL(2,C)
y en analizar todos los posibles casos en un orden particular. En 1996 [UW96]
F. Ulmer y J.-A. Weil publican una alternativa al algoritmo de Kovacic mediante
el uso de potencias simétricas de los operadores diferenciales. En 1981 M. Singer
publica [Sin81] un algoritmo general para orden arbitrario, pero basado en una
cota de Jordan que lo hace impracticable. Para las ecuaciones de orden 3, Singer y
Ulmer desarrollaron algoritmos específicos [SU93a, SU93b], y O. Cormier [Cor01]
abrió el camino para órdenes 4 y 5, pero también obtuvo que un algoritmo similar
para orden 6 requeriría trabajar con una ecuación auxiliar de orden mayor que 1015

incluso cuando no hay solución liouvilliana. Estos algoritmos son de naturaleza
simbólica y su complejidad aumenta terriblemente con el orden de la ecuación,
resultando impracticables del orden sexto en adelante.

Otra vía para tratar de determinar la existencia de soluciones liouvillianas pasa
por el cómputo del grupo de Galois diferencial de la ecuación. El único algoritmo
en esta línea publicado hasta la fecha es el de E. Hrushovski [Hru02], si bien es
oscuro y difícil de entender e implementar. Citemos que M. Singer y R. Feng tratan
en la actualidad de revisar el trabajo de Hrushovski con el objetivo de lograr un
algoritmo más comprensible.

Abandonando el cálculo simbólico, no es fácil obtener resultados de carácter
numérico, debido a la sensibilidad del grupo de Galois frente a pequeñas varia-
ciones. No obstante, J. van der Hoeven expone en [vdH07a] un cálculo híbrido
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numérico-simbólico, que incorpora técnicas de aproximaciones numéricas pero con
precisión que puede ser arbitraria, los números complejos efectivos, que desarrolla
en trabajos anteriores. Como define en [vdH06a], un número x ∈ R es efectivo si
está dotado de un algoritmo con entrada ε ∈ Z>02Z y salida xε ∈ Z2Z de manera
que |xε−x| < ε. Un argumento de cardinalidad muestra que casi todo número real
es no efectivo, pues los números efectivos son numerables, aunque por definición
es difícil encontrar un número que no lo sea. El lector versado podrá relacionar la
efectividad de un número real con la complejidad de Kolmogorov.

Se definen de manera análoga números complejos efectivos, funciones holo-
morfas efectivas, etc.; cfr. [vdH05]. En una serie de artículos, J. van der Hoeven
demuestra la efectividad de la prolongación analítica de una solución holomorfa de
una ecuación diferencial sobre las funciones racionales evitando las singularidades
en [vdH99] y, extendiendo la noción de prolongación analítica, en singularidades
regulares en [vdH01] y en singularidades irregulares en [vdH07b]; y, lo que resulta
más relevante para nuestro estudio, realiza la construcción efectiva del grupo de
Galois de una ecuación diferencial sobre las funciones racionales basada en el teo-
rema de densidad de J.-P. Ramis, que da tres tipos de generadores del grupo de
Galois diferencial como grupo algebraico: la monodromía formal, el toro exponen-
cial y los automorfismos de Stokes. En [vdH07a], J. van der Hoeven construye los
generadores de Ramis como matrices de números complejos efectivos y los utiliza
para dar un algoritmo numérico-simbólico de factorización de operadores diferen-
ciales sobre las funciones racionales, es decir, descomponer una ecuación diferencial
lineal L[y] = 0 como L1[L2[y]] = 0.

Es en este marco en el que se encuadra la presente tesis. El objetivo es presen-
tar una serie de técnicas de tipo algorítmico que permitan decidir si una ecuación
diferencial lineal sobre C(x) admite o no una solución liouvilliana, encontrando
una en caso afirmativo. Obsérvese que la noción general de función liouvilliana,
construida a partir de una cadena de extensiones simples, no es sencilla de ma-
nejar. El propio Liouville, en su memoria sobre “la integración de una clase de
ecuaciones diferenciales de segundo orden en cantidades finitas explícitas”, publi-
cada en [Lio1839], muestra que, si una ecuación diferencial del tipo y′′ = P (x)y,
con P (x) un polinomio, admite “una integral expresable en función finita explícita
de x”, entoces habrá una solución de la forma y = e

∫
u, donde u es una función

algebraica6 determinada por la ecuación de Riccati u′ + u2 = P (x). Aunque en
principio Liouville sólo se ocupa de las integrales en términos de funciones elemen-
tales, en [Lio1839, §18] afirma que todo funciona igual si se añaden cuadraturas,

6Esto es válido en general para P (x) racional. En el caso particular de P (x) polinomio,
Liouville obtiene que u es racional, e incluso suma de un polinomio y la derivada logarítmica de
otro polinomio.
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llegando a la noción actual de integral liouvilliana, llamada así7 en su honor. En
general, si una ecuación diferencial lineal admite una solución liouvilliana, de he-
cho admite una solución y con y′/y algebraica sobre el cuerpo de coeficientes de
la ecuación. Este resultado es la base de los distintos algoritmos simbólicos antes
mencionados. Vessiot dio una versión errónea en [Ves1892, p. 245], corregida por
Kolchin en [Kol48]. Más aún, Singer prueba que existe una función aritmética I tal
que, si una ecuación diferencial lineal de orden n admite una solución liouvilliana,
entonces admite una solución y con y′/y algebraica sobre el cuerpo de coeficientes
de la ecuación de grado a lo sumo I(n). Llamaremos singerianas a estas solucio-
nes. Las técnicas que desarrollamos persiguen encontrar una solución singeriana,
si la hay, o bien decidir que no es el caso.

La idea general es, pues, la siguiente. En el marco del cálculo efectivo, se cons-
truyen los generadores del grupo de Galois de la ecuación diferencial, haciendo uso
de alguna de las técnicas desarrollada por J. van der Hoeven. El grupo algebraico
que generan es muy sensible a pequeñas variaciones de las entradas de los genera-
dores. Por ejemplo, el grupo algebraico generado por λ ∈ C∗ es finito si λ es una
raíz de la unidad, pero es todo C∗ si λ no lo es. Por esta razón construimos un
grupo más grande que el de Galois, su cierre eurimérico, que resulta más fácil de
computar en el marco del cálculo efectivo. Dicho grupo conserva algunas propie-
dades interesantes del grupo de Galois; en particular, si existe una recta invariante
por la componente de la identidad del grupo de Galois, entonces esta misma recta
es invariante por la componente de la identidad del cierre eurimérico. Por tanto,
la existencia o no de soluciones liouvillianas puede leerse en este nuevo grupo que
definimos.

Aunque esta ampliación al cierre eurimérico soluciona muchos problemas de
sensibilidad numérica, deja sin resolver el problema de las raíces de la unidad
antes citado. El problema equivalente de la decisión de si un número efectivo es
racional o no se resuelve mediante el desarrollo en fracción continua: un número
es racional si y sólo si su desarrollo en fracción continua es finito. Para quedarnos
con un proceso finito, truncamos este desarrollo cuando el denominador del último
convergente obtenido sobrepasa una cota Q dada, decidiendo que el número es
irracional, aunque pueda ser racional con denominador grande. Si la ecuación a
resolver tiene orden n, fijamos Q = I(n) con I la cota de Singer. De esta manera,
decidimos correctamente que una raíz de la unidad de orden I(n) a lo sumo es
raíz de la unidad, pero decidimos incorrectamente que una raíz de la unidad de
orden mayor que I(n) no lo es, al precio de poder perder soluciones liouvillianas y
con y′/y algebraico de grado mayor que I(n), pero conservando aquéllas con y′/y

7Según [Kol48, p. 5, n. 4], esta terminología fue sugerida por Ritt, quien previamente utilizó
otros términos como “funciones de Liouville” o “l-funciones”.
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algebraico de grado I(n) a lo sumo, es decir, las soluciones singerianas.

A lo largo de la tesis se exponen los instrumentos de carácter teórico que
permiten justificar la existencia de estos objetos, su computabilidad y, finalmente,
se resume todo ello en un algoritmo. La idea general de dicho algoritmo es la
siguiente:

1. Se computan, en principio, los generadores de Ramis del grupo de Galois,
como matrices de números efectivos, y un subespacio V de soluciones que
contiene las soluciones singerianas.

(a) Para un generador unipotente U, se computa V := V ∩ ker(U − I) a
cierta precisión.

(b) Para un toro algebraico, se computa su cierre eurimérico, ya que que es
más sencillo y, de todos modos, se va a tener que calcular más adelante.

2. Se computa el cierre eurimérico del grupo de Galois a cierta precisión.

3. Se determina si el grupo tiene alguna recta invariante.

(a) Si la respuesta es sí, se reconstruye un candidato a solución liouvilliana
con técnicas numérico-simbólicas que incluyen el cálculo de sizigias y la
aproximación de Padé.

(b) Si la respuesta es no, el resultado es definitivo: no hay soluciones liou-
villianas.

4. Se comprueba dicha solución.

(a) Si la respuesta es sí, hemos terminado.

(b) Si la respuesta es no, se reajusta la precisión y se comienza de nuevo.

Las técnicas que se desarrollan permiten determinar cuándo es posible dar por
terminado el proceso. Aunque a priori no es factible saber el número de pasos
que será necesario dar, demostramos que el caso 4b sólo se puede dar una canti-
dad finita de veces. Un estudio serio de la complejidad de las técnicas de cálculo
numérico-simbólico está por ser realizado. Una implementación del algoritmo de
factorización de van der Hoeven permitiría implementar fácilmente los algoritmos
de esta tesis y conocer empíricamente su comportamiento. Ambos, estudio e imple-
mentación, permitirán sin duda avanzar seriamente en el desarrollo de las técnicas
aquí expuestas.

Pasamos a continuación a detallar el contenido de esta memoria.
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El capítulo 1 está dedicado a exponer los resultados propios del Álgebra Di-
ferencial (§1.1) y de la Teoría de Galois Diferencial (§1.3), que serán objeto de
uso a lo largo de la tesis. En este capítulo se introducen los conceptos básicos del
problema a tratar: funciones liouvillianas (§1.1.3), sistemas explicitables de ecua-
ciones diferenciales (§1.2.1) y su equivalencia con ecuaciones diferenciales escalares
(§1.1.4) por medio del Lema del Vector Cíclico. La presentación es esencialmente
autocontenida, aunque no incluimos pruebas de la mayor parte de los resultados,
bien por ser éstas de naturaleza muy técnica, y la prueba no ser relevante para el
desarrollo de la tesis, o bien porque existen suficientes referencias para acceder a
dichas pruebas. Entre los resultados más relevantes de este capítulo, destaquemos
los siguientes.

• El teorema 10 (Fabry-Hukuhara-Turrittin) sobre la estructura formal de las
soluciones de un sistema de ecuaciones diferenciales lineales.

• La sección 1.4 expone con detalle el teorema de densidad de Ramis, constru-
yendo los generadores de grupo de Galois: la monodromía formal (§1.4.1) y
sus componentes, el toro exponencial (§1.4.2) y los automorfismos de Stokes
(§1.4.3).

• La sección 1.5 aborda la existencia soluciones liouvillianas y, en particular,
un estudio detallado de la función I de Singer, que acota el grado de la exten-
sión algebraica de las soluciones singerianas. Las cotas que allí se exponen
mejoran apreciablemente las obtenidas por M. Singer, aplicando resultados
recientes de Teoría de Grupos que no estaban a su disposición en 1981.

• En el teorema 43, dichas cotas son adaptadas para los sistemas de ecuaciones,
que es el contexto en el que vamos a desarrollar el resto de la memoria.

• En §1.5.4, se refina el teorema de Fabry-Hukuhara-Turrittin para las solu-
ciones singerianas.

El capítulo 2 está dedicado a exponer el numérico efectivo de van der Hoeven.
En §2.1, se introducen los números complejos efectivos, tras unas consideraciones
informáticas, así como la operaciones de cuerpo con tales números (§2.1.3) y el
cálculo de raíces de polinomios (§2.1.4), de modo que los números complejo efecti-
vos forman un cuerpo algebraicamente cerrado. La sección 2.2 aborda el cálculo de
los generadores de Ramis del grupo de Galois, pero no son calculados completamen-
te, como se describe en el paso 1 del esbozo del algoritmo, porque el cálculo comple-
to no es necesario para nuestro propósito. (Véase [vdH99, vdH01, vdH07a, vdH07b]
para el cálculo completo.) Concretamente, §2.2.1 trata de las soluciones en un pun-
to no singular, §2.2.2 de la prolongación analítica, §2.2.3 de las soluciones en un
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punto singular y §2.2.4 del cálculo parcial del grupo de Galois. El resto del capítu-
lo está dedicado a los problemas que este numérico trae consigo y cómo evitarlos.
Las secciones 2.3 y 2.4 tratan de los errores causados por el cálculo inexacto del
rango sobre, respectivamente, C y Q. Lidiamos con esas fuentes de error mediante
unos parámetros globales que se discuten en §2.5. Este capítulo no tiene ningún
enunciado formal, excepto el teorema 49, pero sí hay algunos enunciados infor-
males que se demuestran en el texto o se remite a la fuente. Entre los métodos
expuestos en este capítulo, destacaría los siguientes:

• La división de números complejos efectivos, en §2.1.3.

• El cálculo de raíces de polinomios por los métodos de cuadrisección y del
círculo de escisión (splitting circle), en §2.1.4.

• El cálculo y sumación de las soluciones en un punto no singular, que es una
generalización de van der Hoeven para sistemas de ecuaciones diferenciales,
en §2.2.1.

• En §2.2.3 se cita de sus fuentes los métodos para tratar con las soluciones
de los sistemas de ecuaciones diferenciales en un punto singular. También
se cita un ejemplo de por qué no es buena idea convertir el sistema en una
ecuación escalar.

• Las secciones 2.3 y 2.3 discuten, respectivamente, la eliminación gaussiana y
el desarrollo en fracción continua con números complejos efectivos.

El capítulo 3 está dedicado a los grupos algebraicos lineales, que se introducen
en §3.1. La sección 3.2 trata del algoritmo de Derksen–van der Hoeven para
calcular el grupo algebraico lineal generado por varias matrices dadas, señalando
el efecto de los errores descritos en §2.4. Para minimizar estos errores, introduzco
en §3.3 los grupos euriméricos. Para ilustrar estos conceptos, en §3.4 repasamos los
subgrupos algebraicos de GL(2,C) y en §3.5 calculamos su cierre eurimérico. Tras
este intermedio, nos volvemos a centrar en el algoritmo de Derksen–van der Hoeven.
En §3.6 se adapta este algoritmo para calcular el grupo eurimérico generado por
los datos, que resulta ser más simple y más lineal. La sección 3.8 trata de cómo se
comporta este algoritmo de Derksen–van der Hoeven linealizado, que es correcto
bajo aritmética exacta, bajo numérico efectivo, §3.8.1 para los errores estudiados en
§2.4 y §3.8.2 para los errores estudiados en §2.3, haciendo uso de algunos resultados
demostrados en §3.7. De entre las definiciones y los resultados de este capítulo,
permítaseme destacar las siguientes:

• La sección 3.1 introduce el concepto de los grupos algebraicos lineales y sus
álgebras de Lie:
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– Un grupo algebraico lineal es un subgrupo de GL(V ) ó GL(n,K) cerrado
en la topología de Zariski.

– Si un subgrupo algebraico de GL(V ) ó GL(n,K) está dado por una
familia F de ecuaciones algebraicas en n2 variables, su álgebra de Lie
asociada es el subespacio vectorial de gl(V ) or gl(n,K) dado por los po-
linomios lineales homogéneos tangentes a la identidad a los polinomios
de F .

– La componente de la identidad (tanto irreducible como conexa en la to-
pología de Zariski) de un grupo algebraico G es un subgrupo algebraico
normal G◦ de índice finito cuyas clases son las componentes de G.

• La sección 3.3 introduce los grupos anchos y euriméricos:

– Una subálgebra g de gl(V ) ó gl(n,K) da lugar a su grupo multiplicativo
G, llamado grupo ancho. También g puede verse como un álgebra de
Lie, llamada álgebra de Lie ancha.

– El grupo ancho G es un grupo algebraico y su álgebra de Lie es g.

– Podemos recuperar g a partir de G tomando el espacio vectorial que
genera. (Lema 57)

– Un grupo algebraico dado por ecuaciones lineales es un grupo ancho.
(Lema 58)

– un grupo algebraico lineal cuya componente de la identidad es ancha se
llama grupo eurimérico, también virtualmente ancho y ancho-por-finito.

• El teorema 64 dice que, llevando a cabo los cálculos de manera exacta, la
modificación del algoritmo de Derksen–van der Hoeven introducida en §3.6
termina con un resultado exacto.

• El corolario 67 dice que, siH es el cierre eurimérico de un grupo algebraico G,
entonces G◦ es diagonalizable/triangularizable/abeliano/resoluble si y sólo si
H◦ lo es, lo cual puede extender el interés de los cierres euriméricos más allá
del ámbito de esta memoria.

El capítulo 4 está dedicado al algoritmo principal de esta tesis. La sección 4.1
introduce los polinomios de Darboux, que será el formalismo para expresar las
soluciones liouvillianas. La sección 4.2 trata de la reconstrucción de las funciones
racionales, desde su desarrollo en serie de potencias a fracción de polinomios, ne-
cesaria para la reconstrucción simbólica de la solución. Para esta tarea usaremos
la aproximación de Padé, introducida en §4.2.1. En §4.2.2 estudiamos los efectos
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en la aproximación de Padé de la fuente de error descrita en §2.3. En §4.2.3 re-
pasamos los modos de calcular los aproximantes de Padé. La sección 4.3 trata de
la algebraicidad de los coeficientes numéricos de los aproximantes de Padé, que es
necesaria para que funcionen los algoritmos de la sección 4.4, los cuales tratan de
reconstruir simbólicamente el polinomio mínimo de estos números. El problema de
la sección 4.4 se reduce al cálculo de sizigias, las cuales son combinaciones lineales
con coeficientes enteros, de algunos números. Para esta tarea, esta sección describe
diferentes algoritmos (LLL, HJLS y PSLQ) y su comportamiento bajo numérico
efectivo. La sección 4.5 trata del algoritmo principal de esta tesis, cuya demos-
tración se reduce a un estudio cuidadoso de los parámetros globales explicados en
§2.5. La sección 4.6 está dedicada a los comentarios finales: §4.6.1 a las estrategias
para acelerar el algoritmo y §4.6.2 a las cuestiones abiertas. Permítaseme destacar
el teorema principal de esta tesis:

• El algoritmo principal descrito en §4.5 termina con una solución liouvilliana
no nula, si es que la hay, o con la afirmación de que 0 es la única solución
liouvilliana, si es que es el caso. (Teorema 103)
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English summary

Introduction

One of the central problems of mathematics is solving equations. These can be of
various types: algebraic, differential, functional, etc. Also, in each of these types
we can distinguish several classes. Thus, for example, a differential equation may
be ordinary, partial, linear, etc.

The first question to be asked in order to deal with this problem is the following:
What do we mean by solving an equation? The answer is neither trivial nor unique;
it depends on the context in which we work. Thus, for example, solving an equation
can be interpreted in the following ways:

1. Proving the existence of a solution. This requires defining precisely what
we mean by solution or, what comes to be an equivalent problem, in which
space we will find the solutions.

2. Describing explicitly a solution. Again, it is important to clarify what we
mean by explicit solution. For now we will stick with the intuitive idea that
it is a solution which can be gotten in a finite number of steps from known
objects.

3. Approximating a solution. Sometimes it may happen that the explicit de-
scription of a solution is impossible or at least very laborious. For practical
purposes it may be enough an approximation numerical or in other terms,
for example, the truncation of a series solution.

Depending on the context, and eventually on the problem, any notion of so-
lution in the previous list may be valid. These three notions are introduced in
their logical order, but historically they emerged in the reverse order. Already in
Mesopotamia and Egypt there was interest in solving problems which in modern
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terms would be equivalent to solving polynomial equations of first and second de-
gree, but they lacked, according to [BM91, p. 41], “clear-cut distinctions between
exact and approximate results.” The Greek mathematicians devoted major efforts
to solve geometric problems what meant8 constructibility by straightedge and com-
pass. In modern terms, these instruments are capable of constructions equivalent
to solve a string equations of first and second degree.

Introduced the algebraic language in the Renaissance, the interest in solving
equations of higher degrees increased, coming to solve the equations of third and
fourth grade. In the solving methods, these solutions are described in terms of
radicals, possibly involving even-index roots of negative numbers, which were in-
troduced by Cardan in his Ars Magna [Car1545], not without some controversy. It
was an important conceptual breakthrough to consider the existence of (complex)
solutions in spaces different from the space of the coefficients of the equations
(real numbers), comparable only to the introduction of irrational numbers after
the demonstration of the irrationality of the square roots of prime numbers.

Two notable milestones in the chapter of the solution of algebraic equations
are the proof of the Fundamental Theorem of Algebra by Gauss9 and the impossi-
bility of constructing solutions of the quintic by Abel.10 The former result is of an
existential nature; el latter is of a constructive kind: it proves the impossibility of
the existence of a finite explicit construction, in terms of radicals, that allows to
solve the fifth-degree general equation. Remark here that, in order to generalize
this result, is basic the construction of Galois11 of the group of symmetries asso-
ciated to an algebraic equation. Such warranty of existence and impossibility of
construction by radicals give way to the approximative methods for the equations
of degree 5 and higher. In §2.1.4 several such approximative methods of roots of
polynomials are considered.

We turn now to the terrain of differential equations. Again, the three aforemen-
tioned solution notions make sense. Consider, for example, the simplest differential
equation, that is just y′ = f , where f is a function expressible in known terms.
As any first-year student knows, the continuity of the function f is enough to

8This is the so-called plane geometry of the Greeks; cf. [PH1876, book III, prop. 4, p. 55].
9Gauss gave the first valid proof of the Fundamental Theorem of Algebra in his PhD thesis

[Gau1799], with the descriptive title “new proof of the theorem [which states that] all integral
rational algebraic function [i.e., polynomial] of one variable can be split into real factors of the
first or second degree.” Yet he would publish three proofs more of this theorem.

10N.H. Abel published the impossibility of solving the quintic by radicals in his abridged
memoir [Abe1824] “on the algebraic equations where it is proved the impossibility of solving the
general equation of the fifth degree.” He would later publish extended versions.

11É. Galois submitted his memoir “on the conditions of resolubility of equations by radicals”
to the Academy of Sciences in Paris, but it was rejected. Several years after his early death, it
was published by Liouville in [Gal1846].
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guarantee the existence of a solution of this equation, which will be of the form

y(x) =

∫ x

x0

f(t) dt,

taking the integral in the sense of Riemann. (Extensions of this integral allow
to address the problem for f in wider families of functions.) This meets the
existential notion of solution, but, even in the case of simple functions f (expressed
in elementary12 terms), the search of a primitive in finite terms becomes highly
non-trivial problem.

In 1833, Liouville presents a memoir “on the integration of a class of transcen-
dental functions”, published in [Lio1835], where he determines for which functions,
composed of algebraic functions and their primitives, one can get a primitive ex-
pressible in finite terms: «If P is an algebraic function of x and y1, . . . , ym, with
yi primitive of an algebraic function of x and y1, . . . , ym, and P admits a primitive
in finite terms (composition of algebraic functions, exponentials and logarithms)
of x and y1, . . . , ym, then the primitive of P (w.r.t. x) is a linear combination of
algebraic functions and logarithms of algebraic functions of x and y1, . . . , ym.» As
he states in [Lio1835, p. 94], this theorem “should be considered as fundamental in
the theory of functions of one variable.” He applies this result to proving that “the
integral

∫
ex/x dx, which has greatly interested the geometers, is not expressible in

finite terms;” cf. [Lio1835, §VIII]. Liouville also shows that the linear differential
equation y′′ − y = −1/x admits no such solution. The results above turn out to
be the basis of the Risch algorithm, presented in 1968 [Ris68, Ris69, Ris70], for
determining whether an elementary function admits an elementary and primitive
compute it in the positive case.

With respect to linear differential equations of a form more complex than
y′ = f , Liouville himself considers, among other problems, la search of algebraic
solutions. For a first-order equation, the problem is not more complex than the
computation of primitives, explained above. With respect to the second-order
equation, H. Schwarz determines in 1871, published in [Sch1872], criteria for the
Gauss hypergeometric equation

x(x− 1)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0

to have algebraic solutions, in terms of a, b and c. Other results of this kind were
obtained, and a systematic study of the problem came with the differential Galois

12An elementary function is, informally speaking, a composition of algebraic functions, expo-
nentials and logarithms. This notion can be formalized in a similar way as in §1.1.3 with the
notion of Liouvillian functions. The terminology of elementary functions is due to Ritt, cf. [Rit48],
who translated Liouville’s results to an algebraic language; Liouville uses the expression “in finite
terms” instead.
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theory, developed by Ritt, Kolchin, Kaplansky and Ramis, among other authors.
Imitating the classic Galois theory of algebraic equations, one constructs a differ-
ential Galois group associated to a linear differential equation. This group turns
out to be an algebraic group of matrices. The existence of a fundamental system
of solutions expressible in a finite number of algebraic extensions, quadratures and
exponentials of quadratures (i.e., Liouvillian solutions) turns out to be equiva-
lent to the component of the identity (the connected component in the Zariski
topology containing the identity matrix) of the Galois group being solvable. In
matrix terms, it is equivalent to this component being conjugate to a subgroup of
triangular matrices.

Using these techniques, J. Kovacic obtains in 1979 (and publishes in [Kov86])
the first complete algorithm for determining the existence of Liouvillian solutions
of a second-order linear differential equation over the rational functions. The
algorithm is based on the fine study of algebraic subgroups of SL(2,C) and ana-
lyzing all the possible cases in a particular order. In 1996 [UW96] F. Ulmer and
J.-A. Weil publish an alternative to the Kovacic algorithm by means of the use of
the symmetric powers differential operators. In 1981 M. Singer publishes [Sin81] a
general algorithm for arbitrary order but based on a bound of Jordan that makes
it impracticable. For third-order equations, Singer and Ulmer develop specific
algorithms [SU93a, SU93b], and O. Cormier [Cor01] opens the way for orders 4
and 5, but he also obtains that a similar algorithm for order 6 would require to
work with an auxiliary equation of order grater than 1015 even when there is no
Liouvillian solution. These algorithms are of symbolic nature and their complexity
increases terribly with the order of the equation, becoming impracticable from the
sixth order onwards.

Another way to try to determine the existence of Liouvillian solutions is through
the computation of the differential Galois group of the equation. The only line
in this algorithm published to date is that of E. Hrushovski [Hru02], though it is
obscure and difficult to understand and implement. Let us mention M. Singer and
R. Feng are trying nowadays to review Hrushovski’s work in order to get a more
comprehensive algorithm.

Leaving the symbolic computation is not easy to get results of numerical char-
acter, due to the sensitivity of the Galois group to small variations. Nevertheless,
J. van der Hoeven expounds in [vdH07a] a hybrid kind of numeric-symbolic compu-
tation, which incorporates numerical approximation techniques but with arbitrary
precision, the effective complex numbers, which he develops in previous works.
As he defines in [vdH06a], a number x ∈ R is effective if it is endowed with an
algorithm with input ε ∈ Z>02Z and output xε ∈ Z2Z so that |xε − x| < ε. A car-
dinality argument shows that almost all real numbers are not effective, as effective
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numbers are countable, although by definition is hard to find a number that is not.
The knowledgeable reader may relate the effectiveness of a real number with the
Kolmogorov complexity.

Similarly one defines effective complex numbers, effective holomorphic num-
bers, etc.; cf. [vdH05]. In a series of articles, J. van der Hoeven proves the effec-
tiveness of the analytical continuation of a holomorphic solution of a differential
equation over the rational functions avoiding the singularities in [vdH99] and, ex-
tending the notion of analytic continuation, in regular singularities in [vdH01] and
in irregular singularities in [vdH07b]; and, what is most relevant for our study,
he performs the effective construction of the Galois group of a differential equa-
tion over the rational functions based on the density theorem of J.-P. Ramis, which
gives three kinds of generators of the differential Galois group as an algebraic group:
the formal monodromy, the exponential torus and the Stokes automorphisms. In
[vdH07a], J. van der Hoeven constructs the Ramis generators as matrices of ef-
fective complex numbers and uses them for giving numeric-symbolic algorithm
for factoring differential operators over the rational functions, i.e., decomposing a
linear differential equation L[y] = 0 as L1[L2[y]] = 0.

This is the context wherein this thesis is framed. The objective is to present
a set of algorithmic techniques for deciding if a linear differential equation over
C(x) admits or not a Liouvillian solution finding one in the affirmative case. No-
tice that the general notion of Liouvillian function, constructed from a chain of
simple extensions, is not easy to handle. Liouville himself, in his memoir “on the
integration of a class of second-order differential equations in explicit finite quan-
tities,” published in [Lio1839], shows that, if a differential equation of the kind
y′′ = P (x)y, with P (x) a polynomial, admits “an integral expressible as an explicit
finite function of x”, then there will be a solution of the form y = e

∫
u, where u is an

algebraic function13 determined by the Riccati equation u′+u2 = P (x). Although
in principle Liouville only deals with the integrals in terms of elementary func-
tions, in [Lio1839, §18] claims that everything works the same if quadratures are
added, reaching the current notion of Liouvillian integral, named14 in his honor.
in general, if a linear differential equation admits a Liouvillian solution, it actually
admits a solution y with y′/y algebraic over the field of coefficients of the equation.
This result is the basis of the aforementioned different symbolic algorithms. Ves-
siot gave an erroneous version in [Ves1892, p. 245], corrected by Kolchin in [Kol48].
Moreover, Singer proves that there exists an arithmetic function I such that, if a

13This is true in general for P (x) rational. In the particular case of P (x) polynomial, Liouville
gets that u is rational, and even the sum of a polynomial and the logarithmic derivative of
another polynomial.

14According to [Kol48, p. 5, n. 4], this terminology was suggested by Ritt, who had previously
used other terms like “functions of Liouville”, “Liouville functions” or “l-functions”.
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linear differential equation of order n admits a Liouvillian solution, then it admits
a solution y with y′/y algebraic over the field of coefficients of the equation of
degree I(n) at most. We will call these solutions Singerian. The techniques we
develop pursue finding a Singerian solution, if any, or deciding that this is not the
case.

The general idea is, thus, the following. In the framework of effective computa-
tions, we construct the generators of the Galois group of the differential equation,
using some of the techniques developed by J. van der Hoeven. The algebraic group
they generate is very sensitive to small variations in the entries of the generators.
For instance, the algebraic group generated by λ ∈ C∗ is finite if λ is a root of unity,
but it is the whole C∗ if λ is not. For this reason we construct a bigger group than
the Galois group, its eurymeric closure, which is easier to compute in the context
of effective computation. The group preserves some interesting properties of the
Galois group; particularly, if there exists an invariant line by the identity compo-
nent of the Galois group, then the same line is invariant by the identity component
of the eurymeric closure. Therefore, the existence or not of Liouvillian solutions
can be read in this new group we define.

Although this extension to the eurymeric closure solves many problems of nu-
merical sensitivity, it leaves the aforementioned problem of roots of unity unsolved.
The equivalent problem of deciding whether an effective number is rational or not
is solved by the continued fraction expansion: a number is rational if and only
if its continued fraction expansion is finite. In order to keep the process finite,
we truncate this expansion when the denominator of the last convergent obtained
exceeds a given bound Q, deciding that the number is irrational, though it may be
rational with a large denominator. If the equation to solve has order n, we make
Q = I(n) with I the bound of Singer. This way, we decide correctly that a root of
unity of order I(n) at most is a root of the unity, but we decide incorrectly that a
root of unity of order greater than I(n) is not a root of the unity, at the price of
the possibility of losing Liouvillian solutions y with y′/y algebraic of degree greater
than I(n), but keeping those with y′/y algebraic of degree I(n) at most, i.e., the
Singerian solutions.

Throughout the thesis we expound theoretical tools to justify the existence of
these objects, their computability and finally all is summarized in an algorithm.
The general idea of this algorithm is the following:

1. We compute, in principle, the Ramis generators of the Galois group, as
matrices of effective numbers, and a subspace V of solutions that contains
the Singerian solutions.

(a) For a unipotent generator U, we compute V := V ∩ ker(U − I) up to

21



certain precision.

(b) For an algebraic torus, we compute its eurymeric closure, as it is easier
and, anyway, it will be computed later.

2. We compute the eurymeric closure of the Galois group up to certain precision.

3. It is determined whether the group has any invariant line.

(a) If the answer is yes, a candidate for Liouvillian solution is reconstructed
with numeric-symbolic techniques, including the computation of syzy-
gies and the Padé approximation.

(b) If the answer is no, the result is definitive: there are no Liouvillian
solutions.

4. This solution is verified.

(a) If the answer is yes, we are done.

(b) If the answer is no, we start again with a finer precision.

The techniques we develop allow us to recognize when we can terminate the
process. Although a priori it is not feasible to know the number of steps that will
be necessary to take, we show that case 4b can occur only finitely many times. A
serious study of the complexity of the techniques of numeric-symbolic computation
is to be made. An implementation of van der Hoeven’s algorithm of factorization
would allow to easily implement the algorithms of this thesis and to empirically
know its behavior. Both, the study and the implementation, will certainly allow
to make serious progress in the development of the techniques presented here.

We turn next to detail the contents of this memoir.

Chapter 1 is devoted to expound the results belonging to Differential Algebra
(§1.1) and to Differential Galois Theory (§1.3), that will be used throughout the
thesis. In this chapter we introduce the basic concepts for the problem we deal
with: Liouvillian functions (§1.1.3), explicitable systems of differential equations
(§1.2.1) and their equivalence with scalar differential equations (§1.1.4) by means of
the Cyclic Vector Lemma. The presentation is essentially self-contained, though
we do not include proofs of most of the results, either because they are highly
technical, and the proof is not relevant for the development of the thesis, or because
there are enough references to access these proofs. Among the most relevant results
in this chapter, let me highlight the following:

• Theorem 10 (Fabry-Hukuhara-Turrittin) on the formal structure of the so-
lutions of a system of linear differential equations.
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• Section 1.4 expounds the Ramis density theorem, constructing with detail
the generators of the Galois group: the formal monodromy (§1.4.1) and its
components, the exponential torus (§1.4.2) and the Stokes automorphisms
(§1.4.3).

• Section 1.5 approaches the existence of Liouvillian solutions and, particularly,
a detailed study of the function I of Singer, which bounds the degree of
the algebraic extension of the Singerian solutions. The bounds there shown
improve appreciably those obtained by M. Singer, applying recent results in
Group Theory that were not available to him in 1981.

• In Theorem 43, those bounds are adapted for systems of equations, which is
the context within which we will develop the rest of the memoir.

• In §1.5.4, Fabry-Hukuhara-Turrittin is refined for Singerian solutions.

Chapter 2 is devoted to expound van der Hoeven’s effective numerics. In §2.1,
effective complex numbers are introduced, after some computer-science consider-
ations, as well as the field operations with such numbers (§2.1.3) and the compu-
tation of roots of polynomials (§2.1.4), so the effective complex numbers form a
algebraically closed field. Section 2.2 approaches computation of the Ramis gen-
erators of the Galois group, but they are not completely computed, as described
in the step 1 of the sketch of the algorithm, because the full computation is not
needed for our purpose. (See [vdH99, vdH01, vdH07a, vdH07b] for the complete
computation.) Concretely, §2.2.1 deals with the solutions at a non-singular point,
§2.2.2 with the analytic continuation, §2.2.3 with the solutions at a singular point
and §2.2.4 with the partial computation of the Galois group. The rest of the chap-
ter is devoted to the problems that this numerics brings and how to avoid them.
Sections 2.3 and 2.4 deal with the errors caused by the inexact computation of the
rank over, respectively, C and Q. We cope with those sources of error by means
of some global parameters discussed in §2.5. This chapter has no formal claim,
except Theorem 49, but some informal claims are proved in the text or referred to
the source. Among the methods expounded in the chapter, I would highlight the
following:

• The division of effective complex numbers, in §2.1.3.

• The computation of roots of polynomials by the methods of quadrisection
and splitting circle, in §2.1.4.

• The computation and summation of the solutions at a non-singular point,
which is generalized from van der Hoeven to systems of differential equations,
in §2.2.1.
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• In §2.2.3 the methods for dealing with the solutions of differential systems at
a singular point are cited from their sources. An example of why converting
the system to an scalar equation is not a good idea is also cited.

• Sections 2.3 and 2.3 discuss, respectively, Gaussian elimination and contin-
uous fraction expansion with effective complex numbers.

Chapter 3 is devoted to linear algebraic groups, which are introduced in §3.1.
Section 3.2 deals with the Derksen–van der Hoeven algorithm for computing the
lineal algebraic group generated by some given matrices, pointing out the effect of
the errors described in §2.4. In order to minimize these errors, I introduce in §3.3
the eurymeric groups. In order to illustrate these concepts, in §3.4 we survey the
algebraic subgroups of GL(2,C) and in §3.5 we compute their eurymeric closure.
After this intermezzo, we focus again on Derksen–van der Hoeven algorithm. In
§3.6 this algorithm is adapted for computing the eurymeric group generated by
the data, and it becomes simpler and more linear. Section 3.8 deals with how
this linearized Derksen–van der Hoeven algorithm, which is correct under exact
arithmetic, behaves under effective numerics, §3.8.1 for the errors studied in §2.4
and §3.8.2 for the errors studied in §2.3, using some results proved in §3.7. Among
the definitions and results of this chapter, let me highlight the following:

• Section 3.1 introduces the concept of linear algebraic groups and their Lie
algebras:

– A linear algebraic group is a subgroup of GL(V ) or GL(n,K) closed
under the Zariski topology.

– If an algebraic subgroup of GL(V ) or GL(n,K) is given by a family F
of algebraic equations in n2 variables, its associated Lie algebra is the
vector subspace of gl(V ) or gl(n,K) given by the linear homogeneous
polynomials tangent at the identity to the polynomials in F .

– The component of the identity (both irreducible and connected in Zariski
topology) of an algebraic group G is a finite-index normal algebraic sub-
group G◦ whose cosets are the components of G.

• Section 3.3 introduces the broad and eurymeric groups:

– A subalgebra g of gl(V ) or gl(n,K) yields its multiplicative group G,
called a broad group. Also g can be seen as a Lie algebra, called a broad
Lie algebra.

– The broad group G is an algebraic group and its Lie algebra is g.

– We can recover g from G by taking the linear span. (Lemma 57)
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– An algebraic group given by linear equations is a broad group. (Lemma 58)

– A linear algebraic group whose identity component is broad is called a
eurymeric group, also called a virtually broad and broad-by-finite.

• Theorem 64 says that, performing the computations exactly, the modification
of Derksen–van der Hoeven algorithm introduced in §3.6 terminates with
exact output.

• Corollary 67 says that, if H is the eurymeric closure of an algebraic group
G, then G◦ is diagonalizable/triangularizable/abelian/solvable if and only if
H◦ is so, which may extend the interest of eurymeric closures outside the
scope of this memoir.

Chapter 4 is devoted to the main algorithm of this thesis. Section 4.1 intro-
duces Darboux polynomials, which is the formalism for expressing the Liouvillian
solutions. Section 4.2 deals with the reconstruction of rational functions, from
their power series expansion to fraction of polynomials, necessary for the symbolic
reconstruction of the solution. For this task we use Padé approximation, which
is introduced in §4.2.1. In §4.2.2 we study the effect in the Padé approximation
of the source of error described in §2.3. In §4.2.3 we review the ways to compute
the Padé approximants. Section 4.3 deals with the algebraicity of the numeric
coefficients of the Padé approximants, which is necessary in order that the algo-
rithms of Section 4.4, which try to reconstruct the symbolic minimal polynomial
of these numbers, work. The problem of Section 4.4 reduces to the computation
of syzygies, which are linear combinations with integer coefficients, of some num-
bers. For this task, this section describes different algorithms (LLL, HJLS and
PSLQ) and their behavior under effective numerics. Section 4.5 deals with the
main algorithm of the thesis, whose proof reduces to a careful study of the global
parameters explained in §2.5. Section 4.6 is devoted to final remarks: §4.6.1 to
devices to speed up the algorithm and §4.6.2 to open questions. Let me highlight
the main theorem of the thesis:

• The main algorithm described in §4.5 terminates with a nonzero Liouvillian
solution, if such a solution exists, or with the statement that zero is the only
Liouvillian solution if this is the case. (Theorem 103)
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Chapter 1

Foundations

This chapter is devoted to the mathematical foundations of this work, excluding
linear algebraic groups, reserved for chapter 3. It introduces the language of dif-
ferential algebra for dealing with differential equations and the Galois theory of
differential equations. We finally review a theorem of Singer that is key for finding
Liouvillian solutions and the classic methods that use it.

1.1 Concepts from Differential Algebra

In this section I shall introduce several concepts from differential algebra that will
be necessary for formalizing differential equations. The reference for differential
algebra will be [vdPS03, §1.1], and the reference for algebra will be [Lan02].

1.1.1 Differential rings, fields and polynomials

In the same way we define rings and polynomials for dealing with algebraic equa-
tions, we define differential rings and differential polynomials for dealing with
differential equations. In the same way a ring (A,+, ·) is defined as a set A with
two binary operations + and · such that (A,+) is an abelian group, (A\{0}, ·) is a
monoid1 and · is distributive over +, the definition of differential ring includes the

1Some authors ask (A \ {0}, ·) only for being a semigroup, calling (A,+, ·) a unitary ring if
there is a 1 in A, but all our rings will be unitary.
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derivative as a third constituent operation. We define a differential ring (A,+, · , ′)
as a set A with two binary operations + and · and a unary operation ′ such that
(A,+) is an abelian group, (A \ {0}, ·) is a monoid, · and ′ are distributive over +
and the Leibniz rule (a · b)′ = a′ · b+a · b′ holds for any a, b ∈ A. A homomorphism
of differential rings is an application that respects the three operations.

The usual subcategories of rings (commutative, integral domain, field) extend
trivially to the differential case, since these conditions affect only to the multiplica-
tive monoid and the 0. An element whose derivative is zero is called a constant.
The constants of a differential ring/field form a subring/subfield.

Example 1. Any ring can be made a differential ring with the zero derivation. In
this case, the ring of constants is the whole ring. This is the usual practice for C
and all its subfields, and also for the rings of matrices over them. The polynomials,
rational fractions or formal series over a ring of constants are also made constant
when the variables are interpretered as parameters.

Example 2. Let p be a prime and Fp the field with p elements. Consider the ring
Fp[x] with the usual derivation w.r.t. x. Its ring of constants is Fp[xp]. As we
expected Fp as ring of constants, positive characteristic is pathological.

Remark 3. From now on, all the rings will contain Q. This will be no
practical restriction, and we will avoid pathologies of the kind explained in the
example above. All the rings will be commutative except the rings of matrices and
the rings of differential operators (to be defined).

Example 4. If A is a ring, the rings A[x] and A[[x]] are differential rings with the
usual derivation w.r.t. x, and A is their ring of constants. If K is a field, the fields
K(x) and K((x)) are differential fields with the usual derivation w.r.t. x, and K
is their field of constants.

In the same way a polynomial is defined as a pattern of operations in a ring,
we define differential polynomials for representing operations in a differential ring.
Given a differential ring R, we define R〈y〉 = R[y, y′, . . . , y(n), . . . ] with the usual
polysemy; if y is taken from an extension A ⊃ R, R〈y〉 is a differential subring
of A; if y is an independent variable, R〈y〉 is the ring of polynomials in infinitely
many independent variables, with the derivation that respects the derivation of
R and the formal derivatives of y (i.e. (y(n))′ = y(n+1)). In the latter case, we
call the elements of R〈y〉 differential polynomials over R. In the same way as
with polynomials, the substitution of y by a ∈ A, being R ⊂ A and extension of
differential rings, is a homomorphism R〈y〉 → A of differential rings.

Remark 5. Recall the difference between the differential ring R〈y〉 of differential
polynomials and the ring R[y] of polynomials over a differential ring, which can
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become a differential ring with a suitable derivation. It is easy to prove that,
the derivations on R[y] extending the derivation of R correspond bijectively to
the (unrestricted) choices of y′ in R[y]. We may denote these differential rings
like R[y; y′=P (y)]. Contrary, the elements of R〈y〉 are denoted like Q[y], being
Q[y] = P (y, y′, . . . , y(r)) as a polynomial. The substitution would be like Q[a] =
P (a, a′, . . . , a(r)).

1.1.2 Algebraic formalization of differential equations

The differential equations modeled by differential polynomials are called algebraic
differential equations.2 Algebraic differential equations are a class wide enough for
many purposes, and it includes linear differential equations as differential polyno-
mials of first degree.

If R is a differential commutative ring/field, the homogeneous linear differential
polynomials over R form a module/vector-space over R, and it is easy to check
that it is an algebra with the composition, defined as P [y]◦Q[y] = P [Q[y]]. Notice
that its identity element is 1◦ = y, and that y(m) ◦ y(n) = y(m+n). This R-algebra
is isomorphic to the Ore algebra R[∂; ′], which is the R-module of polynomials
R[∂] with the only product that satisfies ∂ · a = a∂ + a′ for any a ∈ R, with the
correspondence given by y(n) 7→ ∂n. This algebra is commutative only if R is a
constant (commutative) ring. The elements of R[∂; ′] are called the differential
operators over R, and they act on any extension A ⊃ R giving the same result
as the evaluation of the corresponding differential polynomial. The action of L =∑r

i=0 Li∂
i on a ∈ A yields L[a] =

∑r
i=0 Lia

(i).

Both formalisms, differential polynomials and differential operators, work for
differential equations and systems. Differential polynomials in many variables, like
R〈y1, y2, . . . , yn〉, are a usual formalism for systems, but for the vectorial formalism
we need to be able to derive in vector spaces. Formally, if R is a differential ring,
a differential module is (M,+,∇, · ) such that (M,+, · ) is a module3 over R, ∇ is
a unary operation distributive over + and the Leibniz rule ∇(a · v) = a′ · v+a ·∇v
holds for any a ∈ R and v ∈ M . The unary operation ∇ is called derivation or
connection depending on the background. When it is called derivation, it is usually
denoted the same way as the derivation of R, and the elements whose derivative is
zero are called constants, but they are called horizontal elements when we speak
of a connection.

2Distinct from differential-algebraic equations, to be introduced in §1.2.1.
3All our modules will be left and unitary.
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Example 6. Let K be a differential field, and let us consider the element-wise
derivation on the matrices over K. Then, Kn×n is a differential module over K,
and a differential ring, and Kn×1 ' Kn is a differential module over Kn×n. This
provides the natural formalism for differential systems of the form

A0y + A1y
′ + · · ·+ Ary

(r) = 0, (1.1)

with A0, A1, . . . , Ar ∈ Kn×n.

Example 7. Let K be a differential field. A connection on Kn is determined by its
action on the standard basis. For each A ∈ Kn×n, we denote by ∇A the connection
on Kn whose matrix in the standard basis is A. Notice that ∇O is the element-
wise derivation, and can be noted with a prime. The formula ∇A y = y′ + Ay
is immediate, and its consequence is that the horizontal elements of (Kn,∇A)
are precisely the solutions of the system y′ = −Ay. Thus, there is a bijective
correspondence between the connections onKn and the explicit differential systems
of first order over K.

Remark 8. Example 6 provides the natural formalization of differential systems
when the coordinates are fixed, whereas Example 7 provides the natural coordinate-
free formalization. The restriction to first-order systems in Example 7 is avoidable
by using companion systems.

In order to apply the formalism of differential operators to vectors, it suffices to
observe that, if R is a differential ring, a module M over R[∂; ′] and a differential
module (M,∇) over (R, ′) are essentially the same thing, with the identification
∂ · v = ∇v. This extends the action of R[∂; ′] on differential modules over (R, ′).
The differential operator associated to (1.1) is

A0 + A1∂ + · · ·+ Ar∂
r.

1.1.3 Liouvillian extensions

Formal exponentials, logarithms and primitives can be added to any differential
field K. For a ∈ K, the behavior in differential algebra of b1 = exp a, b2 =

∫
a and

b3 = log a is given by b′1 = a′b1, b′2 = a and ab′3 = a′, thus they can be taken from
K[b1; b′1 = a′b1], K[b2; b′2 = a] and K[b3; b′3 = a′/a] respectively. The field of fractions
F of any of these differential rings is a differential field with the only derivative
that satisfies ( a

b

)′
=

a′b− ab′

b2
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for any a, b ∈ F ; cf. [vdPS03, Ex. 1.5.1.d]. An algebraic extension F/K is also a
differential field, as there is only one derivation on F extending the derivation ofK;
cf. [vdPS03, Ex. 1.5.3]. Iterating these kinds of extension we define Liouvillian
extensions.

We say that an extension F/K of differential fields is Liouvillian if

• the field of constants of K and F is the same

• and there exist a chain K = K0 ⊂ K1 ⊂ · · · ⊂ Km = F of differential fields
such that Ki+1 = Ki(ai) where

– either a′i ∈ Ki,

– or a′i/ai ∈ Ki,

– or ai is algebraic over Ki.

We say that an element is Liouvillian overK if it belongs to a Liouvillian extension
of K. Liouvillian over the rational functions is plainly said Liouvillian.

Example 9. Let us consider the differential field C(x) and its extension F (as
differential field) by f = exp

∫ √
x. It is easy to check that F = C(x,

√
x, f), so

we have the chain C(x) ⊂ C(x,
√
x) ⊂ F . The extension F/C(x) is Liouvillian

because
√
x is algebraic over C(x) and f ′/f =

√
x belongs to C(x,

√
x). Moreover,

F is the field of fractions of C(x,
√
x)[f ; f ′= f

√
x].

1.1.4 Differential equations, systems and modules

Linear differential equations, explicit differential systems and finite-dimensional
differential modules are equivalent in the sense explained below. An explicit dif-
ferential system

y(r) = A0y + A1y
′ + · · ·+ Ar−1y

(r−1),

with A0, A1, . . . , Ar−1 matrices n× n over a differential field K, can be rewritten as
y
y′

...
y(r−1)


′

=


O I

. . .
I

A0 A1 . . . Ar−1




y
y′

...
y(r−1)

 ,
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which is called its companion system. The particular case n = 1 is the classic
companion system of a differential equation. This device reduces any explicit
differential equation or system to an explicit first-order system rn× rn.

Example 7 provides an explicit equivalence between explicit first-order systems
n × n and connections on Kn. Let M be an n-dimensional differential module
over K. A vector v ∈M is called cyclic if {∇kv}∞k=0 spans M . Not all the vectors
are cyclic, since M may have proper differential submodules, but Cyclic Vector
Lemma4 grants the existence of cyclic vectors if K is not constant, a case we may
avoid by taking a larger K. Let f be a cyclic vector of the dual module (M̌, ∇̌),
given by the formula ∇̌g(v) = g(v)′ − g(∇v). Then {∇̌kf}n−1

k=0 is a basis of M̌ .
Its dual basis fixes an isomorphism (M,∇) ' (Kn,∇A), with ∇A as explained in
Example 7. If ∇̌nf = a0f + a1∇̌f + · · ·+ an−1∇̌n−1f , one gets

A =


0 −1

. . .
−1

−a0 −a1 . . . −an−1

 .

The corresponding system y′ = −Ay is the companion system of

u(n) = a0u+ a1u
′ + · · ·+ an−1u

(n−1).

The remaining step is reducing a differential equation

y(rn) = a0y + a1y
′ + · · ·+ arn−1y

(rn−1)

to an r-order system. Let B be the result of applying to the right hand side the
substitution y(k) 7→ u

(j)
i , with i the quotient and j the remainder of k ÷ r; B is a

homogeneous linear differential polynomial of order r − 1 at most, thus

{u(r)
i = ui+1}n−2

i=0 ∪ {u
(r)
n−1 = B}

is explicit of order r.
4See [CK00] for proofs and references on Cyclic Vector Lemma. The cyclic vectors are generic

in a sense explained in [CK00, thm. 7.3] and, though a random vector is almost surely cyclic, a
cyclic vector can be found algorithmically in O(n2) tries.
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1.2 Solutions of systems of higher order differential
equations

In this section I shall introduce explicitable differential systems and their solutions,
discussing also how pathological non-explicitable systems are and how they are not
necessary in this thesis.

1.2.1 Explicitable differential equations

The most general kind of linear systems of differential equations would be a ho-
mogeneous m× n linear differential system

A0y + A1y
′ + · · ·+ Ary

(r) = 0, (1.2)

with A0, A1, . . . , Ar are m×n matrices over a differential field K. Such a system will
be called explicitable if m = n and det Ar 6= 0. In this case we have the equivalent
explicit system

y(r) = −A−1
r A0y − A−1

r A1y
′ − · · · − A−1

r Ar−1y
(r−1). (1.3)

If K is the field of meromorphic functions over a connected Riemann surface, we
define the singularities of (1.2) as the singularities of (1.3), i.e., the points where
some of the entries of the matrix coefficients have poles.

Non-explicitable linear homogeneous differential systems may behave very patho-
logically. Notice that, if (1.2) is not explicitable, the implicit mapping theorem
is not applicable either. For example, the second-order system {y′1 = y1, y

′′
2 = y2}

consists of independent first-order and second-order subsystems, and its solution
space has dimension 3, instead of 4, the expected for a second-order 2× 2 system.
Another pathology appears in the first-order equation y′1 = y2, where any choice
of y1 determines a solution. So, the dimension of the solution space may be lower
or greater than expected, even infinite.

Another interesting example is the first-order linear system{
y′ = A(x)y + B(x)z,
0 = C(x)y + D(x)z,

called differential-algebraic5 because of its two subsystems. Any homogeneous
linear system can be reduced to this form, as explained in [HSW68], with A, B, C

5Distinct from algebraic differential equations, introduced in §1.1.2.
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and D matrices of meromorphic functions in a common domain. This article gives
a complete algorithm for reducing the differential-algebraic system to the form{

u′ = E(x)u,
v = F(x)u + G(x)w + H(x)w′,

where u, v or w may be missing, with

(
y
z

)
= P(x)

u
v
w

 , (1.4)

E, F, G, H and P matrices of meromorphic functions in a common domain and
P invertible. This reduction algorithm is explained for meromorphic functions,
but it also holds for any differential field. Notice that the space of solutions is
finite-dimensional6 if and only if w is missing.

In this work we will deal only with explicitable systems. The application of
the formal Borel transform to an explicitable system, as done in [vdH07b, §3.3],
produces in general non-explicitable systems, whose analysis is complicated. This
analysis would be nevertheless necessary if we pretend to apply the acceleration
operators to higher order systems. As we will see in §2.2.4, this will not be neces-
sary, so we exclude non-explicitable systems from our study. A detailed study of
non-explicitable systems can be found in the recent works of Barkatou, Cluzeau
and El Bacha [BCEB11, BCEB09] among others.

1.2.2 Formal structure of the solutions

Let us consider an explicitable system of higher order differential equations

Ar(x) y(r) + Ar−1(x) y(r−1) + · · ·+ A0(x) y = 0, (1.5)

where A0(x), A1(x), . . . , Ar(x) are n×n matrices of formal power series. For n = 1,
Fabry proved in his thesis7 [Fab1885] the following result.

Theorem 10 (Fabry). A scalar differential equation

ar(x) y(r) + ar−1(x) y(r−1) + · · ·+ a0(x) y = 0,
6It holds, in general, for any differential field of infinite dimension over its constants.
7His claim was for a0, a1, . . . , ar ∈ C(x).
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with a0, a1, . . . , ar ∈ K((x)) and K an algebraically closed field of constants, has a
complete system of solutions of the type

exp
(
q(x−1/p)

)
xα

∞∑
k=0

N∑
i=0

ykix
k/p logi x (1.6)

with p ∈ Z>0, q(x) ∈ xK[x] and α, yki ∈ K.

The set of the q(x−1/p), counted with their multiplicity, is an invariant of the
equation. The minimal p is called the ramification index of the equation. The
bound N for the degree in log x can be chosen N = r−1 because the formal deriva-
tive w.r.t. the symbol log x belongs to the Lie algebra of the Galois group, as will be
explained in §1.4.1. If a solution y has degree N in log x, then y, ∂log xy, . . . , ∂

N
log xy

are N + 1 linearly independent solutions, as Fabry says in [Fab1888, p. 136].

For r = 1, (1.5) reduces to the system

y′ = −A1(x)−1A0(x) y,

which has a formal fundamental matrix solution

F = H(x1/p)xL exp
(
Q(x−1/p)

)
(1.7)

where p is a positive integer and H, L and Q are n× n matrices: H of formal series,
L of scalars and Q diagonal of polynomials with Q(0) = O. This result (together
with that L and Q commute) is the classic Hukuhara-Turrittin theorem, which is
equivalent to Fabry’s modulo Cyclic Vector Lemma and ∂log x belonging to the Lie
algebra of the Galois group. The diagonal of Q is, up to permutation, an invariant
of the equation. Putting in Jordan form

J L J−1 = diag(α1I + N1, α2I + N2, . . . , αpI + Np),

with αi eigenvalues and Ni nilpotent, we have

xL = J−1 diag(xα1I + M1, x
α2I + M2, . . . , x

αpI + Mp) J,

with Mi =
∑n−1

k=0
1
k!
Nki logk x. Notice that the entries of xL are polynomials in log x

of degree less than n, and thus the entries of F are linear combinations of Fabry
type; see (1.6), considering n for r, as usual.

In the general case, Hukuhara-Turrittin is applicable to the companion system
of (1.5) and thus (1.5) has a formal fundamental matrix solution

F = H(x1/p)xL exp
(
Q(x−1/p)

)
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where p is a positive integer, H is an n × nr matrix of formal series, L and Q are
nr× nr matrices: L of scalars and Q diagonal of polynomials with Q(0) = O. As in
the previous case, the entries of F are linear combinations of Fabry type; see (1.6),
considering nr for r, as expected.

1.2.3 Universal field extension

Fabry’s and Hukuhara-Turrittin theorems give a complete system of solutions for
homogeneous linear differential equations and systems over the differential field
C((x)) of formal power series. These formal solutions are built by adding to C((x))
symbols like log x, xα, for α ∈ C, and exp

(
q(x−1/p)

)
, for q(x) ∈ xC[x] and p ∈

Z>0. The extensions defined by these symbols following §1.1.3 glue together with
the algebraic relations of xC and exp(y1) exp(y2) = exp(y1 + y2). The detailed
construction is found in [Hen96, §2.2]=[HvdP95, §2], which uses an algebraically
closed subfield K ⊆ C and proves that the differential ring

R = K((x))
〈
log x, xK, exp

(
x−1/pK[−1/p]

)〉
contains a complete system of solutions for any homogeneous linear differential
equation over K((x)). This property grants the field of fractions Ω of R the de-
nomination “universal field extension of K((x)).”

1.3 Differential Galois theory

In this section I shall introduce differential Galois theory, ending with Schlesinger’s
theorem, which gives generators of the Galois group when all the singularities of
the equation are regular, i.e., the growth of the solutions does not correspond
to essential singularities. The next section will deal with the generalization of
Schlesinger’s theorem to irregular singularities.

1.3.1 Picard-Vessiot extensions

Let Ω be the universal field defined in §1.2.3. Each particular differential equation
or system ∆ over K{x} (where K is an algebraically closed subfield of C) has a
minimal intermediate differential field K({x}) ⊆ K̂ ⊆ Ω where a complete system
of solutions of ∆ is defined. If ∆ is defined over the rational functions, we have
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another minimal intermediate differential field K(x) ⊆ F̂ ⊆ Ω where a complete
system of solutions of ∆ is defined. At each regular point z of ∆ there is a
minimal intermediate differential field K(x) ⊆ Kz ⊆ Oz where a complete system
of solutions of ∆ is defined. The extensions K̂/K({x}), F̂ /K(x) and Kz/K(x) are
examples of Picard-Vessiot extensions, defined below, which play the same role in
Galois theory as the splitting fields of polynomials.
Example 11. The differential field C({x}) contains a solution f =

∑∞
k=0 x

k/k! of
y′ = y, but we may add another E in C({x})[E;E ′=E]. This ring contains two
solutions of a first-order equation that are linearly independent over C. The field
of fractions F contains a new constant f−1E, thus these solutions are linearly
dependent over the constants of F .

The informal definition of Picard-Vessiot extension F/K of a differential equa-
tion or system ∆ over K is that F is generated by a complete system of solutions
of ∆, but Example 11 shows the problems that may appear adding new solutions
without restriction. We say that an extension of differential fields F/K is the
Picard-Vessiot extension of ∆ if the following conditions are satisfied:

• K and F have the same field of constants C;

• the C-vector space V ⊂ F of solutions of ∆ has the right dimension; if ∆
has order r and size n× n, the right dimension is nr;

• F is the field of fractions of K〈V 〉.

So Example 11 is not a Picard-Vessiot extension because the field of constants is
augmented.

Picard-Vessiot extensions have the following properties.

Theorem 12 (Existence). If K is a differential field, its field of constants is alge-
braically closed, and ∆ defined over K, then there exists a Picard-Vessiot extension
F/K for ∆. [Mag97, thm. 3.4]

Theorem 13 (Uniqueness). If F1/K and F2/K are Picard-Vessiot extensions for
∆, then there exists an isomorphism F1 ' F2 that keeps K fixed. [Mag97, thm. 3.5]

Theorem 14 (Minimality). If F/K and E/K are Picard-Vessiot extensions for
∆ with E ⊆ F , then E = F . [Mag97, lemma, p. 24]

The proof of the existence of a Picard-Vessiot extension is rather technical in the
general case, but in many usual cases, such a Picard-Vessiot extension can be easily
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understood. If K is the field of meromorphic functions on a connected Riemann
surface X, take a simply connected open set U on X free from singularities of ∆; a
Picard-Vessiot extension is included in the fieldM(U) of meromorphic functions
on U .

1.3.2 Differential Galois group

We associate to an extension of differential fields F/K the group Gal(F/K) of the
automorphisms of F that leave K fixed; this is the differential Galois group of the
extension. Here “fixed” means that all the elements are invariant. If we drop the
word “differential,” we get the classic definition of Galois group. Obviously, the
differential Galois group is a subgroup of the classic one, but they coincide for an
algebraic extension. In the same way the Galois group of an algebraic equation is
defined up to isomorphism, we may define Gal(∆) as the differential Galois group
of any Picard-Vessiot extension for ∆, by virtue of Theorem 13.

If F/K is a Picard-Vessiot extension for ∆ with field of constants C alge-
braically closed and space of solutions V , Gal(F/K) leaves V invariant. The
representation Gal(F/K) → GL(V ) is faithful and its image, which may also be
denoted by Gal(∆), is a linear algebraic group; see [Kap76, thm. 5.5]. Chapter 3
deals with linear algebraic groups, but briefly speaking we recall that a linear
algebraic group is a group of linear transformations that is closed in the Zariski
topology. Let us consider the lattice G of algebraic subgroups of Gal(F/K). The
application that sends each G ∈ G to its fixed field

Fix(G) = {a ∈ F : ∀σ ∈ G, σ(a) = a}

is an order-reversing homomorphism G → K, where K is the lattice of intermedi-
ate differential fields of F/K. The application E 7→ Gal(F/E) is another order-
reversing homomorphism K → G. As in the classic case, we have a fundamental
theorem.

Theorem 15 (Galois correspondence). With the notation of the paragraph above,
the homomorphisms G → K and K → G are inverses of each other, hence they give
an order-reversing isomorphism of lattices G ' K. [vdPS03, Prop. 1.34.1] [Mag97,
thm. 6.5]

This implies a useful result.

Proposition 16. With the notation above, if the fixed field of G < Gal(F/K)
is K, then G is Zariski-dense in Gal(F/K).
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Proof. The fixed field of G, the Zariski closure of G, is also K. By the Galois
correspondence G = Gal(F/K).

As we shall review in more detail in §3.1, the component8 of the identity of an
algebraic group G is another linear algebraic group denoted by G◦. The component
of the identity Gal(F/K)◦ of Gal(F/K) is a distinguished element of G with a
useful property.

Theorem 17. With the notation and hypotheses above, the fixed field of Gal(F/K)◦

is the relative algebraic closure of K in F . [vdPS03, prop. 1.34.3] [Mag97, thm. 6.5]

As reviewed in §3.1, a Lie algebra is associated to any linear algebraic group.
There are several constructions of this Lie algebra but, in the case of a differential
Galois group, this Lie algebra can be seen as consisting of derivations over the a
differential field. We denote gal(F/K) the Lie algebra of the derivations on F that
vanish on K and commute with the derivation of F . These properties grant that
gal(F/K) leaves V invariant, thus we have a faithful representation gal(F/K)→
gl(V ). Moreover, the image of this representation corresponds to the Lie algebra
usually associated to the image of Gal(F/K)→ GL(V ); see [vdPS03, Prop. 1.27.2].

Remark 18. As a final note, from now on, we will only work with differential rings
that have an algebraically closed field of constants (of characteristic 0, according
to Remark 3). This is needed for differential Galois theory. In the practical cases,
this is granted by taking as constants an algebraically closed subfield K of C.

What happens if we consider the same differential equation over two different
(algebraically closed) fields of constants, K a subfield of F? For example, a differ-
ential equation defined over Q(x) can be considered over Q(x) and over C(x). We
have that the Galois group over the field of rational functions commutes with the
extension of the field of constants.

Theorem 19. Let K/k be an extension of algebraically closed fields, ∆ be a linear
differential equation of order n over k(x) with the usual derivation, Fk be a Picard-
Vessiot extension for ∆ over k(x), and B a fundamental system of solutions of ∆ in
F . Extending the constants to K, FK = K ⊗k Fk is a Picard-Vessiot extension for
∆ over K(x). The system B yields representations Gal(Fk/k(x))→ GL(n, k) and
Gal(FK/K(x)) → GL(n,K), with respective images Gk and GK. The algebraic
group GK is given by the same equations as Gk, and Gk = GK∩GL(n, k). [vdH07a,
§2.2¶4]

8I say just “component” because it is irreducible component of the algebraic variety, connected
component in the Zariski topology and, if C = C, connected component of the Lie group.
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1.3.3 Schlesinger’s theorem

If X is a Riemann surface, γ a path on X and f a germ of analytic function
at the starting point of γ, we denote by contγ f the analytic continuation of f
along γ, which is a germ at the end of γ. If γ1 is a path z1  z2, and γ2 = γJJ

1

its inverse z2  z1, then contγ defines an isomorphism Aγ1 → Aγ2 of differential
rings, where Aγi ⊂ Ozi is the subring of the germs continuable along γi. If Vz ⊂ Oz
is the space of solutions of a homogeneous linear differential equation ∆ over a
connected Riemann surface X, then contγ defines an automorphism of the vector
space Vz for any γ ∈ π1(X \ S, z), where π1 means the fundamental group and
S is the set of singularities of ∆, and hence we have a homomorphism of groups
π1(X \ S, z) → GL(Vz). If Vw ⊂ Ow is another space of solutions of ∆, then
contγ defines an isomorphism of the differential vector spaces Vz → Vw for any
γ ∈ Π1(X \ S)(z, w), where Π1 means the fundamental groupoid,9 and hence we
have a mapping Φzw : Π1(X \S)(z, w)→ L(Vz, Vw) that defines, together with the
map z 7→ Vz, a functor Π1(X \S)→ L to the category of vector spaces. The same
holds for ∆ an explicit differential system and Vz ⊂ Onz .

Let us consider the groupoid G over X \ S with G(z, w) = L(Vz, Vw). This
groupoid is finer than the corresponding subgroupoid of L because it does not
confuse Vz = Vw for z 6= w. The mappings Φzw define, together with the identity
on X \S, a functor Π1(X \S)→ G, whose image Mon(∆) is called the monodromy
groupoid of ∆. The image of π1(X \S, z) is called the monodromy group of ∆ at z,
and denoted Mon(∆, z). Let Fz be the differential field generated by K =M(X)
and (the entries of) Vz for each z ∈ X \ S. With these definitions, Fz/K is the
Picard-Vessiot extension for ∆ at z, and we may write Gal(∆, z) = Gal(Fz/K)
for the Galois group. The isomorphisms Fz/K ' Fw/K form a groupoid Gal(∆)
over X \ S. These isomorphisms keep K fix and Vz invariant, and are determined
by their action on Vz, so this determines naturally a homomorphism of groupoids
Gal(∆) → G and Gal(∆) is naturally isomorphic to its image in G. From the
properties of analytic continuation, Mon(∆) can be seen as a subgroupoid of
Gal(∆), and thus Mon(∆, z) as a subgroup of Gal(∆, z).

Theorem 20 (Schlesinger). With the notation of the previous paragraph, Mon(∆, z)
is Zariski-dense in Gal(∆, z) if all the singularities of ∆ are regular.

Proof. This theorem is classic, back to [Sch1897], but here we follow the proof
9The fundamental groupoid of a topological space Y is the groupoid with Y as set of objects,

with arrows Π1(Y )(p, q) from p ∈ Y to q ∈ Y the classes of continuous paths p  q on Y
modulo the homotopy with fixed ends and with composition the concatenation of paths. The
fundamental groupoid contains the fundamental group π1(Y, p) as Π1(Y )(p, p).
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of [Żoł06, thm. 11.21]. According to Proposition 16, it suffices to prove that any
y ∈ Fz invariant by the monodromy lies in K.

Let y ∈ Fz be invariant by the monodromy, so y defines a holomorphic function
f on X \S. Each w ∈ S must be an isolated regular singularity of ∆, so the growth
of any solution of ∆, and thus of f , corresponds to a pole or a removable singularity.
Therefore, f is extended to a meromorphic function on X.

For X the Riemann sphere, assuming∞ ∈ S, Theorem 20 can be rephrased as
the following.

Theorem 21 (Schlesinger). The Galois group of a homogeneous linear differential
equation over the rational functions is the smallest algebraic group containing the
monodromy group if all the singularities are regular.

Next section will deal with the generalization of Schlesinger’s theorem when
there are irregular singularities, which are the singularities that are not regular,
i.e., when there are solutions whose growth correspond to an essential singularity.

1.4 Ramis density theorem

In the case of irregular singularities, the monodromy may be not enough. The
monodromy group is generated by the loops around each singularity, but each one
splits in the formal monodromy and the Stokes automorphisms (to be defined) so
that all of them are necessary for generating the Galois group. Apart of these,
the exponentials in the Fabry solutions add the exponential torus (to be defined)
to the generators of the Galois group. For a regular singularity, the monodromy
is the same as the formal monodromy and there is no Stokes automorphism or
exponential torus. In this section, we shall review all these notions and state the
fundamental density theorem of J.-P. Ramis.

1.4.1 Formal monodromy

The formal monodromy, as its name suggests, is the automorphism of differential
fields defined by the formal substitutions in the Fabry solutions that act like the
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monodromy in each atom. These formal substitutions are

xα 7→ e2πiα xα, (1.8)
log x 7→ log x+ 2πi, (1.9)

where (1.8) is also applied inside the symbol exp. As the symbol log x is a primitive
of x−1 and this determines all its behavior in differential algebra, the substitution
(1.9) is Galoisian, i.e., it defines a Galois automorphism. Moreover, the formal
substitution

log x 7→ log x+ β (1.10)

is Galoisian for any constant β. The symbols xα are subject to the restrictions
xαxβ = xα+β and (xα)′ = αxα−1, and they determine all their behavior in dif-
ferential algebra. As the substitution (1.8) respects both and keeps xZ fixed, it
is Galoisian. The formal monodromy is the automorphism of the formal Picard-
Vessiot extension given by the substitutions (1.8) and (1.9).

The substitution (1.10) defines an algebraic group Glog isomorphic to the addi-
tive group of constants, whose Lie algebra is spanned by the derivation ∂log w.r.t.
the symbol log x. The set of all the α lies in a free Z-module of finite dimension.
If {1/p, α1, α2, . . . , αm} is a basis of the module, any choice of non-zero constants
β1, β2, . . . , βm makes the substitutions xαi 7→ βix

αi compatible, so the substitution

xα 7→ βλ11 βλ22 · · · βλmm xα, for α = λ0/p+ λ1α1 + λ2α2 + · · ·+ λmαm

with λ0, λ1, . . . , λm ∈ Z, is Galoisian. This defines an algebraic group Gpow iso-
morphic to an algebraic torus of rank m. The change of variables

xα 7→ xλ0/pxλ11 · · ·xλmm , for α = λ0/p+ λ1α1 + λ2α2 + · · ·+ λmαm

with λ0, λ1, . . . , λm ∈ Z, is the inverse of xi 7→ xαi . With this identification, the
Euler derivation δi = xi∂xi w.r.t. xi belongs to the Lie algebra of the Galois group.
The Lie algebra of Gpow is spanned by δ1, δ2, . . . , δm. The substitution

xα 7→ e2πiλ0/p xα, for α = λ0/p+ λ1α1 + λ2α2 + · · ·+ λmαm

with λ0, λ1, . . . , λm ∈ Z, defines an automorphism that generates a finite group
Gram of order equal to the ramification index p. All the automorphisms and deriva-
tions defined in this paragraph commute. The algebraic group generated by the
formal monodromy is the product GramGpowGlog and its Lie algebra is spanned by
δ1, δ2, . . . , δm and ∂log.
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1.4.2 Exponential torus

The exponential symbols are subject to the restrictions exp(y1) exp(y2) = exp(y1 +
y2) and (exp y)′ = y′ exp y, and they determine all their behavior in differential
algebra, so the substitution exp y 7→ β exp y is Galoisian for any non-zero constant
β. The exponential symbols exp y involved in the Fabry solutions define a free
Z-module of finite dimension generated by the exponents y. If {y1, y2, . . . , ym} is
a basis of the module, any choice of non-zero constants β1, β2, . . . , βm makes the
substitutions exp yi 7→ βi exp yi compatible, so the substitution

exp y 7→ βλ11 βλ22 · · · βλmm exp y, for y = λ1y1 + λ2y2 + · · ·+ λmym

with λ1, λ2, . . . , λm ∈ Z, is Galoisian. This defines an algebraic group isomorphic to
an algebraic torus of rank m, called the exponential torus. The change of variables

exp y 7→ Eλ1
1 Eλ2

2 · · ·Eλm
m , for y = λ1y1 + λ2y2 + · · ·+ λmym

with λ0, λ1, . . . , λm ∈ Z, is the inverse of Ei 7→ exp(yi). With this identification,
the Euler derivation δi = Ei∂Ei w.r.t. Ei belongs to the Lie algebra of the Galois
group. The Lie algebra of the exponential torus is spanned by δ1, δ2, . . . , δm.
Remark 22. The exponential torus commutes with the torus of the monodromy.
Moreover, the product torus admits a description in terms of the so-called expo-
nential part α+xy′ associated to xα exp y. The set of all the exponential parts lies
in a Z-module of finite dimension. If {1/p, q1, q2, . . . , qm} is a basis of the mod-
ule, with p the ramification index, any choice of non-zero constants β1, β2, . . . , βm
makes the substitution

xα exp y 7→ βλ11 βλ22 · · · βλmm xα exp y,
for α + xy′ = λ0/p+ λ1q1 + λ2q2 + · · ·+ λmqm

with λ0, λ1, . . . , λm ∈ Z, Galoisian. Thus they form an algebraic torus.

1.4.3 Extended analytic continuation

The formal monodromy and its factors act on the formal Picard-Vessiot extension,
so we need a way to connect it to the groupoid Gal(∆). For a regular singularity,
it suffices to choose a branch of the logarithm. Let us define an extended path as
a pair (θ, γ) where θ ∈ R represents a direction and γ is a path that starts at
a singularity γ(0) with γ′(0) ∈ eiθR+. With this definition, an extended analytic
continuation cont(θ,γ) that begins by choosing the determination (θ − π, θ + π) of
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the logarithm gives the desired “coming out” of the singularity. For an irregular
singularity, the power series that appear in the formal solutions may be divergent,
hence choosing a branch of the logarithm is not enough. These power series are
multisummable, as proved in [BBRS91], whose meaning is briefly explained below
without the precise definitions, which can be found in [Bal94].

Let us assume, for simplicity, the singularity at the origin, and denote the
sectors by S(A,R) = {z ∈ C : 0 < |z| < R, arg z ∈ A}, with 0 < R 6 ∞ and A a
segment representing an arc. If the sector covers the circle, we assume it is defined
in the Riemann surface of the logarithm. In the same way O0 is the injective limit
of O(BR), where BR is the disk of radius R, we define the algebra O0,θ as the
injective limit of O(S(A,R)), for A open, θ ∈ A and R > 0.

The simplest case of multisummability is Borel summability, which I shall de-
scribe in Example 23. Following [Bal94], the Borel transform of the formal power
series f̂ =

∑∞
n=0 anx

n is B[f̂ ] =
∑∞

n=0 anξ
n/n! and the Laplace transform will be

given by

L[f ](z) = z−1

∫ +∞

0

f(t) exp(−t/z) dt.

They are not the usual definitions of Borel and Laplace transforms, but these
definitions are tuned so that, restricted to monomials, they are inverses of each
other and keep the degree.

Example 23. Let us explain Borel summation through an example due to Euler
[Eul1760, §19]. The formal series to sum is f̂ =

∑∞
n=0(−1)nn!xn+1. The Borel

transform of f̂ is ĝ =
∑∞

n=0(−1)nξn+1/(n+ 1), whose convergence radius is 1. The
sum of ĝ is log(ξ + 1), which is ramified at ξ = −1. Let g be the principal branch
of log(ξ + 1), whose Laplace transform is

f(z) = z−1

∫ +∞

0

log(t+ 1) exp(−t/z) dt =

∫ +∞

0

exp(−t/z)

t+ 1
dt,

which converges in the half-plane Re(z) > 0. Both f̂ and f satisfy the differential
equation x2y′ + y = x.

Example 23 shows the Borel sum in the direction of the positive semi-axis.
We may move the integration path 0  ∞ in the Laplace transform to the ray
arg = θ, giving the Laplace transform in the direction θ by

Lθ[f ](z) = z−1

∫ eiθ∞

0

f(ζ) exp(−ζ/z) dζ,
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which does not depend on the representant of θ + 2πZ. We say that a formal
power series f̂ is Borel summable in the direction θ if its Borel transform ĝ = B[f̂ ]
is convergent and can be analytically continued in an open sector S(Aθ,∞) with
θ ∈ Aθ and a growth at infinity of the form O(exp(Bθ|ζ|)) for certain Bθ > 0, and
we say that θ is a direction of Borel summability of f̂ . The maximal star-shaped
set where the analytic continuation of ĝ along rays is defined is called its Mittag-
Leffler star. Let g be the analytic continuation of ĝ defined in its Mittag-Leffler
star. Thus Lθ[g] is defined in all the directions of Borel summability, so we define
the Borel sum of f̂ in the direction θ as S1,θ(f̂) = Lθ[g], which is defined inside
the disk of center eiθ/2Bθ and radius 1/2Bθ. All the directions θ′ ∈ Aθ are also
directions of Borel summability, with Borel sum defined inside the disk of center
eiθ′/2Bθ and radius 1/2Bθ, all of them glue together into a sum fθ defined in a
kidney-shaped domain.

A formal power series f̂ is Borel summable if it is Borel summable in all the
directions but finitely many modulo 2π. These exceptional directions are called
the singular directions of f̂ . If the singular directions are represented by θ1 < θ2 <
· · · < θm < θm+1 = θ1 + 2π, they define the open arcs where the Borel sums are
compatible and glue together into sectors S((θi − ε, θi+1 + ε), R), with ε > 0 and
R > 0 small enough. If an arc is wider than π, this is defined on the Riemann
surface of the logarithm. If there is no singular direction, f̂ is convergent. In the
sector S((θi−ε, θi+ε), R) there are defined two Borel sums, S1,θ−i

(f̂) and S1,θ+i
(f̂),

that may differ. This feature is called Stokes phenomenon.

Let us consider the following example with Euler-like formal series.

Example 24. Let us consider the formal series f̂s =
∑∞

n=0(n!)sxn for s > 0. The
Borel transform ĝs =

∑∞
n=0(n!)s−1ξn is convergent for s 6 1, and divergent for

s > 1. For s = 1 we have the same behavior as in Example 23. For s < 1, ĝs
defines an entire function gs with order 1/(1− s). Hence, Borel summability fails
for s > 1 because Borel transform is “not strong enough” to make ĝs convergent,
and it fails for s < 1 because Borel transform is “too strong” that it makes ĝs “too
convergent” at the expense of making its order too large for convergence of Laplace
transform. Thus, Borel summation is tuned to divergence as rapid as the Euler
series of Example 23.

In order to generalize Borel summation for series diverging slower or more
rapid than the Euler series of Example 23, where ordinary Borel summability fails
according to Example 24, we define, for k > 0, the k-Borel transform of a formal
power series f̂ =

∑∞
n=0 anx

n as Bk[f̂ ] =
∑∞

n=0 anξ
n/Γ(n/k+ 1). As Γ(n+ 1) = n!,

the ordinary Borel transform is now the 1-Borel transform. We define the k-Laplace

44



transform in the direction θ as given by

Lk,θ[f ](z) = z−k
∫ eiθ∞

0

f(ζ) exp(−ζk/zk) kζk−1dζ,

with the determination (θ − π, θ + π) of the logarithm. For k integer, Lk,θ does
not depend on the representant of θ + 2πZ, but the branch of the logarithm does
matter for k not integer.

We say that a formal power series f̂ is k-summable in the direction θ if its
k-Borel transform ĝ = Bk[f̂ ] is convergent and can be analytically continued
in an open sector S(Aθ,∞) with θ ∈ Aθ and a growth at infinity of the form
O(exp(Bθ|ζ|k)) for certain Bθ > 0, and we say that θ is a direction of k-summability
of f̂ . Let g be the analytic continuation of ĝ defined in its Mittag-Leffler star. Thus
Lk,θ[g] is defined in all the directions of k-summability, so we define the k-sum of
f̂ in the direction θ as Sk,θ(f̂) = Lk,θ[g], which is defined inside the inverse image
of the disk of center eikθ/2Bθ and radius 1/2Bθ by the k-th power in the deter-
mination (θ − π, θ + π) of the logarithm. Among the connected components of
this region of convergence, we choose the component bisected by the direction θ
as domain of Lk,θ[g]. This domain has the shape of a petal for k > 1 and a shape
of a heart for k < 1, inscribed in the sector S((θ − π/2k, θ + π/2k), B

1/k
θ ). All

the directions θ′ ∈ Aθ are also directions of k-summability, with k-sum defined in
another domain of the same shape as Lk,θ[g], all of them glue together into a sum
fθ defined in a petal-shaped or heart-shaped domain.

A formal power series f̂ is k-summable if it is k-summable in all the directions
but finitely many modulo 2π. These exceptional directions are called the singular
directions of f̂ . As in the case of Borel summability, if the singular directions are
represented by θ1 < θ2 < · · · < θm < θm+1 = θ1 + 2π, they define the open arcs
where the k-sums are compatible and glue together into sectors S((θi − ε, θi+1 +
ε), R), with ε > 0 and R > 0 small enough. If an arc is wider than (2 − 1/k)π,
this is defined on the Riemann surface of the logarithm. If there is no singular
direction, f̂ is convergent. In the sector S((θi− ε, θi + ε), R) there are defined two
k-sums, Sk,θ−i (f̂) and Sk,θ+i (f̂), that may differ, showing the Stokes phenomenon.

Let us revisit Example 24 for k-summability.

Example 25. Let us consider the series f̂s =
∑∞

n=0(n!)sxn of Example 24. The k-
Borel transform ĝs =

∑∞
n=0(n!)sξn/Γ(n/k+1), using Stirling formula, is convergent

for s 6 1/k, and divergent for s > 1/k. For s = 1/k we have the same behavior as
in Example 23. For s < 1/k, ĝs defines an entire function gs with order k/(1−sk).
Hence, k-summability fails for s > 1/k because k-Borel transform is “not strong
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enough” to make ĝs convergent, and it fails for s < 1/k because Borel transform is
“too strong” that it makes ĝs “too convergent” at the expense of making its order
too large for the convergence of Laplace transform. Thus, k-summation is tuned
to divergence as rapid as ĝ1/k.

In [Har49, §4.12] Hardy says “that, usually, the delicacy of a method decreases
as its power increases, and that very powerful methods, adapted to the summa-
tion of rapidly divergent series, are apt to fail with divergent series of a less violent
kind,” what is illustrated in Example 25. In the formal solutions of a linear differ-
ential equation may appear not only k-summable series for any k ∈ Q+, but even
combinations of k-summable series of different indices k ∈ Q+. For instance, f̂1

and f̂2 of Example 24 are solutions of a linear differential equation with polynomial
coefficients, and f̂1 + f̂2 cannot be summed by k-summation for any k > 0, because
k < 2 is not “powerful enough” to sum f̂2, and k > 1 is not “delicate enough” to
sum f̂1. What we need is, in words of [MR91, p. 337], a “blend” of k-summations
for different indices k > 0.

We say that a formal power series f̂ is integer-leveled multisummable in the
direction θ if it is the sum of finitely many k-summable power series in the di-
rection θ of different integer levels k > 0. If f̂ = f̂1 + f̂2 + · · · + f̂r with
each f̂i ki-summable in the direction θ and k1 > k2 > · · · > kr > 0, then we
say that f̂ is (k1, k2, . . . , kr)-summable in the direction θ and that its sum is
Sθ[f̂ ] = Sk1,θ[f̂1] +Sk2,θ[f̂2] + · · ·+Skr,θ[f̂r]. The decomposition is not unique, but
the operator Sθ is well defined and it is a homomorphism of differential algebras.
The decomposition f̂ = f̂1 + f̂2 + · · · + f̂r is not effective, and for effective mul-
tisummation there are different processes explained in [Bal94]. Écalle’s method
applies the kr-Borel transform, then successively applies certain integral trans-
forms called accelerations that transition from ki to ki−1, and finally applies the
k1-Laplace transform. Balser’s method applies the k1-Borel transform, obtaining a
(k′2, k

′
3, . . . , k

′
r)-summable power series, with k′i = k1ki/(k1 − ki), which is summed

by induction, and ends with the k1-Laplace transform. Écalle’s and Balser’s meth-
ods are equivalent and yield a definition of multisummability for general levels,
but we only need integer levels for summing the series that appear in the Fabry
solutions.

We say that f̂ is integer-leveled multisummable if there exist integers k1 >
k2 > · · · > kr > 0 such that f̂ is (k1, k2, . . . , kr)-summable in all the directions but
finitely many modulo 2π. It does not implies that f̂ = f̂1 + f̂2 +· · ·+ f̂r with each f̂i
ki-summable; see [Bal94, p. 74] for a counterexample. For r = 1, (k1)-summability
is the usual (one-level) k1-summability. For r = 0, it means that f̂ is convergent.
As in the case of one-level summability, if the singular directions are represented
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by θ1 < θ2 < · · · < θm < θm+1 = θ1 + 2π, they define the open arcs where the
k-sums are compatible and glue together into sectors S((θi − ε, θi+1 + ε), R), with
ε > 0 and R > 0 small enough. If there is no singular direction, f̂ is convergent.
In the sector S((θi − ε, θi + ε), R) there are defined two multisums, Sθ−i (f̂) and
Sθ+i (f̂), that may differ, showing the Stokes phenomenon.

For any direction θ, Sθ glues with the determination (θ − π, θ + π) of the
logarithm and gives a homomorphism of differential fields K̂ → O0,θ, for the
K̂ of §1.3.1, and a definition of extended analytic continuation in the irregular
singular case. We may define Stokes automorphism at θi as cont−1

(β,δ) ◦ cont(α,γ) with
θi−1 < α < θi < β < θi+1 (understanding θ0 = θm − 2π), γ the path formed by
0→ eiαR followed by the arc eiαR eiβR counterclockwise, δ the path 0→ eiβR
and R > 0 smaller than the distance to any other singularity. This definition is
independent of α, β and R. If we take other sequence of representatives of the
singular directions of ∆, we would define other sequence of Stokes automorphism,
but the Stokes automorphisms corresponding to the same direction modulo 2π are
equal up to conjugation by the formal monodromy.

The multisummability of the formal series that appear in the Fabry solutions
does not only have to do with the divergence of the series to sum, but also with
the exponential parts. Let Q be the set of the polynomials q(t) that appear in
the exponential parts of the Fabry solutions in the form exp

(
q(x−1/p)

)
, where p

is the ramification index. We take q = 0 for solutions without exponential part.
The set Q′ = {qi − qj : qi, qj ∈ Q, qi 6= qj} determines the singular directions
and the levels of multisummability. The set of the degrees of Q′ is the set of
levels of multisummability. Each q(t) ∈ Q′, of degree k, defines a pattern of
sectors of opening πp/k, alternatively of growth and decay of exp

(
q(x−1/p)

)
at the

origin. If α is an argument of the leading coefficient of q(t), then the sectors of
exponential growth or decay are respectively those of positive or negative sign of
cos(arg(z)k/p + α), defined in the Riemann surface of the logarithm. In the rays
cos(arg(z)k/p+α) = 0, exp

(
q(x−1/p)

)
has an oscillatory behavior near the origin.

These rays are called Stokes lines,10 and their directions Stokes directions. The
bisectrices of these sectors are called anti-Stokes lines and anti-Stokes directions,
although other people use the opposite terminology.11 The singular directions θ

10H. Żołądek calls them rays of division, which is descriptive and avoids the confusion explained
below, but unfortunately it seems than only Żołądek uses this terminology.

11I follow this convention because it is the terminology used in most of my references (Loday-
Richaud [LR94, def. I.4.5], Malgrange-Ramis [MR92, p. 363], van der Put–Singer [vdPS03,
def. 7.18], Martinet-Ramis [MR91, p. 357, n. 38], Ramis-Martinet [RM90, p. 180]) with the ex-
ception of van der Hoeven [vdH07a, §2.4]. Ramis thinks that this usage is improper, but uses
it anyway; cf. [Ram04, p. 73]. Reading Stokes [Sto1902], I agree with Ramis because the only
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associated with q(t) are those satisfying cos(θk/p+α) = −1, showing the maximal
decay, so they are anti-Stokes directions. The rest of the anti-Stokes directions
associated with q(t) are the singular directions associated with −q(t), which also
belongs to Q′, so I shall speak of singular directions instead of speaking of anti-
Stokes directions, in order to avoid confusion. Not all the singular directions of ∆
are singular directions of a solution, as shown in Example 26, but all the singular
directions of the solutions are singular directions of the equation.

Example 26. Revisiting Example 23, the Euler series f̂ =
∑∞

n=0(−1)nn!xn+1 is a
solution of the inhomogeneous differential equation x2y′ + y = x, and thus of the
homogeneous equation x3y′′ + (x2 + x)y′ − y = 0. A complete system of solutions
of the latter is {f̂ , exp(1/x)}. There are two exponential parts, 1 and exp(1/x),
so Q = {0, x} and Q′ = {x,−x}. The singular lines of the equation are both real
semi-axes, but the only singular line of the solutions is the negative semi-axis.

Let θ be a singular direction and σθ the Stokes automorphism in this direction.
Let Q′θ = {q ∈ Q′ : θ singular direction associated with q} and Q2

θ = {(qi, qj) ∈
Q2 : qi − qj ∈ Q′θ}. According to [MR91, p. 361f], Q2

θ can be completed to a
total order � on Q, with associated strict order ≺, so that Q can be listed as
q1 ≺ q2 ≺ · · · ≺ qs. If Vi is the subspace of solutions corresponding to the
exponential part exp(qi), the decomposition in direct sum V1 +V2 + · · ·+Vs induces
a block structure in the matrix Sθ of σθ such that the block corresponding to
Vi → Vj is the identity if i = j and zero if i < j, so that Sθ is the identity plus a
strictly triangular (and hence nilpotent) matrix, thus it is unipotent. As told in
§3.2, Sθ generates a connected algebraic group whose Lie algebra is generated by
log Sθ =

∑∞
k=0(−1)k(Sθ − I)k+1/(k + 1), where the sum is finite. Hence log σθ =∑∞

k=0(−1)k(σθ − id)k+1/(k + 1) is a finite sum and defines a Galoisian derivation
∆̇θ, called the alien derivation in the direction θ. Such a derivation admits a
“Fourier decomposition” as a sum of the contribution of each q ∈ Q′θ, having
∆̇θ =

∑
q∈Q′θ

∆̇q,θ, according to [MR91, p. 385]. These components are also alien
derivations and are Galoisian, but we do not need such a refinement for Ramis
density theorem.

For picturing it geometrically, we may “blow up” the origin, substituting a disk
for it, as shown in Figure 1.1. We may understand the circle as the support of the
O0,d, and its center as the support of K̂. Figure 1.2 shows the ways of “coming
out” of the singularity and connect to the Galois groupoid. We may consider the
ends of singular directions after blowing up as singularities in the sense of the
monodromy. Indeed, as Figure 1.3 shows, the monodromy around the singularity
splits and its factors are the monodromies around the singularities in the circle

directions Stokes mentions are the so-called anti-Stokes directions.
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and around the center. The monodromy around the center represents the formal
monodromy, and the monodromy around a singularity in the circle represents
the Stokes automorphism at this direction. These geometric interpretations are
explained in [RM90, p. 181].

Figure 1.1: Blowing up the singularity.

Figure 1.2: The different ways of coming out of the singularity.

Figure 1.3: The monodromy and the extended monodromy.
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1.4.4 Density theorems

Let us study the fixed fields of the automorphisms defined above. Fixed by the
exponential torus means free of exponentials. Fixed by (1.9) means free of loga-
rithms. Fixed by (1.8) means that the only xα allowed are for α ∈ Z. Fixed by all
the Stokes automorphisms means all the power series are convergent. So, fixed by
all of them means convergent Laurent series, thus the algebraic group generated by
them is the Galois group of K̂/C({x}). These ideas prove Ramis’s local theorem,
cf. [MR91, thm. 20].

Theorem 27 (Ramis). The Galois group of a homogeneous linear differential
equation over the germs of meromorphic functions is the smallest algebraic group
containing the formal monodromy, the exponential torus and the Stokes automor-
phisms.

If we “bring” the local groups to a common point, assuming X a connected
Riemann surface, the fixed field is M(X). This is the Ramis’s global theorem,
cf. [MR91, thm. 21].

Theorem 28 (Ramis). The Galois group of a homogeneous linear differential
equation over a connected Riemann surface is generated by the local groups at all
the singularities.

The algebraic tori are connected, hence the exponential torus and the mon-
odromy one. The algebraic group Glog, isomorphic to the additive group of con-
stants, is also connected. Each Stokes automorphism is unipotent, see [MR91,
§4], and generates another algebraic group isomorphic to the additive group of
constants, and thus connected. Therefore, the monodromy group meets any com-
ponent of the Galois group.

1.5 Finding Liouvillian solutions

Liouvillian integrability is the differential counterpart of solvability by radicals, as
the following theorem states.

Theorem 29 (Kolchin). Let K be a differential field with algebraically closed
field of constants K. Let ∆ be a homogeneous linear differential equation with
coefficients in K. All the solutions of ∆ are Liouvillian over K if and only if
Gal(∆)◦ is solvable. [vdPS03, thm. 1.43]
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According to Lie-Kolchin Theorem, stated below, the solvability of Gal(∆)◦ is
equivalent to its triangularizability.

Theorem 30 (Lie-Kolchin). A solvable connected linear algebraic group is trian-
gularizable. In particular, it admits an invariant line. [Kap76, thm. 4.11]

So, if all the solutions of ∆ are Liouvillian over K, then Gal(∆)◦ has an in-
variant line of solutions Ky, for certain solution y 6= 0 of ∆. In this case, y′/y
is algebraic over K, so y is a Liouvillian solution of a very special kind. What
happens if ∆ has some non-zero Liouvillian solutions, but not necessarily all of
them? After some technicalities, this case can be reduced to the previous one,
proving the following result.

Theorem 31. Let K be a differential field with algebraically closed field of con-
stants. Let ∆ be a homogeneous linear differential equation with coefficients in K.
Let F be a Picard-Vessiot extension of K for ∆. If ∆ admits a non-zero solu-
tion Liouvillian over K, then it has a non-zero solution y ∈ F such that y′/y is
algebraic over K.

This result is assumed as known by M.F. Singer in his proof of [Sin81, thm. 2.4],
which is a stronger theorem that bounds the degree of y′/y over K in terms of the
order of ∆ alone. Next subsection is devoted to this stronger result.

1.5.1 A theorem of Singer

The following theorem about Liouvillian solutions of differential equations is the
most important for our purpose.

Theorem 32 (Singer). Let K be a differential field with algebraically closed field
of constants. Let ∆ be a homogeneous linear differential equation of order r with
coefficients in K. Let F be a Picard-Vessiot extension of K for ∆. If ∆ admits
a non-zero solution Liouvillian over K, then it has a non-zero solution y ∈ F
such that y′/y is algebraic over K of degree I(r) at most, for the function I of
Theorem 33. [Sin81, thm. 2.4]

Let P ∈ K[x] be the minimal polynomial of such a quotient y′/y. The group
Gal(∆) permutes the roots of P . The stabilizer H of y′/y has index equal to
the degree of P . We have that y is a common eigenvector of H. Conversely, if
u 6= 0 is a solution of ∆ that is a common eigenvector u of H ′ < Gal(∆) with
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[Gal(∆) : H ′] = k, then u′/u is algebraic over K of degree k. This correspondence
explains the following group-theoretical result that defines the function I.

Theorem 33 (Singer). There exists a function I : Z>0 → Z>0 such that, for
each n and any field K algebraically closed, every subgroup G of GL(n,K) with a
1-reducible subgroup of finite index admits a 1-reducible subgroup of index I(n) at
most. [Sin81, prop. 2.2]

A linear group is called m-reducible if it has an invariant subspace of dimen-
sion m. In particular, a linear group is 1-reducible if it has a common eigenvector.
The proof of Theorem 33 uses a theorem of Jordan that he proved in [Jor1877] for
a weaker version of Theorem 32.

Theorem 34 (Jordan). There exists a function J : Z>0 → Z>0 such that, for
each n, every finite subgroup G of GL(n,C) admits an abelian normal subgroup of
index J(n) at most.

Jordan’s proof does not control the growth of J . A further result of Schur’s
gives an explicit bound

JSchur(n) =
(√

8n+ 1
)2n2

−
(√

8n− 1
)2n2

,

which satisfies log JSchur(n) = O(n2 log n) asymptotically. The proof can be found
in [CR62, §36]. Blichfeldt refined the bound; in [Dor71, §30] we find

JBlich(n) = 6(n−1)(π(n+1)+1)n!,

where π is the prime-counting function, which satisfies

log JBlich(n) = O(n2/ log n).

This growth order was improved after the classification of finite simple groups.
Weisfeiler announced in [Wei84] a bound that satisfies

log JWeis(n) = O(n log3 n),

but unfortunately he disappeared in the Andes and his work kept unfinished and
unpublished.

Collins proved in [Col07] that J0(n) = (n+1)! is the optimal bound for n > 71.
It satisfies log J0(n) = O(n log n) asymptotically. This bound is achieved by the
symmetric group in n+1 elements contained in GL(n,C). The permuted elements
are e1, e2, . . . , en of the standard basis and −e1 − e2 − · · · − en.
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Remark 35. Although Jordan’s original statement is in the complex field, the only
property of C he uses is, according to [Bre11, §2], that every finite-order matrix
is diagonalizable. In particular, it is valid for any algebraically closed field K
(of characteristic 0). Other proofs and bounds are specific to the complex field;
for instance, the proof in [CR62, §36] reduces to the unitary case and the bound
computes volumes. Even the proofs and bounds that uses non-algebraic properties
of C are valid for any algebraically closed field K thanks to the following trick that
reduces to the complex field. Any given finite subgroup G of GL(n,K) is defined
over the field generated by the entries of its members. Let K0 be the algebraic
closure of this field. As K0 has a finite degree of transcendence d, it is isomorphic
to Q(X1, X2, . . . , Xd), so it can be embedded in C ' Q(Xt : t ∈ R) and thus G is
defined over C.

1.5.2 Detailed proof of Theorem 33

I shall present a proof of Theorem 33 using the same technique as Singer did, but
keeping a finer track of the bounds than he needed for JSchur. I shall start with a
weaker form of Theorem 34:

Theorem 36. There exists a function Jprim : Z>0 → Z>0 such that, for each n,
every primitive finite subgroup G of GL(n,C) admits an abelian normal subgroup
of index Jprim(n) at most.

A system of imprimitivity of a subgroup G of GL(V ) is a decomposition V =
V1⊕V2⊕ · · ·⊕Vm such that no Vi is zero and the action of G permutes the family
{V1, V2, . . . , Vm}. If G admits a system of imprimitivity with m > 1, G is called
imprimitive. If G is irreducible (its only invariant subspaces are V and 0) and not
imprimitive, G is called primitive.

The optimal value of Jprim is given in [Col08, thm.A]; it is Jprim(n) = (n+ 1)!
with the following exceptions: Jprim(2) = 60, Jprim(3) = 360, Jprim(4) = Jprim(5) =
5! 63, Jprim(6) = 7! 64, Jprim(7) = 8! 62, Jprim(8) = 10! 96, Jprim(9) = 6715 and
Jprim(12) = 13! 72. Collins’s statement is for C, but the trick in Remark 35 allows
to extend both the result and the bounds to any algebraically closed field:

Theorem 37. There exists a function Jprim : Z>0 → Z>0 such that, for each n
and any field K algebraically closed, every primitive finite subgroup G of GL(n,K)
admits an abelian normal subgroup of index Jprim(n) at most.

With Iprim = Jprim, we have a weaker version of Theorem 33:
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Theorem 38. There exists a function Iprim : Z>0 → Z>0 such that, for each n
and any field K algebraically closed, every primitive finite subgroup G of GL(n,K)
admits a 1-reducible subgroup of index Iprim(n) at most.

The bound Iprim = Jprim is too rough. According to [Cor01, Chap. 4], we have
the bounds Iprim(2) = 12, Iprim(3) = 36, Iprim(4) = 120 and Iprim(5) = 55, but
Iprim(6) > 3780. Let us assume Iprim(n) = Jprim(n) for n > 6. I shall proceed
with the proof of Theorem 33 by proving a chain of weaker versions starting with
Theorem 38.

Proposition 39. There exists a function Ifin : Z>0 → Z>0 such that, for each n
and any field K algebraically closed, every finite subgroup G of GL(n,K) admits
a 1-reducible subgroup of index Ifin(n) at most.

Proof. Let V be a system of imprimitivity of G of maximal length. Pick V0 ∈ V .
Let V ′ be the orbit of V0 by the action of G. The stabilizer H of V0 has a natural
representation H → GL(V0) given by the restriction; let K be the image of this
representation.

LetW be a system of imprimitivity of K. Pick representatives A ⊂ G of G/H,
the left cosets of H. The family W ′ = {AW : A ∈ A,W ∈ W} yields the direct
sum

⊕
W∈W ′W =

⊕
V ∈V ′ V and has #W ′ = (#V ′)(#W). Thus W ′ ∪ (V \ V ′)

is a system of imprimitivity of G of length #V + (#V ′)(#W − 1). As V has
maximal length and V ′ 6= ∅, necessarily #W = 1. Therefore, the only system of
imprimitivity of K is W = {V0}.

Suppose that K has an invariant subspace W different from 0 and V0. As K is
finite, according to Maschke’s Theorem [FH91, prop. 1.5], there is another invariant
subspace W ′ of K complementary to W . Hence we have a system of imprimitivity
{W,W ′} of K, in contradiction with the previous paragraph. Therefore K is
irreducible.

From the two last paragraphs we conclude that K is primitive. According to
Theorem 38, K admits a 1-reducible subgroup K ′ of index Iprim(dimV0) at most.
The preimage H ′ of K ′ is 1-reducible and satisfies

[G : H ′] = [G : H][H : H ′] = #(V ′)[K : K ′] 6 #(V ′)Iprim(dimV0).

The vector space spanned by V ′ has dimension #(V ′) dimV0 6 n, thus

Ifin(n) = max{rIprim(s) : rs 6 n}

makes the claim true.
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Proposition 40. There exists a function Isca : Z>0 → Z>0 such that, for each n
and any field K algebraically closed, every subgroup G of GL(n,K) with a scalar
subgroup of finite index admits a 1-reducible subgroup of index Isca(n) at most.

Proof. Let N be such a scalar subgroup of G with [G : N ] finite. Thus G′ =
(C∗G) ∩ SL(n,C) is finite. According to Proposition 39, G′ admits a 1-reducible
subgroup H ′ of index Ifin(n) at most. The group H = (C∗H ′) ∩ G is 1-reducible,
and a subgroup of G with [G : H] 6 [G′ : H ′] 6 Ifin(n), therefore Isca = Ifin makes
the claim true.

Proposition 41. There exists a function Inorm : Z>0 → Z>0 such that, for each n
and any field K algebraically closed, every subgroup G of GL(n,K) with a 1-
reducible normal subgroup of finite index admits a 1-reducible subgroup of index
Inorm(n) at most.

Proof. Let N be such a 1-reducible normal subgroup of G with [G : N ] finite. Let
V = {V1, V2, . . . , Vm} be the family of maximal eigenspaces of N , following the
terminology of [Sin81, prop. 2.2], whose sum is direct and hence

∑m
i=0 dimVi 6 n.

The left action of G permutes V because NCG. The stabilizer K of V1 contains N
and has a natural representation K → GL(V1). Let K ′ and N ′ be the respective
images of K and N . As N ′ is scalar and [K ′ : N ′] = [K : N ] if finite, according
to Proposition 40, K ′ admits a 1-reducible subgroup H ′ of index Isca(dimV1) at
most. The preimage H of H ′ is 1-reducible and satisfies

[G : H] = [G : K][K : H] = #(V ′)[K ′ : H ′],

where V ′ is the orbit of V1, hence

[G : H] 6 mIsca(dimV1).

As m dimV1 6 n,
Inorm(n) = max{rIsca(s) : rs 6 n}

makes the claim true.

Proposition 42 (=Theorem 33). There exists a function I : Z>0 → Z>0 such that,
for each n and any field K algebraically closed, every subgroup G of GL(n,C) with
a 1-reducible subgroup of finite index admits a 1-reducible subgroup of index I(n)
at most.

Proof. Let H be such a 1-reducible subgroup of G with [G : H] finite. The left
action of G permutes G/H, the left cosets of H, and gives a natural representation
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G→ Sym(G/H). Its kernel K is contained in H and is thus 1-reducible. As KCG
and [G : K] 6 # Sym(G/H) = [G : H]!, according to Proposition 41, G admits
a 1-reducible subgroup H ′ of index Inorm(n) at most. Thus I = Inorm makes the
claim true.

Tracking the bounds of the previous theorems, for any bound Iprim of Theo-
rem 38,

I(n) = max{rIprim(s) : rs 6 n} (1.11)

makes the claim of Proposition 42 true. Computing according to (1.11), we get
the following values: I(2) = 12, I(3) = 36, I(4) = I(5) = 120, I(6) = I(7) = 7! 64,
I(8) = I(9) = I(10) = 10! 96, I(11) = 12!, I(12) = I(13) = 13! 72 and I(14) = 15!.
If s 6 14 and n > 15 in (1.11), rIprim(s) 6 15! r 6 (n+ 1)!. If s > 14, rIprim(s) =
r(s+ 1)! 6 (n+ 1)!. This proves that I(n) = (n+ 1)! for n > 14.

1.5.3 A variant of Singer’s theorem

Theorem 32 is stated for differential operators, but it is valid for differential systems
in the following form, though the classic algorithms are stated for scalar equations.
As we will need in this work a precise form of this result for differential systems,
we present here a complete proof.

Theorem 43. Let K be a differential field with algebraically closed field of con-
stants. Let ∆ be an n × n explicit differential system of order r with coefficients
in K. Let F be a Picard-Vessiot extension of K for ∆. If ∆ has a non-zero
solution Liouvillian over K, then there exist an intermediate differential field F0

and a non-zero solution (y1, y2, . . . , yn)ᵀ ∈ F n of ∆ such that F0/K is an algebraic
extension of degree I(rn) at most and, for each i and j with yi 6= 0, y′i/yi ∈ F0

and yj/yi ∈ F0.

Proof. Write
∆ : y(r) = A0y + A1y

′ + · · ·+ Ar−1y
(r−1),

with A0, A1, . . . , Ar−1 ∈ Kn×n. Let u′ = Bu be the companion system of ∆, with12

u =
(
y, y′, . . . , y(r−1)

)ᵀ. By virtue of Cyclic Vector Lemma,13 u′ = Bu is equiva-
lent to a scalar equation

∆0 : v(rn) = a0v + a1v
′ + · · ·+ arn−1v

(rn−1),
12This notation is introduced on page 86 and explained in footnote 1. Here, an underlined

column vector is the (horizontal) list of its entries.
13See §1.1.4.
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with a0, a1, . . . , ar−1 ∈ K and Pu = (v, v′, . . . , v(rn−1))ᵀ.

If ∆ has a non-zero solution Liouvillian over K, the associated solution of ∆0 is
also non-zero and Liouvillian over K. According to Theorem 32, ∆0 has a non-zero
solution v0 ∈ F such that v′0/v0 is algebraic over K of degree I(rn) at most. The
differential field F0 = K(v′0/v0) is an intermediate field of F/K. Moreover F0/K is
an algebraic extension of degree I(rn) at most. By induction one may prove that
v

(k)
0 ∈ v0F0, hence the associated solution of u′ = Bu is

u0 = P−1(v0, v
′
0, . . . , v

(rn−1)
0 )ᵀ ∈ v0F

rn
0

and the associated solution y0 = (y1, y2, . . . , yn)ᵀ of ∆ belongs to v0F
n
0 .

Clearly y0 6= 0. It is easy to prove that y′0 belongs to v0F
n
0 . Therefore, for

each i and j with yi 6= 0, y′i/yi and yj/yi belong to F0.

1.5.4 Singerian solutions

I will call the solutions given by Theorem 43, which generalizes Theorem 32, Sin-
gerian solutions. These are the solutions we will look for in this thesis. In the
analytic case, the Singerian solutions have a special Fabry form

exp
(
q(x−1/p)

)
xα
(
f1(x1/p), f2(x1/p), . . . , fn(x1/p)

)ᵀ
(1.12)

with p > 0 integer, q a polynomial with q(0) = 0 and f1, f2, . . . , fn convergent se-
ries. These solutions are free of logarithms and divergent series, and have common
exponential and potential parts. The following theorem formalizes this claim.

Theorem 44. Let ∆ be an n × n explicit differential system of order r over a
connected Riemann surface X. Let us fix z ∈ X and a local chart at z, so that
Mz ' C({x}). Let K be the image of M(X) in C({x}), and F/K the Picard-
Vessiot extension for ∆ taken in the universal field extension at z defined in §1.3.1.
A Singerian solution of ∆ in F is of the form (1.12).

Proof. Let (y1, y2, . . . , yn)ᵀ ∈ F n be the Singerian solution, and i an index with yi 6=
0. In particular y′i/yi is algebraic overK, and thus over C({x}), therefore it belongs
to C({x1/pi}) for certain integer pi > 0. Decompose y′i/yi = gi− + αix

−1 + gi+
putting the terms of valuation less than−1 in gi− and the terms of valuation greater
than −1 in gi+. There exists a polynomial qi such that qi(0) = 0 and qi(x−1/pi)′ =
gi−. There exists hi ∈ C{t} such that hi(x1/pi)′ = gi+. The composition Hi =

57



exp ◦hi lies in C{t}, and Hi(x
1/pi)′ = Hi(x

1/pi) gi+. It is straightforward that
Yi = exp

(
qi(x

−1/pi)
)
xαiHi(x

1/pi) is a solution of yiY ′ = y′iY , thus Yi = βiyi for
certain βi ∈ C. As Yi 6= 0, βi 6= 0 and yi = exp

(
qi(x

−1/pi)
)
xαiHi(x

1/pi)/βi.

For each i and j such that yi 6= 0 and yj 6= 0, yi/yj is algebraic over K, and
thus over C({x}), therefore

yi/yj = exp
(
qi(x

−1/pi)− qj(x−1/pj)
)
xαi−αjHi(x

1/pi)/Hj(x
1/pj)(βj/βi),

and necessarily qi(x
−1/pi) = qj(x

−1/pj) and αi − αj ∈ Q. Let p be the common
denominator of the 1/pi and the αi−αj, and q the polynomial such that q(x−1/p) =
qi(x

−1/pi) for any i. Let α be the minimum of the αi. For each i, we may write
yi = exp

(
q(x−1/p)

)
xαfi(x

1/p) for certain fi ∈ C{t}.

It suffices to find a single non-zero Liouvillian solution because the classic
d’Alembert reduction method reduces the problem to lower order. For a solution
f 6= 0 of a scalar equation

ary
(r) + ar−1y

(r−1) + · · ·+ a0y = 0,

we apply the change of variable y = f
∫
u and get

br−1u
(r−1) + br−2u

(r−2) + · · ·+ b0u = 0.

Notice that, if a0, a1, . . . , ar lie in a differential field K, then b0, b1, . . . , br−1 lie in
F = K(f ′/f). If f is a solution given by Theorem 32, then F/K is an algebraic
extension of degree I(r) at most. A generalization for differential systems is found
in [CL72, pp. 71–73]. For a system y′ = Ay, with A ∈ Kn×n, and a particular
solution f = (f1, f2, . . . , fn)ᵀ, with f1 6= 0,14 the reduced system u′ = Bu has
B ∈ F (n−1)×(n−1) with

F = K(f2/f1, f3/f1, . . . , fn/f1).

If f is a Singerian solution, then F/K is an algebraic extension of degree I(n) at
most.

1.5.5 Review of classic methods on Liouvillian solutions

The first complete algorithm for computing the Liouvillian solutions of a differen-
tial equation is Kovacic’s, published in [Kov86], valid for second-order equations

14If f 6= 0 but f1 = 0, we reorder the variables, so we proceed without loss of generality.
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over the Riemann sphere. Kovacic algorithm relies on the classification of the
subgroups of SL(2,C), which is finer than the value I(2) = 12. If a second-order
equation have non-zero Liouvillian solutions, it has a solution y 6= 0 with y′/y an
algebraic function of degree 1, 2, 4, 6 or 12. The Kovacic algorithm tries sequen-
tially these options. It computes all the possible principal parts of the coefficients
of the minimal polynomial of y′/y at all the singularities of the equation and tries
to glue them into a minimal polynomial.

An alternative to Kovacic algorithm is Ulmer-Weil’s, published in [UW96],
valid for the same kind of equations. Ulmer-Weil algorithm uses the symmetric
powers of the differential operator. The m-th symmetric power of a differential
operator L is another operator Lsm whose solution space is spanned by the prod-
ucts y1y2 · · · ym of solutions yi of L. If a second-order operator L have non-zero
Liouvillian solutions, either it has a solution y 6= 0 with y′/y a rational function
or Lsm has a rational solution for m ∈ {1, 2, 4, 6, 8, 12}. A rational solution of
Lsm gives a solution of L algebraic of degree m. The advantage of this method is
that it reduces the problem of finding Liouvillian solutions almost to the problem
of finding rational solutions of linear differential equations.

Theorem 32 is proved in [Sin81] as an auxiliary result for an algorithm for
computing the Liouvillian solutions of a differential operator L of any order r
over rational functions. Singer algorithm uses the symmetric powers Lsm up to
m = I(r). There are algorithms fit to third-order equations, and [Cor01] makes
feasible algorithms for order 4 and 5, but the bound Iprim(6) > 3780 leads to a
symmetric power of order greater than 1015.

All these algorithms are completely algebraic and implementable in symbolic
computation. The aim of this thesis is to give an algorithm for computing the
Liouvillian solutions of an explicitable differential system over the Riemann sphere
of any order and size. This algorithm will not use symbolic computation alone,
but a symbiosis of symbolic computation and exact numerics as explained in the
following chapters.

HERE ENDETH THE FIRSTE CHAPTER z
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Chapter 2

Effective numerics

The framework of this thesis is hybrid numeric-symbolic computation, which com-
bines symbolic computation with “exact” numerical computation in a way that will
be described in the following chapters. This chapter is devoted to introduce the
second ingredient, effective numerics, including some details of its implementation
in C++. Likewise, we shall study certain problems that are source of difficulties
we will have to deal with in the following chapters. These problems come from
the computation of the rank of a complex matrix and from the computation of the
rank over Q of a subset of C, including a test of rationality. We shall study the
direction of the errors (from above or from below) we will have to deal with in the
rest of this work.

In the first section I introduce the effective complex numbers, their implemen-
tation and their operations. The second section is devoted to the computation
of the Ramis generators of the Galois groups of a differential equation or system,
including the effective numeric methods necessary for such a computation. Then
I study the errors of the computation of the rank over C (§2.3) and over Q (§2.4).
In the last section I discuss the global parameter introduced in this chapter and
give a framework for the global parameters to be introduced in the following chap-
ters. These considerations will be necessary in §4.5, where we will study the main
algorithm of this thesis.
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2.1 Effective complex numbers

In this section, I shall introduce effective complex numbers after some consider-
ations on arbitrary precision and object-oriented programming. Then I continue
with the operations with such numbers, including the computation of roots of
polynomials.

2.1.1 Arbitrary precision

The usual computational implementation of arithmetic is in hardware. This imple-
mentation is efficient but fixed-precision. The implementation of natural numbers
is straightforward in a binary computer. With a fixed precision of n bits, one
represent the numbers from 0 through 2n − 1. The computations are exact if the
result is less than 2n; otherwise there will be an error. The device of [Luc10, cap. 7]
and [Wel01] allows us to implement arbitrary-precision numbers by software. The
idea is using a pair (n, v) with v = (v0, v1, . . . , vn−1). Both n and each vi are
numbers implemented by hardware. In the programming language C,1 n would
be of type size_t and v an array of unsigned int. Mathematically speaking,
this device limits the size of the numbers, but this size bound is the restriction
for allocatable memory, so we would get a “run out of memory” message before
reaching it. The arithmetic of unbounded natural numbers may be implemented
in a Turing machine.
Remark 45. A historical note:
This device of extending fixed-precision integer arithmetic is found in Archimedes’s Sand-Reckoner.2
In this case, the fixed precision of the Greeks was eight decimal digits, which Archimedes called
the first order. He defined the nth order whose unit is 108 units of the (n − 1)th order. Each
order ranged from 1 to 108 of its units. This way he developed a system of numeration in base
108. Archimedes admitted up to 108 digits in base 108, which he called the first period. He went
further, defining the nth period with unit 108 units of the 108th order of the (n − 1)th period,
up to 108 periods. As one may observe, the number 108 is a limitation everywhere, requiring a
new implementation for each new extension.

This idea is also behind our systems of naming the numbers. The short scale (billion=109)
uses a base 103, the thousand being the unit of the second order and so on. The long scale
(billion=1012) uses a base 106, the million being the unit of the second order and so on.

In our case, the limitation is the number of bits the computer may compute with. The
number n in (n, v) plays the role of Archimedes’s order, so we are limited to the analog of his first
period. With unrestricted allocatable memory, we could extend with a suitable implementation

1The programming language C is standardized by ISO/IEC 9899, latest version [ISO11b].
2See [AH1897] for an English translation and [AOG05] for a Spanish one.
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to Archimedes’s periods and higher levels. Knuth explores in [Knu81b] the binary representation
of arbitrarily long numbers by codifying the level (order, period or higher) in a prefix.

Representing integer numbers reduces to representing natural numbers reserv-
ing a bit for the sign. Rational numbers reduces to numerator and denominator.
Their arithmetic and zero-testing are exact. Real numbers are approximated with
floating-point numbers, the numbers of finite binary expression. The usual im-
plementation in hardware of floating point numbers is the standard IEEE 754,
see [IEE08]. A bit field (S,E,M) with 1 bit for S, A bits for E and B bits for M
represents the number (−1)S(1 + M2−B)2E−2A−1+1 generically. There are excep-
tions for representing zero, infinity, NaN (“not a number”) and too small numbers
(subnormal numbers). The constants A and B depend on the precision. The
standard IEEE 754 defines single-precision (float in C) with A = 8 and B = 23,
and double-precision (double in C) with A = 11 and B = 52. The data types
defined in the standard IEEE 754 are usually implemented by hardware, so their
arithmetic is efficient. There are generalizations of these types implemented in
software; see [vdH06a] and [vdH06b]. Example 46 shows how the arithmetic of
fixed-precision floating-point numbers is not associative. So, for exact arithmetic,
we need a data type with A and B variable in the same way we did for natural
numbers.

- - - -� � � �most significant byte least significant byte

0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

S E M
-� -� -�

Figure 2.1: The number 2100 + 280 represented in single precision.

Example 46. Figure 2.1 shows the number a = 2100 + 280 in single precision. The
number 260 is negligible compared to a, despite being greater than a 1018, so that
a+ 260 yields a. Thus, the sum 260 +a− 2100 yields 280 if arranged (260 +a)− 2100,
but the correct sum if arranged 260 + (a− 2100).

The usual way of doing numerical computations is using fixed-precision floating-
point arithmetic as if it were exact, which gives rise to several important problems
for our purposes, as the non-commutativity and non-associativity of the floating-
point arithmetic. A better way of doing numerical computations is carrying a
bound of the error in the data type. For real numbers this style is called inter-
val arithmetic and it is generalizable to the complex numbers, see [vdH06a] and
[vdH06b]. This style computes the error a posteriori: given data z1, z2, . . . , zn and
error bounds δ1, δ2, . . . , δn, we compute ε such that∣∣f(z1, z2, . . . , zn)− f(w1, w2, . . . , wn)

∣∣ < ε (2.1)
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if |zi−wi| < δi for each i. The definition of continuity suggests the opposite: given
data z1, z2, . . . , zn and an admissible error bound ε, we compute δ1, δ2, . . . , δn such
that (2.1) holds if |zi − wi| < δi for each i. This a-priori way requires computing
backwards, which is not the usual way of doing computations, but makes sense in
object-oriented programming.

2.1.2 Object oriented programming

I shall introduce some basic concepts of object-oriented programming, see [Arm06],
with examples in C++.3 Class is a generalization of data type. Object is a
generalization of variable. An object is an instance of a class. The definition of a
class T is a declaration of variables x, y, . . . , z and functions f, g, . . . , h. An object a
of this class is a capsule (see encapsulation) containing variables a.x, a.y, . . . , a.z of
the declared data types, which may be other classes, and functions a.f, a.g, . . . , a.h
of the declared input and output. The definition of T declares the visibility (see
information hiding) of each member variable or function, which may be public
or private. A public member variable or function can be accessed anywhere. A
private member variable or function of a can be accessed by a.f, a.g, . . . , a.h and
are hidden elsewhere. The functions T::f,T::g, . . . ,T::h may be defined globally to
the class T or some of them may be declared virtual and kept undefined. In the
latter case, T would be a abstract class. The purpose of abstract classes is being
base classes for inheritance, as described below.

Example 47. Simulating mechanics, it might be useful to have a class RigidBody
with public member functions for the center of mass, position, linear and angular
momentum and the like. As the formulae are different for the different body shapes,
we would need different definitions for these shapes, thus RigidBody would be an
abstract class. Classes SolidSphere, HollowSphere, SolidCylinder and the like would
be declared with RigidBody as base, inheriting its member variables and functions.
The classes like SolidSphere would define the virtual functions of RigidBody. An
instance of SolidSphere would an instance of RigidBody. One might create objects
of type SolidSphere, but not of type RigidBody. All the instances of RigidBody
would be instances of SolidSphere, HollowSphere, SolidCylinder or the like. The class
RigidBody would allow us to handle at once all the formulas that are independent
of the shape of the body.

Remark 48. C++ is so strict that does not allow objects of type RigidBody, nei-
ther a declaration void f(RigidBody b). The handling of objects as RigidBody,
forgetting the non-common features, is done with pointers. A pointer p of type

3The programming language C++ is standardized by ISO/IEC 14882, latest version [ISO11a].
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RigidBody* may point to an instance of any derived class. The type of the object
*p is known at run time, so it is not allowed in the code. Instead of (*p).mass(),
C++ allows p->mass() for the handling.

Example 47 contains the idea of the device used in [vdH06a] for defining ef-
fective real numbers. The same way, we may define effective complex numbers as
an abstract class Complex with a virtual member function approx with input a tol-
erance ε and output an ε-approximation to the value of the represented complex
number. If a represents the number a, |a.approx(ε) − a| < ε for any ε > 0. If
mpfpc is a class for multiple-precision floating-point complex numbers that could
represent (Z + Zi)2Z if we had enough allocatable memory, we could declare the
base class Complex_base the following way:

class Complex_base {
public:
virtual mpfpc approx(mpfpc)=0;

};

We may define an immediate derived class of Complex_base as a wrapping of
mpfpc for a complex number that is known exactly.

class Complex_mpfpc:
public Complex_base

{
private:
mpfpc a;
public:
mpfpc approx(mpfpc epsilon)
{ return a; }

};

For the user we define a wrapper Complex of a pointer to Complex_base.

class Complex {
private:
Complex_base* pointer;
public:
Complex(Complex z):
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pointer(z.pointer) {}
mpfpc approx(mpfpc epsilon)
{ return pointer->approx(epsilon); }

};

For the sum we define a derived class Complex_sum in the following way.

class Complex_sum:
public Complex_base

{
private:
Complex_base *a, *b;
public:
Complex_sum(Complex_base* p, Complex_base* q):

a(p), b(q) {}
mpfpc approx(mpfpc epsilon)
{ return a->approx(epsilon>>1) + b->approx(epsilon>>1); }

};

Notice that we use the bit shift epsilon>>1 instead of epsilon/2 because the
former is exact. As we will see soon, the division in mpfpc yields a result outside
mpfpc.

2.1.3 Operations

Using the class Complex_sum, we may define the operation + in the following way.

Complex Complex::operator+(Complex z) {
Complex w;
w.pointer=new Complex_sum(pointer,z.pointer);
return w;

}

Notice that this device generates a lot of garbage, so we need to provide a garbage
collector. Such a garbage collector may be using C++ smart pointers instead of
raw pointers.
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In a similar way we may define classes and operations for the substraction,
multiplication and the like. The formulas like

(z + w).approx(ε) = z.approx(ε/2) + w.approx(ε/2)

are those used for proving the continuity of the operation, like

(z ∗ w).approx(ε) = z.approx(δ) ∗ w.approx(δ)

for δ = min

{
1,

ε∣∣z.approx(1)
∣∣+
∣∣w.approx(1)

∣∣+ 3

}
.

If a represents the number a, for δ > 0, it may happen |a.approx(δ)| 6 δ
or |a.approx(δ)| > δ. The function given by f(z) = 1/z transforms the disk
B(a.approx(δ), δ) into an unbounded region in the former case (see Figure 2.3)
and into a disk in the latter (see Figure 2.2).4 If we take δ < |a|/2, then
|a.approx(δ)| > δ, but we do not know a lower bound for |a|. Moreover, we
can only certify that a = 0 after infinitely many tests |a.approx(δn)| 6 δn with
limn→∞ δn = 0, never after finitely many. Therefore, the division in Complex can-
not be completely implemented. It may happen an error if the divisor is too close
to zero, similar to the usual “division by zero” error.

0

δ

a.approx(δ)

a?
0

1/a.approx(δ) δ/(a.approx(δ)2 − δ2)

1/a?

Figure 2.2: Case |a.approx(δ)| > δ.

Let tol be a global variable of type mpfpc; we will consider that a is too close
to zero if |a.approx(tol)| 6 tol. The division will be implemented only for divisor
not too close to zero, happening the error “divisor too close to zero” otherwise. In
this case, if the division in mpfpc were exact,

(1/a).approx(ε) =
a.approx(tol)

|a.approx(tol)|2 − tol2
for ε >

tol

|a.approx(tol)|2 − tol2

would be enough. Let us define a class for the division in mpfpc:

41/B(a, δ) = B

(
a

|a|2 − δ2
,

δ

|a|2 − δ2

)
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class Complex_div_mpfpc:
public Complex_base

{
private:
mpfpc a, b;
public:
Complex_div_mpfpc(mpfpc x, mpfpc y):

a(x), b(y) {}
mpfpc approx(mpfpc);

};

Then we may define

(1/a).approx(ε) =
(
a.approx(tol)

/(
|a.approx(tol)|2 − tol2

))
.(ε/2)

for 2 ∗ tol 6 ε ∗
(
|a.approx(tol)|2 − tol2

)
. (2.2)

If (2.2) does not hold, we define

η =
|a.approx(tol)| − tol

2
.

If δ < η, the distance between the disk U = B(a.approx(δ), δ) and the origin is
greater than η. The function given by f(z) = 1/z transforms U into another disk.
For any z, w ∈ U we have∣∣f(z)− f(w)

∣∣ =

∣∣∣∣1z − 1

w

∣∣∣∣ =
|z − w|
|z||w|

<
2δ

η2
,

thus the diameter of f(U) is 2δ/η2 at most. Hence, if δ < εη2/2, the radius of
f(U) is smaller than ε/2. Therefore, we may define

(1/a).approx(ε) =
(
a.approx(δ)

/(
|a.approx(δ)|2 − δ2

))
.(ε/2)

for δ < min{η, εη2/2}.

0
δ

a.approx(δ)

a?

0

1/a.approx(δ)

1/a?

Figure 2.3: Case |a.approx(δ)| 6 δ.
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This completes the elementary operations in Complex and proves that the effective
complex numbers form a field.

2.1.4 Roots of polynomials

The survey [Pan97] describes different methods for approximating the roots of a
polynomial at desired accuracy. Such methods start with a slow but warranted
method like quadrisection or splitting circle for isolating the roots and then apply
a fast iterative algorithm like Newton-Raphson or Weierstrass-Durand-Kerner for
refining the roots. These iterative refining methods are used once the conditions
for their convergence hold. Newton-Raphson refines each root independently, while
Weierstrass-Durand-Kerner approximates all the roots simultaneously. For a sur-
vey on refining methods, see [MP12]. The complexity of such a hybrid algorithm
is the complexity of the last stage (refining) method. This is like the classification
of Iberian pork according to the dark pig’s diet: what matters is its last-stage
(fattening) diet and not the diet of the previous stages.

The quadrisection method was proposed by H. Weyl in [Wey24, part II], a
constructive proof of the Fundamental Theorem of Algebra. He began with a
square containing all the roots of the polynomial P and successively divided it
into four equal subsquares, discarding the subsquares without roots. In order to
count the roots in a square S, he used

∫
∂S
P ′/P = 2πi#(P−1(0) ∩ S). In [Pan00]

V.Y. Pan combines Weyl’s algorithm with a result of P. Turán (Theorem 49) and
a modified Newton-Raphson iteration. A variant of this method will be explained
below.

The splitting circle method was introduced by A. Schönhage in the seminal
preprint [Sch82]. This method looks for a circumference without roots separating
roots inside the circle and roots outside, in a way as close to half and half as
possible. Then we reconstruct the factor corresponding to the inner roots by
means of the values

∫
∂C
P ′xk/P = 2πi

∑
z∈P−1(0)∩C z

k, where P is the polynomial
to factor and C the splitting circle. In order to compute numerically these integrals
we need a wide annulus around the splitting circumference without roots. If the
annulus is narrow, we can widen it by means of the Graeffe transformation P (x) 7→
P (
√
x)P (−

√
x), which squares the roots.

Using the methods above, one may approximate the roots of a polynomial at
desired accuracy, so the effective complex numbers form an algebraically closed
field. The class declared below implements the root in C = B(center, radius) of a
polynomial with coefficients in Complex, provided that there is only one root inside
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the disk. The approximations can be done by Newton-Raphson method provided
radius is small enough so that the bounds of [Sma86] hold. Another method that
is effective for any radius but maybe less efficient is the integral 1/(2πi)

∫
∂C
P ′x/P ,

which can de computed by the techniques of §2.2.2.

class Complex_root_poly:
public Complex_base

{
private:
size_t degree;
Complex_base* coeff[];
mpfpc center, radius;
public:
mpfpc approx(mpfpc);

};

The problem with this is that distinguishing between a multiple root and a cluster
of roots requires exact computations. This can be done for isolating the singu-
larities of the differential equation, but not for the eigenvalues of a monodromy
matrix.

Let us consider the quadrisection method, which is based on the following
result.

Theorem 49 (Turán). For a given polynomial P ∈ C[x] and m ∈ Z we may
compute δ such that 0 6 δ 6 min{|λ| : P (λ) = 0} 6 51/2mδ. [Tur75, §6]

The bound δ is computed by effective operations with effective complex num-
bers, which involve m iterated Graeffe transformations, solving a triangular linear
system given by Newton’s identities and a maximum of roots of moduli of these so-
lutions modified, so δ is an effective complex number. Turán proposes this bounds
for his algorithm [Tur75, §8] of approximating a root of a given polynomial, at
desired accuracy, but only one root at a time. Turán’s article [Tur75] provides
versions of Theorem 49 for the eigenvalues directly from the matrix, but he does
not provide proofs, which can be found in other of his works. Other authors, like
[Buc67], provide similar bounds and prove them.

This algorithm proceeds by quadrisection of a candidate square, computing
Turán’s bound for the distance of the roots from the center of each subsquare. If
Turán’s bound is greater than the distance to the vertices, considering the error
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margin, we know for sure that there is no root in this square, and hence we discard
it. Otherwise, there may be a root in the candidate square or there may not, but
in the latter case there must be a root in any of its 8 surrounding squares. So,
contrary to bisection method in the real line, a candidate square may contain
no root. Hence our approximations will be connected components of candidate
squares.

The initial square containing all the roots of P = a0 + a1x+ · · ·+ anx
n can be

computed, after centering on the barycenter for convenience, by applying Theo-
rem 49 to an+an−1x+ · · ·+a0x

n, whose roots are the inverses of the roots of of P .
We may not know the number of roots in a given square, but we may count the
number of roots in a connected component of candidate squares. This reduces to
the computation of an integral around the component, which may be done using
the techniques of §2.2.2. With these integrals one may may split P and proceed
with each factor. Thus we may implement a quadrisection solver

class Polynomial_solver {
private:
size_t degree;
Complex_base* coeff[];
public:
mpfpc approx(size_t,mpfpc);

};

where approx(i, ε) gives the ε-approximation of the i-th root. The solver assigns to
each component as many indices as roots it contains. When the quadrisection splits
a component, its indices are distributed among the new components contained in
it. This allows the following implementation of the roots of a polynomial with
effective coefficients.

class Complex_root_poly:
public Complex_base

{
private:
size_t index;
Polynomial_solver* solver;
public:
mpfpc approx(mpfpc epsilon)
{ return solver->approx(index,epsilon); }

};
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2.2 Generators of the differential Galois group

In order to compute the Ramis generators of the differential Galois group (§2.2.4),
I shall review how to compute a fundamental system of solutions at a singular
(§2.2.3) and at a non-singular point (§2.2.1), and how to analytically continue the
latter (§2.2.2). In principle we should compute all the Ramis generators, but in
Chapter 3 we will take the eurymeric closure of the Galois group, and the identity
component of a eurymeric group is broad, which means that it is the non-singular
part of the Lie algebra. As the algebraic tori are connected, it is safe to take
their broad hull, since we will take it anyway in the algorithm for the eurymeric
closure. As the Stokes and logarithm automorphisms are unipotent, they belong
to the identity component and has 1 as only eigenvalue, so it is safe to reduce the
space of solutions to those invariant by these automorphisms, since we keep the
Singerian solutions. Once in a Stokes-free and logarithm-free subspace, we may
compute the analytic monodromy and the torus of the monodromy instead of the
formal monodromy. See Chapter 3 for the details.

2.2.1 Solutions at a non-singular point

Let us consider an explicitable system of higher order differential equations

Ar(x)y(r) + Ar−1(x)y(r−1) + · · ·+ A0(x)y = 0, (2.3)

where A0(x), A1(x), . . . , Ar(x) ∈ C[x]n×n. Let z0 be a non-singular point of (2.3),
which means det Ar(z0) 6= 0. The power-series solutions of (2.3) are of the form
y =

∑∞
k=0 yk(x−z0)k, with y0, y1, . . . , yr−1 ∈ Cn freely chosen and the remaining

yk determined by recurrence. This yields nr linearly independent solutions, a
fundamental system. These power series are convergent. We shall compute the
recurrence and a majorizing geometric series.

Substituting y =
∑∞

k=−∞ yk(x− z0)k into (2.3), we get

r∑
i=0

m∑
j=0

∞∑
k=0

1

j!

( i∏
l=1

(k − j + l)
)
A

(j)
i (z0)yk−j+i(x− z0)k = 0,

with m the maximum of the degrees of the entries of the Ai. Hence

r∑
i=0

m∑
j=0

1

j!

( i∏
l=1

(k − j + l)
)
A

(j)
i (z0)yk−j+i = 0 (2.4)
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for every k, which is a recurrence equation for yk. From (2.4) we may isolate

(k + r)!

k!
Ar(z0)yk+r = . . .

and, as Ar(z0) is invertible, we get an explicit recurrence yk+r = . . . for k > 0.
This recurrence yields the companion recurrence uk+1 = C(k)uk, with

uk =


yk
yk−1
...

yk−m−r+1

 , C(k) =


B1(k) B2(k) . . . Bm+r−1(k)
I

. . .
I O


and lim

k→∞
Bj(k) =

−1

j!
Ar(z0)−1A(j)

r (z0).

As C(k) has a finite limit, taking a bound ‖C(k)‖∞ 6 µ, we have ‖uk‖∞ 6
µk−r+1‖ur−1‖∞, thus uk (and hence yk) grows in ∞-norm as a geometric pro-
gression at most.

The previous paragraph is a constructive proof that
∑∞

k=0 yk(x−z0)k is conver-
gent. This method is used in [vdH99] for scalar equations, and allows to explicitly
compute for a given µ > 1/ρ, with ρ the distance to the closest singularity, a λ > 0
such that the geometric progression (λµk)∞k=0 majorizes

(
‖yk‖∞

)∞
k=0

. This allows
to bound the rest of the series,∥∥∥∥∥

∞∑
k=N+1

yk(z − z0)k

∥∥∥∥∥
∞

6
λ

1− µ|z − z0|
(
µ|z − z0|

)N+1. (2.5)

So, given ε > 0 and z ∈ B(z0, 1/µ), computing N large enough that the right hand
side of (2.5) is less than ε, then the sum f of

∑∞
k=0 ykx

k satisfies∥∥∥∥∥f(z)−
N∑
k=0

yk(z − z0)k

∥∥∥∥∥
∞

< ε.

A fast way of computing this partial sum is also given in [vdH99].

In general,5 the rest RN =
∑∞

k=N+1 yk(x− z0)k satisfies∥∥∥R(i)
N

∥∥∥
∞
6 h

(i)
N

(
|z − z0|

)
for hN(x) =

λ

1− µx
(µx)N+1.

5J. van der Hoeven does not need this generalization for scalar equations, but it is necessary
when A0 is not invertible.
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So, given ε > 0 and z ∈ B(z0, 1/µ), computing N large enough that h(i)
N

(
|z|
)
< ε,

we have ∥∥∥∥∥f (i)(z)−
N∑
k=0

k(k − 1) · · · (k − i+ 1)yk(z − z0)k−i

∥∥∥∥∥
∞

< ε.

2.2.2 Effective analytic continuation

Let us define a class System for implementing a system like (2.3):

class System {
public:
size_t size, order;
Matrix<Complex> coeff[];

};

A solution of (2.3) at a non-singular point is determined by the point and the initial
values. It will be only necessary to consider solutions at points representable by
floating-point numbers.

class Solution {
public:
System system;
mpfpc point;
Vector<Complex> ini[];
Solution cont(mpfpc);
Solution cont(Path);

};

If f is the solution, then ini[i] = f (i)(point). The function Solution::cont(mpfpc) per-
forms the analytic continuation within the disc of convergence, using the method
described in §2.2.1 or subdividing when necessary. The class Path represents a
broken-line path avoiding the singularities. The function Solution::cont(Path) sub-
divides the input path and invokes Solution::cont(mpfpc). Starting with a funda-
mental system of solutions, we may compute the generators (of type Matrix〈Complex〉)
of the monodromy group Mon(S, z). For a detailed description on the implemen-
tation issues, see [vdH05].
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2.2.3 Formal solutions at a singularity

As explained in §1.2.2, a scalar differential operator

L = ar(x) ∂rx + ar−1(x) ∂r−1
x + · · ·+ a0(x),

with a0, a1, . . . , ar polynomials, has a complete system of solutions of the form

exp
(
q(x−1/p)

)
xα

∞∑
k=0

r∑
i=0

ykix
k/p logi x

with p the ramification index and q a polynomial with q(0) = 0. The set of the
q(x−1/p), which is an invariant of the equation, can be computed symbolically as
described in [DDT82]. For each q, applying the substitution ∂x 7→ ∂x+∂x

[
q(x−1/p)

]
to L we get a differential operator Lq such that exp

(
q(x−1/p)

)
y is a solution of L

if and only if y is a solution of Lq.

The problem is thus reduced to computing the solutions of the form

xα
∞∑
k=0

r∑
i=0

ykix
k/p logi x

of Lq = br(x
1/p) ∂rx + br−1(x1/p) ∂r−1

x + · · ·+ b0(x1/p),

which is done with the classic Frobenius method described in [DT81]. In particular,
this method computes symbolically the α. All the process is explained in [Tou87],
refined in [Bar89, ch. 2] and [vH96, ch. 2].

Substituting x = tp and ∂x = (t1−p/p) ∂t in Lq, we get an operator whose
coefficients are polynomials in t and t−1. Multiplying by the minimal suitable
power of t we get an operator Lq0 whose coefficients are polynomials in t. For each
α, applying the substitution ∂t 7→ ∂t + αp t−1 to Lq0 we get a differential operator
Lqα such that xαy is a solution of Lq if and only if y is a solution of Lqα. Notice
that the computation of Lqα is also valid for matrix coefficients.

For differential systems one can apply Cyclic Vector Lemma, explained in
§1.1.4, but this may yield an equation with too large coefficients, as shown in
[Hil87, §2.5], hence methods working with the differential systems are preferred.
Let us consider a differential system xgy′ = A(x) y with A an n × n matrix of
convergent power series, which may be the companion system of the explicit form
of a system of higher order differential equations. Turrittin’s proof [Tur55] gives
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a procedure to compute the ramification index p, the n× n matrices L and Q and
any term Hk of the fundamental matrix solution( ∞∑

k=0

Hkx
k/p
)
xL exp

(
Q(x−1/p)

)
of Hukuhara-Turrittin theorem. This procedure has been refined as exposed in
[Was76] or [Bal00, ch. 3]. A more efficient alternative is exposed in [Bar97] using
[Mos60].

In both cases, scalar and systems, we can compute the pairs (q, α) such that
xα exp

(
q(x−1/p)

)
appears in the formal solutions.

2.2.4 The local Galois group at a singularity

Let L be a differential operator over C[x]n×n with a singularity at the origin,
with ramification index p. Our objective is to bring the local Galois group to a
non-singular point. As we are only interested in Singerian solutions, according to
Theorem 44, we may restrict the group to the invariant subspace of solutions of
the form

exp
(
q(x−1/p)

)
xα
(
f1(x1/p), f2(x1/p), . . . , fn(x1/p)

)ᵀ
with f1, f2, . . . , fn convergent series and q a polynomial with q(0) = 0. These
solutions are fixed by the Stokes automorphisms and by the group Glog described
in §1.4.1.

Let µ be the monodromy around the origin based at a near non-singular point
z0 > 0. The space V = ker(µp−id) contains the solutions we look for. As described
in §2.2.3, we may compute the set of all the admissible pairs (q, α). Let fqα be
the function corresponding to exp

(
q(x−1/p)

)
xα in the principal determination of

the logarithm for each admissible pair (q, α). As explained in §2.2.3, f−1
qα V is a

subspace of solutions of Lqα. A solution g ∈ f−1
qα V defines a p-ramified function at

the origin precisely if ∫
p(z0	0)

g(z)zk/pdz = 0

for any integer k > 1−p, where p(z0	0) means p times the loop z0  z0 around the
origin counterclockwise. The proof requires considering the Laurent expansion of g
unramified. These integrals can be computed by analytic continuation as described
in §2.2.2, and it is not necessary to loop p times, but raise the monodromy matrix
to the p-th power. This way, after computing infinitely many integrals, we get the
part Wqα of f−1

qα V that defines p-ramified functions. Thus the solutions we look
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for are spanned by fqαWqα. In these bases the expression of the exponential and
potential tori is simple, but it requires linear algebra over Q in order to compute a
basis of exponential parts. The so-called broad hull of an algebraic torus is another
torus but simpler to compute, as described in Example 59. In such a computation
we only need to recognize exponential parts that are equal, something feasible
since the exponential parts are computed symbolically.

The only drawback of the procedure described in the previous paragraph is
that we need to compute infinitely many integrals, something unavoidable except
if certain coefficients have a particular form that leads to a recurrence for the
involved Laurent series, as described below. What we can do is to compute an
approximated Wqα, checking only |integral(k).approx(tol)| 6 tol for 0 6 k 6 K for
certain K global as tol. This requires only a finite computation.

One of these exceptions that leads to a recurrence for the aforesaid Laurent
series is when the infinity is a non-singular point of the equation, which is a case
general enough6 to be considered in detail. Let us assume that g is unramified and
a solution of the equation

A0(x)y + A1(x)δxy + · · ·+ Ar(x)δrxy = 0, (2.6)

with A0(x), A1(x), . . . , Ar(x) ∈ C[x]n×n and δx = x∂x the Euler derivation. Let m
be the maximum of the degrees of the entries of the Ai(x), so we have

Ai(x) = Ai0 + Ai1x+ · · ·+ Aimx
m

with Aij ∈ C. At infinity, with t = x−1, the equation (2.6) is transformed into

tmA0(t−1)y − tmA1(t−1)δty + · · ·+ (−1)rtmAr(t
−1)δrt y = 0,

where the coefficient of δrt y takes the value (−1)rArm at t = 0. The equation (2.6)
being non-singular at infinity is equivalent to det Arm 6= 0.

A solution of (2.6) of the form
∑∞

k=−∞ ykx
k yields the recurrence( r∑

i=0

Aimk
i
)
yk = · · · (2.7)

with the r.h.s. involving yl for k < l 6 k + m. Considering B(x) =
∑r

i=0 Aimx
i,

the recurrence (2.7) can be written as B(k)yk = · · · . As limk→−∞ k
−rB(k) = Arm,

if det Arm 6= 0, there is k0 such that det(k−rB(k)) 6= 0 for k 6 k0, so det B(k) 6= 0

6Not only is it a generic case, but also any explicitable equation can be transformed into one
of this case by means of a Möbius transformation.
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and thus the recurrence (2.7) works. Moreover, det B(x) 6≡ 0, thus we can compute
such a k0 by bounding the negative integer roots of det B(x). Hence, in order
to prove that g =

∑∞
k=−∞ ykx

k is holomorphic at the origin it suffices to prove
y−1 = y−2 = · · · = y−m = 0 and that yk = 0 for k < 0 with det B(k) = 0, finitely
many computations.

2.3 Rank over the complex field

The rank over C of an m×n matrix is generically r = min{m,n}. Let Vi ⊂ Cm×n

be the vanishing set of the minors of order i, for 1 6 i 6 r. This defines a chain of
algebraic varieties V1 ⊂ V2 ⊂ · · · ⊂ Vr+1, with Vr+1 = Cm×n, such that Vi+1 \ Vi is
the set where the rank is i, with V0 = ∅. In a neighborhood of a given matrix of
rank s (in the usual topology) there will always be matrices of rank t for any t > s.
Matrices of rank t < s are avoided by taking the neighborhood small enough, but
matrices of rank t > s are unavoidable.

A way for computing the rank is evaluating the minors of order r, then the
minors of order r−1 and so on, stopping when one of these minors does not vanish;
the rank is the order of such a minor. Working with effective complex numbers
we need to choose ε > 0 and use the condition |minor.approx(ε)| 6 ε instead of
minor = 0. This approximated rank may be less than the exact one, but not
greater. For ε small enough, the rank is computed exactly, but we do not know
beforehand how small it is necessary.

Using minors is illustrative but far from the best way of computing the rank.
Gaussian reduction is more efficient, and the reduced matrix may be useful for
another purpose. An m×n matrix M represents a linear mapping Cn → Cm, which
determines two vector subspaces: the kernel ker M ⊂ Cn and the image img M ⊂ Cm.
They correspond to the implicit and the parametric equations respectively. The
reduction by rows keeps the kernel invariant, while the reduction by columns keeps
the image invariant, thus we will use the suitable style of Gaussian reduction.

Carrying out Gaussian reduction of a matrix, in each step, we have to choose
a pivot among a few candidates. In the following example of reduction by rows

1 ∗ ∗ ∗
0 ~ ∗ ∗
0 ~ ∗ ∗
0 ~ ∗ ∗


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the candidates are circled. It suffices to choose any nonzero candidate, but working
with effective complex numbers this is undecidable. As the pivot is used as a
denominator, we need to choose a pivot not too close to zero. If all the candidates
are too close to zero, we cannot decide if there is a nonzero one, so the algorithm
fails.

Let us consider the following variation of Gaussian elimination.

template<class T>
size_t Matrix<T>::reducebyrows

(size_t pivotrow[], size_t pivotcol[])
{

size_t npivots=0;
while(newpivot(pivotrow,pivotcol,npivots)) {

for(size_t i=1; i<=nrows; i++) {
if(i!=pivotrow[npivots])

reducerow(i,pivotrow[npivots],pivotcol[npivots]);
}
npivots++;

}
return npivots;

}

This function takes the arrays pivotrow and pivotcol, which are assumed to have
length nrows and ncols respectively, and returns the rank of the matrix, which is the
number of pivots. After running the function, the ith pivot is in the row pivotrow[i−
1] and the column pivotcol[i−1]. Notice that, in the programming languages C and
C++, the elements of an array a of length n are a[0], a[1], . . . , a[n − 1]; contrary,
the template class Matrix is assumed to number the rows from 1 through nrows
and the columns from 1 through ncols. The auxiliary function Matrix〈T〉::newpivot
takes the arrays and the current number of pivots, and returns true if a new pivot
was found and false if not. In the positive case, the new pivot is in the row
pivotrow[npivots] and the column pivotcol[npivots]. I shall show a single detail of
the implementation of Matrix〈T〉::newpivot.

template<class T>
bool Matrix<T>::newpivot

(size_t pivotrow[], size_t pivotcol[], size_t npivots)
{

//...
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if(entry(i,j).iszero())
//...

}

If T is a class with an exact zero-test T::iszero, then Matrix〈T〉::reducebyrows is cor-
rect. In the case of effective complex numbers we have the following approximated
zero-test.

bool Complex::iszero()
{ return abs(approx(tol))<=tol; }

This is enough for avoiding the error “divisor too close to zero” in Matrix〈Complex〉::reducerow.
If tol is small enough, Matrix〈Complex〉::reducebyrows is correct, but we do not know
beforehand how small tol is necessary. If tol is so large that Matrix〈Complex〉::reducebyrows
is incorrect, the error is an underestimation of the rank, never and overestimation.
This means that the dimension of the kernel, dropping the deemed-zero rows, may
be overestimated, but never underestimated. In any case, the approximated kernel
contains the exact one.

We have considered the Gaussian reduction by rows, but we may consider the
reduction by columns mutatis mutandis. We reduce a matrix by columns when we
are interested in its image space. Contrary to the case of the kernel, the dimension
of the image, dropping the deemed-zero columns, may be underestimated, but
never overestimated. In any case, the approximated image space is contained in
the exact one.

2.4 Rank over the rational field

In the case of the rank over C, in any neighborhood of a matrix of rank r there
are matrices of all the possible ranks greater than r, but the matrices of rank less
than r are avoided if the neighborhood is small enough. The case of the rank over
Q of complex numbers is different. Let us consider the simple case of {1, a}, with
a ∈ R, whose rank is 1 if a ∈ Q and 2 if not. In this case any neighborhood of a
contains both cases of rank 1 and 2. We lack the key feature in §2.3.

For the rank over C we have the exact zero-test |a.approx(δk)| 6 δk for all
k with limk→∞ δk = 0, which requires an infinity of steps, and the truncation
|a.approx(tol)| 6 tol, which is finite but allows false negatives. For the rank over Q
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we may devise a test of rationality based on the continuous fraction expansion.7
The continuous fraction expansion of an effective complex number is computed
using Euclid’s algorithm,8 which is “the granddaddy of all algorithms,” according
to Knuth [Knu81a, p. 318, l. 5–7], “because it is the oldest nontrivial algorithm that
has survived to the present day.” The algorithm is basically successive subtracting
the integral part and inverting, terminating when the number to invert is zero. For
effective complex numbers it terminates when the number to take integral part is
too close to m ∈ Z. In this case we subtract m and then the number to invert is
too close to zero. If we find that any of the intermediate results is not real, its disk
of uncertainty does not intersect the real line, we return “irrational” as answer.

According to Euclid,9 a number is rational if and only if the algorithm ter-
minates. We have another exact test needing infinitely many steps for a positive
answer, so we can conceive a truncation thereof to finitely many steps. Such a
truncation is deeming a number irrational if the algorithm reaches a convergent
pk/qk, a fraction in its lowest terms according to [HW75, thm. 157], with qk > Q
for certain bound Q global as tol. This approximate test of rationality may give
both false positives and false negatives. An irrational number too close to zero is
deemed zero, and thus rational, by the approximate test. An irreducible fraction
with a large denominator, greater than Q, is deemed irrational by the approximate
test. Such an approximate test requires O(logQ) steps.

Let us analyze the possible errors in the approximate test of rationality de-
scribed in the previous paragraph. A false negative happens if we test an irre-
ducible fraction with a large denominator, greater than Q. A false positive happens
if we test an irrational number such that Euclid’s algorithm stops at a number too
close to zero that is nonzero, so this error happens only at insufficient precision.
A third kind of error may happen, getting a denominator q for α ∈ Q when the
actual denominator is p > q, but this only happens at insufficient precision.

Let us consider a problem that will be of interest in the following chapters.
The following is a brief description of concepts that will be introduced in §3.1.
An algebraic subgroup of C∗ is either a finite cyclic group (of roots of unity) or
the whole C∗. The algebraic group generated by λ ∈ C∗ is the minimal algebraic

7For reference, the reader may refer to [HW75, Chap. X].
8The usual reference for Euclid’s algorithm is the beginning of Book VII of the Elements, but

this is Euclid’s algorithm in Z. The reference for Euclid’s algorithm in R is the beginning of
Book X. See [EH1908a] and [EH1908b] for an English translation, and [EP94] and [EP96] for a
Spanish translation.

9The result is at the beginning of Book X of his Elements. Pappus credits Euclid with the
first correct proof: “Euclid’s object [...] was the attainment of irrefragable principles, which he
established for commensurability and incommensurability in general.” [PT30, p. 63f]
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subgroup Gλ of C∗ containing λ; if λ is a root of unity, then Gλ = λZ; if λ is not a
root of unity, then Gλ = C∗. The Lie algebra g of an algebraic subgroup G of C∗
is a C-linear subspace of C; it is g = 0 if G is finite and it is g = C if G = C∗. The
problem of the Lie algebra gλ of Gλ is a way to convert the nonlinear problem of
Gλ into a problem of linear algebra, addressed in §2.3.

If λ ∈ C∗ is an effective complex number, testing if λ is a root of unity is
equivalent to testing if α is rational for λ = e2πiα. Let us use the approximate test
of rationality, getting the denominator q 6 Q if the test deems α rational, or q = 1
if the test deems α irrational. If the test were exact, then gλ = (λq − 1)C. A false
positive in the test of rationality yields gλ = C and (λq−1)C = C. A false negative
in the test of rationality yields gλ = 0 but (λq − 1)C = C. An error of the third
kind yields gλ = 0 but (λq − 1)C = C, so this case is similar to a false negative. A
way to be on the safe side is, if Euclid’s algorithm stops at a number bk too close
to zero, to check that bk is so small that, if it were not zero, the denominator of
the next convergent would be greater than Q, which can be done using [HW75,
thm. 149]. If this check fails, it fails due to insufficient precision and we should
refine the precision as I shall explain in the following chapters.

Let me sketch the six possible cases:

1. The rationality test deems α rational with denominator q.

(a) The check of bk is passed.

i. True positive: the actual denominator is q.
ii. False positive: α is irrational.
iii. Third-kind error: α is rational but its denominator is greater than

Q.

(b) The check of bk is failed due to insufficient precision.

2. The rationality test deems α irrational.

(a) True negative: α is irrational.

(b) False negative: α is rational with denominator greater than Q.

The only cases where the gλ 6= (λq−1)C are cases 1(a)iii and 2b, which are precisely
the cases when λ is a root of unity of order greater than Q. Let us consider the
following truncation Hλ of Gλ: Hλ = Gλ if λ is a root of unity of order up to Q,
and Hλ = C∗ for other λ. With this notation (λq − 1)C is the Lie algebra of Hλ.
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This is a toy example for GL(1,C) of a general phenomenon in GL(n,C), and this
truncation will inspire certain closure of algebraic groups in the next chapter.

This toy example suggests us to define, for P ∈ N, the P -truncated order of
λ ∈ C∗ as its order p as a root of unity if p 6 P and the P -truncated order is 1 if
λ is a root of unity of order greater than P or λ is not a root of unity. According
to this definition, the algorithm in this section computes the Q-truncated order
with the exception of the third-kind error, when the Q-truncated order is 1 but we
compute q 6 Q. This exception occurs only at low precision, and does not matter
for our use of the truncated order in §3.8.

We have shown that we cannot solve the problem of the rank over Q of {1, a},
so a fortiori we cannot solve the general problem of the rank over Q, as needed in
[vdH07a, §4.1].

2.5 Global parameters

In this chapter three global parameters were introduced. The tolerance tol was
introduced in §2.1.3 as a global variable of type mpfpc (multiple-precision floating-
point complex number) in order to determine when an effective complex number
of small modulus is too close to zero and may be deemed zero in Gaussian elimina-
tion, as explained in §2.3, and in other computations that require finding the first
nonzero term and divide by its coefficient, as in §4.2.2. Another global parameter,
a natural number K, was introduced in §2.2.4 in order to determine how many
terms in the principal part of a Laurent expansion must be zero-tested before you
can deem it zero. A third global parameter, the natural number Q, was introduced
in §2.4 in order to determine when a continuous fraction expansion corresponds to
a rational number or not.

In the three cases we truncate an infinite process in order to yield an actual
algorithm. In the first two cases, the idea of §4.5 is to restart the computation with
finer precision, smaller tol and greater K, in a succession of tolerances converging
to zero and K diverging to infinity. For each instance of number or Laurent expan-
sion to zero-test, there is a step in the aforesaid succession such that, for all the
subsequent values of tol or K, the zero-test gives the correct answer. The case of
Q is different; the idea is to keep it fixed to a value with good properties discussed
in §3.8.

In the following chapters I shall introduce some global parameters of the kind
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of K, but not of the kind of tol or Q. The tolerance tol can be reduced to the
kind of K by taking tol = 2−T for a global parameter T. So we may consider
Q a special global parameter and the global parameters of kind of K the general
global parameters. The tolerance tol could be considered another special global
parameter, but in §4.5 it will be considered a general one through T.

Remark 50. Global variables are those variables that are defined outside any func-
tion or procedure and can be accessed from any function or procedure. Global
variables are “considered harmful,” cf. [WS73], same as the go-to statement. Both
are taboo in structured programming, and they make the code less legible and
analyzable by humans, but there are restricted usages where they can improve
the code legibility. The greatest danger with global variables is that they may be
modified anywhere, but the global variables proposed in this thesis are modified
only by the main algorithm (in §4.5), being read-only variables elsewhere. In C++
this feature can be achieved defining the global variables in the file of the main
algorithm and declaring them in the rest of the files as const. Anyway, gotos and
global variables are often used when sketching algorithms.

HERE ENDETH THE SECOND CHAPTER z
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Chapter 3

Linear algebraic groups

In this chapter, which is almost independent of the previous ones, we approach
one of the central constructions in the thesis. Indeed, as discussed in §2.4, there
are numerical issues making impossible in practice the computation of the Galois
group when the data are not exact. Nevertheless, for the computation of the
common eigenvectors by the identity component of the Galois group, we shall see
that we can replace this group with a larger one whose identity component has
the same common eigenvectors.

Example 51. The algebraic group generated by
(

2
0

0
1
2

)
is
{(

a
0

0
a−1

)
: a ∈ K∗

}
, con-

nected. Its common eigenvectors are the two axes, the same as the whole diagonal
group, which is larger. Moreover, we observe that the diagonal group is the mul-
tiplicative group of the diagonal algebra, an observation that will suggest the
definition of broad groups in §3.3.

In the first section we shall review the theory of linear algebraic groups. For
further details one may refer to [Hum81], [Bor91] or [TY05]. Then we shall describe
the augmentation of the Galois group and the computation of these groups form
their generators.

3.1 Linear algebraic groups

Let K be an algebraically closed field (of characteristic 0) and V an n-dimensional
vector space over K. We consider GL(n,K) with the Zariski topology. Any basis
of V identifies GL(V ) ' GL(n,K) and endows GL(V ) with the Zariski topology,
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independently of the basis. We define a linear algebraic group (or simply algebraic
group) as a subgroup of GL(V ) or GL(n,K) that is closed in the Zariski topology.

A linear algebraic group is a smooth algebraic variety with finitely many ir-
reducible components, which are also its connected components, hence they will
simply be called components, and they are thus disjoint. If K = C, linear algebraic
groups are Lie groups and their components are also the connected components
in the differentiable structure. The component of the identity (or identity com-
ponent) of an algebraic group G is denoted by G◦ and is a connected algebraic
subgroup. Moreover G◦ is a normal subgroup of G of finite index whose cosets are
the components of G.

The algebraic group generated by a subset A of GL(V ) or GL(n,K) is the
Zariski closure of the group generated by A. For instance, for n = 1, we identify
GL1(K) ' K∗. The group generated by λ ∈ K∗ is finite if λ is a root of unity and
it is infinite if not. In the first case, the finite group is an algebraic group, which
is discrete. In the latter case the group is dense in the Zariski topology, thus the
algebraic group generated by λ is K∗, which is connected. The case of A a single
element and general n will be considered later, in §3.2.

Example 52. The simplest example of a linear algebraic group is the general linear
group GL(V ) or GL(n,K) itself. Any finite subgroup is also an algebraic group.
The special linear group SL(V ) or SL(n,K) is the algebraic group defined by the
equation det = 1. The orthogonal group O(n,K), which consists of the matrices
M such that AAᵀ = I, is another algebraic group. The special orthogonal group
SO(n,K) = SL(n,K)∩O(n,K) is also an algebraic group. The unitary group U(n),
which consists of the complex matrices M such that AĀᵀ = I, is not an algebraic
group for K = C, and neither is the special unitary group SU(n) = SL(n,C)∩U(n).

We associate to each algebraic group another algebraic structure called Lie
algebra. A Lie algebra is a vector space g with a bilinear operation [ , ], called
the Lie bracket, such that [a, a] = 0 and [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for any
elements a, b, c ∈ g. This is the natural structure of the set of derivations over a
ring with the Lie bracket given by [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1. Any K-algebra can
be made a Lie algebra with the Lie bracket given by [a, b] = ab − ba. This way
we construct the Lie algebras gl(n,K) = Kn×n of matrices and gl(V ) = L(V, V ) of
linear endomorphism.

We associate to GL(n,K) the Lie algebra gl(n,K), and to GL(V ) the Lie algebra
gl(V ). Let G be the lattice of algebraic subgroups of GL(n,K) or GL(V ) and A
the lattice of Lie subalgebras of the corresponding gl(n,K) or gl(V ). There is a
correspondence L : G → A in the following way. If G = {M ∈ GL(n,K) : ∀P ∈ F ,
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P (M) = 0}, where F is a family of polynomials in n2 variables and a matrix
underlined is the list of its entries row after row,1 is L(G) = {M ∈ gl(n,K) : ∀P ∈
F , d(I)(P )(M) = 0}, where d(I)(P ) is the linear homogeneous polynomial tangent
to P at the identity. A way to compute d(I)(P ), according to [Ser92, Ch. I], is
P (I + xM) = P (I) + xd(I)(P )(M) + o(x). Another way is

d(I)(P ) =
n∑

i,j=1

∂P

∂xij

∣∣∣∣
(I)

xij.

Let G0 ⊂ G be the subfamily of the connected algebraic groups and A0 the
image of L. According to [Bor91, §7.1, §7.7], A0 is a sublattice ofA. The restriction
L : G0 → A0 is an order-preserving bijection whose inverse is also order-preserving,
according to [Bor91, §7.1], thus L yields an isomorphism of lattices G0 ' A0. By
[Bor91, §7.1] and [TY05, Cor. 21.3.2], G0 is a sublattice of G. The correspondence
L : G → A factors as G → G0 ' A0, where the first correspondence is G 7→ G◦.
If K = C, L is the usual correspondence between Lie groups and Lie algebras
L(G) = {M ∈ gl(n,C) : ∀t ∈ C, exp(tM) ∈ G}, cf. [Hal03, Def. 2.15]. There
are other definitions of the Lie algebra associated to a Lie group or an algebraic
group, more general than these, that use the tangent space at the identity.

Example 53. The special linear group SL(n,K) is the algebraic group given by
the equation det = 1 and its corresponding Lie algebra is sl(n,K), given by the
equation trace = 0. The diagonal group is an algebraic group and its Lie algebra
consists of all the diagonal matrices. The multiplicative group (K∗, ·) is identified
with GL(1,K), whose Lie algebra is gl(1,K), identified with K. The additive group
(K,+) is identified by means of the mapping

a 7→
(

1 a
0 1

)
with the algebraic group of equation x11−1 = x22−1 = x21 = 0, whose Lie algebra
is given by the equation x11 = x22 = x21 = 0.

Example 54. If A ⊂ Zn,

{diag(a1, a2, . . . , an) ∈ GL(n,K) : ∀(k1, k2, . . . , kn) ∈ A, ak11 a
k2
2 · · · aknn = 1}

is an algebraic group and its Lie algebra is

{diag(a1, a2, . . . , an) ∈ gl(n,K) : ∀(k1, k2, . . . , kn) ∈ A, k1a1+k2a2+· · ·+knan = 0}.
1 I introduce this notation in order to avoid confusion with the application of a polynomial

to a matrix. This distinction is key the proof of Theorem 69.
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As a particular case, consider Gm = {diag(a, b) ∈ GL(2,K) : am = bm} for m
natural. The Lie algebra of Gm is

{diag(a, b) ∈ gl(2,K) : ma = mb} = {aI2 : a ∈ K},

which is identified with K. The components of Gm are Xξ = {diag(a, ξa) : a ∈ K∗}
for ξ an mth root of unity, thus G◦m = G1 = {aI2 : a ∈ K∗}, which is identified
with K∗.

We decompose M = DU with D is diagonalizable and U unipotent, i.e., 1 is the
only eigenvalue of U. This decomposition is unique and D and U commute. An
interesting property of algebraic groups is that multiplicative Jordan parts of an
element belong also to the group. A proof can be found in [Bor91, §4.2]. For
instance, the group generated by

(
2
0

1
2

)
does not contain the diagonal part

(
2
0

0
2

)
nor

the unipotent part
(

1
0

1
1

)
, but it is not an algebraic group.

3.2 Derksen–van der Hoeven algorithm

The algebraic group generated by a single element is expounded in [vdH07a,
§4.3] and [DJK05, §3.3]. We need the multiplicative Jordan decomposition of
the generator M = DU, where D is diagonalizable and U unipotent, i.e., 1 is the
only eigenvalue of U. The algebraic group generated by M is the product of
the (commuting) algebraic groups generated by D and U, and its Lie algebra is
the sum of the corresponding Lie algebras. Assume that D is a diagonal ma-
trix D = diag(a1, a2, . . . , an) and be A the set of the multiplicative syzygies of
(a1, a2, . . . , an), defined as A = {(k1, k2, . . . , kn) ∈ Zn : ak11 a

k2
2 · · · aknn = 1}. The

algebraic group generated by D is

{diag(b1, b2, . . . , bn) ∈ GL(n,K) : ∀(k1, k2, . . . , kn) ∈ A, bk11 b
k2
2 · · · bknn = 1},

of a kind studied in Example 54; see [vdH07a, Lem. 2] and [DJK05, Lem. 6]. As
U− I is nilpotent, log U =

∑∞
k=0(−1)k(U− I)k+1/(k + 1) is a polynomial in U. As

log U is nilpotent, exp(t log U) =
∑∞

k=0(t log U)k/k! is a polynomial in log U, and
hence in U, for any t. The algebraic group generated by U is {exp(t log U) : t ∈ K}
and its Lie algebra is K log U.

The algebraic group generated by finitely many elements is expounded in
[vdH07a, §4.5] and [DJK05, §3.4]. In these articles, an algorithm to compute this
algebraic group is developed: I shall call it Derksen–van der Hoeven algorithm.

87



There are two versions of the algorithm: the version of [DJK05] works with alge-
braic groups as algebraic varieties given as Gröbner bases of their defining ideal,
and the version of [vdH07a] works with Lie algebras, which is the setting I use.
LetM be the finite set of generators, G the algebraic group they generate and g
its Lie algebra. The algorithm works with a finite family F , initially M, and a
Lie algebra a, initially zero, which are augmented by a loop until they stabilize; in
this case the algorithm terminates with a = g and F a system of representatives
of G/G◦. Each iteration of the loop performs the following steps.

1. For each A ∈ F we augment a, as a Lie algebra, with the Lie algebra of the
algebraic group generated by A.

2. For each A ∈ F we augment a, as a Lie algebra, with AaA−1.

3. For each A ∈ F we check if A is equivalent to any element of F modulo the
connected group corresponding to a; if it is, we eliminate A from F .

4. For each ordered pair A, B ∈ F we check if AB is equivalent to any element of
F modulo the connected group corresponding to a; if it is not, we add AB to
F .

Example 55. Let us compute the algebraic group generated by M =
(

2
0

0
1
2

)
.

Initially F = {M} and a = 0.
First iteration, step 1: we augment a with the Lie algebra of the algebraic group
generated by M. The multiplicative syzygies of (2, 1

2
) are Z(1, 1); according to

Example 54, the Lie algebra is K
(

1
0

0
−1

)
, so now a = K

(
1
0

0
−1

)
.

Step 2: as MaM−1 = a, we keep a = K
(

1
0

0
−1

)
.

Step 3: no duplicates.
Step 4: is M2 a duplicate of M? It is, thus we keep F = {M}.
Second iteration, step 1: we augment a as a Lie algebra of the algebraic group
generated by M, which is already contained, so we keep a invariant.
Step 2: as MaM−1 = a, we keep a invariant.
Step 3: same as in the previous iteration.
Step 4: same as in the previous iteration.
The algorithm ends with g = K

(
1
0

0
−1

)
and G/G◦ represented by {M}.

As the example shows, an optimization could be “marking” the elements of F
used in step 1 and then excluding the marked elements in step 1.

Let us consider the effects of §2.4 in the computation of the algebraic group
G generated by a matrix (λ) with λ ∈ C∗ effective. The multiplicative syzygies
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{k ∈ Z : λk = 1} are mZ, with m the order of λ as a root of unity or m = 0 if λ
is not a root of unity. Then

G = {(µ) ∈ GL(1,C) : µmk = 1 ∀k ∈ Z} = {(µ) ∈ GL(1,C) : µm = 1}

is the group of m-th roots of unity, with G = GL(1,C) for m = 0. This reduces
to the rationality test of α with λ = e2πiα expounded in §2.4. This test outputs
a denominator q of α, or q = 1 if α is deemed irrational. As shown in §2.4,
we must resign ourselves to computing a truncation of the algebraic group where
G is estimated at GL(1,C) for m > Q. Assuming this overestimation, G◦ is
generated by (λq). The overestimated Lie algebra g of G will be zero if λq = 1,
and g = gl(1,C) if λq 6= 1, so we may take λq−1 as the generator of g. If it happens
that λq is to close to 1, the error is now of linear algebra, discussed in §2.3.

The previous paragraph presents a toy example, since order-1 differential equa-
tions are uninteresting for our purposes. The interesting examples require to com-
pute the multiplicative syzygies of several effective complex numbers, which is
more complicated than the rationality test of §2.4. Another problem is that the
test of equivalence modulo the connected group corresponding to a given Lie al-
gebra that we need in steps 3 and 4 depends on [vdH07a, §4.4], which depends on
heuristics. In order to avoid this issue, I introduce broad and eurymeric groups in
the following sections.

3.3 Broad and eurymeric groups

In this section I introduce broad and eurymeric groups, certain kinds of algebraic
groups that will be key in this thesis.

The K-algebras L(V, V ) and Kn×n have a rich structure with three operations:
addition, multiplication (or composition) and product by scalars. Their respective
multiplicative groups GL(V ) and GL(n,K) are constructed by forgetting the other
two operations and dropping the elements that are not invertible. The Lie algebras
gl(V ) and gl(n,K) are constructed respectively from L(V, V ) and Kn×n by partially
forgetting multiplication: we remind only Lie brackets [A, B] = AB−BA. I will write
GL for GL(V ) or GL(n,K). A subalgebra2 A of L(V, V ) or Kn×n have the same
rich structure, and allows the same forgetful transformations into a group G and
into a Lie algebra g. The group G is A∩GL as a set, according to Lemma 56, and

2A subalgebra of the algebra structure with addition, multiplication/composition and product
by scalars, which is stronger than a Lie subalgebra. Notice that I ∈ A.
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A is a vector space, thus an irreducible algebraic variety, hence G is an irreducible
algebraic variety of GL and thus a connected algebraic group. Its corresponding
Lie algebra is given by the linearization of the equations of G. As G is defined
by linear equations, its Lie algebra is defined by the same equations, thus it is g.
Conversely, G is the connected algebraic group corresponding to g.

Lemma 56. If A is a subalgebra of gl(V ) or gl(n,K) and M ∈ A is invertible, then
M−1 ∈ A.

Proof. Let a0 + a1x + · · · + apx
p be the minimal polynomial of M, where a0 6= 0,

hence M−1 = −a1
a0
I− a2

a0
M− · · · − ap

a0
Mp−1.

The multiplicative group of a subalgebra of gl(V ) or gl(n,K) will be called a
broad group. A Lie subalgebra of gl(V ) or gl(n,K) that is also a subalgebra will be
called a broad Lie algebra. We have proved that a broad group G can be recovered
from its Lie algebra g by G = g ∩GL. The following lemma gives a converse.

Lemma 57. If G is a broad group, its Lie algebra g is the linear span of G.

Proof. If M ∈ g and λ ∈ K∗ is not an eigenvalue of M, M − λI and λI belong to
g ∩GL = G, thus M is the sum of two elements of G.

The terminology of broad groups and broad Lie algebras is because the former
have room enough for addition, and the latter have room enough for multiplication
and the identity. Conversely, a Lie algebra with room enough for multiplication
and the identity is broad. The following result is the converse for broad groups.

Lemma 58. An algebraic group given by linear equations is broad.

Proof. Let G = V ∩ GL be the algebraic group and V a vector space. We have
KI ⊂ V . If M ∈ V and λ ∈ K∗ is not an eigenvalue of M, M− λI and λI belong to
V ∩ GL = G. So any element of V is sum of two elements of G. If A, B ∈ V , we
have decompositions A = A1 + A2 and B = B1 + B2 in sum of elements of G, hence
AB = A1B1 + A1B2 + A2B1 + A2B2 is sum of elements of G, so AB ∈ V . We have that
V is a subalgebra, and thus G is a broad group.

The broad group generated by M ⊂ GL is K[M] ∩ GL, and its Lie algebra
K[M], where K[M] is the the K-algebra generated byM. If H is a subgroup of
GL, K[H] is simply its linear span, and we call K[H] ∩ GL its broad hull. The
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broad Lie algebra generated by M ⊂ gl is g = K[M]. The broad groups form
a lattice with the intersection and K[G1, G2] ∩ GL the join of G1 and G2. The
maximal broad group is GL(V ) or GL(n,K), and the minimal one is K∗I.
Example 59. Let us compute the broad hull of an algebraic torus

G =
{

diag
(
βk111 βk122 · · · βk1rr , βk211 βk222 · · · βk2rr , . . . , βkn11 βkn22 · · · βknrr

)
: β1, β2, . . . , βr ∈ K∗

}
with kij ∈ Z. First, we construct an element A = diag(α1, α2, . . . , αn) ∈ G such
that αi = αj if and only if (ki1, ki2, . . . , kir) = (kj1, kj2, . . . , kjr). If p1, p2, . . . , pr
are distinct primes, then

A = diag
(
pk111 pk122 · · · pk1rr , pk211 pk222 · · · pk2rr , . . . , pkn11 pkn22 · · · pknrr

)
satisfies the property. Let R be the K-algebra of the matrices diag(µ1, µ2, . . . , µn)
such that µ1, µ2, . . . , µn ∈ K, with µi = µj whenever αi = αj. Given M =
diag(µ1, µ2, . . . , µn) ∈ R, we can construct the Lagrange interpolating polyno-
mial P (x) ∈ K[x] such that P (αi) = µi for 1 6 i 6 n, so that P (A) = M.
This proves that K[A] = R. As K[A] ⊂ K[G] ⊂ R, we have K[G] = R, so the
broad hull H of G is the group of the matrices diag(µ1, µ2, . . . , µn) such that
µ1, µ2, . . . , µn ∈ K∗, with µi = µj whenever αi = αj, which is another alge-
braic torus. If the ki = (ki1, ki2, . . . , kir) are numbered without repetition as
h1, h2, . . . , hm and we have ki = hf(i) for 1 6 i 6 n, then

H =
{

diag
(
βf(1), βf(2), . . . , βf(n)

)
: β1, β2, . . . , βm ∈ K∗

}
and its Lie algebra is{

diag
(
bf(1), bf(2), . . . , bf(n)

)
: b1, b2, . . . , bm ∈ K

}
.

An algebraic group G whose identity component G◦ is broad will be called a
eurymeric group, where eury- means ‘broad’ in Greek, and mero- ‘part,’3 in this
case the identity component. Eurymeric is equivalent to virtually4 broad and broad-
by-finite.5 Indeed, if G is eurymeric, G◦ is a normal finite-index broad subgroup,
so G is broad-by-finite and thus virtually broad. If G is virtually broad, it has a
finite-index broad subgroup H, so the cosets modulo H are finitely many linear
varieties, thus G is an algebraic variety and therefore an algebraic group. The only
finite-index connected subgroup of an algebraic group is its identity component,
thus G is eurymeric.

3There is another word eurymeric where mero- means ‘thigh,’ in this case ‘femur.’
4If P is a property, a group is virtually P if it has a finite-index P subgroup.
5If P is a property, a group is P -by-finite if it has a normal finite-index P subgroup.
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The intersection of eurymeric groups is eurymeric. Indeed, if G and H are
eurymeric groups, G has components of the form Vi ∩ GL with Vi vector spaces,
and Wj ∩ GL for H, then G ∩ H has disjoint components Vi ∩ Wj ∩ GL, when
nonempty, and (G ∩H)◦ = G◦ ∩H◦ is broad. The eurymeric group generated by
two eurymeric groups is more complicated to describe; it requires a modification
of the Derksen–van der Hoeven algorithm introduced in §3.2. It will be discussed
in §3.6.

3.4 Algebraic subgroups of GL(2,C)

In this section and the next one, as an illustration of the notions of broad and
eurymeric groups just introduced, we shall compute them for n = 2. First, for the
sake of completeness, we recall the classification of all the algebraic subgroups of
GL(2,C).

The algebraic subgroups of GL(2,C) are studied in [Ngu08, App. A]=[NvdPT08].
We consider the projectivizations GL(2,C) → PGL(2,C) = GL(2,C)/C∗I and
SL(2,C)→ PSL(2,C) = SL(2,C)/{I,−I} and observe that PGL(2,C) and PSL(2,C)
are naturally isomorphic. Any subgroup H of either has counterimages HGL(2,C)

and HSL(2,C). The former is the maximal subgroup of GL(2,C) whose projective
image is H. The algebraic subgroups of SL(2,C) are well known, and shall be ex-
plained below, so their projective images are the algebraic subgroups of PGL(2,C).
For each algebraic subgroup H of PGL(2,C), Nguyen studies the minimal alge-
braic subgroups of GL(2,C) with H as projective image; the list of these minimal
groups, up to conjugation, is in [Ngu08, Thm.A.2.10]=[NvdPT08, Thm. 4]. For
each minimal group G, we have the maximal group C∗ ·G and µk ·G, where µk is
the group of k-th roots of unity. These are all the algebraic subgroups of GL(2,C).

The algebraic subgroups of SL(2,C) are, up to conjugation, the following,
cf. [MR99, Prop. 2.2]:

• a finite group, totally disconnected, with null Lie algebra,

• the multiplicative group
{(

a 0
0 a−1

)
: a ∈ C∗

}
' (C∗, ·), connected, with

Lie algebra
{(

b 0
0 −b

)
: b ∈ C

}
,

• the additive group
{(

1 a
0 1

)
: a ∈ C

}
' (C,+), connected, with Lie algebra
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{(
0 b
0 0

)
: b ∈ C

}
,

• the Borel group
{(

a b
0 a−1

)
: a ∈ C∗, b ∈ C

}
, connected, with Lie algebra{(

c d
0 −c

)
: c, d ∈ C

}
,

•
{(

a b
0 a−1

)
: a ∈ C∗, ak = 1, b ∈ C

}
, with k ∈ N, whose identity component

is the additive group,

• the dihedral group
{(

a 0
0 a−1

)
,

(
0 −a
a−1 0

)
: a ∈ C∗

}
, whose identity com-

ponent is the multiplicative group,

• SL(2,C), connected, with Lie algebra sl(2,C).

The finite subgroups of SL(2,C) are of five kinds up to conjugation:

• cyclic groups
{(

a 0
0 a−1

)
: a ∈ C∗, ak = 1

}
for k ∈ N,

• dihedral groups
{(

a 0
0 a−1

)
,

(
0 −a
a−1 0

)
: a ∈ C∗, ak = 1

}
for k even,

• the tetrahedral group A
SL(2,C)
4 ,

• the octahedral group S
SL(2,C)
4 ,

• the icosahedral group A
SL(2,C)
5 .

The denominations alluding to polyhedra and permutation groups will be ex-
plained below.

Consider sl(2,C) as a vector space endowed with the bilinear form given by
B(M, N) = 1

2
tr(MN). As sl(2,C) is invariant by conjugation, the action of GL(2,C)

by conjugation defines a homomorphism GL(2,C)→ GL(sl(2,C)). One may check
that the kernel is C∗I and that the image is contained in SO(sl(2,C), B). Let f be
the homomorphism GL(2,C) → SO(sl(2,C), B), and f ′ the induced6 homomor-
phism gl(2,C)→ so(sl(2,C), B) of Lie algebras. The kernel of f ′ is, according to

6As described in [TY05, §23.2.4], f ′ is the differential of f and the identity.
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[TY05, Thm. 24.4.1], the Lie algebra of the kernel of f , thus C·I. By a matter of di-
mensions, the image of f ′ is so(sl(2,C), B). According to [TY05, Prop. 24.5.3 (i)],
the Lie algebra of the image of f is so(sl(2,C), B). As SO(sl(2,C), B) is the
connected algebraic group corresponding to so(sl(2,C), B), f is surjective, so it
induces an isomorphism PGL(2,C) ' SO(sl(2,C), B) and, in the orthonormal
basis {(

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)}
,

PGL(2,C) ' SO(3,C). The finite subgroups of SO(3,C) are conjugated to a finite
subgroup of SO(3,R), which is the group of rotations of the sphere. Following
[Wey52, App. A], we have the following five cases:

The group of rotations of a right pyramid with a regular n-
gonal base. For n = 3 the pyramid is not a regular tetrahedron.
For n = 2 the pyramid generates into an isosceles triangle not
equilateral. This group is isomorphic to the group of planar
rotations of the base, thus the cyclic group Cn of order n.

The group of rotations of a right prism with a regular n-gonal
base. For n = 4 the prism is not a cube. For n = 2 it degener-
ates into a rectangle not a square. This group is isomorphic to
the group of planar symmetries of the base, thus the dihedral
group Dn of order 2n.

The group of rotations of a regular tetrahedron. These rota-
tions permute the 4 vertices of the tetrahedron. This yields an
isomorphism with the alternating group A4.

The group of rotations of a regular octahedron. These rotations
permute the 4 axes through the midpoints of opposite faces.
This yields an isomorphism with the symmetric group S4.

The group of rotations of a regular icosahedron. There is an
only way to color its faces with 5 colors such that the faces
concurrent at a vertex have different colors. The midpoints of
the faces of the same color define a regular tetrahedron. The
rotations of the group permute these 5 tetrahedra. This yields
an isomorphism with the alternating group A5.
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As SL(2,C)→ PGL(2,C) covers twice, the finite subgroup HSL(2,C) has double the
order of H. For instance, DSL(2,C)

2 has order 8. This group is also called the quater-
nion group because it corresponds to the multiplicative group of {±1,±i,±j,±k}
of quaternions. This corresponds to the usual identification of quaternions with
2× 2 complex matrices:

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

3.5 Broad and eurymeric subgroups of GL(2,C)

Any eurymeric subgroup of GL(2,C) has a Lie algebra that contains C · I, so the
group contains C∗I, thus it is the counterimage of its image in PGL(2,C). So the
eurymeric closure, and thus the broad hull, of a subgroup G of GL(2,C) is the
corresponding closure of C∗ ·G. Any projectively saturated group is the projective
saturation of a subgroup of SL(2,C). Thus it is enough to compute the projective
saturation of the elements of the list of subgroups of SL(2,C), which are known
up to conjugation.

• The projective saturation H of a finite group G is a collection of components
C∗M for each M ∈ G. The identity component is H◦ = C∗I and the Lie
algebra h = CI. As H◦ is broad, H is the eurymeric closure of G.

• The projective saturation of the multiplicative group
{(

a 0
0 a−1

)
: a ∈ C∗

}
is H =

{(
b 0
0 c

)
: b, c ∈ C∗

}
' C∗ × C∗, connected and with Lie algebra

h =

{(
b 0
0 c

)
: b, c ∈ C

}
' CI ⊕ CI. As H is broad, it is the broad hull

and the eurymeric closure of the multiplicative group.

• The projective saturation of the additive group
{(

1 a
0 1

)
: a ∈ C

}
is H ={(

b c
0 b

)
: b ∈ C∗, c ∈ C

}
, connected and with Lie algebra h =

{(
b c
0 b

)
: b, c ∈ C

}
.

As H is broad, it is the broad hull and the eurymeric closure of the additive
group.

• The projective saturation of the Borel group
{(

a b
0 a−1

)
: a ∈ C∗, b ∈ C

}
,
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is H =

{(
c d
0 e

)
: c, e ∈ C∗, d ∈ C

}
, connected and with Lie algebra h ={(

c d
0 e

)
: c, d, e ∈ C

}
. AsH is broad, it is the broad hull and the eurymeric

closure of the Borel group.

• The projective saturation of G =

{(
a b
0 a−1

)
: a ∈ C∗, ak = 1, b ∈ C

}
, with

k ∈ N, is H =

{(
ac d
0 a−1c

)
: a, c ∈ C∗, ak = 1, d ∈ C

}
. The identity com-

ponent isH◦ =

{(
c d
0 c

)
: c ∈ C∗, d ∈ C

}
and the Lie algebra h =

{(
c d
0 c

)
: c, d ∈ C

}
.

AsH◦ is broad,H is the eurymeric closure ofG. As C[G] =

{(
e f
0 g

)
: e, f, g ∈ C

}
,

the broad hull of G is the projective saturation of the Borel group.

• The projective saturation of the dihedral groupG =

{(
a 0
0 a−1

)
,

(
0 −a
a−1 0

)
: a ∈ C∗

}
,

is H =

{(
b 0
0 c

)
,

(
0 b
c 0

)
: b, c ∈ C∗

}
. The identity component is H◦ ={(

b 0
0 c

)
: b, c ∈ C∗

}
and the Lie algebra h =

{(
b 0
0 c

)
: b, c ∈ C

}
. As H◦

is broad, H is the eurymeric closure of G. As C[H] = gl(2,C), the broad
hull of H, and thus of G, is GL(2,C).

• The projective saturation of SL(2,C) is GL(2,C), which is broad, so GL(2,C)
is the broad hull and eurymeric closure of SL(2,C).

The only remaining task is to compute the broad hull of the finite subgroups of
GL(2,C).

• The cyclic group G =

{(
a 0
0 a−1

)
: a ∈ C∗, ak = 1

}
, for k > 3, generates

C[G] =

{(
b 0
0 c

)
: b, c ∈ C

}
, the broad Lie algebra of

{(
b 0
0 c

)
: b, c ∈ C∗

}
,

which is the broad hull of G. For k ∈ {1, 2}, C[G] = C · I, so the broad hull
of G is C∗I.

• The dihedral groupG =

{(
a 0
0 a−1

)
,

(
0 −a
a−1 0

)
: a ∈ C∗, ak = 1

}
, for even

k > 4, generates C[G] = gl(2,C), so the broad hull of G is GL(2,C). For k =
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2, C[G] =

{(
b c
−c b

)
: b, c ∈ C

}
, so the broad hull ofG is

{(
b c
−c b

)
: b, c ∈ C, b2 + c2 6= 0

}
,

which is a conjugate of
{(

d 0
0 e

)
: d, e ∈ C∗

}
.

• Up to conjugation, the tetrahedral group is generated by two matrices
(
ξ 0
0 ξ5

)
for ξ a primitive sixth root of unity and ϕ

(
1 1
2 −1

)
for certain ϕ 6= 0, ac-

cording to [Kov86, Thm. 2].

• Up to conjugation, the octahedral group is generated by two matrices
(
ξ 0
0 ξ7

)
for ξ a primitive eighth root of unity and ϕ

(
1 1
1 −1

)
for certain ϕ 6= 0, ac-

cording to [Kov86, Thm. 3].

• Up to conjugation, the icosahedral group is generated by two matrices
(
ξ 0
0 ξ9

)
for ξ a primitive tenth root of unity and

(
ϕ ψ
ψ −ϕ

)
for certain ϕ 6= 0 and

ψ 6= 0, according to [Kov86, Thm. 4].

• In the three last cases, the group generates the algebra gl(2,C), so its broad
hull is GL(2,C).

3.6 Derksen–van der Hoeven linearized

In this section I will adapt Derksen–van der Hoeven algorithm in order to com-
pute the eurymeric group generated by a finite number of elements. Let me first
describe the eurymeric group generated by a single element A ∈ GL. Let λi be its
eigenvalues. For any quotient λi/λj that is a root of unity, we consider its order.
The least common multiple p of these orders and 1 will be called the resonance
order of A. I shall prove that the smallest eurymeric group G containing A has the
Lie algebra K[Ap] and {I, A, . . . , Ap−1} are representatives of G/G◦.

Lemma 60. Let G be the eurymeric group generated by the single element A ∈ GL.
If Ap ∈ G◦, then G◦ = K[Ap] ∩GL. Moreover, G = AZ ·G◦.
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Proof. As H = K[Ap]∩GL is an irreducible variety and the broad group generated
by Ap, obviouslyH < G◦. It is easy to check that AZ·H is a eurymeric group withH
the identity component. As G contains AZ, it contains AZ ·H, thus G = AZ ·H.

Lemma 61. If A ∈ GL is unipotent, then A ∈ K[Ap] for any power p.

Proof. Let G be the eurymeric group generated by A. It is classical that the
algebraic group generated by a unipotent element is connected, so A lies in G◦. By
Lemma 60, G◦ = K[Ap] ∩GL, so A ∈ K[Ap].

Proposition 62. If G is the eurymeric group generated by a single element A ∈ GL
and p is the resonance order of A, then Ap ∈ G◦.

Proof. Assume that A is in Jordan form with diagonal (λ1, λ2, . . . , λn). For each
couple of indices i and j, let pij be the order of λi/λj as a root of unity or, if λi/λj
is not a root of unity, pij = 1. By definition, p is the least common multiple of all
these pij.

By Lemma 60, there exists a multiple r of p such that G◦ = K[Ar]∩GL. Let q be
the order of A modulo G◦. Then Aq = P (Ar) for certain P ∈ K[x]. Consider a fixed
couple (i, j). If λi/λj is a root of the unity, it is primitive of order pij, so λ

pij
i = λ

pij
j

and λri = λrj . The diagonal of Aq is (λq1, λ
q
2, . . . , λ

q
n) =

(
P (λr1), P (λr2), . . . , P (λrn)

)
,

thus λqi = λqj and therefore pij divides q. Otherwise, if λi/λj is not a root of the
unity, then pij = 1, so pij divides q as well.

As pij divides q for each couple (i, j), p divides q, so we can factorize q = kp and,
by Lemma 60, take r = q. Let D be the diagonalizable part and U the unipotent
part of Ap, then Dk is the diagonalizable part and Uk the unipotent part of Aq, hence
Dk and Uk belong to K[Aq] and thus to G◦. Obviously, D = diag(λp1, λ

p
2, . . . , λ

p
n) and

Dk = diag(λq1, λ
q
2, . . . , λ

q
n). Consider the map ϕ : {λq1, λ

q
2, . . . , λ

q
n} → K given by

ϕ(λqi ) = λpi for each i. Such a map exists because, if λqi = λqj for certain i and j, then
λpi = λpj . Let Q be the Lagrange interpolating polynomial for ϕ; then D = Q(Dk)

belongs to G◦. From Lemma 61, U lies in K[Uk] and therefore in K[G◦]∩GL = G◦.
As Ap = DU belongs to G◦, q divides p, thus p = q.

I shall explain a modification of Derksen–van der Hoeven algorithm, introduced
in §3.2, for computing the eurymeric group generated by a finite familyM⊂ GL
and a finite family algebraic groups, each one given as a family Fi of representatives
of its components and its Lie algebra gi, same as the output of van der Hoeven’s
version of Derksen–van der Hoeven algorithm. The algorithm works with a finite
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family F , initially the union of M and the Fi, and a Lie algebra a, initially the
algebra generated by the gi, which are augmented by a loop until they stabilize,
in which case the algorithm terminates. Each iteration of the loop performs the
following steps.

1. For each A ∈ F we augment a, as an algebra, with the Lie algebra of the
eurymeric group generated by A.

2. For each A ∈ F we augment a, as an algebra, with AaA−1.

3. For each A ∈ F we check if A is equivalent to any element of F modulo the
connected group corresponding to a, which is a∩GL; if it is, we eliminate A
from F .

4. For each ordered pair A, B ∈ F we check if AB is equivalent to any element of
F modulo a ∩GL; if it is not, we add AB to F .

Contrary to the original Derksen–van der Hoeven algorithm, here the equivalence
modulo the connected group corresponding to a is easy to compute, since B, C ∈ F
are in the same component if and only if B−1C ∈ a, so the task is reduced to linear
algebra.
Example 63. Let us compute the eurymeric group generated by M =

(
2
0

0
1
2

)
in order

to see the difference with Example 55. Initially F = {M} and a = K
(

1
0

0
1

)
. First

iteration, step 1: we augment a with the Lie algebra of the eurymeric group
generated by M. The quotient 2/1

2
= 4 is not a root of unity so the Lie algebra is

K
[(

1
0

0
−1

)]
= K

(
1
0

0
1

)
+ K

(
1
0

0
−1

)
, so now a = K

(
1
0

0
0

)
+ K

(
0
0

0
1

)
. Step 2: as MaM−1 = a,

we keep a invariant. Step 3: no duplicates. Step 4: is M2 a duplicate of M? It
is, thus we keep F = {M}. Second iteration, step 1: we augment a with the Lie
algebra of the eurymeric group generated by M, which is already contained, so we
keep a invariant. Step 2: as MaM−1 = a, we keep a invariant. Step 3: same as in
the previous iteration. Step 4: same as in the previous iteration. The algorithm
ends with g = K

(
1
0

0
0

)
+ K

(
0
0

0
1

)
and G/G◦ represented by {M}.

Theorem 64. Performing the computations exactly, the modification of Derksen–
van der Hoeven algorithm introduced above for computing the eurymeric group G
generated by a finite familyM⊂ GL and a finite family of algebraic groups, each
one given as a family Fi of representatives of its components and its Lie algebra gi,
terminates with a the Lie algebra of G and F representatives of G/G◦ as output.

Proof. Assume that the algorithm does not terminate for certain particular data,
so the loop iterates infinitely without stabilization. As a cannot grow beyond
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dimension n2, a eventually stabilizes, so F must grow indefinitely. At these stages
of the execution, all the elements of F normalize H = a ∩ GL and all of them
have finite order modulo H and, by [vdH07a, Lem. 3], the group generated by F
modulo H (within the normalizer of H) is finite, so F cannot grow indefinitely; at
certain stage all the new products added to F are duplicates and thus discarded.

From the absurd in the previous paragraph we draw that the algorithm termi-
nates for all data. At the end, the group generated by F and H is an algebraic
group withH being the identity component, thus a eurymeric group. Each element
added to F or a must be there for any eurymeric group containing the data, so
the resulting group is contained in any eurymeric group containing the data, hence
this group is G, G◦ = H and the final value of F is a system of representatives of
G/G◦.

Remark 65. This proof relies on [vdH07a, Lem. 3], communicated by J.-Y. Hée
to J. van der Hoeven. It relies on the classic Burnside problem, which asks if a
finitely generated group whose elements have finite order is necessarily finite. The
answer to the Burnside problem is false in general, but true for algebraic groups,
including quotients of algebraic groups, which are isomorphic to algebraic groups.

3.7 Other results

Proposition 66. The eurymeric closure of an algebraic group G is

H = {AB : A ∈ G, B ∈ K[G◦] ∩GL},

with H◦ = K[G◦] ∩GL.

Proof. Let N = K[G◦]∩GL. As G normalizes G◦, then it normalizes N , and thus
N CH. Observe that H = GN , so H/N = (GN)/N ' G/(G ∩N) by the Second
Isomorphism Theorem. As G◦ < G ∩ N and G/G◦ is finite, then G/(G ∩ N) is
finite, and so H/N . Observe that H is then union of a finite number of cosets
modulo N , and each coset is an algebraic variety, so H is an algebraic group.
Finally, H◦ = N since N CH, H/N is finite and N is connected.

We have that N is a broad group and H a eurymeric group. For any eurymeric
group G+ containing G, G◦+ = K[G◦+] ∩ GL ⊃ K[G◦] ∩ GL = N , so G+ contains
H. Therefore H is the smallest eurymeric group containing G.
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Corollary 67. With the same notation, G◦ is diagonalizable/triangularizable/
abelian/solvable if and only if H◦ is so. A vector subspace is invariant by G◦ if
and only if it is invariant by H◦.

Proof. Solvability in a connected algebraic group is equivalent to triangularizabil-
ity, according to Lie-Kolchin Theorem; see Theorem 30.

Remark 68. In particular the result “G◦ is abelian if and only ifH◦ is” is interesting
for the application of Morales-Ramis and Morales-Ramis-Simó theorems, which
say that the integrability of certain dynamical system implies that the Galois
group of certain linearization has an abelian identity component, cf. [MRR01] and
[MRRS07]. The usual application of the theorems is negative: if the identity
component is not abelian, then the dynamical system is non-integrable. If we
compute the eurymeric closure of the Galois group instead, we still have that, if
its identity component is not abelian, then the dynamical system is non-integrable.
This result may make the eurymeric closure attractive outside the scope of this
thesis.

Another consequence of Proposition 66 is that the broad hull and the eurymeric
closure of an algebraic group commute with the extension of the base field. First
of all, in order to speak of the extension of an algebraic group by the extension of
the base field, we shall prove a result showing that the variety defined by the same
equations is an algebraic group.

Theorem 69. Let F be a field extension of K, G be an algebraic subgroup of
GL(n,K) and H the subvariety of GL(n, F ) given by the same equations as G.
Then H is an algebraic subgroup of GL(n, F ).

Proof. Let X and Y be n×n matrices of indeterminates. Let I be the ideal of G in
the ring K[X], J1 be the ideal generated by {f(X), f(Y) : f ∈ I} in the ring K[X, Y],
and J2 be the ideal generated by {f(X · Y) : f ∈ I} in K[X, Y]. Recall that a matrix
underlined represents the list of its entries row after row. As J1 is the ideal of
G×G, it is a radical ideal. The closure of G under multiplication is equivalent to
the contention J2 ⊆ J1, and this contention is kept after the extension from K to
F .

If A ∈ H, the chain H ⊃ A ·H ⊃ · · · ⊃ Am ·H ⊃ · · · is stationary because F [X]
is Noetherian, so Ar ·H = Ar+1 ·H for certain r, hence H = A ·H, therefore I = AB

for certain B ∈ H, and thus B = A−1, because I ∈ G ⊂ H.
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Theorem 70. Let F be a field extension of K, G be an algebraic subgroup of
GL(n,K) and H be its broad hull. Let GF be the extension of G to the base field
F . The broad hull HF of GF is the extension of H.

Proof. As G and GF are groups, K[G] is the K-linear span of G and F [GF ] is the
F -linear span of GF . Let S be the linear equations of K[G] in Kn×n. As S can be
added to the equations of G, GF satisfies S, and thus its span F [GF ] also satisfies
S, hence F [GF ] has at most the same dimension over F as K[G] over K. The
dimensions are equal because F [GF ] contains a basis of K[G], which is also a basis
over F . Finally H = K[G]∩GL(n,K) = F [GF ]∩GL(n,K) = HF ∩GL(n,K).

Theorem 71. Let F be a field extension of K, G be an algebraic subgroup of
GL(n,K) and H be its eurymeric closure. Let GF be the extension of G to the
base field F . The eurymeric closure HF of GF is the extension of H.

Proof. According to Lemma 72, G◦F is the extension of G◦ to the base field F .
By Proposition 66, H◦ is the broad hull of G◦ and H◦F is the broad hull of G◦F .
According to Theorem 70, these broad hulls are given by the same equations. By
Proposition 66, H = G · H◦ and HF = GF · H◦F . Each component of H is the
image of the linear space H◦ by a matrix M ∈ G, and each component of HF is
the image of the linear space H◦F by a matrix M ∈ GF . According to Lemma 72,
each component of GF has elements in G, so we can choose representatives of the
components of GF in G. As H◦ and H◦F are given by the same linear equations,
the groups H and HF are also given by the same equations.

The proof of this theorem requires the following lemma to be completed.

Lemma 72. Let F be a field extension of K, G be an algebraic subgroup of
GL(n,K) and GF be the extension of G to the base field F . The components
of G and GF are in bijection, each pair given by the same equations. In particular,
G◦ corresponds to G◦F .

Proof. We shall prove the corresponding result in Commutative Algebra. Let X

be an n × n matrix of indeterminates, and q be the ideal of G in the ring K[X].
As q is a radical ideal, it admits the unique decomposition q = p1 ∩ p2 ∩ · · · ∩ ps
as irredundant intersection of prime ideals. For each i, F [X]/piF [X] is isomorphic
to K[X]/piK[X] ⊗K F , which is a tensor product of two integral domains over an
algebraically closed field and thus an integral domain, therefore piF [X] is prime.
So, we have the decomposition qF [X] = p1F [X] ∩ p2F [X] ∩ · · · ∩ psF [X].
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3.8 Resonance truncated order

In §3.6 we have explained and proved a modification of Derksen–van der Hoeven
algorithm for computing the eurymeric group generated by finite data, but the
proof was done under the assumption of exact computations. We know that with
complex effective numbers we may have two sources of error. One of these sources
is linear algebra, and will be addressed in §3.8.2. The other source of error is
the computation of the rank over Q, explained in §2.4. According to §3.6, the
algorithm depends on the computation of the order as root of unity of the quotients
of eigenvalues.

Example 73. Let us consider the following toy example: the eurymeric group gen-
erated by A = diag(1, λ). The quotients of eigenvalues are λ and 1/λ, so we may
consider only λ. Let us follow the cases described in §2.4. In the cases 1(a)i and 2a
the computation of the resonance order is correct. In the case 1(a)ii, the resonance
order is 1 but we get q, which is a multiple of the correct one and yields the same
Lie algebra according to Lemma 60. In the cases 1(a)iii and 2b, the resonance or-
der is p > Q, for Q the bound described in §2.4, but we get q 6 Q, so we compute
C[Aq] = CI1 ⊕ CI1 instead of C[Ap] = CI2.

Recall the definition of truncated order from §2.4. For P ∈ N, the P -truncated
order of λ ∈ K∗ is its order p as a root of unity if p 6 P and the P -truncated
order is 1 if λ is a root of unity of order greater than P or λ is not a root of unity.
The test of §2.4 computes the Q-truncated order with the exception of the case
1(a)iii, when the Q-truncated order is 1 but we compute q 6 Q, which only occurs
at low precision. We may define the resonance P -truncated order as the least
common multiple of the P -truncated orders of all the quotients of eigenvalues. The
resonance Q-truncated order is computed exactly or, at low precision, a multiple
of its exact value.

If we use the resonance Q-truncated order in the algorithm of §3.6, by Lemma 60,
it does not matter that we compute a multiple of it, but the result may be aug-
mented due to the roots of unity of order greater than Q. According to Corol-
lary 67, the identity component of the algebraic group and the identity component
of its eurymeric closure leave invariant the same lines. The problem with the
augmentation due to the resonance truncated order is that we may lose invariant
lines. For instance, in Example 73, when we compute CI1 ⊕ CI1 instead of CI2,
an infinity of invariant lines is lost, keeping only the two axes. I shall prove that
we keep the interesting invariant lines, those giving Singerian solutions.

I define a Singerian line with respect to an algebraic group G as an invariant
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line by G◦ with I(n) images at most by G. Singerian lines correspond to Singerian
solutions, defined by Theorem 43. I shall prove that the augmentation due to the
truncated order keeps the Singerian lines.

Lemma 74. If p is the resonance P -truncated order of A ∈ GL or a multiple
thereof and ` a line invariant by Apq for certain q, then either ` is invariant by Ap

or the length of the orbit of ` by AZ is greater than P .

Proof. Let v be a director of `; v is an eigenvector of Apq. There exist an eigenvalue
λ of A such that λpq is the eigenvalue corresponding to v. There may be several
options for λ, of the form λξ with ξ a root of unity; let us list these options as
λ, λξ1, λξ2, . . . , λξr. The eigenspace of Apq corresponding to λpq is spanned by the
eigenspaces of A corresponding to λ, λξ1, λξ2, . . . , λξr; decompose v = v0 + v1 +
· · · + vr for this direct sum of eigenspaces. If v = vi for certain i, then v is an
eigenvector of A and thus of Ap.

Assume that there are i 6= j such that vi and vj are not null and that (assuming
ξ0 = 1) ξi/ξj is a root of unity of order greater than P . Without loss of generality,
we take i = 0 and j = 1. Then Amv = λmv0 + λmξm1 v1 + λmξm2 v2 + · · ·+ λmξmr vr
for any m, so Am` is generated by v0 + ξm1 v1 + ξm2 v2 + · · ·+ ξmr vr, hence Am` = `
implies ξm1 = 1 and thus m > P , so ` has more than P images by AZ.

Assume now that for any vi and vj not null we have that ξi/ξj is a root
of unity of order P at most, hence (ξi/ξj)

p = 1 and thus ξpi = ξpj . Without
loss of generality we arrange the non-null components v0, v1, . . . , vs and the null
components vs+1, vs+2, . . . , vr. Then Ap` is generated by ξp0v0 + ξp1v1 + · · ·+ ξpr vs.
As ξp0 = ξp1 = · · · = ξps , Ap` is generated by v0 + v1 + · · ·+ vs = v, thus Ap` = `.

Proposition 75. If H is a eurymeric group, p is the resonance I(n)-truncated
order of A ∈ H or a multiple thereof, G is the eurymeric group generated by H
and K[Ap] ∩GL, and ` is a Singerian line of H, then ` is a Singerian line of G.

Proof. Let h be the Lie algebra of H. According to the algorithm of §3.6, we
start with F a system of representatives of H/H◦ and a = K[h, Ap]. The loop
refines F removing duplicates and augments a by BApB−1 for B ∈ F , so finally
a = K[h, B1A

pB−1
1 , B2A

pB−1
2 , . . . , BrA

pB−1
r ] with B1, B2, . . . , Br ∈ H, and this is the

value of the Lie algebra g of G.

Let `1, `2, . . . , `m be the images of ` by H. By definition m 6 I(n) and `
is invariant by h. There exists q such that Apq ∈ H◦, so ` in invariant by Apq.
According to Lemma 74, either ` is invariant by Ap or it has more than I(n)
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images by AZ. As ` is Singerian of H, ` is invariant by Ap. The same argument
proves that any `i is invariant by Ap.

For B ∈ H, there exists i such that B`i = `, so BApB−1` = BAp`i = B`i = `.
Hence ` is invariant by g. As F only decreases, the images of ` cannot grow, so `
is a Singerian line of G.

3.8.1 The effect of resonance truncated order

Although Theorem 71 is no longer applicable when the eurymeric closure is ap-
proximately computed with resonance truncated order, Lemma 72 warrants that,
if the algebraic group is defined over an algebraically closed subfield k of K, each
component has a representative defined over k. So, Theorem 71 is valid for the
approximately computed eurymeric closure presented in this section, provided that
the component of A has a representative defined over k with the same resonance
truncated order as A. This fact depends on a result of Algebraic Geometry.

Lemma 76. Let K/k be an extension of algebraically closed fields. Let X and Y
be algebraic varieties in Kr defined over k. If X has points (over K) out of Y ,
then it has points over k out of Y .

Proof. Let I be the ideal of X and J the ideal of Y , both radical ideals defined
over k. If X has no point over k out of Y , then J is contained in I. This contention
of ideals is kept by the extension of the base field from k to K, so X would be
contained in Y .

Proposition 77. Let K/k be an extension of algebraically closed fields. Let H be
a linear subspace of gl(n,K) defined over k. If A ∈ H ∩ GL(n,K) has resonance
P -truncated order p, then there is A0 ∈ H ∩ GL(n, k) with resonance P -truncated
order p.

Proof. Let {M1, M2, . . . , Mr} ⊂ gl(n, k) be a basis of H. The characteristic polyno-
mial P (x, t1, t2, . . . , tr) = det(t1M1 +t2M2 + · · ·+trMr−xIn) of t1M1 +t2M2 + · · ·+trMr
belongs to k[x, t1, t2, . . . , tr]. The resultant R(y, t1, t2, . . . , tr) of P (xy, t1, t2, . . . , tr)
and P (x, t1, t2, . . . , tr) w.r.t. x belongs to k[y, t1, t2, . . . , tr]. For each ξ ∈ k,
R(ξ, t1, t2, . . . , tr) defines an algebraic variety Xξ in kr, whose points are precisely
the (α1, α2, . . . , αr) such that α1M1 +α2M2 + · · ·+αrMr has an eigenvalue λ and ξλ
is another eigenvalue thereof.
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Let ΞP be the set of the roots of unity of order up to P . Let Q be the set of
the quotients of eigenvalues of A. The resonance P -truncated order p of A is the
least common multiple of the order of the roots of unity in ΞP ∩Q. Let X be the
intersection of the Xξ for ξ ∈ ΞP ∩ Q. Let Y be the union of gl(n, k) \ GL(n, k)
(which is the variety of det = 0) with the Xξ for ξ ∈ ΞP \Q. The extension of X
to K contains A, and A is out of the extension of Y . According to Lemma 76, there
is (β1, β2, . . . , βr) ∈ X \ Y . Let A0 = β1M1 + β2M2 + · · · + βrMr. By construction,
A0 ∈ GL(n, k). Let Q0 be the set of the quotients of eigenvalues of A0; it must
contain ΞP ∩ Q and must exclude ΞP \ Q, so ΞP ∩ Q0 = ΞP ∩ Q and thus the
resonance P -truncated order of A0 is p.

3.8.2 The effect of numerical linear algebra

The effect of numerical linear algebra on the computation of the eurymeric closure
is simpler than the effect of resonance truncated order. A possible error is to
undercompute the Lie algebra. Another possible error is to deem duplicates two
elements of components too close. In both cases the error is an undercomputation
of the group, and smaller groups may gain invariant lines but never lose them.
Anyway, at precision fine enough the computations are exact.

Another effect of numerical linear algebra on the computation of the eurymeric
closure is that the termination of the algorithm is no longer warranted. J. van der
Hoeven claims in [vdH07a, §4.5] that the termination of his version of Derksen–van
de Hoeven algorithm relies on [vdH07a, Lem. 3]7 without an explicit consideration
of the effect of the approximated zero-test. Even if the algorithm terminated
for any input and precision, there are good reasons to truncate the algorithm.
For instance, the output may contain a large cyclic group in a case of no non-
null common eigenvector of the Lie algebra and, hence, there are not non-zero
Liouvillian solutions. For such a truncation we use a general8 global parameter G.
The truncated algorithm would stop, if it has not ended before, after G iterations.
This way, the algorithm terminates for any input, tolerance and G, and it gives
a correct output if G is high enough and tol is small enough. Notice that the
tolerance depends on G. Moreover, for any G and tol, the output is either correct
or undercomputed.

HERE ENDETH THE THIRDE CHAPTER z

7See Remark 65.
8See §2.5 for an introduction to general global parameters.
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Chapter 4

The algorithm

In this chapter I shall explain and prove the algorithm for computing a nonzero
Liouvillian solution of differential equation or system. or certifying that the system
has no nonzero Liouvillian solution. This chapter also deals with the reconstruction
of symbolic objects from numerical ones, which is necessary in order to give a
symbolic correct output.

A Singerian solution y of a scalar equation may be given by the minimal polyno-
mial of y′/y, where y′/y represents the line Ky, invariant by the identity component
of the Galois group, and the roots of this minimal polynomial represent the orbit
by the Galois group of this line. This is enough for scalar equations, but for ex-
pressing Singerian solutions of a system y′ = Ay we need Darboux polynomials,
to be defined. Each solution of the system has an associated linear homogenous
Darboux polynomial, and so each line of solutions. The product of the Darboux
polynomials of the orbit of a Singerian line is another Darboux polynomial, which
represents the orbit, and it has coefficients in the differential field of coefficients of
the equation. If we construct this Darboux polynomial from a numerical Singerian
solution, we get a numerical Darboux polynomial. In this chapter I shall explain
the techniques for reconstructing the coefficients of the Darboux polynomial, but
the reconstruction is correct only for precision good enough, so we must check if the
reconstructed polynomial is Darboux and if it splits in linear factors. The latter is
done with Brill equations. The factors of a Darboux polynomial are also Darboux,
and in our case they represents lines whose director vectors are (alleged) Singerian
solutions, so checking if the reconstructed polynomial is Darboux is equivalent to
checking if this alleged solutions are true solutions.

The coefficients of the reconstructed Darboux polynomials should be rational
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functions. We reconstruct them using Padé approximation. Then we reconstruct
the numerical coefficients of these rational functions, which should lie in the al-
gebraically closed field generated by the symbolic coefficients of the equation, ac-
cording to §4.3, provided that the original solution was well chosen.

4.1 Darboux polynomials

According to Example 7, if K is a differential field where A is defined, the system
is equivalent to ∇−Ay = 0 in a differential module (Kn,∇−A) such that the image
of the standard basis of Kn by ∇−A is −A. Any connection in Kn gives rise to a
derivation in the symmetric algebra of Kn in a unique way. The symmetric algebra
of Kn is identified with K[X1, X2, . . . , Xn] where X1, X2, . . . , Xn represent the
standard basis ofKn. So we have a derivation onK[X1, X2, . . . , Xn] that, restricted
to the homogeneous linear polynomials, is the connection∇−A via the identification
ofX1, X2, . . . , Xn with the standard basis ofKn. For instance, y = (y1, y2, . . . , yn)ᵀ

is identified with the polynomial Hy = y1X1 + y2X2 + · · · + ynXn. With this
notation, H ′y = H∇−Ay and we have the following equivalence.

Proposition 78. With the notation of this paragraph, the following statements
are equivalent:

• y is a horizontal vector, i.e., ∇−Ay = 0;

• y is a solution of the system, i.e., y′ = Ay;

• Hy is a constant, i.e., H ′y = 0.

The polynomials whose derivative is zero are called in this context first integrals,
which are a particular case of Darboux polynomials. We say that P is a Darboux
polynomial if P divides P ′. The idea of using Darboux polynomials is due to
J.-A. Weil, and his thesis [Wei95] is the reference for Darboux polynomials. The
product of Darboux polynomials is another Darboux polynomial. Moreover, the
irreducible factors of a Darboux polynomial are also Darboux polynomials. A
proof of these properties is found in [Wei95, Lem. 12], but it is simple and I shall
give it.

Proposition 79. The product of Darboux polynomials is another Darboux poly-
nomial.
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Proof. If P and Q are Darboux polynomials, there exist polynomials A and B
such that P ′ = AP and Q′ = BQ; then (PQ)′ = APQ+PBQ is a multiple of PQ
and thus PQ is a Darboux polynomial.

Proposition 80. The irreducible factors of a Darboux polynomial are also Darboux
polynomials.

Proof. If P is a Darboux polynomial and Q an irreducible factor thereof, there
exist k ∈ N and polynomials A and R such that P ′ = AP , P = QkR and Q does
not divide R; then P ′ = kQk−1Q′R + QkR′ and also P ′ = AQkR. Eliminating
Qk−1, we have kQ′R+QR′ = AQR, so Q divides kQ′R. As Q does not divide R,
it must divide Q′, thus Q is a Darboux polynomial.

Let y = (y1, y2, . . . , yn) ∈ F n be a non-zero Singerian solution of a linear
system of differential equations. According to Theorem 43, for each i and j with
yi 6= 0, y′i/yi ∈ F0 and yj/yi ∈ F0 for an algebraic extension F0/K of degree I(n) at
most. Without loss of generality, assume that y1 6= 0. The line Ky is represented
by the Darboux polynomial PKy = Hy/y1, which lies in F0[X1, X2, . . . , Xn]. If
{`1, `2, . . . , `r} is the orbit of Ky by the differential Galois group, this orbit is rep-
resented by the Darboux polynomial P = P`1P`2 · · ·P`r , which contains the term
Xr

1 . As P is invariant by the differential Galois group, P ∈ K[X1, X2, . . . , Xn].
This Darboux polynomial representing the orbit of Singerian solutions allows to
get the minimal polynomial (or a power thereof) of each yi/y1, substituting X for
X1, −1 for Xi and 0 for the remaining Xj.

The annihilating polynomial obtained this way is a power of the minimal poly-
nomial for the following reason. For being an annihilator, it has all the algebraic
conjugates as roots. For the invariance under the differential Galois group, all the
roots are algebraic conjugates. For the orbit-stabilizer theorem, all the roots have
the same multiplicity. The following example shows that this annihilator can be
a proper power of the minimal polynomial. In this case, computing symbolically,
we can recover Q from R = Qr as R/ gcd(R,R′).
Example 81. Let us consider the system

u′ = 0,

v′ =
v

2x
,

w′ =
w

3x
.

Let f be a primitive sixth root of x. A fundamental system of solutions of the sys-
tem is (1, 0, 0), (0, f 3, 0) and (0, 0, f 2). The Picard-Vessiot extension C(x, f)/C(x)
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has a finite Galois group isomorphic to the group of sixth roots of unity. For each
sixth root of the unity ξ, we have the Galoisian automorphism mapping f to ξf .
The orbit of the solution (y1, y2, y3) = (1, f 3, f 2) is

{(1, f 3, f 2), (1,−f 3, ωf 2), (1, f 3, ω2f 2), (1,−f 3, f 2), (1, f 3, ωf 2), (1,−f 3, ω2f 2)},

with ω a primitive cubic root of the unity. The corresponding Darboux polynomial
is

X6
1 + x2X6

3 + 2xX3
1X

3
3 − 3xX4

1X
2
2 + 3x2X2

1X
4
2 − x3X6

2 + 6x2X1X
2
2X

3
3

which gives the polynomials (X2−x)3 and (X3−x)2 for y2/y1 = f 3 and y3/y1 = f 2

respectively.

The annihilating polynomial of y′1/y1 is gotten as certain yi/y1 in the case of
a companion system. In the general case, if we have the equation y′1 = a11y1 +
a12y2 + · · ·+ a1nyn, we get

y′1/y1 = a11 + a12y2/y1 + a13y3/y1 + · · ·+ a1nyn/y1,

which yields a symbolic expression for y′1/y1 from which we can compute sym-
bolically an annihilating polynomial for y′1/y1, but not necessarily the minimal
polynomial.
Example 82. Let us consider the system u′ =

u

x
+ xv,

v′ = u +
v

2x
.

Let f be a square root of x, and g the exponential of an integral of f ; symbolically
f =
√
x and g = exp

∫ √
x, but we will only use the relations f 2 = x and g′ = fg.

A fundamental system of solutions of the system is (xg, fg) and (x/g,−f/g). The
Picard-Vessiot extension C(x, f, g)/C(x) has a Galois group with two components.
The identity component fixes f and acts like C∗ on g. The other component
consist of automorphisms σλ for λ ∈ C∗ such that σλ(f) = −f and σλ(g) = λ/g.
There are two lines invariant by the action of the identity component, the lines
generated by (xg, fg) and (x/g,−f/g), and the other component swaps them.
These vectors correspond to the first integrals H1 = xgX1 + fgX2 and H2 =
(x/g)X1−(f/g)X2, and the invariant lines correspond to the Darboux polynomials
P1 = H1/(xg) = X1 +(f/x)X2 and P2 = H2/(x/g) = X1−(f/x)X2. The Darboux
polynomial of the orbit is P = P1P2 = X2

1 − (1/x)X2
2 . Let us look for the minimal

polynomials defining u = xg and v = fg. The minimal polynomial of v/u is
P (X,−1) = X2 − 1/x, and we get u′/u from the first equation of the system,
u′/u = 1/x+ x(v/u).
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The set of the products of d homogeneous linear polynomials is an algebraic
variety of the set of all the homogeneous polynomials of degree d, and the equations
of this variety, called Brill equations, can be computed and have degree d+ 1; see
[GKZ94, p. 140].

Example 83. Following [GKZ94, p. 139, Ex. 2.9], we shall compute the Brill equa-
tions for d = 2. A quadratic form splits in product of linear forms if and only if its
matrix has rank 2 at most. This is equivalent to all 3×3 minors of the matrix van-
ishing, which are cubic equations. Thus, for n = 3, we have a single Brill equation,
the determinant. The quadratic form aX2

1 +bX1X2 +cX1X3 +dX2
2 +eX2X3 +fX2

3

is associated to the matrix  a 1
2
b 1

2
c

1
2
b d 1

2
e

1
2
c 1

2
e f

 ,

so the Brill equation is ∣∣∣∣∣∣
a 1

2
b 1

2
c

1
2
b d 1

2
e

1
2
c 1

2
e f

∣∣∣∣∣∣ = 0.

For n = 4, the quadratic form aX2
1 + bX1X2 + cX1X3 + dX1X4 + eX2

2 + fX2X3 +
gX2X4 + hX2

3 + iX3X4 + jX2
4 is associated to the matrix

a 1
2
b 1

2
c 1

2
d

1
2
b e 1

2
f 1

2
g

1
2
c 1

2
f h 1

2
i

1
2
d 1

2
g 1

2
i j

 ,

so the Brill equation are the 16 choices of 3 × 3 minor, but the symmetry of the
matrix makes many redundant. For instance,∣∣∣∣∣∣

a 1
2
b 1

2
c

1
2
b e 1

2
f

1
2
d 1

2
g 1

2
i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a 1

2
b 1

2
d

1
2
b e 1

2
g

1
2
c 1

2
f 1

2
i

∣∣∣∣∣∣ .
In general, there are 1

2

(
n
3

) ((
n
3

)
+ 1
)
irredundant Brill equations, which is O(n6).

In the main algorithm of this thesis, we construct the Darboux polynomial
corresponding to a candidate of orbit of Singerian solutions. As this polynomial has
coefficients in K(x), we reconstruct symbolically the rational functions as explained
in §4.2. A reconstructed Darboux polynomial is tested with Brill equations to check
if it factors in linear forms. The idea of Brill equations is taken from [SU97]. Then
we check if it is an actual Darboux polynomial. As the coefficient of Xr

1 is 1,
we may assume the factors have coefficient 1 in X1. These factors are Darboux
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polynomials of the form P`, so each of them represents a line of solutions. The
images of each line by the differential Galois group must be other lines represented
in the Darboux polynomial, so they are a Singerian orbit.
Remark 84. It is necessary to check both Brill equations and Darboux polynomial
because X2

1 −X2X3 is irreducible and a first integral for the derivation defined by
X ′i = 1

2
Xi, which is the associated to the system y′ = −1

2
y.

The Darboux polynomial is as large as the symmetric power of the equation,
but easier to compute, and it does not need the latter in order to check it. More-
over, the Darboux polynomial is only computed and checked when we have a
candidate solution. In the case when no candidate solution is found, we have an
early termination, contrary to the classic algorithms, which would be in their worst
case and would have to compute high-order symmetric powers.

4.2 Reconstruction of rational functions

In order to reconstruct a rational function from its power series expansion, J. van
der Hoeven proposes in [vdH07a, §3.4] using Padé approximation. See [BGM81,
Chap. 1] for a reference on Padé approximation. For a power series f and degrees
r and s, the Padé approximant is the rational function with numerator of degree
r at most, denominator of degree s at most and contact with f of maximal order.
There are different definitions of Padé approximants in the literature, which may
lead to apparently contradictory properties. The weaker definition is attributed
to Frobenius because of his use in [Fro1881]. The stronger definition is attributed
to G.A. Baker Jr.; see [Bak75, §2.B] and [BGM81, §1.4]. I shall first introduce
our requisites of Padé approximation and later discuss our use for reconstructing
the rational functions that appears as coefficients of the Darboux polynomials
described in §4.1.

4.2.1 Introduction to Padé approximation

For a power series f and degrees r and s, a strong Padé approximant is a rational
function

g(x) =
a0 + a1x+ · · ·+ arx

r

b0 + b1x+ · · ·+ bsxs
(4.1)

such that
g(0) = f(0), g′(0) = f ′(0), . . . , g(r+s)(0) = f (r+s)(0). (4.2)
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The expression (4.1) of g has r + s + 1 degrees of freedom (in the well behaved
case, we impose b0 = 1 and the rest of the parameters are free) and the system
(4.2) of r + s+ 1 equations is the most we can ask g to satisfy.

The naive way to solve (4.2) is developing the quotient g(x) =
∑∞

k=0Gkx
k, with

each Gk in Z[a0, a1, . . . , ar, b1, b2, . . . , bs], and considering the system Sfrs = {Gk =
fk}r+sk=0 for f =

∑∞
k=0 fkx

k, but this system is non-linear because G1 = a1 − a0b1.
Moreover, the system Sfrs is not compatible for all f , r and s. For instance,
S1+x+x4,2,2 is an incompatible system. A way to linearize the problem is developing
the product

(b0 + b1x+ · · ·+ bsx
s) f(x) =

∞∑
k=0

Hfskx
k,

with eachHfsk in K[b0, b1, . . . , bs] linear homogeneous for f(x) ∈ K[[x]], and impose∑r+s
k=0Hfskx

k = a0 + a1x+ · · ·+ arx
r. This yields a homogeneous linear system

{Hfsk = ak}rk=0 ∪ {Hfsk = 0}r+sk=r+1. (4.3)

The subsystem {Hfsk = ak}rk=0 gives explicit formulae for a0, a1, . . . , ar in terms
of b0, b1, . . . , bs. The subsystem Lfrs = {Hfsk = 0}r+sk=r+1 is a homogeneous linear
system in b0, b1, . . . , bs. For been homogeneous linear, Lfrs is consistent for all f , r
and s, and so is (4.3). Moreover, Lfrs always has a non-null solution, and so does
(4.3).

A solution of Sfrs is always a solution of (4.3), but not the converse, as we
saw with the example f(x) = 1 + x + x4 and r = s = 2. So I define a weak Padé
approximant for a power series f and degrees r and s as a rational function g
satisfying (4.1) and (4.3). Contrary to strong Padé approximants, the weak ones
always exist. A strong Padé approximant is always a weak one, which justifies the
terminology, and a weak Padé approximant with b0 6= 0 is a strong one.

If we have two (weak) Padé approximants g1 and g2 for the same f , r and
s, then they are equal. Indeed, if g1 = A1/B1 and g2 = A2/B2 with A1 and A2

polynomials of degree r at most, B1 and B2 polynomials of degree s at most and
B1f ≡ A1 and B2f ≡ A2 modulo xr+s+1, then B1B2f ≡ A1B2 ≡ A2B1 modulo
xr+s+1. As A1B2 and A2B1 are polynomials of degree r + s at most, we have
A1B2 = A2B1 and hence g1 = g2. So we may speak of the Padé approximant of f
with degrees r and s, usually denoted [r/s]f . We have existence and uniqueness
for weak approximants and also uniqueness for strong approximants. If the weak
approximant g satisfies (4.2), then it is the strong approximant. If it does not,
Padé defined the deficiency index ωfrs such that f and g have contact of order
r + s− ωfrs.
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How are the Padé approximants of a rational function?

Theorem 85. We have f(x) ∈ K(x) of the form

f(x) =
α0 + α1x+ · · ·+ αρx

ρ

1 + β1x+ β2x2 + · · ·+ βσxσ
(4.4)

if and only if [r/s]f = f for all r > ρ and s > σ. [Bak75, thm. 2.2]

According to the cited reference, this result was proved for the weak definition
of Padé approximants by H. Padé in [Pad1892], and was later proved for the
strong one. The easy half of the theorem, that (4.4) implies [r/s]f = f for all
r > ρ and s > σ, which is the part the we need for this thesis, is easily proved by
uniqueness of [r/s]f and that f has the required contact order for being a strong
Padé approximant of itself.
Remark 86. Theorem 85 guarantees the equality f = g, from (4.4) and (4.1) respec-
tively, as rational functions, but it does not guarantee the equality of numerators
and denominators, even if b0 = 1. See the following counterexamples.
Example 87. Consider the power series expansion f(x) =

∑∞
k=0 2kxk of the rational

function 1/(1− 2x). The equations for the Padé approximant g = [2/2]f are

a0 = b0,

a1 = 2b0 + b1,

a2 = 4b0 + 2b1 + b2,

0 = 8b0 + 4b1 + 2b2,

0 = 16b0 + 8b1 + 4b2.

Notice that the fifth equation is double the fourth, so Lf22 has rank 1. Taking b0

and b1 as parameters, the solution is

a0 = b0,

a1 = 2b0 + b1,

a2 = 0,

b2 = −4b0 − 2b1.

Notice that the choice b0 = 1 is possible but it does not make the system deter-
mined. In any case (b0, b1) 6= (0, 0), we have

g(x) =
b0 + (2b0 + b1)x

b0 + b1x+ (−4b0 − 2b1)x2
=

(
b0 + (2b0 + b1)x

)(
b0 + (2b0 + b1)x

)
(1− 2x)

,

which simplifies to the exact value of f(x). Only (b0, b1) = (1,−2) gives the
equality of numerator and denominator.
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Example 88. Let us compute g = [2/2]f for f(x) = 1 + x+ x4. The equations are
the following:

a0 = b0,

a1 = b0 + b1,

a2 = b1 + b2,

0 = b2,

0 = b0.

Notice that Lf22 reduces to b0 = b2 = 0, so the only choice of parameter is b1 and
the solution is a0 = b0 = b2 = 0 and a1 = a2 = b1. In any case b1 6= 0, we have

g(x) =
b1x+ b1x

2

b1x
=

(b1x)(1 + x)

(b1x)
,

which simplifies to 1 + x, but the numerator and the denominator are different.

4.2.2 The problem of the order

The origin may be a pole of the rational function to reconstruct. This may happen
even for a rational function h(x) that appears as coefficients of the Darboux poly-
nomials described in §4.1, since a regular point of the differential equation may be
a pole of h(x), as shown in the following example.
Example 89. Let us consider the differential equation y′′ = 0, which admits the
Singerian solution x. The Darboux polynomial associated to x is H = xX1 + X2

and, as x is not the null function, we may normalize the Darboux polynomial as
P = X1 + 1

x
X2, which is associated to the line Kx. As P is defined in K(x), it

is a final Darboux polynomial of the equation. Notice that the origin is a regular
point of y′′ = 0 but a pole of 1/x, a coefficient of P .

If we know a bound k of the order of the pole of h(x), the problem is solved
by taking f = xkh(x), but we do not know such a bound even in the case of the
coefficients of the Darboux polynomials constructed in §4.1. In this case, recall, we
start with a Singerian solution y = (y1, y2, . . . , yn) with y1 6= 0. If {`1, `2, . . . , `t}
is the orbit of Ky by the differential Galois group, we may choose Galois automor-
phism σ1, σ2, . . . , σt such that each `i is generated by (σi(y1), σi(y2), . . . , σi(yn)).
Each `i is represented by the Darboux polynomial

P`i(X1, X2, . . . , Xn) = X1 +
σi(y2)

σi(y1)
X2 + · · ·+ σi(yn)

σi(y1)
Xn,
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and the orbit is represented by the Darboux polynomial

P = P`1P`2 · · ·P`t =

∏t
i=1 (σi(y1)X1 + σi(y2)X2 + · · ·+ σi(yn)Xn)

σ1(y1)σ2(y1) · · ·σt(y1)
,

whose coefficients are members of Z[σi(yj); 1 6 i 6 t, 1 6 j 6 n] divided by the
non-null product σ1(y1)σ2(y1) · · ·σt(y1). The σi(yj) are effective power series, a
power series with an algorithm for computing any desired term (as an effective
complex number), but their order may be unknown. All we can do is computing
their approximated order, considering null the coefficients that are too close to zero.
This order (as a series) is computed exactly for precision fine enough, but it may be
overcomputed for poor precision. In any case, we have a non-null (pseudo)leading
term in order to compute a (pseudo)quotient of power series, an effective power
series divided by x to the sum of the (pseudo)orders of the σi(y1).

Another way to deal with the situation is the Padé approximation of a quotient
of series. In our case, the denominator is σ1(y1)σ2(y1) · · ·σt(y1). The condition
(4.3) of weak Padé approximation, for f(x) the quotient N(x)/D(x) of formal
power series, yields

(b0 + b1x+ · · ·+ bsx
s)
N(x)

D(x)
≡ a0 + a1x+ · · ·+ arx

r mod xr+s+1. (4.5)

If D(0) 6= 0, this is equivalent to

(b0 + b1x+ · · ·+ bsx
s)N(x) ≡ (a0 + a1x+ · · ·+ arx

r)D(x) mod xr+s+1, (4.6)

but (4.6) is weaker than (4.5) if D(0) = 0. The former case is considered in [Gra72,
§4], and the latter case may be a path to explore.

4.2.3 Computation of Padé approximants

Padé approximants can be computed by direct solution of the system (4.3), which
consists of the subsystem Lfrs, a homogeneous linear system in b0, b1, . . . , bs, and
explicit formulae for a0, a1, . . . , ar in terms of b0, b1, . . . , bs. We pick a non-null
solution of Lfrs (see §4.3 on how to pick it) and compute [r/s]f , which is the same
regardless of the choice of solution of Lfrs. When the computation is done with
effective complex numbers, a coefficient too close to zero may be deemed zero and,
if the computation is not aborted and restarted at finer precision, the result may
be completely erroneous. Anyway, when tol is small enough, the computation is
exact and the result is correct.
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Gaussian elimination, or any other solver of (4.3), is an effective way of com-
puting Padé approximants, but there are more efficient methods, as described
in [BGM81, §2.4], some of them involving the extended Euclidean algorithm, as
briefly explained below. Moreover, Lfrs has a particular structure, a so-called
Toeplitz system, and Toeplitz systems can be solved with specific methods, but
one of these methods, described in [BGY80], precisely reduces a Toeplitz systems
to a problem of Padé approximation, which is solved using a fast version of the
extended Euclidean algorithm.

The Padé approximants are usually arranged in an infinite matrix called the
Padé table. The antidiagonals of the Padé table correspond to the Padé approx-
imants of the same sum r + s. These approximants appear as byproducts of the
extended Euclidean algorithm for xr+s+1 and the truncation F (x) of f(x) at degree
r + s, as described in [BGY80, §4] and [vzGG03, §5.9]. The first Padé approxi-
mant found is [r+s / 0]f = F (x), and then the algorithm proceeds by decreasing
the degree of the numerator and increasing the degree of the denominator, keeping
the sum r+ s. This increasing and decreasing of the degrees may be done by steps
of 1, but may not. Each computed Padé approximants has a multiplicity in the
antidiagonal equal to the degree of the partial quotient in the Euclidean algorithm,
according to [BGY80, lem. 2].

There exists a fast version of the extended Euclidean algorithm, described in
[BGY80, §3] and [vzGG03, §11.1], which exploits the fact that most computations
in the extended Euclidean algorithm need only a few leading terms instead the
whole polynomial. This algorithm can compute fast and correctly the intermediate
values that determine any Padé approximant in the antidiagonal, as stated in
[vzGG03, corol. 11.6], but not all of them together, as said in [vzGG03, p. 309].
As we will see later, we will not need different Padé approximants in the same
antidiagonal, so the fast algorithm can be applied.

Same as with the direct solution of (4.3), when the computation with the
extended Euclidean algorithm is done with effective complex numbers, a coefficient
too close to zero may be deemed zero and, if the computation is not aborted and
restarted at finer precision, the result may be completely erroneous. Anyway, when
tol is small enough, the computation is exact and the result is correct.

Computing by direct solution of (4.3), as shown in Example 87, may output
the Padé approximant not in its lowest terms. In particular, the computation for
the same f for greater r and s may yield new numbers to reconstruct as in §4.4. A
way to find the solution of (4.3) yielding a Padé approximant in its lowest terms is
to choose as parameters bs, bs−1 and so on, as long as possible, and to assign them
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to zero. Computing by the extended Euclidean algorithm may output the Padé
approximant not in its lowest terms, but not as bad as Example 87, only as in
Example 88. According to [BGY80, p. 271, ll. 13–17], the greatest common divisor
of numerator and denominator is a power of x. Even if the Padé approximant is
not simplified, once r > ρ and s > σ according to Theorem 85, it will yield the
same numbers to reconstruct when the computation is redone for greater r and s.

In order to compute a Padé approximant, we needs bounds for the degree of
the numerator and of the denominator. Some bounds are discussed in [vHW97].
In case of ignorance, we use a general1 global parameter B. Fixing r = s = B,
there are algorithms, as in [BGY80, §5], that allow to easily compute the Padé
approximants in the main diagonal of the Padé table.

4.3 Algebraicity of the numeric coefficients

If we start with a field of constants K algebraically closed, after analytic operations
we cannot warrant that the result is defined over K, only over C. We have examples
that show how we find constants transcendental over K even if all the vertices of
analytic continuation belong to K.

Example 90. Let us continue analytically {y′ = y, y(0) = 1}, defined over Q, to 1,
also rational. The solution is {y′ = y, y(1) = e}, which is not defined over Q.

Even returning to the same rational point, we may find transcendental numbers.

Example 91. Let us continue analytically {y′ = 1/x, y(1) = 0}, defined over Q, to 1
after a loop around the origin counterclockwise. The solution is {y′ = 1/x, y(1) =
2πi}, which is not defined over Q.

Despite these examples, the numeric coefficients that appear in the rational
functions reconstructed in the previous section lie in K, as I shall prove. According
to [vdH07a, §2.2¶4], if we express in the same fundamental system of solutions
(defined over K) the differential Galois groups G with the base field K and GC
with C, then G = GC∩GL(n,K); in the language of §3.7, GC is the extension of G
to the complex base field. If H and HC are the respective eurymeric closures of G
and GC, as Theorem 71 proves, HC is the extension of H to the complex base field.
According to Proposition 77, the truncated linearized Derksen–van der Hoeven
algorithm over C is performed in the same way as over K. In the construction

1See §2.5 for an introduction to general global parameters.
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described in §4.1, just as in [vdH07a, §3.4], we normalize our object so that it
must be defined over K, provided that the chosen common eigenvector is defined
over K. The following example shows that this choice is a necessary condition.

Example 92. The 2 × 2 system {y′ = y} is defined over Q. The fundamental
system of solutions {f e1, f e2}, where {e1, e2} is the standard basis of K2 and f
the solution of {y′ = y, y(0) = 1} from Example 90, is also defined over Q. The
differential Galois group is K∗I2, which is broad (thus connected and eurymeric)
and defined over Q. For K = C, all the elements of C2 are eigenvectors of C∗I2, so
we may pick (1, e), which corresponds to the solution f e1 + ef e2. The associated
Darboux polynomial is X1 + eX2, which is not defined over Q.

Remark 93. The existence of such an eigenvector is granted, but we need to find it
effectively. If we chose the eigenvector (1, e) as in Example 92, the reconstruction
of the numbers would fail because e is transcendental, and this would cause the
algorithm not to terminate.

The penultimate paragraph of [vdH07a, §4.5] describes a method for comput-
ing a basis over K of a given basis of a complex vector subspace of Cn that is
defined over K. If the vectors are given as rows, the device is reducing to the ech-
elon form the resulting matrix. For a vector subspace of gl(n,C), the row vector
corresponding to a matrix is the juxtaposition of its rows.

There are two ways for finding a common eigenvector of a complex vector
subspace of gl(n,C) defined over K. The first way is to find a basis over K before
computing the common eigenvectors, so that we compute in gl(n,K). The second
way is to reduce the basis of the chosen eigenspace so that any vector lies in Kn.
We may apply any of the methods; applying both is redundant, but we need one
in order that the algorithm terminates, as Remark 93 says.

4.4 Reconstruction of numbers

In order to reconstruct the symbolic expression of an effective complex number β
in K = Q(α1, α2, . . . , αr), we need to find a polynomial P ∈ Z[X0, X1, . . . , Xr] such
that P (β, α1, α2, . . . , αr) = 0, This is equivalent to looking for additive syzygies2

among the products of α1, α2, . . . , αr and β. If {α1, α2, . . . , αr} is a transcendence
basis of K, then β must be present in any syzygy.

2An additive syzygy of (a1, a2, . . . , as) ∈ Cs is (k1, k2, . . . , ks) ∈ Zs such that k1a1 + k2a2 +
· · ·+ ksas = 0.

119



There are different algorithms for looking for additive syzygies among the real
numbers, and some are generalizable to complex numbers. If we have got a bound
of the degree, as in [Hen96, §2.5]=[HvdP95, §5], we use it. If we have not, we use
a general3 global parameter D.

J. van der Hoeven proposes in [vdH07a, §3.4] using the LLL algorithm, which
is not an algorithm for additive syzygies, but can be used trickily to get some,
as I shall describe in §4.4.2. It was described in [LLL82, §1] as an auxiliary al-
gorithm for factorization in Q[x] in polynomial time, and has plenty applications,
especially in cryptanalysis, as exposed in [JS98]. According to [KLL88], recon-
structing symbolically a number is essentially analyzing its binary expansion as
a pseudo-random number generator. Moreover, [KLL88] introduces an algorithm
for factorization in Q[x] in polynomial time simpler than [LLL82]. The idea is to
construct the minimal polynomial of a root of the polynomial to factor, which is
possible with the application of the LLL algorithm in [KLL88, (1.16)].

Another algorithm (related to the LLL) is HJLS, which is an actual algorithm
for additive syzygies, but the most renowned of these algorithms is PSLQ, which
has a version for complex numbers exposed in [FBA99]. Actual algorithms for
additive syzygies, under exact arithmetic, either compute a syzygy or give a inferior
bound of the coefficients of a syzygy. They are used for reconstructing symbolic
expressions of numbers, for instance in the Inverse Symbolic Calculator [Plo95];
see also [BHM02]. They are found to be very useful in the so-called experimental
mathematics, computing candidate syzygies numerically and then proving them
rigorously. For instance, as told in [BB01, §4], these algorithms were used to find
a formula that gives an individual hexadecimal digit of π without computing the
previous ones, as described in [Pet09, §4], which was proved afterward.

The next subsections will be devoted to explain roughly these algorithms, in
the context useful for our needs, and to compare them.

4.4.1 About the LLL algorithm

The LLL algorithm is an algorithm for reducing the basis of a lattice. Let me
introduce these terms. IfB = {a1, a2, . . . , ar} is a system of r vectors in Rn linearly
independent over R, we define the additive subgroup L(B) = Za1 +Za2 +· · ·+Zar
of Rn. We call L(B) a lattice,4 B a basis thereof, and r its rank. If r = n, we speak

3See §2.5 for an introduction to general global parameters.
4Notice that, in this context, “lattice” has a different meaning from in the previous chapters.
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of a full-rank lattice. Some expositions, as the original LLL article, are restricted
to full-rank lattices, but this is not an essential restriction, since L(B) can be
embedded in Rr. The vector space V spanned by B can be identified with Rr by
an orthonormal basis. The image of L(B) in Rr is a full-rank lattice and has all
the properties of L(B). Others expositions, as the present one, consider lattices
for r 6 n. This latter option makes clearer to deal with the lattices constructed
when looking for syzygies.

Lattices are discrete: there is a minimum distance between points of a lattice.
With any norm of Rn, it suffices to prove that there is a minimum norm among
the nonzero vectors of a lattice, which is done in Proposition 94 for M = {0}.
A vector that achieves this minimum length is called the shortest vector of the
lattice, by a little abuse of language.

Proposition 94. If M is a subset of the lattice L(B), there is a minimum λM of
the norm (any norm of Rn) in L(B) \M , and λM > 0 if 0 ∈M .

Proof. Let λM = inf{‖x‖ : x ∈ L(B) \M}. There exists a succession (xk)
∞
k=1 in

L(B) \M with limk ‖xk‖ = λM . As the length of xk is bounded, this succession is
contained in a compact subset of Rn and, so, it admits a convergent subsuccession
(yk)

∞
k=1 with limit y0. By continuity of the norm, ‖y0‖ = λM . Decomposing each

yk in B as yk =
∑r

i=1 ykiai, we have limk yki = y0i for each i. As each yki is integer,
there is k0 such that yki = y0i for each k > k0 and 1 6 i 6 r, so yk = y0 for
k > k0. Consequently, y0 ∈ L(B) \M , so λM is a minimum. Moreover, if 0 ∈M ,
y0 6= 0, so λM > 0.

Remark 95. The definition of λM does not depend on the basis B, but only on the
lattice L(B) and the norm in Rn.

Among the different bases a lattice has, we look for an analog of orthonormal
bases, with the Euclidean metric inherited from Rn. The operations on a basis that
yield another basis of the same lattice are a restricted kind of Gaussian reduction:
swapping two vectors, changing the sign of a vector and adding to a vector an
integer multiple of another vector. As the length is discrete in a lattice, we look
for minimal-length vectors instead of unit ones, a condition codified by the concept
of successive minima. For 1 6 i 6 r, the i-th successive minimum of a lattice L is
the minimum radius λi of the closed ball K centered at the origin such that K ∩L
has R-rank i at least. The existence of λi is granted by Proposition 94, with M
the vectors x ∈ L such that the closed ball of center the origin and radius |x| has
rank lower than i, so the successive minima are achieved. The first minimum of a
lattice is the length of the shortest vector thereof.
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The ideal basis of a lattice would be an orthogonal basis of successive minima,
but this is hard for two reasons. Computing the shortest vector in a lattice is hard
(see [MG02, Chap. 4] for a detailed discussion of the computational-complexity
hardness), so computing a basis of successive minima is harder, if not impossible.
For instance, the lattice (2Z)n∪(2Z+1)n from [MG02, p. 126] has all its successive
minima equal to 2 if n > 5, but a basis of successive minima only generates the
sublattice (2Z)n. Moreover, a lattice may lack orthogonal bases, even of pairs of
orthogonal vectors, as the lattice generated by the basis B = {(1, 0), (

√
2, 1)}. So

we look for bases consisting of almost orthogonal, almost minimal-length vectors.
This concept is codified in the definition of a reduced basis.

Let {b1, b2, . . . , br} be the Gram-Schmidt orthogonalization of B, where each
bi is the projection of ai orthogonal to Vi = Ra1 + Ra2 + · · ·+ Rai−1 (onto V ⊥i ).
We say that B is (δ, η)-reduced, for 1

4
< δ 6 1 and 1

2
6 η <

√
δ, if |µij| 6 η

and δ|bj|2 6 |cj+1|2, where µij = (ai · bj)/|bj|2 and ci is the projection of ai
orthogonal to Vi−1 (onto V ⊥i−1), for 1 6 j < i 6 r. The basis B is orthogonal if and
only if every µij is zero, so the condition |µij| 6 η codifies the almost orthogonality.
The parameter δ = 3

4
is a trick that the authors of the LLL algorithm introduced in

order to grant that their algorithm takes polynomial time, but it works whenever
1
4
< δ < 1. The ideal would be δ = 1, but this only works for r = 2, as explained

below. The parameter η is a trick introduced for dealing with implementations
of the LLL algorithm in inexact arithmetic. The ideal would be η = 1

2
, but in

practice we need η = 1
2

+ ε for small tolerance ε.

How far from the shortest is the length of a1 in a (δ, η)-reduced basis?

Proposition 96. If B is a (δ, η)-reduced basis,

|a1| 6
(

1

δ − η2

) r−1
2

min{|x| : x ∈ L(B), x 6= 0}.

Proof. This proof is adapted from [Mei09, p. 56, thm. 2.2]=[Mei01, p. 9, thm. 2.1]
to the case of general δ and η. For 1 < i 6 r, we have

ci = bi + µi,i−1bi−1.

As bi ⊥ bi−1,
|ci|2 = |bi|2 + |µi,i−1|2|bi−1|2.

As δ|bj|2 6 |cj+1|2,
δ|bi−1|2 6 |bi|2 + |µi,i−1|2|bi−1|2.
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As |µi,i−1| 6 η,
δ|bi−1|2 6 |bi|2 + η2|bi−1|2

and
(δ − η2)|bi−1|2 6 |bi|2.

Notice that 0 < δ − η2 6 3
4
. By induction

(δ − η2)i−1|b1|2 6 |bi|2

and thus
|bi|2 > (δ − η2)r−1|b1|2 = (δ − η2)r−1|a1|2.

Notice that the last formula holds also for i = 1.

Let x be the shortest5 vector of L(B) and x =
∑N

i=1 xiai its decomposition
in B with xN 6= 0. If we decompose x in the orthogonalized basis, we have
x =

∑N
i=1 yibi with yN = xN . By Pythagoras, |x|2 =

∑N
i=1 |yi|2|bi|2. As yN is a

nonzero integer,

|x|2 > |yN |2|bN |2 > |bN |2 > (δ − η2)r−1|a1|2,

so

|a1| 6
(

1

δ − η2

) r−1
2

|x|.

The case r = 2 is much simpler and illustrative and, if we work with exact arith-
metic, we can compute a (1, 1

2
)-reduced basis of successive minima in polynomial

time. In this case, a reduced basis {a1, a2} has |a1| 6 |a2| and the angle θ between
a1 and a2 satisfies 1

3
π 6 θ 6 2

3
π; see [Vaz01, §27.2] and [Dwo98, Ch. 5]. Unfortu-

nately the converse is not true, as the counterexample {(1, 0), (1, 2)} shows. For
this case, an efficient basis reduction algorithm is known since Gauss, who included
it in his Diquisitiones Arithmeticae [Gau1801], though [Ngu10] attributes it to La-
grange. It is a generalization to vectors of Euclid’s algorithm6. The algorithm is
the combination of a rounded-off version of the Gram-Schmidt orthogonalization
process, in order to keep |µ12| 6 1

2
, and a reordering of the basis in order to keep

|a1| 6 |a2|. As the Gram-Schmidt orthogonalization process is a2 := a2 − µ12a1,
its lattice version is a2 := a2 − ma1, where m the nearest integer to µ12. After
this step, the new value of µ12 satisfies |µ12| 6 1

2
. Moreover, the rounding-off of

5Recall that this means any minimum of L(B) \ {0} in Euclidean norm.
6See footnote 8 on page 80.
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the old value of µ12 is the only7 value of m that makes the new value of µ12 sat-
isfy |µ12| 6 1

2
. If, after this step, the new values satisfy |a1| 6 |a2|, these values

are invariant under the two steps of the algorithm, so the algorithm terminates.
Else, when |a1| > |a2|, we swap a1 ↔ a2 and repeat the process. The algorithm
terminates in polynomial time, according to [Dwo98, prop. 5.2.1], [Vaz01, p. 278]
and [Beu99b, Ex. 3.3]. According to [Vaz01, thm. 27.5], [Dwo98, prop. 5.1.2] and
[Beu99b, Alg. 3.1], a Gauss-reduced basis consists of a shortest vector and a suc-
cessive minimum.

The LLL algorithm was introduced in [LLL82, §1] as an auxiliary of the first al-
gorithm for factoring in Q[x] in polynomial time, which they introduced in [LLL82,
§3]. The name LLL comes from the initials of the authors: Lenstra, Lenstra8

and Lovász. They considered only the full-rank case, but the algorithm works
anyway for r < n. A detailed exposition of [LLL82] is found in the BSc thesis
[Pet09]. Other expositions are found in [Beu99b]+[Beu99a], [vzGG03, Ch. 16],
[Car02, §3.2.1+§4.2.1] and [Nov08, §1.2]. The LLL algorithm is also exposed in
[Dwo98, Ch. 6], [Coh93, §2.6], [Bor02, App.B] and [Mei01, §2.1]=[Mei09, §2.1].

As the Gaussian algorithm, which is a simplification for r = 2, the LLL algo-
rithm is the combination of a rounded-off version of the Gram-Schmidt orthogonal-
ization process and a reordering of the basis. The first step is to compute the µij
and the corresponding nearest integer mij and to reduce ai := ai−

∑
j<imijaj for

1 < i 6 r. Notice that each reduction changes the values of the µij, but not of the
bi, so the µij must be recomputed. This step grants that, at the end, |µij| 6 1

2
for

1 6 j < i 6 r. The second step is to check if δ|bi|2 6 |ci+1|2 for 1 6 i < r. If the
test is passed, the basis is (δ, 1

2
)-reduced. Else, for the least i with δ|bi|2 > |ci+1|2,

we swap ai ↔ ai+1 and repeat the process, beginning with the Gram-Schmidt
process in order to recompute the bi and the µij. This exposition is not the most
efficient,9 but my only aim is to explain how the algorithm works. The algorithm
terminates in polynomial time, according to [LLL82, prop. 1.26], [Car02, thm. 4]
and [Vaz01, thm. 16.11].

A (3
4
, 1

2
)-reduced basis is enough for many applications, including the factoriza-

tion in Q[x]. The LLL authors construct a suitable lattice in [LLL82, §2] for the
algorithm given in [LLL82, §3]. For a survey on factorization methods depend-
ing on lattice reduction, see [Klü10]; also [Nov08, Ch. 1]. Another application,
introduced in [LLL82, prop. 1.39] and surveyed in [Han10], is the simultaneous

7In the case µ12 ∈ Z + 1
2 , both nearest integers hold the condition, and they are the only

integers holding the condition.
8A.K. Lenstra and H.W. Lenstra Jr. are brothers.
9For instance, only a partial Gram-Schmidt process is needed after a swap.
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Diophantine approximation, which is a generalization of continued fraction ap-
proximation with common denominator. But the application we are interested in
is looking for syzygies, which is explained below.

4.4.2 Finding syzygies with the LLL algorithm

Though the LLL algorithm is an algorithm for reducing a lattice basis and its first
proposed application was factorization in Q[x], its applicability for computing
minimal polynomials of algebraic numbers is already mentioned in [LLL82] at the
end of §1. The basic idea, exposed in [JS98, §2.5], is, for α real and C large enough,
to reduce the basis given by the columns of the matrix

C Cα . . . Cαd

1
1

. . .
1

 ,

where d is the guess for the degree of the minimal polynomial of α. The shortest
vector, which is approximated by the first vector in the reduced basis, is of the
form (CP (α), p0, p1, . . . , pd) with P (x) = p0 + p1x+ · · ·+ pdx

d and C2P (α)2 + p2
0 +

p2
1 + · · · + p2

d small. As C is large, P (α) is very small, thus α is approximately
a root of P (x). The LLL article fails to explain better this idea because of its
restriction to full-rank lattices, when the lattice above has rank d+ 1 in Rd+2. For
α complex, also mentioned at the end of [LLL82, §1] but not explained, the basis
to reduce is given by the columns of the following matrix

C C Re(α) . . . C Re(αd)
0 C Im(α) . . . C Im(αd)
1

1
. . .

1


.

The adequate value of C is given in [KLL88, (1.16)] in terms of the degree and the
height10 of α. If H is a bound of the height of α, [KLL88, (1.16)] takes C = 2s

10The height of an algebraic number is the largest absolute value of the coefficients of its
primitive minimal polynomial over Z, that is, the supremum norm of the minimal syzygy that
determines its minimal polynomial.
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with s the least integer such that

2s > 2d
2/2(d+ 1)(3d+4)/2H2d.

If we do not have a bound H of the height of α, we use a general11 global parameter
H.

In order to reconstruct the minimal polynomial of β ∈ Q(α1, α2, . . . , αr), with
{α1, α2, . . . , αr} a transcendence basis, we consider the row vector m of all the
monic monomials of degree d at most of α1, α2, . . . , αr and β, and the matrixC Re(m)

C Im(m)
I

 .

We proceed with this matrix as in the previous paragraph. If r = 1 and α1 has a
certain shape, like π and the exponential or the logarithm of an algebraic number,12

then one may find the adequate value of C, and [KLL88, §2¶11] claims that this
result may extend for general α1 and general r, but it is not further developed.
What we know in any case is that, for C large enough, we find an exact syzygy
provided it exists.

Proposition 97. If x = (x1, x2, . . . , xn) ∈ Cn has (non-null) syzygies, then the
LLL method will find one for C large enough.

Proof. This proof is adapted from [Mei01, p. 12, lem. 2.1]=[Mei09, p. 59, lem. 2.1]
to the complex case. We may discard the case x = 0, where any y ∈ Zn is a
syzygy. Let

S = {y ∈ Zn : y 6= 0, y · x = 0}
be the set of non-null syzygies of x. According to Proposition 94 with B the
standard basis of Rn and M = Zn \ S, the minimum

λ = min{|y| : y ∈ L(B) \M} = min{|y| : y ∈ S}

is achieved by m ∈ Zn. Let

R =

(
1

δ − η2

)n−1
2

λ

for the parameters δ and η of the LLL algorithm. Consider the finite set of vectors

A = {y ∈ Zn : |y| 6 R, y · x 6= 0},
11See §2.5 for an introduction to general global parameters.
12In general, it works for α1 with known transcendence measure; see [Cij74b]+[Cij74a].
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which is not empty because, if xi 6= 0, the i-th vector ei of the standard basis
belongs to A. Choose a vector y0 ∈ A minimizing |y0 · x| and, for this y0,
define C0 = R/ |y0 · x|. For C > C0, let L be the lattice defined by the basis13

{(C Re(xi), C Im(xi), ei)}ni=1, which is L = {ϕ(y) : y ∈ Zn} with

ϕ : Zn → L : y 7→ (C Re(y · x), C Im(y · x), y).

For y ∈ Zn, the length of ϕ(y) is

|ϕ(y)| =
√
C2|y · x|2 + |y|2 > max{C |y · x| , |y|}.

As |ϕ(m)| = |m| = λ, the shortest vector in L has length λ at most. If y
is not a syzygy of x, then |ϕ(y)| > R (because, if |y| 6 R, then y ∈ A and
C |y · x| > C0 |y0 · x| = R), so

|ϕ(y)| >
(

1

δ − η2

)n−1
2

min{|v| : v ∈ L, v 6= 0}

and, according to Proposition 96, ϕ(y) cannot be the first vector in a (δ, η)-reduced
basis of L. Thus, the first vector ϕ(z) of such a basis determines a non-null syzygy
z of x.

Remark 98. Notice that C0 depends on x and cannot be computed beforehand,
and that the behavior for C 6 C0 is unknown. There is no guarantee that the
set of the C is connected. For instance, it might happen that, for C1 < C2 < C0,
C = C1 finds a syzygy while C = C2 finds none. Such a numerical accident is not
excluded. For instance, in [FB92, §2¶4] they report a example where the HJLS
algorithm works with low precision, fails with medium precision and works with
high precision.

As we do not know how large C need to be for a successful syzygy computation,
we use a general14 global parameter C.

4.4.3 The LLL algorithm with effective real numbers

The LLL algorithm is implemented both in exact rational arithmetic and in finite-
precision numerics. Both [JS98, §2.5] and [Jus90, §3] propose to round off the data
and operate with exact arithmetic, but [Beu99b, §6] does not. For a survey on the

13Recall that a vector underlined represents the list of its entries.
14See §2.5 for an introduction to general global parameters.
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topic, see [Ste10]. The implementation with effective real numbers would be easy
because there is no zero-test in the LLL algorithm. There are only rounding µij
to the nearest integer and checking if δ|bi|2 6 |ci+1|2. Everything works exactly
except when µij is about the midpoint between two integer numbers and when
δ|bi|2 is too close to |ci+1|2. Moreover, for precision fine enough, the computations
are exact. Nevertheless, the LLL algorithm with inexact arithmetic may loop
forever, as [Ste10, p. 186] warns, if we choose η = 1

2
. Indeed, Stehlé provides in

the webpage of his PhD thesis [Ste05] some examples of lattice bases that make a
popular floating-point implementation of the LLL algorithm loop forever.

Assume we are working with tolerance ε > 0. A straightforward implemen-
tation of the LLL algorithm with η = 1

2
, when checking if |µij| 6 1

2
, may yield

1
2
< |µij|.aprox(ε) < 1

2
+ ε for 1

2
− ε < |µij| 6 1

2
, and tries to reduce vectors that

are already reduced and should be kept untouched. This might be the cause of
Stehlé’s infinite loop. So we must choose η > 1

2
+ ε; this grants that |µij| 6 1

2

implies |µij|.aprox(ε) 6 η and hence already reduced vectors are kept untouched.
What an implementation of the LLL algorithm with parameter (δ, η) computes is a
(δ− ε, η+ ε)-reduced basis, though with some “noise” what forces more reductions
and swaps than necessary for a (δ − ε, η + ε)-reduced basis, but necessary for a
(δ+ε, η−ε)-reduction. This makes Proposition 96 hold for parameters (δ−ε, η+ε),
and thus Proposition 97, but we must adapt the proof of termination of the LLL
algorithm for parameters (δ + ε, η − ε).

The standard proof of termination of the LLL algorithm uses the determinant
of a lattice, which I shall introduce. The following definitions are equivalent for a
lattice basis B:

• the square root of the Gramian determinant of B,

• the absolute value of the determinant of the matrix of B, only for full-rank
lattices,

• the r-dimensional volume of the parallelotope determined by B.

So, we define the determinant d(B) of B as the real number determined by any
of the definitions above. Any of these definitions is invariant by a the following
Gaussian-reduction operations: swapping two vectors, changing the sign of a vector
and adding to a vector a multiple of another vector. These operations include both
the transformations between bases of the same lattice and the operations of the
Gram-Schmidt orthogonalization process. Therefore, we define the determinant
d(L) of a lattice L as the determinant of any of its bases. Also, the determinant of
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a lattice basis B is equal to the determinant of its Gram-Schmidt orthogonalization
B′, and hence equal to the product of the lengths of the vectors of B′.

Another ingredient of the proof of termination of the LLL algorithm for general
lattices is Minkowski’s bound; see, for instance, [Len08, p. 137].

Theorem 99 (Minkowski). If L is a lattice of rank r,

min{|x| : x ∈ L, x 6= 0} 6
√
r d(L)1/r.

Now we can follow the proof of termination from [Beu99b, §4].

Theorem 100. The LLL algorithm with parameters δ and η, implemented in
effective real numbers with tolerance ε > 0, terminates in a finite number of steps,
provided δ, η and ε are compatible (i.e., η− ε > 1

2
, η+ ε <

√
δ − ε, δ− ε > 1

4
and

δ + ε < 1).

Proof. Let us use the terminology of §4.4.1 and consider the product

D = d(a1) d(a1, a2) · · · d(a1, a2, . . . , ar−1).

As the Gram-Schmidt orthogonalization of {a1, a2, . . . , ai} is {b1, b2, . . . , bi}, for
1 6 i 6 r, we have

d(a1, a2, . . . , ai) = |b1| |b2| · · · |bi| .

Let M = min{|x| : x ∈ L(a1, a2, . . . , ar), x 6= 0}. For 1 6 i 6 r, we have

M 6 min{|x| : x ∈ L(a1, a2, . . . , ai), x 6= 0} 6
√
i d(a1, a2, . . . , ai)

1/i

by Theorem 99, so

d(a1, a2, . . . , ai) >

(
M√
i

)i
>

(
M√
r

)i
and thus

D >
M√
r

(
M√
r

)2

· · ·
(
M√
r

)r−1

=

(
M√
r

) r(r−1)
2

.

This is a lower bound for D independent of the lattice basis.

Let us consider the effect in D of the basis transformation performed in the
LLL algorithm. Adding to a vector ai a multiple maj of another vector may
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modify the partial determinants d(a1, a2, . . . , ak) with i 6 k < j, but the LLL
algorithm, imitating the Gram-Schmidt process with rounded-off coefficients, only
performs transformations like ai := ai +maj for j < i, which keeps all the partial
determinants d(a1, a2, . . . , ak) invariant. Swapping two consecutive basis vectors
ai ↔ ai+1 only affects to the partial determinant d(a1, a2, . . . , aj) for i = j, so

D′ = D
d(a1, a2, . . . , ai−1, ai+1)

d(a1, a2, . . . , ai)
= D

|b′i|
|bi|

,

where the prime means the value after the swap. It is easy to check that b′i = ci+1,
so

D′ = D
|ci+1|
|bi|

< D
√
δ + ε.

The lower bound for D at any stage and the upper bound of the factor of
decreasing of D at an LLL swap, as the swap is the only basis transformation in
the LLL algorithm that modifies D, imply that the LLL algorithm performs only a
finite number of swaps and thus a finite number of iterations, so the LLL algorithm
terminates in a finite number of steps.

4.4.4 About the HJLS algorithm

Related to the LLL algorithm, there is the HJLS algorithm, which is an actual
algorithm for finding syzygies. The HJLS name comes from the initials of the
authors: Håstad, Just (née Helfrich), Lagarias and Schnorr. The HJLS algorithm
was introduced in [HHLS86] and explained in [HJLS89]. They called it “Small
Integer Relation Algorithm” in [HJLS89], Algorithm A in [HHLS86], where integer
relation is what we have called additive syzygy. Another synonym is “Diophantine
relation”, used in [Ber80, §2, ¶4].

The HJLS algorithm combines ideas from [FF79], explained in [Ber80], and
from [LLL82]. Apart from [HHLS86] and [HJLS89], the HJLS algorithm is ex-
plained in [Rom07, §2.2], [Mei01, §2.3], [Mei09, §2.3] and [Bor02, App.B]. Geo-
metrically, as explained in [HJLS89, §1, ¶3], in order to find the syzygies of x ∈ Rn,
they construct a sequence of bases of the lattice Zn whose elements converge to
Rx in the following way; the maximum distance between an element of the basis
and the line Rx converges to zero. Starting with the standard basis, each new
basis is worse in terms of the LLL algorithm, but its orthogonal projection onto
x⊥ imitates the LLL reduction. As [HJLS89, §1, ¶3] says, the elements of the
basis B are better and better Diophantine approximations of x, seeing the vectors
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as projective coordinates. For a variant of HJLS for computing good Diophan-
tine approximations, see [Jus92]. The HJLS algorithm plays with the dual basis
of B, which consists of the rows of the inverse of the matrix of B by columns,
whose elements are closer and closer to syzygies of x, as Diophantine approxi-
mation is the dual problem of syzygies, according to [HJLS89, §1, ¶6]. Instead
of computing the inverse of the matrix of B when needed, the HJLS algorithm
computes it step by step after each elementary transformation of B, applying the
corresponding elementary transformation. Instead of applying the Gram-Schmidt
orthogonalization process to B = {a1, a2, . . . , an}, it is applied to {a0, a1, . . . , an}
with a0 = x; the result {b0, b1, . . . , bn} makes {b1, b2, . . . , bn} “almost” a basis
of x⊥ (“almost” in the sense that we get a basis by suppressing the zero vectors).
Along the HJLS algorithm, bn = 0; if bn 6= 0, then bi = 0 for certain i < n,
so x ∈ Ra1 + Ra2 + · · · + Rai and thus the n − i last elements of the dual basis
are linearly independent syzygies; cf. [HJLS89, prop. 3.1, proof (1)]. If the HJLS
algorithms does not terminate finding a syzygy, as explained below, the iteration
of the reduction would produce systems {b1, b2, . . . , bn} converging to zero, so
eventually |bi| < 2−k for 1 6 i 6 n, where k is an input datum, and, according to
[HJLS89, prop. 3.1.(2)], any syzygy would have length longer than 2k. If a syzygy
is found, then its length is at most 2n/2−1 min{|m| : m ∈ Zn,m 6= 0,m · x = 0},
according to [HJLS89, prop. 3.1.(3)].

The main loop of the HJLS algorithm does the following. It chooses i maximiz-
ing 2i|bi|2, reduces ai+1 := ai+1 −mai and swaps ai ↔ ai+1, with m the nearest
integer to (ai+1 · bi)/|bi|2. After the swap, a partial Gram-Schmidt process is
necessary in order to update the bi. Notice that i < n because, if i = n maximizes
2i|bi|2, then there would be j < n with bj = 0 and the algorithm would have
terminated. For n = 2, the HJLS algorithm reduces to continued fractions, as
explained below. If x = (a, b) 6= 0, then15

b1 = a1 −
a1 · x
x · x

x =

(
b2

a2 + b2
,
−ab
a2 + b2

)
and so b1 = 0 if and only if b = 0. If b = 0, we find the syzygy (0, 1) and we are
done. Suppose b 6= 0, so b2 = 0 and i = 1 maximizes 2i|bi|2 for 1 6 i 6 2. If we
start the main loop with a1 = (c, d) and a2 = (e, f), then

µ =
af − be
ad− bc

,

and a1 = (e, f) − m(c, d) and a2 = (c, d) for m the nearest integer to µ. This
process constructs a sequence of (c, d), (e, f), (e, f) − m(c, d), . . . , as in Euclid’s

15Recall that {a1, a2} is the standard basis at the beginning of the algorithm.
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algorithm, such that each item (c, d) represents a convergent c/d of the nearest-
integer continued fraction expansion of a/b, which are like the ordinary continued
fractions, but rounding toward the nearest integer instead of the floor function.
If the algorithm terminates with b1 = 0, then x and a1 = (c, d) are collinear,
so a/b = c/d with the r.h.s. in reduced terms, hence (d,−c) is a syzygy of x. If
the algorithm terminates with b1 = (c, d) 6= 0 and |b1| 6 2k, then any syzygy
of x will be longer than (d,−c); compare this fact with the properties of best
approximations of the convergents.

The HJLS article presents a few variants of the HJLS algorithm, which is called
“Small Integer Relation Algorithm” and described in [HJLS89, §3]. The “Several
Relations Algorithm” is described in [HJLS89, §4] and exploits [HJLS89, prop. 3.1,
proof (1)], which gives n − i independent syzygies if bi = 0. The “Simultaneous
Relations Algorithm” is described in [HJLS89, §5] and generalizes the “Several
Relations Algorithm” finding common syzygies of given vectors x1, x2, . . . , xl. The
Simultaneous Relations Algorithm performs the Gram-Schmidt orthogonalization
on {x1, x2, . . . , xl, a1, a2, . . . , an}, with exactly l zero vectors. In particular, the
Simultaneous Relations Algorithm allows to compute syzygies of complex vectors,
as explained in [HJLS89, p. 876, Rem. (i)]. The trick is the same used for the
LLL algorithm: computing the simultaneous syzygies of the vectors of real and
imaginary parts.

I shall expose a version of the last algorithm for computing a common syzygy
for x1, x2, . . . , xl, which allows a few simplifications. Along the execution of the
algorithm bn = 0, and when bn 6= 0, the algorithm terminates, as the original
HJLS algorithm. Instead of choosing i maximizing 2i|bi|2, this variant maximizes
2τi |bi|2. The exponent τi is defined in [HJLS89, §5] in two equivalent ways: τ<i =
#{j : 1 6 j < i, bj 6= 0} and τ6i = #{j : 1 6 j 6 i, bj 6= 0}. These two
definitions of τi are equivalent because τ6i = τ<i + 1 except when bi = 0, in which
case 2τ

6
i |bi|2 = 2τ

<
i |bi|2 = 0 and i cannot maximize 2τi |bi|2. The choice of τ6i

is consistent with the original HJLS algorithm, but I will chose τ<i because it is
consistent with the proof of [HJLS89, thm. 5.1]. Once chosen i maximizing 2τi |bi|2,
we reduce ai+1 := ai+1 −mai and swaps ai ↔ ai+1, with m the nearest integer
to (ai+1 · bi)/|bi|2, as in the original HJLS algorithm. The algorithm terminates
when bn 6= 0 or |bj| < 2−k for 1 6 j 6 n, as the original HJLS algorithm.

The HJLS algorithm is said to be “extremely numerically unstable” in [FB92,
§2], where it is speculated to derive from its reliance on the Gram-Schmidt orthog-
onalization process, whose numerical instability is invoked from [GVL96, §5.2.8].
Contrary, A. Meichsner says in his MSc thesis [Mei01] and insists in his PhD thesis
[Mei09] that, if the HJLS algorithm is implemented “with full reductions” that he
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defines, it is not different from PSLQ with γ =
√

2, and so they show the same
numerical stability. He says that the reductions HJLS omits are redundant under
exact arithmetic, but that this omission is crucial under inexact arithmetic, like
ordinary numerics, and leads to numerical instability. In [HJLS89, p. 864] they
admit this omission with the aim of improving the computational complexity, con-
sidering only exact arithmetic. Another version of HJLS, proposed in [RS94]16,
is said to be numerically stable. Its authors attribute the numerical instability
of the original HJLS to its approximation of the discontinuous function λ, where
λ(x) is the minimum length of a syzygy of x. This is comparable to the numerical
instability of the rank of a matrix. The problem with [RS94] is that it changes the
goal of the algorithm. This is comparable with our change of the goal from the
algebraic group to the eurymeric group. My experiments seem to show that the
numerical instability is due to the implementation of the Gram-Schmidt process.
A direct implementation of the HJLS algorithm uses the so-called classical Gram-
Schmidt process, but implementing the so-called modified Gram-Schmidt process,
see [GVL96, §5.2.8] for reference, showed in my experiments a numerical stability
similar to PSLQ.

The implementation with effective real numbers has the usual issue of zero-
testing. Contrary to ordinary Gram-Schmidt, the version used in HJLS needs to
test if a given vector is zero. If, computed {b1, b2, . . . , bi}, we find that |bi · bi| 6
tol, we make bi := 0 a proceed, because the computation of bi+1 requires a division
by bi · bi. For tol small enough, the vectors deemed zero are actually zero and
the computation is exact. Else, we compute a fake syzygy or find erroneously
that any possible syzygy is longer than 2k. As the appropriate k is unknown, we
use a general17 global parameter S. It would be absurd to have tol > 2−k so we
assume tol 6 2−S. According to [HJLS89, thm. 5.1], the algorithm HJLS takes
O(n3(n+ k)) operations over R even for simultaneous syzygies.

The HJLS algorithm and its variants are explained in [HJLS89] for exact arith-
metic in R. Computing with effective real numbers requires, as happened with the
LLL algorithm, an adapted proof of termination. I shall adapt [HJLS89, thm. 5.1]
for effective real numbers. Instead of an additive tolerance ε as in Theorem 100, I
shall use a multiplicative tolerance δ, lower than but as close to 1 as desired.
Theorem 101. The HJLS algorithm for a common syzygy implemented in effective
real numbers terminates in a finite number of steps, provided the multiplicative
tolerance δ satisfies √

3

2
< δ < 1. (4.7)

16See also [RS95].
17See §2.5 for an introduction to general global parameters.
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Proof. We construct the productD = αn−1
1 αn−2

2 · · ·αn−1 with αi = max{2n|bi|2, 2−2k}.
Defined this way, D >

∏n−1
i=1 (2−2k)n−i = 2−kn(n−1) throughout the algorithm. The

reduction ai+1 := ai+1−mai does not affect the Gram-Schmidt orthogonalization,
and thus D. Noting with primes the values after a swap ai ↔ ai+1 of the HJLS
algorithm, we shall prove

D′

D
6

3

4δ2
< 1. (4.8)

As i is chosen to maximize 2τi |bi|2 for 1 6 i 6 n, we have bi 6= 0 and thus
τi+1 = τi + 1, with exact arithmetic we would have |bi+1|2 6 1

2
|bi|2, but with

effective real numbers we can only grant that δ2|bi+1|2 6 1
2
|bi|2. As the reduction

ai+1 := ai+1 − mai with m the closest integer to µi+1,i is performed just before
the swap ai ↔ ai+1, we would have |µi+1,i| 6 1

2
with exact arithmetic, but with

effective real numbers we can only grant δ|µi+1,i| 6 1
2
. As b′i = bi+1 + µi+1,ibi,

instead of HJLS’s (3.2), we have

|b′i|2 = |bi+1|2 + µ2
i+1,i |bi|2 6

1

2δ2
|bi|2 +

(
1

2δ

)2

|bi|2 =
3

4δ2
|bi|2. (4.9)

Hence |b′i|2 6 |bi|2, so
α′i 6 αi. (4.10)

As the algorithm has not terminated, with exact arithmetic we would have
|bj| > 2−k for certain j > 1, but with effective real numbers we can only grant
|bj| > 2−kδ. Also, instead of 2τi |bi|2 > 2τj |bj|2, we have 2τi |bi|2 > 2τjδ|bj|2. So,
instead of HJLS’s (3.3), we have

2n|bi|2 > 2τi+1|bi|2 > 2τj+1δ|bj|2 > 2τj+1−2kδ3 > 2−2k+1δ3. (4.11)

Hence, as (4.7) implies 2δ3 > 1, we have 2n|bi|2 > 2−2k, so

αi = 2n|bi|2. (4.12)

As a′i+1 = ai, we have that bi and b′i+1 are orthogonal projections of the same
vector onto different subspaces. As the subspace defining bi contains the subspace
defining b′i+1, |bi| > |b′i+1|, so we get HJLS’s (3.4)

αi > α′i+1. (4.13)

Let V = Rb1−l +Rb2−l + · · ·+Rbi−1. The projections of ai = a′i+1 and ai+1 = a′i
orthogonal to V are bi and b′i respectively. The projection of b′i orthogonal to bi
is bi+1. The projection of bi orthogonal to b′i is b′i+1. Thus,

|bi · b′i| = |bi| |bi+1| = |b′i| |b′i+1|. (4.14)
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Recall that, by definition, αi+1 > 2−2k and αi+1 > 2n|bi+2|2. If α′i = 2−2k, then

α′iα
′
i+1

αiαi+1

=
2−2kα′i+1

αiαi+1

(4.13)
6

2−2kαi
αi2−2k

= 1.

If α′i+1 = 2−2k, then

α′iα
′
i+1

αiαi+1

=
α′i2
−2k

αiαi+1

(4.10)
6

αi2
−2k

αi2−2k
= 1.

If α′i = 2n|b′i|2 and α′i+1 = 2n|b′i+1|2, then |b′i| |b′i+1| 6= 0 and, by (4.14), |bi| |bi+1| 6=
0, so

α′iα
′
i+1

αiαi+1

(4.12)
=

2n|b′i|22n|b′i+1|2

2n|bi|2αi+1

6
2n|b′i|22n|b′i+1|2

2n|bi|22n|bi+1|2
(4.14)
= 1.

Thus, gathering the three cases, we recover HJLS’s (3.5)

α′iα
′
i+1

αiαi+1

6 1. (4.15)

Finally, we have

D′

D
=

(α′i)
n−i(α′i+1)n−i−1

αn−ii αn−i−1
i+1

(4.15)
6

α′i
αi

(4.12)
=

max{2n|b′i|2, 2−2k}
2n|bi|2

= max

{
2n|b′i|2

2n|bi|2
,

2−2k

2n|bi|2

}
(4.11)
6 max

{
|b′i|2

|bi|2
,

2−2k

2−2k+1δ3

}
(4.9)
6 max

{
3

4δ2
,

1

2δ3

}
(4.7)
=

3

4δ2

(4.7)
< 1,

which proves our claim (4.8). As D > 2−kn(n−1) at any stage and the upper
bound of the factor of decreasing of D at a swap, as the swap is the only basis
transformation in the HJLS algorithm that modifies D, imply that the HJLS
algorithm performs only a finite number of swaps and thus a finite number of
iterations, so the HJLS algorithm terminates in a finite number of steps.

4.4.5 About the PSLQ algorithm

Another algorithm for computing additive syzygies is PSLQ, presented in [FB92]
and described in [FBA99]. In the name PSLQ, PS is after “partial sums” and LQ
after the LQ factorization, both distinctive ingredients of the PSLQ algorithm.
The algorithm starts with a vector x ∈ Rn whose syzygies we look for. In the
framework of effective real numbers, if |x| is too close to zero, we terminate saying
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that x = 0 and thus any element of Zn is a syzygy. In the case of computing the
minimal polynomial of α ∈ R, x = (1, α, . . . , αd)ᵀ is always nonzero because of its
first entry. If |x| is not too close to zero, we normalize x := x/|x|, so we may
assume that x = (x1, x2, . . . , xn)ᵀ has unit length. We assume also that xn 6= 0;
otherwise (0, . . . , 0, 1) would be a syzygy.

The aforesaid “partial sums” s1, s2, . . . , sn are defined in the following way:
si =

√
x2
i + x2

i+1 + · · ·+ x2
n. Notice that no si is zero because xn 6= 0. With these

numbers we construct the matrix

H :=



s2

s1

−x1x2

s1s2

s3

s2

−x1x3

s1s2

−x2x3

s2s3

. . .
...

... . . . sn
sn−1

−x1xn
s1s2

−x2xn
s2s3

. . . −xn−1xn
sn−1sn


.

The columns of this matrix form an orthonormal basis of Rn together with x.
I know two ways to generate these column vectors from x. The first method is
the Gram-Schmidt orthonormalization process starting with x and following with
the standard basis of Rn. This is similar to HJLS, but here we use the Gram-
Schmidt orthonormalization, rather than the plain orthogonalization. The second
method produces the columns of H from right to left. For n = 2, it is usual to take
(xn,−xn−1) as an orthogonal vector. This second method extends this approach
to n > 2. We start by taking a vector orthogonal to x in 0n−2 × R2. The next
step is to take a vector orthogonal to both in 0n−3 × R3, and so on. If we choose
the unit vectors with the first nonzero component positive, the process generates
the columns of H from right to left.

Another ingredient in the PSLQ algorithm is the Hermite reduction. In the
same way the LLL reduction is Gram-Schmidt with coefficients rounded to the
nearest integer, the Hermite reduction is Gaussian reduction with coefficients
rounded to the nearest integer. According to [Str10, §2.2], if H is a lower-trapezoidal
matrix with nonzero entries on the diagonal, there exists a unique matrix D0 reduc-
ing by rows that yields D0H the diagonal of H. This matrix D0 is lower triangular
with ones in the diagonal. The matrix D is the nearest-integer roundoff of D0.
As [FBA99, dfn. 3] says, there are recursive formulae for the entries of D where
some coefficients depend on others, so it must be solved in a particular order. In
[FBA99, dfn. 4] they give an iterative algorithm for the Hermite reduction. This
is a kind of Gaussian reduction of H in a particular order and rounding off the
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coefficients mij in the reductions Hi∗ := Hi∗−mijHj∗. The order of these reductions
would not matter if there were no rounding off, but there is rounding off and this
order minimizes the impact of the nonzero reminders.

I shall present a slightly modified version of the PSLQ algorithm. It starts
with the matrices H defined above, y := xᵀ and B := In. With their initial values
yH = O and y = xᵀB. We want to keep these equalities along the algorithm. For
each transformation L on the rows of H, we have (yL−1)(LH) = O, so we redefine
y := yL−1, B := BL−1 and H := LH. A transformation Q on the columns of H affects
only to H, so we only redefine H := HQ. As we did in the HJLS algorithm, keeping
the matrices L elementary, their inverse L−1 are immediate. The matrices L in the
PSLQ algorithm are only elementary components of the Hermite reduction and
row swaps. The matrices Q in the PSLQ algorithm are orthogonal, which grants
some properties to H along the process.

The process starts with the Hermite reduction of H. Then, we choose i max-
imizing γiHii, with γ > 2/

√
3 a parameter of the PSLQ algorithm, and swap

Hi∗ ↔ Hi+1,∗. This reminds the HJLS algorithm with γ =
√

2. Indeed, as cited
above, Meichsner claims that HJLS is equivalent to PSLQ with γ =

√
2. The

interchange of rows may break the trapezoidal shape of H, so the next step is an
orthogonal transformation in its columns restoring the trapezoidal shape. This
orthogonal transformation is a rotation in the plane spanned by the columns i and
i+ 1, for the same i used for swapping the rows. In the case i = n− 1, the trape-
zoidal shape is kept and thus no orthogonal transformation is performed. The next
step is the Hermite reduction, and then we exit if there is any null component in
y. In this case, if y1j = 0, then B∗j is a syzygy of x. If maxj |Hjj| < 1/M , where
M > 0 is an input parameter of the algorithm, then it is granted that any syzygy
of x is longer than M , and we stop. If the algorithm does not terminate with a
positive or negative answer, we return to the interchange step.

The PSLQ algorithm takes polynomial time. According to [FBA99, thm. 3], if
it gives a syzygy m and m0 is the shortest (non-null) syzygy, then |m| 6 γn−2|m0|.

There is an error in the original PSLQ algorithm, described in [Heß11, p. 203].
If xn−1 is an integer multiple of xn, then Hn,n−1 is an integer multiple of Hn−1,n−1,
so Hn,n−1 = 0 after the first Hermite reduction. If n = 2 or γ is large enough, the i
maximizing γi|Hii| is i = n−1, so we swap rows i and i+1, obtaining Hn−1,n−1 = 0.
There is no orthogonal transformation, thus Hermite reduction is performed with
Hn−1,n−1 = 0. The solution I propose is checking before the Hermite reduction if its
pivots Hii are nonzero. According to [FBA99, lem. 5], if Hii = 0 for certain i, then
i = n−1, yj = 0 for certain j and B∗j is a syzygy of x. So, if the null Hii is i = n−1,
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then we find a syzygy or abort due to poor precision. If Hii = 0 for i < n − 1,
then we abort due to poor precision. Another feature of the implementation with
effective real numbers is that tol < 1/M . As the appropriate M is unknown, we
use a general18 global parameter M.

As we saw for LLL and HJLS algorithms, the proof of termination of the PSLQ
algorithm [FBA99, §4] is proved for exact arithmetic and needs to be adapted for
effective real numbers. This proof uses the parameters γ and ρ and defines

τ =

√
1

ρ2
+

1

γ2
. (4.16)

The parameter ρ is introduced in [FBA99, lem. 4] for bounding the error of round-
ing a real/complex/quaternion number to the nearest ordinary/Gaussian/Hamiltonian
integer, considering all the cases simultaneously with ρ equal to 2,

√
2 or 1 respec-

tively. The two sources of effective-numeric error that may affect the termination
of the PSLQ algorithm are the following. First, we have to maximize γi|Hii|, so
that, instead of |α| > γ|λ|, we have |α| > (γ − ε)|λ| for a tolerance ε. The other
source of effective-numeric error is rounding Hij/Hjj to the nearest integer. So,
instead of |α| > ρ|β|, we have |α| > (ρ− ε)|β|. Thus, the PSLQ runs with γ and
ρ = 2, but the proof needs γ′ = γ − ε and ρ′ = 2 − ε. So, instead of τ defined in
(4.16), the termination of the algorithm is ruled by

τ ′ =

√
1

(ρ− ε)2
+

1

(γ − ε)2
.

With these considerations, it seems possible to adapt the proof of termination of
the PSLQ algorithm [FBA99, §4] in a similar manner as the proof of termination
of the LLL algorithm was adapter for effective real numbers in §4.4.3.

The case n = 2 is simpler and reduces to the extended Euclidean algorithm.

Let x = (a, b)ᵀ with b > 0, so H =

(
b

−a

)
. The Hermite reduction is equivalent to

the reduction performed in Euclid’s algorithm, both in y and in H. The swap in
H and y is another ingredient of Euclid’s algorithm. There is no rotation because
the i maximizing γi|Hii| is i = 1 = n − 1. If a and b are commensurable, then we
will eventually find a zero in H and another in y. In this case the matrix B keeps
track of the transformations, as in the extended Euclidean algorithm. The column
of B corresponding to the null element of y is a syzygy of x. The other column of
B corresponds to the nonzero element of y, which is the g.c.d. of a and b, and it

18See §2.5 for an introduction to general global parameters.
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yields Bézout’s identity. If a and b are incommensurable, then the elements of H
and of y become smaller and smaller, converging to zero, eventually |H11| < 1/M
and we stop with a negative answer.

The PSLQ algorithm was conceived for finding the syzygies of a single real vec-
tor, so the trick of looking for the syzygies common to the real and imaginary part
of a complex vector is not applicable in principle, but it may be adapted for syzygies
of vectors over the complexes and even over the quaternions. This adaptation is
very straightforward, and [FBA99] exposes the algorithm in a general form valid for
the three fields, but PSLQ over the complexes outputs relations over the Gaussian
integers, and PSLQ over the quaternions outputs relations over the Hamiltonian
integers, rather than relations over the integers. There are some adaptations of
PSLQ for common syzygies, like [Mei09, §2.5], [CFQZ10a] and [CFQZ10b], so we
may use the trick for computing integer relations even for complex input.

4.4.6 Comparison of these algorithms

I have exposed three algorithms that can be used to get additive syzygies: LLL,
HJLS and PSLQ. The first of them is not an algorithm for syzygies but can be
adapted as explained in §4.4.2, whilst the other two are actual algorithms for
computing syzygies. Together with a guess of the degree of the minimal polynomial
of a number to reconstruct symbolically, which is implemented as a general global
parameter D, the three algorithms need a second general global parameter, as
described in the previous sections. Such a second general global parameter, except
C of LLL, is a bound on the size of the syzygy to return, so that, if no syzygy is
found below this bound, the algorithm returns the bound instead of the syzygy.
The general global parameter H of LLL is a bound on the supremum norm, whist
the bounds used in HJLS and PSLQ are bound on the Euclidean norm. The LLL
algorithm with the general global parameter C fails to get a bound on the size
of a possible syzygy, but the other methods also need a second general global
parameter, so this is not a disadvantage in our context.

The three algorithms run in polynomial time under exact arithmetic, but a
complexity analysis seems difficult under the effective real numbers because we
would need to know the precision necessary for the algorithm to give an answer.
The current fast implementations of the PSLQ algorithm are in a similar situation,
according to [vH12], since they compute with some different precisions and a com-
plexity analysis would also need to know the precision necessary for the algorithm
to succeed. The HJLS is said in [FB92] (the report where PSLQ was introduced)

139



to be numerically instable, but there are some proposals to avoid such an instabil-
ity. My experiments with these two algorithms seem to show that PSLQ is faster
than HJLS, but I tested a naive implementation of HJLS against an optimized
implementation of PSLQ. According to M. van Hoeij [vH12], LLL is empirically
faster than PSLQ and this speed of LLL is founded in both theoretical and prac-
tical advances, like [NSV11a] (with an extended abstract in [NSV11b]). Under
effective-numerical arithmetic, as far as I know, there is no study of these algo-
rithms, and because of that I provided proofs of termination of these algorithms.

Meichsner proved in his thesis that HJLS and PSLQ are essentially equivalent,
and there is another perspective of both algorithms in [CSV13], based on the
more general setting of intersections of lattices and vector spaces. Notice that the
syzygies of x are precisely Zn ∩ x⊥.

4.5 The main algorithm

Let G be the differential Galois group of the differential equation or system ∆ of
order r and size n. We look for a Singerian solution, which is a solution y whose
line Ky is invariant by G◦ and has at most I(rn) images by G, where I is the
function of Theorem 33. Let me sketch the main algorithm.

1. According to §2.2.4, for each singularity z of ∆, based at a near regular
point z0, compute both a subspace of solutions Vz containing the Singerian
solutions and the action of the local Galois group on Vz.

2. Move, by analytic continuation, all these local groups to a common regular
point defined over K, computing both the intersection V where all of them
are defined and the action of G on it.

3. Take the generators of G and apply the algorithm of §3.8, computing a
truncation (in the sense described in §3.8.1 and §3.8.2) of a group H greater
than G (its eurymeric closure, described in §3.3) but such that the Singerian
solutions are invariant by H◦.

4. Compute the common eigenspaces of H◦, pick a non-null vector defined over
K and compute its orbit by H.

5. Reconstruct symbolically the solutions and check if they are solutions of ∆
in the way explained below.
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• If we find a non-null solution, we have succeeded.
• If we find that the space containing the Singerian solutions is zero, we

say that zero is the only Liouvillian solution of ∆.
• If the space is nonzero but our candidate solutions are wrong, then we

have computed at poor precision and then we restart the algorithm at
finer precision.

If the algorithm terminates with the first possibility, as the candidate solution
was checked, it is a nonzero Liouvillian solution of ∆. According to §3.8.2, the
errors in linear algebra may lead to an undercomputation of H, so to an overcom-
putation of the subspace of Singerian solutions, but never to an overcomputation
of H and an undercomputation of the subspace of Singerian solutions. Thus, if
the algorithm terminates with the second possibility, then it is granted that zero
is the only Liouvillian solution of ∆. The third possibility may only happen a
finite number of times, and the algorithm terminates with the first or the second
possibilities, depending on whether there is a nonzero Liouvillian solution or not,
as it will be proved.

The key idea is (as expressed in the proof of [vdH07a, thm. 8]) to consider the
execution trace of the algorithm with oracles for the general global parameters,
excluding the tolerance, and another oracle for the zero-test. In this execution
trace there are finitely many exact zero-tests, so finitely many nonzero numbers
to be deemed nonzero by the zero-test. If we fix a tolerance less than the modulus
of any of these nonzero numbers, the approximate zero-test will perform the same
as the exact one. Notice that such a performance of the algorithm under exact
arithmetic and oracles is correct and never ends with the third possibility.
Remark 102. An oracle is a black box that decides the membership of a language
with no computational cost, a language being an arbitrary set of finite strings over
an alphabet, which is an arbitrary nonempty finite set. For instance, an oracle
for the zero-test decides the membership of the language of the codes of the null
effective complex numbers. Using the device of [Rog67, p. 347, ll. 13–17], an oracle
may compute a function with domain a language and image a countable set, like
integers, with no computational cost. For example, for an oracle for the degree
of an algebraic number, the domain would be the language of the codes of the
algebraic effective complex numbers.

The expression “finer precision” refers to all the general global parameters,
including the tolerance via tol = 2−T, as introduced in §2.5. The simplest idea is to
increase all the general global parameters simultaneously, each parameter following
a succession diverging to infinity, as J. van der Hoeven proposes in [vdH07a, §3.4],
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but this way is not granted to be correct. For example, the method for computing
syzygies with the LLL algorithm explained in §4.4.2 that uses the general global
parameter C and Proposition 97 is not granted to work if C grows together with the
general global parameter D, since each new value D = d poses a new lattice with
a corresponding set Cd of the successful values C for D = d and inf Cd might grow
faster than C. This issue can be avoided by using another method for computing
syzygies among the algorithms exposed in §4.4, but the tolerance is harder to be
kept growing linked to another general global parameter. Each time a general
global parameter increases, it poses a new problem with a new execution trace of
the algorithm with and oracle for zero-test, as explained above, and thus a new
bound for the tolerance in order to follow the correct trace.

Let me consider the toy example of the aforesaid method for computing syzygies
with the LLL algorithm, which uses the general global parameter C and Proposi-
tion 97, with oracles for the rest of general global parameters, excluding D. Let
us consider successions (ck)

∞
k=0 and (dk)

∞
k=0 diverging to infinity for C and D re-

spectively. As shown above, the pair (C,D) may take the values (ck, dk) and fail.
My proposal is to start with (c0, d0), to follow with (c1, d0) and (c0, d1), and so
on, following by diagonals {(ci, dj) : i + j = k}. As only a finite amount of num-
bers will be reconstructed, there exists an index i such that D = di works with
an oracle for C. According to Proposition 97, there exists an index j such that
(C,D) = (cj, di) works. We may observe that, though in the proof one parameter
is clearly subordinated to the other, their role in the algorithm is interchangeable.

The cautious way would be to make the general global parameters follow a
generalization of this diagonal argument to many variables. If we have the gen-
eral global parameters X1,X2, . . . ,Xs, with divergent successions of proposed values
(x1k)

∞
k=0, (x2k)

∞
k=0, . . . , (xsk)

∞
k=0, any enumeration of the (s−1)-simplex {(x1i1 , x2i2 , . . . , xsis) :

i1 + i2 + · · ·+ is = k} would work. If two or many parameters are proved to safely
grow simultaneously, they can be merged and treated as a single one in the previous
scheme.

Let me compile the list of the general global parameters introduced in this
thesis:

• K (in §2.2.4) for bounding how many terms in the principal part of the
Laurent expansion of a function must be zero-tested before you can deem it
zero,

• G (in §3.8.2) for bounding how far the linearized Derksen–van der Hoeven
algorithm (of §3.6) must be carried out before truncating,
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• T (in §2.5) for treating the tolerance tol as a general global parameter by
taking tol = 2−T,

• B (in §??) for bounding the degree of numerator and denominator in Padé
approximation,

• D (in §4.4) for bounding the degree of the algebraic numbers to reconstruct
symbolically,

• C (in §4.4.2) for allowing the LLL method for syzygies to work properly,

• H (in §4.4.2), S (in §4.4.4) and M (in §4.4.5) for bounding the size of the
syzygies.

Notice that all these parameters have an ideal value, given by their respective
oracle, but the algorithm also works with any greater value.

Let us consider the execution trace of the first step of the main algorithm with
oracles for the zero-test of numbers and for the order of a power series. There is
only a finite number of functions to test for the order of their principal part at
their respective singularity, so it is safe to take for K any bound of all these orders.
For G we may take any bound on the number of iterations of the Dersen–van der
Hoeven algorithm, but in practice the algorithm may work with a much smaller
value, since it is not necessary to compute a complete set of representatives of
H/H◦. In a similar manner to what we did for K, for B it is valid any bound of the
degree of numerator and denominator of all the rational functions to reconstruct
in the algorithm trace under oracle-aided exact computation. As a greater value
of B yields the same reconstructed rational function but not necessarily the same
numerator and denominator, as explained in Remark 86, we need to consider now
the trace of the algorithm under exact computation except for the parameter B.
In this trace, we reconstruct a finite amount of algebraic numbers, so we may take
for D any bound of their degrees. If we follow the method for syzygies that uses C,
their choice and dependence of D (and, thus, of B) is explained above. If we follow
another method, as there is only a finite amount of syzygies to compute, we may
take for H, S or M any bound of the size of these syzygies. Let us now consider
the trace of the algorithm with valid values of all the general global parameters,
except the tolerance, and an oracle for the zero-test. As described above, we may
take a tolerance smaller than the modulus of any of these nonzero numbers to test.
This completes the proof that, for precision fine enough, the algorithm performs
the same as under exact computation. As such a performance of the algorithm is
correct, the algorithm terminates, so this proves termination and correction of the
main algorithm, summarized in the following theorem.

143



Theorem 103. The main algorithm described in this section terminates with a
nonzero Liouvillian solution, if such a solution exists, or with the statement that
zero is the only Liouvillian solution if this is the case.

This is not the most efficient version of the algorithm, but a simple one for
explanation and proof. I shall introduce some devices for speeding up the algorithm
in §4.6.1.

4.6 Final remarks

4.6.1 Devices to speed up the algorithm

Using the notation of the previous section, G is the differential Galois group and
H its eurymeric closure, M is the finite set of generator of G as an algebraic
group, F and a are the auxiliary objects in the algorithm of §3.6, the candidate of
representatives of H/H◦ and the candidate Lie algebra a, and V is the candidate
space of Singerian solutions.

In principle we should write down H/H◦, which may be very large, but we may
avoid it by some devices. Instead of carrying the space V along the process and
computing the invariant lines at the very end, we may restrict V to the subspace
spanned by the joint eigenvectors of a. This way allows an early termination
when the answer is negative and may reduce the working dimension. In any case
there is no need to store the explicit system of representatives of H/H◦, only its
generators, computing the orbit of an H◦-invariant line by successive application
of the generators, until the set is saturated.

Another device, which helps the previous one, is to compute, apart of system-
atically the products AB, commutators ABA−1B−1 as in [vdH07a, §4.6] and random
elements as in [BBR93]. This way we expect to get quickly a matrix to add to a
that reduces the candidate subspace V . This device is complemented by multiply-
ing the random product of generators by a random element of a∩GL. Notice that
a resonance of eigenvalues of A ∈ GL is either common to A(a ∩GL) or particular
of a proper subvariety thereof, so the eigenvalues of a random element of A(a∩GL)
will have only common resonances almost surely. Moreover, if we consider only
the resonances of order I(rn) at most, the subset of A(a ∩ GL) of matrices with
non-common resonances is a proper algebraic subvariety.
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This restricted V splits in direct sum V1 ⊕ V2 ⊕ · · · ⊕ Vs of joint eigenspaces of
a. This splitting defines a block structure such that a is the algebra of diagonal
scalar-by-blocks matrices. For the elements of F , the macrostructure by blocks
is a permutation of the Vi spaces. If they are not transitively permuted, we may
restrict V to each subspace spanned by the orbits of the permutation. In this case
the problem is restricted to several problems of lower dimension. Notice that each
Vi of the same orbit has the same dimension.

If M ∈ F keeps each Vi invariant, then M is block-diagonal and the problem
restricted to each Vi is the problem of a = KI, which is the hardest, but in a
lower dimension. If we do not want to split the problem, we may consider only
intra-block resonances and discard inter-block resonances. We can multiply M by
a diagonal scalar-by-blocks matrix in order to get a substitute for M such that any
eigenvalue of its (i+ 1)-th block has greater module than any eigenvalue of its i-th
block, avoiding inter-block resonances.

If M ∈ F permutes transitively (therefore cyclically) the spaces Vi, we will find
only generic resonances. Indeed, any substitute for M obtained multiplying M by a
diagonal scalar-by-blocks matrix diag(λ1I, λ2I, . . . , λsI) has the same characteris-
tic polynomial as µM with µs = λ1 · · ·λs. The proof is easy but a bit technical.

If M ∈ F permutes the spaces Vi, grouping the orbits together, we have a super-
block structure and we may apply the aforesaid device in order to consider only
intra-super-block resonances and discard inter-super-block resonances. Inside each
super-block, we are in the transitive case, thus we cannot discard resonances.

With this structure by blocks, testing if a given matrix belongs to a given com-
ponent of the group is easier than solving linear systems. We need to classify the
elements of F modulo a ∩ GL(V ). The first classifying parameter is the permu-
tation of Vi. For the same permutation, the comparable blocks are proportional,
but the factor may be different for each block.

It is well known19 that the worst case for computing lines invariant by G◦ is
when the group generated byM is finite, and its eurymeric closure correspond to
a finite subgroup of PGL, because these finite groups might be very large and we
do not know if eventually will appear a generator to put in the Lie algebra a or not.
If such a group is reducible, by Maschke’s Theorem, it is completely reducible, so
we can split the problem into two smaller ones.

In the case corresponding to a finite subgroup of PGL(V ), there exists a Her-
19See [Cor01] for a detailed study for dimension up to 5.
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mitian metric on V invariant by G, and so by H. Moreover, if the action of G
(and thus of H) on V is irreducible, the vector space of sesquilinear forms on V
invariant by G (and therefore by H) has dimension 1 over C. This is an easy
variant of [FH91, Exer. 1.14]. If the computed dimension is higher it might be a
symptom of overcomputed dimension or of reducibility. If the actual dimension is
m, V splits as direct sum of m irreducible subspaces. If the computed dimension
is zero, it means that H does not correspond to a finite subgroup of PGL(V ).

In the case of the Ramis generators of Galois group, we have privileged infor-
mation we may use. We are granted that exponential tori and Stokes multipliers
belong to the identity component. The monodromy around a singularity z0 raised
to the p-th power, where p is the ramification index at z0, belongs to the identity
component. Instead of initializing F with Ramis generators and a = KI, we may
initialize F with monodromy matrices at points with non-trivial ramification and a
with the algebra generated by exponential (and potential) tori. Notice that Stokes
multipliers are the identity on V .

4.6.2 Open questions

The study of the computational complexity is an open question. Not knowing the
precision necessary for finding an answer, it is hard to bound the complexity. It
is similar to the multilevel implementation of the PSLQ algorithm, whose compu-
tational complexity, according to [vH12], is unknown precisely because we do not
know beforehand the precision necessary for finding an answer.

The algorithm of this thesis, in the case of non-null Liouvillian solutions, returns
such a solution, but only one. An open question is to extend this algorithm to
compute a complete basis of the space of Liouvillian solutions. As observed in
§1.5.4, the d’Alembert reduction method yields an equation defined no longer over
C(x), but over an algebraic extension thereof. This would require to extend the
algorithm of this thesis from the Riemann sphere to a finite ramified covering
thereof. These ideas will be developed in further work.

HERE ENDETH THE FOWERTH CHAPTER z
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Index

G◦, see identity component
〈 〉, see differential polynomial
∇, see connection
∂, see differential operator
M, see underline (notation)

abstract class, 63
additive syzygies, 119
algebraic differential equation, 28
algebraic group, 85
alien derivation, 48
anti-Stokes direction, 47
anti-Stokes line, 47

B (global parameter), 118
base class, 63
basis of a lattice, 120
Blichfeldt’s bound, 52
Borel summability, 44

in a direction, 44
broad group, 24, 90
broad hull, 90
broad Lie algebra, 24, 90
broad-by-finite, 91
Burnside problem, 100

C (global parameter), 127
class, 63

abstract, 63
base, 63

Collins’s bound, 52
companion system, 30
connection, 28

constant, 27
contγ (analytic continuation), 39
cont(θ,γ), see extended analytic continu-

ation
cyclic vector, 31
Cyclic Vector Lemma, 31

D (global parameter), 120
D’Alembert reduction method, 58
Darboux polynomial, 108
deficiency index, 113
Derksen–van der Hoeven algorithm, 87
determinant of a basis, 128
determinant of a lattice, 128
differential field, 26
differential Galois group, 37
differential module, 28
differential operator, 28
differential polynomial, 27
differential ring, 26
differential-algebraic system, 32
Diophantine relation, 130

effective complex numbers, 64
effective power series, 116
effective real numbers, 64
Euclid, 80
Euclid’s algorithm, 80
eurymeric group, 25, 91
explicitable differential equation, 32
exponential torus, 42
extended analytic continuation
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irregular singular case, 47
regular singular case, 42

extended path, 42

Fabry-type solutions, 34
first integral, 108
floating point, 62
formal monodromy, 40

G (global parameter), 106
Gal( ), 39
Gal( ), 37
gal( ), 38
general global parameter, 83
global parameter, 82

general, 83
special, 83

Graeffe transformation, 68

H (global parameter), 126
HJLS algorithm, 130
horizontal element, 28
Hukuhara-Turrittin, 34

identity component, 85
IEEE 754, 62
imprimitive group, 53
imprimitivity, system of, 53
inheritance, 63
integer relation, 130
interval arithmetic, 62
irregular singularity, 40

Jordan theorem, 52

K (global parameter), 76
Kovacic algorithm, 58

language, 141
lattice, 120
Lie algebra, 85
Lie bracket, 85
Lie-Kolchin theorem, 51

linear algebraic group, 24, 85
Liouvillian element, 30
Liouvillian extension, 30
LLL algorithm, 120

M (global parameter), 138
Maschke’s Theorem, 54, 145
minimum distance of a lattice, 121
Mittag-Leffler star, 44
Mon( ), see monodromy groupoid
Mon( ), see monodromy group
monodromy group, 39
monodromy groupoid, 39
monodromy, formal, 40
Morales-Ramis theorem, 101
Morales-Ramis-Simó theorem, 101
mpfpc (data type), 64
multiplicative syzygies, 87
multisummability, 46

integer-leveled, 46
in a direction, 46

Newton-Raphson method, 68

object, 63
oracle, 141
Ore algebra, 28

Padé approximant, 112
strong, 112
weak, 113

Padé table, 117
Picard-Vessiot extension, 36
primitive group, 53
PSLQ algorithm, 135

Q (global parameter), 80
quadrisection method, 68

ramification index, 34
Ramis density theorem

global theorem, 50
local theorem, 50
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ray of division, 47
reduced basis of a lattice, 122
m-reducible, 52
regular singularity, 35, 39
resonance order, 97
resonance truncated order, 103

S (global parameter), 133
S(A,R), 43
Schlesinger’s theorem, 39, 40
Schur’s bound, 52
shortest vector of a lattice, 121
Singer algorithm, 59
Singer theorem, 51, 52
Singerian line, 103
Singerian solution, 57
singular directions, 44–46
singularity, 32
special global parameter, 83
splitting circle method, 68
Stokes automorphism, 47
Stokes direction, 47
Stokes line, 47
Stokes phenomenon, 44, 45, 47
strong Padé approximant, 112
successive minima of a lattice, 121
k-summability, 45

in a direction, 45
system of imprimitivity, 53
syzygy

additive, 119
multiplicative, 87

T (global parameter), 83
Toeplitz system, 117
tol (global parameter), 66
too close to zero, 66
truncated order, 82, 103
truncated order, resonance, 103

Ulmer-Weil algorithm, 59
underline (notation), 86

universal field extension, 35

virtually broad, 91

weak Padé approximant, 113
Weierstrass-Durand-Kerner method, 68
Weisfeiler’s bound, 52
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