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a b s t r a c t 

Background and Objective: The automatic diagnosis of heart diseases from the electrocardiogram (ECG) 

signal is crucial in clinical decision-making. However, the use of computer-based decision rules in clin- 

ical practice is still deficient, mainly due to their complexity and a lack of medical interpretation. The 

objetive of this research is to address these issues by providing valuable diagnostic rules that can be 

easily implemented in clinical practice. In this research, efficient diagnostic rules friendly in clinical prac- 

tice are provided. Methods: In this paper, interesting parameters obtained from the ECG signals analysis 

are presented and two simple rules for automatic diagnosis of Bundle Branch Blocks are defined using 

new markers derived from the so-called FMM ecg delineator. The main advantages of these markers are 

the good statistical properties and their clear interpretation in clinically meaningful terms. Results: High 

sensitivity and specificity values have been obtained using the proposed rules with data from more than 

35,0 0 0 patients from well known benchmarking databases. In particular, to identify Complete Left Bun- 

dle Branch Blocks and differentiate this condition from subjects without heart diseases, sensitivity and 

specificity values ranging from 93% to 99% and from 96% to 99%, respectively. The new markers and the 

automatic diagnosis are easily available at https://fmmmodel.shinyapps.io/fmmEcg/ , an app specifically 

developed for any given ECG signal. Conclusions: The proposal is different from others in the literature 

and it is compelling for three main reasons. On the one hand, the markers have a concise electrocar- 

diographic interpretation. On the other hand, the diagnosis rules have a very high accuracy. Finally, the 

markers can be provided by any device that registers the ECG signal and the automatic diagnosis is made 

straightforwardly, in contrast to the black-box and deep learning algorithms. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The relevance of the automatic diagnosis of diseases is beyond 

he debate. In the case of cardiovascular diseases, it can be a mat- 

er of life and death. Many researchers have developed automatic 

ules for diagnoses, but their use in clinical practice is still defi- 

ient. One reason is that many cases are based on black-box al- 

orithms that physicians do not trust because they lack a medi- 

al interpretation. Furthermore, the validation process is often not 

lean, as it depends heavily on the selection of signals and patients 

training and test) and on the preprocessing stage. In addition to 

hese limitations of most studies, there are those derived for the 

ack of consensus on the definition of electrocardiographic features 

nd criteria to diagnose certain diseases using such features. 
∗ Corresponding author. 

E-mail address: cristina.rueda@uva.es (C. Rueda) . 
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The proposal in this paper is to prove that we can get around all 

hese problems by the definition of new markers using the FMM ecg 

elineator [1] . The FMM ecg delineator describes the fragment of an 

CG signal corresponding to a heartbeat as the combination of five 

aves corresponding to the fundamental waves in a heartbeat: P, 

, R, S, T. The details of the model specifications, such as the re- 

trictions and the estimation algorithm are given in [1] . In addition, 

hat paper reveals the methodology’s potential to describe a vari- 

ty of non-pathological, noisy, and pathological ECG patterns. The 

MM ecg wave decomposition for a typical non-pathological pattern, 

rom a left lead signal, is shown in Fig. 1 . 

In particular, using the FMM ecg model parameters, two power- 

ul markers, omeR and omeS , are presented here and are used as 

ules for the diagnosis of the Bundle Branch Block (BBB), which is 

 defect in the electrical conduction system of the heart. In such 

ases, ventricular enlargement or hypertrophy occurs, and the QRS 

omplex will widen, deform and prolong [2] . 
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Fig. 1. The five waves: P, Q, R, S, T identify by the FMM ecg approach for a typical non-pathological pattern. Data from patient 37 from the Georgia database. 

Fig. 2. Typical ECG morphology in complete BBB. ECG signals are represented as grey points and FMM ecg predictions as a red line. Left panel (A): data from patient 2087 

(CPCS database) with CLBBB diagnosis. Right panel (B): data from patient 10131 (PTB-XL database) with CRBBB diagnosis. 
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On the one hand, a left BBB (LBBB) happens when the activa- 

ion of the left ventricle of the heart is delayed, which causes the 

eft ventricle to contract later than the right ventricle. In particu- 

ar, LBBB is associated to a higher risk of suffering different cardio- 

ascular diseases, including a high mortality ascribed to acute my- 

cardial infarction. Some authors also noted the crucial need for a 

rompt identification of LBBB in determining the best health strat- 

gy and future for patients. Specifically relevant is the detection of 

atients with complete LBBB (CLBBB) who may respond positively 

o cardiac resynchronization therapy. [3] is a good review of the 

tate of the art in the LBBB disease. 

On the other hand, the right BBB (RBBB) is a blockage of electri- 

al impulses to the heart’s right ventricle and it is one of the most 

ommon electrocardiographic abnormalities that is often detected 

n asymptomatic patients [4] . Although the RBBB has been associ- 

ted with fewer complications for cardiovascular disease in com- 

arison to LBBB [5] , the complete RBBB (CRBBB) has an impact on 

atients with other diseases, including acute myocardial infarction, 

nd the appearance of CRBBB in patients with other cardiovascular 

iagnoses worsen their prognosis [6] , so it is advisable to develop 

ools for early detection. 

The electrographic diagnosis criteria for CLBBB and CRBBB de- 

ends on the location of the lead analyzed. In this paper, we ini- 

ially consider only left-sided leads, specifically: I, II and V5. We 

ave selected these three leads because they are among those used 

s references and can be analyzed with the same algorithm. The 

ypical ECG signals, in the presence of complete BBB (CBBB), are 
d

2 
hown in Fig. 2 for lead I. In agreement with the figure, the widely 

entioned CLBBB diagnostic criteria for such leads can be summa- 

ized in four points as follows [3,7–9] : 

1. Prolonged QRS complex duration. Even longer for male than fe- 

male. 

2. Notched and slurred R-waves. 

3. Prolonged R wave peak time. 

4. T wave inversions and ST-segment depression. 

It worth mentioning the Strauss criteria [9] as it is widely 

sed and closely related to the criteria recommended by differ- 

nt institutions as the American Heart Association Electrocardio- 

raphy and Arrhythmias Committee, the Council on Clinical Car- 

iology/American College of Cardiology Foundation/Heart Rhythm 

ociety [8] . The Strauss criteria is based on the first two points in

he enumeration above. 

Concerning CRBBB, although there is no consensus in its diag- 

osis criteria [6] , most researchers assume the following points as 

ypical CRBBB signs for left-sided leads: 

1. Large QRS complex duration. 

2. Wide, negative, and slurred S wave. 

3. Large S wave duration. 

The ECG findings described above for CLBBB or CRBBB diag- 

oses are apparently simple but nothing is further from the truth. 

irst, there is no consensus on the definition of the QRS complex 

uration or the R wave peak time. The T wave inversion or the ST- 
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S

β  
egment depression are also vague descriptions [10] . There is no 

tandard definition of the QRS notch and slur patterns [11] , and no 

imple criteria exist to determine their number and location. More- 

ver, many of the well-known ECG features, such as the QRS com- 

lex duration, strongly depend on the heart rate [12] . In particular, 

his association confounds the relationship between QRS durations 

nd sex, which affects the definition of the criteria for diagnosis. In 

ddition, a considerable QRS duration is a typical characteristic in 

oth CLBBB and CRBBB which makes the difference a problematic 

ask. 

Finally, significant systematic differences among engineering so- 

utions of manufacturers of automated ECG have been detected due 

o preprocessing and denoising stages and the algorithms used. 

pecifically, such points as the end of the R wave and the end 

f the QRS complex have no precise definition. Consequently, dif- 

erent results might be expected of the QRS duration and other 

eatures of the same underlying ECG waveform by different algo- 

ithms [10] . 

In the last few years, together with a considerable increase in 

lectronic health databases, such as Physionet’s Physiobank [13] , 

achine learning algorithms, including deep learning, have be- 

ome popular in the automatic diagnosis of cardiac abnormali- 

ies, see [14–16] among others. In particular, few studies have fo- 

used exclusively on the automated identification of BBB, we have 

ound [17] and [18] . In those cases, the classifiers achieved sensi- 

ivity and specificity values above 95% for RBBB and 98% for LBBB. 

owever, these algorithms have been developed and tested using 

CG recordings from only 47 subjects from the MIT-BIH Arrhyth- 

ia database [19] . Furthermore, there has been recently a pro- 

iferation of methods for the automatic diagnosis of CLBBB pa- 

ients known to have a good clinical response to cardiac resyn- 

hronization therapy. For example, [20] proposed a method based 

n wavelet analysis, obtaining high and moderate values of sen- 

itivity and specificity (92.9% and 65.1%, respectively). A more ac- 

urate diagnosis was achieved in [21] , which combines a random 

orest classifier and a neural network with sensitivity and speci- 

city values of 91.7% and 88.7%, respectively. Both algorithms were 

rained and validated using data on 600 patients from the Mul- 

icenter Automatic Defibrillator Implantation Trial–Cardiac Resyn- 

hronization Therapy (MADIT-CRT) database [22] . It is important 

o note that these classifiers use the same database for train- 

ng, test and validation and that the number of patients is lim- 

ted, which increases the risk of overfitting and failure when 

sed in any other database. Another well-known drawback of 

achine learning is the lack of any physiological interpretation 

f the rules. These limitations have prevented its use in clinical 

ractice. 

The new markers, omeR and omeS , presented here have a con- 

istent mathematical and morphological meaning, with a definition 

ndependently of the electrocardiograph or expert, and this conse- 

uently makes them universal and quite useful in diagnosis. In par- 

icular, omeR captures the width of the R wave, is sex-independent, 

s closely related to the duration of QRS complex and the R peak 

ime, and emerges as a measure of the degree of LBBB severity. 

oreover, omeS captures the relevance of negative S waves. A com- 

lementary rule combining omeR and omeS is useful to diagnose 

BBB. 

The potential of new markers and the corresponding diagnos- 

ic rules are validated from such benchmarking databases as PTB- 

L [23] , Georgia (see the 2020 PhysioNet/Computing in Cardiology 

hallenge [24] for details) and CPCS [25] . The distribution of omeR 

y diagnosis and database, as well as by sex and age, is described. 

n particular, the focus is centered on the PTB-XL results, as it is 

ne of the few databases where BBB are well classified as com- 

lete/incomplete, as well as left and/or right. Finally, to facilitate 

he use of the new tools for the reader, an app has been developed
3 
hat has the registered fragment as input and the new indexes as 

utput. It is available on https://fmmmodel.shinyapps.io/fmmEcg/ . 

. Methods 

omeR and omeS are defined as functions of the FMM ecg basic pa- 

ameters. The FMM ecg model is a particular element of the family 

f Frequency Modulated Möbius (FMM) models, which was devel- 

ped to analyze oscillatory signals and is briefly presented below. 

.1. The FMM approach 

Oscillatory signals are defined in the time domain and, without 

oss of generality, it is assumed that the time points are in [0 , 2 π) .

n any other case, transform the time points t ′ ∈ [ t 0 , T + t 0 ] by t =
(t ′ −t 0 )2 π

T . 

A mathematical term describing an FMM wave is defined as fol- 

ows: 

 (t, A, α, β, ω) = A cos 

(
β + 2 arctan (ω tan ( 

t − α

2 

)) 
)
, 

here, A ∈ � 

+ is a scale parameter measuring the wave’s ampli- 

ude, α ∈ [0 , 2 π) is a location parameter, while β ∈ [0 , 2 π) and

 ∈ (0 , 1] are parameters describing the shape. β is a skewness 

arameter that also indicates upward and/or downward peak di- 

ection, and ω measures the width. 

The FMM m 

model is defined as an additive signal plus error 

odel, where the signal is defined as a sum of waves as follows: 

 (t i ) = M + 

m ∑ 

J=1 

W J (t) + e (t i ) ;

here W J (t) = W (t, A J , αJ , βJ , ω J ) ; J = 1 , . . . , m , M ∈ � is an inter-

ept, and the error term, which accounts for the noise, is assumed 

aussian with a common variance. 

In addition, restrictions among the parameters are incorporated 

epending on the application. The estimators of the parameters are 

btained using maximum likelihood. Refer to [26] for the details. 

Furthermore, other important parameters of practical use are 

he peak and trough times for each wave K, denoted by t max K and 

 min K , respectively, and their predicted values denoted by f max K 
nd f min K , respectively, as follows: 

t max 
K 

= αK + 2 arctan 

(
1 

ω K 

tan 

(
−βK 

2 

))

t min 

K 
= αK + 2 arctan 

(
1 

ω K 

tan 

(
π − βK 

2 

))

f max 
K 

= M + 

m ∑ 

J=1 

W J (t max 
K 

) 

f min 

K 
= M + 

m ∑ 

J=1 

W J (t min 

K 
) 

nd the distances between waves by 

 JK = 1 − cos (αJ − αK ) ; J, K = 1 , . . . , m 

In the case in which models describing different leads are con- 

idered simultaneously, a superscript indicating the lead will be in- 

orporated to the notation. 

.2. Morphological interpretation of the FMM ecg parameters 

A typical non-pathological ECG signal, such as that shown in 

ig. 1 , has positive P, R and T waves and non positive Q and

 waves, which is well described by the beta FMM parameters: 

J ∈ arc(2 π/ 3 , 4 π/ 3) , J = P, R, T and βJ / ∈ arc(2 π/ 3 , 4 π/ 3) , J = Q, S.

https://fmmmodel.shinyapps.io/fmmEcg/
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Fig. 3. The five waves of FMM ecg fitted to data of complete BBB patients. Left panel (A): data from patient 2087 with CLBBB diagnosis in CPCS database. P wave (blue) 

ω P = 0 . 110 and βP = 4 . 197 ; Q wave (green) ω Q = 0 . 070 and βQ = 5 . 794 ; R wave (red) ω R = 0 . 077 and βR = 2 . 930 ; S wave (orange) ω S = 0 . 045 and βS = 3 . 816 ; T wave 

(purple) ω T = 0 . 092 and βT = 1 . 291 . Right panel (B): data from patient 10131 with CRBBB diagnosis in PTB-XL database. P wave (blue) ω P = 0 . 116 and βP = 4 . 654 ; Q wave 

(green) ω Q = 0 . 033 and βQ = 0 . 892 ; R wave (red) ω R = 0 . 045 and βR = 3 . 352 ; S wave (orange) ω S = 0 . 118 and βS = 0 . 042 ; T wave (purple) ω T = 0 . 198 and βT = 3 . 675 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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oreover, the omega and amplitude FMM parameters capture 

ther aspects of the shape of a typical pattern, such as, a promi- 

ent and sharp R wave ( A R high and ω R low); a prominent and flat 

 wave ( A T high and ω T moderate); a less prominent and not sharp 

 wave ( A P low and ω P moderate) and sharp and not prominent Q

nd S waves ( A Q , A S , ω Q , ω S low values). 

Specific values for FMM basic parameters are given for different 

atterns, including that one, in the supplementary material of [1] . 

Typical CLBBB and CRBBB patterns can also be described in 

erms of FMM parameters. In particular, Table 1 includes the de- 

cription of the criteria for BBB diagnosis enumerated in the intro- 

uction. Examples that illustrate the correspondence in Table 1 are 

ncluded in the Appendix A . Besides, Fig. 3 illustrates the configu- 

ation of waves and parameters that corresponds to the CLBBB and 

RBBB signals presented in Fig. 2 . 

Alternative parameter configurations to those in Table 1 cap- 

ure also morphologies with notched R waves. Anyway, notched 

 waves are often observed as a consequence of ω R being high. 

his property, together with the potential of ω R to measure the 

 peak time and related to the QRS complex duration, prompts 

his latter parameter to be an excellent predictor of CLBBB by it- 

elf, since many experts associate this disease with the simulta- 

eous combination of this disease occurrence of notches and a 

rolonged QRS complex. Nevertheless, several parameter configu- 

ations describing notched/slurred QRS have been analysed in the 

ppendix ( Figs. A.2 and A.3 ). The user could identify cases charac- 

erized by a high omeR and also notched QRS, which allows to dis- 

ard other pathologies. Furthermore, some other fragmented QRS 

hapes could be detected by the analysis of a sixth wave, when its 

xplained variance is significantly high ( V ar 6 > 0 . 1 ) and is located

ithin the QRS ( αQ < α6 < αS ). 

Note that the mathematical model, and therefore our descrip- 

ion, uses the same five labels: P, Q, R, S, T for the five waves, inde-

endently of the QRS morphology. In the presence of a notch/slur, 

t the beginning (ending) of the QRS, the researcher could relabel 

 (S) wave with r . 

.3. CLBBB and CBBB diagnostic rules 

In this paper, ECG fragments from leads I, II, and V5 are con- 

idered as input. A preprocessing stage is done where basic checks 

re performed in order to discard high noise signals, correct the 
4 
rend and perform a simple normalization of the data. Also, a Pan 

ompkins algorithm [27] is used to locate the QRS complexes used 

o divide the signal into beats. Moreover, the imputation of missing 

alues has been done. Details of this preprocessing stage are given 

n the Appendix B . 

Now, using an updated algorithm similar to that described in 

1] , the signal is analyzed using the FMM ecg . A representative 

eartbeat is obtained for each patient and lead. It is derived by 

imulating the model with parameters values equal to the median 

alues calculated from fitting the model to the real heartbeats. For 

uch a representative heartbeat, let us define: 

LBBB RULE: omeR > 0 . 06 

meR = max 
L = { I ,I I ,V 5 } 

{ ω 

L 
R } 

The index developed resembles the Strauss criteria [9] as it ac- 

ounts for the QRS duration and R peak time. In fact, omeR is the 

idth of the main positive wave in the QRS. More sophisticated 

ules can be defined using parameters that describe other parts 

f the morphology, such as the ST-segment depression. However, 

ther diseases, such as RBBB, also has these characteristic patterns, 

nd the specificity decreases while the complexity of the index 

efinition increases. omeR itself is a measure of the likelihood for 

 given patient to have the LBBB disorder. 

The typical pattern for a CRBBB is a pronounced negative S 

ave, which is described with a high value of ω S and βS close to 

 π . However, in our databases, more than 5% of CRBBB patients 

erify omeR > 0 . 06 and would therefore be diagnosed as CLBBB. 

hen, although more sophisticated rules that increase the accuracy 

n the sacrifice of simplicity could be defined for specific CRBBB 

iagnoses, we have opted for a simple rule for a combined CBBB 

iagnosis that complements the rule defined above. The combined 

ule is given as follows: 

BBB RULE: omeR > 0 . 025 and omeS > 0 . 05 

omeR = max 
L = { I ,I I ,V 5 } 

{ ω 

L 
R } 

omeS = max 
L = { I ,I I ,V 5 } 

{ ω 

L 
S · I [ βL 

S 
∈ arc(5 π/ 3 ,π/ 3)] } 

here I [ ·] is an indicator taking a value of 1 if the argument is true

nd 0 otherwise. 

It is interesting to note that the use of median parameters and 

he maximum of three values prevent the occasional influence of 
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Table 1 

Features for BBB diagnostic criteria in leads I, II and V5. 

Brief description FMM parameter representation 

Broad R wave or prolonged R-peak time high values of ω R 

Prolonged QRS duration high values of d QS 

M-shaped , qR-wave f max Q or f min Q close to f max R 
M-shaped , qR-wave cos (βQ − π) not low and moderate A Q 
M-shaped , Rs-wave f max S or f min S close to f max R 
M-shaped , Rs-wave cos (βS − π) not low and moderate A S 
Negative S-wave βS ∈ arc(5 π/ 3 , π/ 3) . 

Broad S-wave high values of ω S 

Large S-wave high values of A S 
ST segment depression high values of t min S . 

T-wave inversion βT ∈ arc(5 π/ 3 , π/ 3) . 
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Table 2 

Percentile range and median for omeR across diagnostic in the PTB-XL, Georgia and 

CPCS databases. 

Database Diagnosis N P 5 P 50 P 95 

PTB-XL CLBBB 503 0.080 0.148 0.243 

BBB 2168 0.028 0.047 0.190 

CD 2529 0.029 0.048 0.109 

OTHER 5275 0.026 0.043 0.088 

NORM 8310 0.026 0.036 0.052 

Georgia CLBBB 208 0.063 0.137 0.246 

BBB 1170 0.027 0.052 0.180 

CD 1024 0.026 0.045 0.099 

OTHER 6253 0.025 0.044 0.084 

NORM 1723 0.027 0.038 0.058 

CPCS CLBBB 226 0.057 0.133 0.236 

BBB 2044 0.028 0.043 0.144 

CD 688 0.026 0.038 0.066 

OTHER 3067 0.029 0.045 0.089 

NORM 812 0.029 0.040 0.055 

Table 3 

RR interval and omeR percentile ranges and median for NORM patients across gen- 

der and age groups in the PTB-XL, Georgia, and CPCS databases. 

RR interval omeR 

N P 5 P 50 P 95 P 5 P 50 P 95 

PTB-XL Male 3774 648 899 1183 0.026 0.036 0.052 

Female 4536 620 856 1125 0.026 0.036 0.051 

< 25 461 636 864 1172 0.025 0.035 0.047 

[25 , 50] 3104 634 872 1146 0.026 0.036 0.051 

[51 , 70] 3495 645 890 1157 0.026 0.035 0.051 

> 70 1250 592 842 1132 0.027 0.037 0.054 

Georgia Male 792 618 819 988 0.028 0.038 0.060 

Female 931 628 809 983 0.027 0.038 0.056 

< 25 50 634 771 946 0.028 0.040 0.061 

[25 , 50] 605 621 800 984 0.028 0.039 0.057 

[51 , 70] 791 620 822 988 0.027 0.037 0.058 

> 70 277 636 834 986 0.027 0.037 0.058 

CPCS Male 322 640 831 1008 0.029 0.040 0.054 

Female 490 629 809 970 0.030 0.040 0.055 

< 25 52 657 800 944 0.035 0.042 0.054 

[25 , 50] 452 632 806 969 0.029 0.041 0.055 

[51 , 70] 244 654 846 1015 0.029 0.039 0.054 

> 70 64 618 857 1027 0.028 0.038 0.053 

s

o

s

w

d

i

o

i

ncorrect parameter estimators that are derived from individual 

eartbeats and a single lead. These errors may happen due to an 

ncorrect definition of the fragment limits corresponding to a spe- 

ific heartbeat, signal noise, and a lesser extent, a misidentification 

f the R wave. 

. Results 

A total of 106233 ECG fragments corresponding to 35411 pa- 

ients over eighteen and with diverse diagnoses, have been ana- 

yzed. The data are from the benchmarking databases PTB-XL (pa- 

ients with likelihood diagnosis ≥ 80 ), Georgia, and CPCS. These 

atabases have been used widely in the literature, to be more 

recise, in the challenge of Computing in Cardiology 2020 [24] . 

he duration of the ECG signal is quite variable across databases; 

nly the fragment corresponding to the first 14 s has been consid- 

red for each patient. Only 348 patients (less than 1%), were dis- 

arded due to noise artifacts in the signal. The distribution across 

atabases is as follows: 159 (0.86%) from PTB-XL, 90 (0.88%) from 

eorgia and 99 (1.48%) from CPCS. 

Two numerical analyses are presented in this section. The first 

s dedicated to omeR . The distribution of this fundamental marker 

cross diagnosis, sex, and age is explored. The relation of omeR 

ith the RR interval, the time elapsed between two successive R 

aves, is also examined. The second study is the validation of the 

ules defined above. 

A diagnostic label has been assigned to each patient, us- 

ng SNOMED CT ontology ( bioportal.bioontology.org/ontologies/ 

NOMEDCT ), as is done for the challenge of Computing in Car- 

iology 2020 [24] . Thus, patients with a BBB diagnostic are la- 

eled with CLBBB, ILBBB, CRBBB, or IRBBB according to the side 

Left/Right) and the degree of the defect (Complete/Incomplete). 

ote that in the CPCS database, patients with a code LBBB are la- 

eled as CLBBB, as the code for ILBBB is not considered. Further- 

ore, the label CD is assigned to those with a block diagnostic dif- 

erent to BBB; the NORM label is assigned to patients diagnosed as 

on-pathological and OTHER to the rest. 

All the patients are classified in one and only one category, even 

hose with several diagnoses (except for a patient with CLBBB and 

BBB labelled as LBBB). 

.1. omeR distribution across diagnostic, age and sex 

In order to consider omeR as a gold standard to detect anoma- 

ous ECG is necessary to know reference values and normal ranges 

cross diagnostics, sex and age. 

Median values and the percentage interval for omeR are given 

or patients in the PTB-XL, Georgia and CPCS databases, across di- 

gnostics in Table 2 . 

Moreover, we have claimed in the introduction that an impor- 

ant property of omeR is that it is independent of sex. Table 3 
5 
hows percentile ranges and median values for the RR interval and 

meR across databases, age and sex. Only NORM patients are con- 

idered, as spurious associations could be found if other diagnoses 

ere included because they are related to omeR alterations. 

The numbers in Table 3 show that the distribution of omeR 

oes not depend on sex or age, while the distribution of the RR 

nterval does. Increasing values of the RR interval medians are 

btained with increasing age, and for males against females, as 

s well documented in the literature [28,29] . Moreover, it is also 

http://bioportal.bioontology.org/ontologies/SNOMEDCT
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Table 4 

CLBBB rule: Sensitivity (SE) and specificity (SP) across subgroups of patients by diagnostic. The ALL category includes 

all the patients except those with LBBB labels. 

N SE(CLBBB) SE(ILBBB) SE(LBBB) SP(NORM) SP(ALL) 

PTB-XL(1) 12393 99% 67% 99% 99% 96% 

PTB-XL 18282 98% 88% 97% 99% 88% 

Georgia 10170 96% 68% 88% 96% 84% 

CPCS 6611 93% — 93% 98% 86% 

Table 5 

CBBB rule: Sensitivity (SE) and specificity (SP) across subgroups of patients by diagnostic. The ALL category includes all 

the patients except those with BBB labels. 

N SE(CBBB) SE(IBBB) SE(BBB) SP(NORM) SP(ALL) 

PTB-XL(1) 12393 98% 27% 67% 90% 87% 

PTB-XL 18282 96% 34% 74% 90% 79% 

Georgia 10170 96% 53% 72% 87% 72% 

CPCS 6611 95% — 74% 92% 77% 
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hown that the omeR distributions are much more homogeneous 

cross databases than those of the RR interval. 

.2. Rule performance in the PTB-XL, Georgia and CPCS databases 

Standard measures of test validation, such as sensitivity (SE) or 

pecificity (SP), have been calculated using both rules for different 

ypes of patients in Tables 4 and 5 , respectively. 

The target of the rules is patients with CLBBB or CRBBB. How- 

ver, the differentiation between complete or incomplete blocks 

s not homogeneous across the databases, partially explaining the 

ifferences in sensitivity between them. Moreover, the distribution 

f patients across other diagnoses also explains the differences in 

pecificity for the category ALL. 

The PTB-XL(1) database is defined as the sub-base containing 

TB-XL patients with a single diagnosis. The PTB-XL(1) is a good 

eference, as patients have a unique diagnostic and it discriminates 

etween complete or incomplete blocks. For this database, the sen- 

itivity of CLBBB (CBBB) rules is 99% (98%), the specificity is 99% 

90%) for NORM patients, and 96% (87%) for patients without an 

BBB (CBBB) diagnostic. Sensitivity and specificity values are very 

imilar for PTB-XL. 

Moreover, in the Georgia and CPCS databases, the slightly 

ower sensitivity values obtained for the CLBBB rule, 96% and 

3%, respectively, compared with those of PTB-XL, may reflect the 

act that the degree of injury is not well differentiated in these 

atabases. Specifically, some patients labeled as LBBB could be 

LBBB. Sensitivity values for the CBBB rule are similar to that of 

TB-XL. On the other hand, the specificity is very high, especially 

or NORM patients and the CLBBB rule, where the values range 

rom 96% in Georgia to 99% in PTB-XL. In addition, the relative low 

pecificity values for Georgia database can be partially explained 

y the relatively high omeR percentile P 95 obtained in Table 3 . 

.3. FMM ecg app 

The app is freely available on https://fmmmodel.shinyapps.io/ 

mmEcg/ . The instructions for use are very simple. The app requires 

he ECG fragment from either I, II, or V5 leads, including one or 

ultiple heartbeats, recorded, as input. The output includes: plots 

f the observed and predicted values, a plot of the FMM median 

aves, tables with the median values of the estimated FMM pa- 

ameters, the omeR and omeS markers, and the BBB diagnosis. Note 

hat the values of omeR and omeS calculated in the app are ob- 

ained from a single lead. When that information on multiple leads 

s available, the values of the markers can be obtained for each 
6

ead independently with the app , and then the maximum of the 

arker values is calculated by hand. 

In the Appendix C provides further details about the app , in- 

luding multiple-use examples. 

. Discussion 

In this paper, new ECG markers are proposed, defined using the 

MM ecg delineator. In the main place, omeR , which is related to 

he QRS duration, a widely used index that is relevant to know. In 

articular, the literature has shown that a large QRS duration is a 

haracteristic associated to different diseases such as ischemic car- 

iomyopathy [30] , myocardial infarction [31] or sudden death [32] . 

meR measures the width of the R wave, which is often, but not 

lways, the cause of a too short/long QRS duration. A specific mea- 

ure of QRS complex duration in terms of the FMM ecg parameters 

s the distance between Q and S waves ( d QS ). Compared with used 

easures of the QRS duration, omeR has a more precise meaning, 

s measured in a normalized scale, is independent of sex, and does 

ot depend on the measuring device or the researcher, as it is a 

arameter of a statistical model that is estimated by maximum 

ikelihood. Normal ranges for omeR have been provided, as well as 

anges across diagnostics, sex, and age. Relevant differences have 

een observed only across diagnostics. Then, the association of the 

RS duration with age and sex, which is documented in the liter- 

ture [28,29] , can be explained by the association of these three 

ariables with the RR interval length. 

Furthermore, the results in this and previous works [1,26,33] , 

ave shown that the FMM ecg parameters are estimated with high 

ccuracy, and they are consistent and robust. In particular, omeR 

ecause it is based on the main median parameter of the most 

rominent wave and is less affected by noise. Besides, the FMM ecg 

arameters have much potential for detecting causes and diagnoses 

erived from a prolonged QRS as they describe the morphology of 

he QRS complex in an exact way, with four parameters describing 

he shape and length of each of the waves Q, R, or S. In particular,

hile a wide R wave is associated with left blocks, a prominent 

nd negative S wave describes the typical morphology of a right 

lock. In both cases, the QRS duration is large, and omeR and omeS 

ifferentiate these two diseases automatically from other patterns. 

Despite their simplicity, the ability of the two classifiers pro- 

osed in this paper to correctly identify a BBB is highly satisfac- 

ory. The results are particularly good for the CLBBB rule, which 

onfirms the potential of omeR in diagnosis. Specifically, the sen- 

itivity and specificity values obtained for the CLBBB classification 

re similar or even higher than those obtained from approaches 

roposed by other authors, such as [17–21] . Nevertheless, compar- 

https://fmmmodel.shinyapps.io/fmmEcg/
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sons with other rules are not fair as none of them has such univer-

al character or they are not possible to be applied automatically. 

It is noteworthy that the rules can be adapted to the informa- 

ion available. On the one hand, they can be used with data from 

nly one or two leads, and on the other hand, when the omeR and

meR baseline values are known in advance for a given patient, the 

hresholds in the rules can be redefined to be percentages of these 

alues. 

It is also worth pointing out that the databases used to vali- 

ate the rules are not explicitly designed for the problem at hand. 

hey are databases collected and labelled for very different pur- 

oses and consequently exhibit an entirely different distribution of 

atients across diagnostics, which may explain the difference in ac- 

uracy values across databases. However, they do coincide in show- 

ng much better results in identifying complete left blocks com- 

ared to the complete right or the incomplete ones. Nevertheless, 

meR and omeS could provide an opportunity to study the evolu- 

ion of the degree of BBB and even prevent more severe blocks in 

he future. In fact, according to some authors, ILBBB (IRBBB) might 

e a precursor of CLBBB (CRBBB) [8,34] . More sophisticated rules 

an be defined using parameters configurations that describe other 

arts of the morphology, such as notched/slurred QRS to better dif- 

erentiate from heart conditions that also present high omeR val- 

es. However, lower sensitivity and specificity values are obtained 

ith such rules, globally. Nevertheless, complementary paramet- 

ic configurations that allow identifying alternative QRS morpholo- 

ies can be used to rule out pathologies different to CBBB with 

meR > 0 . 06 , as noted in the paper. 

The usefulness of omeR, omeS and other markers derived from 

he FMM ecg basic parameters is promising and vast and goes much 

urther than the diagnosis of BBB and anything we can say in this 

aper. In particular, these markers are much more easily registered 

han serial ECG, so current values are compared with those ob- 

ained at other moments in time that can run from one hour to 

any years before. On the other hand, the automatic registration 

f the markers, not necessarily supervised by an expert, facilitates 

any tasks. For instance, monitoring omeR after a trascatheter aor- 

ic valve replacement could be essential to identifying an LBBB that 

ersists more than 72 h and assist in prophylactic decision mak- 

ng [3] . Alternatively, it could also identify the presence of a new 

BB in patients with an acute myocardial infarction, in which pace- 

aker insertion may not be not beneficial [35] . 

Finally, the derivation of consistent markers for the automatic 

nterpretation of the ECG would reduce the observed differences in 

he interpretation of the electrocardiographic abnormalities among 

ealth professionals, the first cause being a manual reading of the 

CGs. Unifying the criteria would help improve the competence of 

on-cardiologist physicians and achieve a better and automatic di- 

gnosis. 

Several lines of work for future research emerge from this pa- 

er. On the one hand, the definition of rules for the diagnosis 

f other diseases. Specifically, the automatic diagnosis of myocar- 

ial infarction, using FMM ecg parameters, will be our immediate 

hallenge. On the other hand, the simultaneous estimation of sig- 

als from different leads using multivariate models would reduce 

he already rare cases of the incorrect identification of waves or 

nomalous parameter estimators. 
7
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ppendix A. FMM ecg examples for BBB features 

This appendix shows examples that illustrate how FMM ecg pa- 

ameters describe BBB features as those given in Table 1 of the 

ain document. Row 1 in Fig. A.1 corresponds to a typical (non- 

athological) pattern simulated using the median FMM ecg parame- 

ers obtained from the analysis of NORM patients in PTB-XL. 

The rows 2-5 show patterns using alternative parameter config- 

rations, which are derived from that of row 1. The inner tables in 

ach of the plots in Fig. A.1 show the specific FMM ecg parameter 

onfiguration that differs from the typical pattern. 

Specifically, ω R is related to the width of the R wave, as the 

lots in row 2 show. Besides, row 3 illustrates that a higher dis- 

ance between αQ and αS , is related with a prolonged QRS dura- 

ion, and also that changes in A Q and βQ (resp. A S and βS ) yield a

R (resp. Rs) notched pattern. Parameter configuration related to S 

ave is illustrated in row 4, together with a specific configuration 

or ST segment depression. Finally, T wave inversions are observed 

n row 5. 

Notching and slurring of QRS complexes are considered impor- 

ant ECG findings for BBB diagnosis. The Figs. A.2 and A.3 illustrate 

ow varying FMM ecg parameter values is possible to mimic differ- 

nt QRS notched and slurred patterns. In Fig. A.2 the starting point 

s a typical QRS complex (row 1). Notched/slurred patterns in the 

scending part of the R-wave are simulated in rows 2 and 3 using 

lternative βQ and A Q configurations. Similar changes in S-wave al- 

ow to simulate notched/slurred patterns in the descending part of 

he R-wave (rows 3 and 4). Finally, in the last row, the occurrence 

f notches as a consequence of the increase in ω R is illustrated. 

Each row in the Fig. A.3 illustrates the behaviour of a notch in 

he descending part of the R-wave as the values of the S-wave re- 

ated parameters change. Likewise effects on a notch in the ascend- 

ng part of the R-wave could be simulated by modifying the values 

f the Q-wave related parameters. 
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Fig. A.1. Simulated examples to illustrate BBB diagnostic features showed in Table 1 of the main text. 

8 
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Fig. A.2. Simulated notched/slurred R-wave patterns from a typical QRS complex. 

9 
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Fig. A.3. Effect of varying each individual FMM ecg parameter value on a simulated notched QRS complex. 

10 
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ppendix B. Data preprocessing 

ECG data preprocessing is required to remove high noise sig- 

als, or other motion artifacts in the recording, to normalize the 

ignal and to correct the trend on ECG heartbeats. Convention- 

lly, ECG data come from multiple leads and their preprocessing is 

ased on the following stages: ECG denoising, QRS detection, ECG 

egmentation, scaling and trend correction [36,37] . Most of the 

reprocessing procedures proposed in the literature cover these 

tages. A brief discussion of that is given below. 

Most of noise suppression techniques are often based on band- 

ass filterings, such as the Butterworth filter [38,39] . They highly 

ely on a fixed cut-off frequency and cannot track the changing 
Fig. B.1. Outline of the three-lead

11 
haracteristics of the time-varying ECG signal. As a result, the ST 

egment or the QRS complex may be notably distorted [40] . 

Regarding QRS detection, several methods have prolifered in 

he last decade [41,42] . However, Pan-Tompkins algorithm [27] , re- 

orted in 1985, is considered as the benchmark in QRS detection. 

nce these complexes are set, ECG heartbeats must be delimited, 

xisting a wide range of strategies to cover this goal. Among oth- 

rs, there are those based on P onset and T offset locations [43] ,

lthough these marks are not precisely defined in practice. While 

n others [1,44] , the cutting is based on the length of the RR inter-

als, i.e. the time elapsed between two successive QRS detections. 

ECG segmentation often displays a high degree of uncertainty, 

ue to the noise in the device, missing sections of the ECG signals, 
 preprocessing algorithm. 
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r because the signal contains a transient rise of signal amplitude 

45] . In such cases, Pan Tompkings usually fails resulting in missed 

eaks or false detections [46,47] . Therefore, an ECG segmentation 

evision is desirable. Most of these procedures are based on the RR 

nterval properties such as length or density [44,48] . 

The ECG signal normalization is commonly based on linearly 

caling methods [49,50] . While polynomial regression is widely ex- 

ended for ECG detrending [36,38] . Finally, ECG fragment distor- 

ions, caused by sudden body movements, or other noise artifacts, 

re usually removed if the heartbeat’s amplitude is relatively high 

ith regard to that observed in the signal [51,52] . 

A relatively simple data preprocessing algorithm is defined 

ere. First, noise suppression is dismissed in this work since 

MM ecg is robust against noise artifacts [1] . For QRS detection, Pan 

ompkins algorithm is applied on raw ECG data, from one or three 

eads. ECG heartbeats are delimited based on the RR intervals. ECG 

ignals are normalized using a linearly scaling and heartbeat de- 

rending is based on linear regression. The details of the prepro- 

essing are described below. An overview of this algorithm is illus- 

rated in Fig. B.1 . 

Three-lead algorithm: The raw ECG signals from the leads I, II 

nd V5 are the inputs. The five steps of the algorithm are: 

1. QRS detection and ECG segmentation: Raw ECG signals from 

leads I, II and V5 are independently analyzed with Pan Tomp- 

kins. Then, ECG heartbeats are delimited from the QRS annota- 

tions ( t QRS ) and RR interval lengths as follows: [ t QRS − 40% RR,

t QRS + 60% RR ], see [1] for details. Lead II is used as reference

[53,54] . 

2. ECG segmentation revision: Median RR length is used to iden- 

tify and remove too short/long heartbeats and those with dis- 

tant R peaks or misplaced t QRS locations, following the ideas 

given in [1,48,55] . 

3. Scaling and detrending: ECG recording is scaled into [-1,1] 

using min-max normalization as in [50] . Next, as noted in 
Fig. C.1. FMM ecg Analysis a

12 
[46,50,56] , those heartbeats with significant trends or remarked 

differences at the heartbeat’s boundaries, are detrended by us- 

ing linear regression [57–59] . 

4. Remove ECG distortions: Heartbeats whose amplitudes are 

considerably larger with regard to the QRS amplitudes in the 

signal are removed as done in [51,52] . 

5. QRS annotations checking : The QRS annotations from two 

leads are considered to be in agreement if their distance is 

less than that corresponding to 4% frequency (Hz). If no two 

leads coincide in at least three QRS annotations, the patient is 

discarded. Otherwise, in the case the reference lead does not 

match with any of the others in at least three QRS annota- 

tions, the reference derivation is changed to that with lower RR 

length variation coefficient (vc) among I and V5. In this latter 

case the algorithm goes back to Step2 . Otherwise, the prepro- 

cessing has finished. 

For each lead, the outputs are ECG fragments with valid or in- 

alid (removed) heartbeats. Any patient with less than three valid 

eartbeats in a given lead is discarded. 

Removed heartbeats are imputed after the FMM ecg analysis. The 

mputed values are the median FMM ecg parameter values obtained 

rom the valid heartbeats in the corresponding fragment. 

Single-lead algorithm : The raw ECG signals one leads are the 

nputs. The algorithm given above must be adapted as follows. Step 

 is conducted just focusing on the input lead. Then, Steps 2-4 are 

onducted similarly. Step 5 reduced to discard patients with less 

han three valid heartbeats. 

ppendix C. FMM ecg analysis app 

1. Implementation 

The application has been developed in the programming lan- 

uage R , using the package shiny [60] . Shiny applications are 
pp workflow chart. 
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ainly composed of two modules: the User Interface (UI), de- 

igned with HTML widgets and CSS elements, and the Server, re- 

ponsible for the computational tasks implemented in R . 
The UI module makes use of several R packages to cre- 

te a complete and flexible interface. In particular, the dash- 

oard appearance is given by shinydashboard [61] and 

lexdashboard [62] packages. The dashboard has been imple- 

ented with the packages shinyWidgets [63] , shinyjs [64] , 

nd ggplot2 [65] , which provide a collection of control elements, 

avaScript interactions, and a visualization engine, respectively. 

The data analysis using the FMM approach is implemented us- 

ng the FMM package [66,67] . Detailed information on the model 

pecifications and the estimation algorithm are given in [1] . 

2. Application structure 

An overview of the app workflow is shown in Fig. C.1 . Flexibility 

s granted to the app by its different input elements, which are the 

ollowing: 

• Main input . An uploaded tabular data file, which can either 

have a single beat or multiple recorded in one of the I, II, or V5

leads. It must contain a single column with a column header 

name and be one of the following extensions:.csv,.xls, or.xlsx. 
• Data options . User may indicate whether the data is composed 

by a single beat or by multiple beats. The user must insert the 

observation number of the QRS annotation, in the case of single 

beat analysis, and the sampling rate in Hz, for multiple beat 

analysis. 
• Algorithm options: number of backfittings . More backfitting 

iterations imply a better prediction at the cost of a higher com- 

putational time. 

Once the previous options have been correctly specified, the 

MM ecg analysis can be started by pressing the prediction button. 

he following outputs are given: 

• The predicted FMM signal plotted along with the input data. 
• Accuracy measures: v ar J ; J = P, Q, R, S, T are measures account- 

ing for the percentage of the variability explained for each wave 

relative to the previous fitted waves. Let J be the k th wave fit-

ted, then: 

v ar J = R 

2 
1 , ... ,k − R 

2 
1 , ... ,k −1 , 

where R 2 
1 , ... ,k 

, is the proportion of variance explained by the 

FMM model defined by the first k waves, out to the total vari- 

ance. 
• Individual waves plot. Plot of estimated W J (t) , J ∈ { P, Q, R, S, T } ,

t ∈ (0 , 2 π ] . 
• Median wave parameters. Median estimated values of 

A J , αJ , βJ , ω J , J ∈ { P, Q, R, S, T } . 
• omeR and omeS estimated markers and diagnostic button . The 

diagnostic is made using the omeR and omeS rules to detect 

CLBBB and CBBB pathologies, respectively. 

Predicted signal and individual waves plots are shown simul- 

aneously when data corresponds to a single beat. In the case of 

nalysing multiple beat signal, the app provides a button to shift 

etween the two plots. 

For demonstration purposes, example data is also provided. In 

articular, a single healthy beat, a single beat with CLBBB and a 

ultiple beat signal with CBBB. 

3. app examples 

Three examples from PTB-XL database have been included in 

he app . The first example (healthy) is the ECG signal recorded 
13 
rom patient 14, lead II, the second example (CLBBB) is the ECG 

ignal recorded from patient 796, lead I, and the third example 

CBBB) is a multiple beat signal recorded from patient 10131, lead 

5. Upon initialization, the app analyzes the first example. The app 

utomatically provides the data options if example data is ana- 

yzed, which for this case are the ‘single beat’ option and 68 for the 

RS annotation. Lastly, the user can choose the number of backfit- 

ings of the FMM algorithm, which can be initiated by pressing the 

rediction button. The app shows the predicted signal and individ- 

al waves plots, the high prediction accuracy, the estimated pa- 

ameter values for each wave, and the omeR and omeS markers. By 

licking the diagnostic button, the pathology rules are evaluated. 

n the first example the patient is diagnosed as healthy. 

Similarly, in the second example, the data inputs are analyzed 

ith the options ‘single beat’ and 70 for the QRS annotation. While 

or the third example, the options ‘multiple beats’ and 200 Hz 

or the sampling rate must be provided. Also in these two cases, 

athologies are diagnosed, in particular, CLBBB in the second ex- 

mple and CBBB in the third. 

Users can upload their own ECG fragment to be ana- 

yzed through the FMM approach with the corresponding op- 

ions/buttons on the left side of the screen. After uploading the 

ata, whether the ECG fragment contains a single or multiple beats 

ust be indicated and also the QRS annotation, in the former case, 

r the sampling rate, in the latter case. Finally, the user should 

hoose the number of backfittings with the corresponding button. 
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