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Abstract: In community networks, users access the web using a proxy selected from a list, normally
without regard to its performance. Knowing which proxies offer good response times for each client
would improve the user experience when navigating, but would involve intensive probing that
would in turn cause performance degradation of both proxies and the network. This paper explores
the feasibility of estimating the response times for each client/proxy pair by probing only a few of
the existing pairs and then using matrix factorization. To do so, response times are collected in a
community network emulated on a testbed platform, then a small part of these measurements are
used to estimate the remaining ones through matrix factorization. Several algorithms are tested; one
of them achieves estimation accuracy with low computational cost, which renders its use feasible in
real networks.

Keywords: response time estimation; matrix factorization; community networks

1. Introduction

Community networks [1] are distributed, decentralized, large scale communication networks,
often set up by citizen organizations to provide users with cheap Internet access, in both urban and
rural areas. In Europe there are some significant community networks, like Ninux (Italy) [2], Funkfeuer
(Austria) [3] or Guifi.net (Spain) [4], with tens of thousands of users.

In these networks, users typically access the Web through proxies contributed by other users of
the network; thus they are in different locations and having different computational resources and
varying bandwidth in their outbound links (from the high speed connection of a public library to
the remaining capacity of an ADSL domestic service contributed by a user [5]). Besides, the actual
response time of a proxy to a client’s request depends also on the path (i.e., the series of links) from
the client to the proxy, which in a community network can vary wildly [6], as wireless ad hoc links
coexist with more stable and faster links contributed by institutions or leased to operators. As it is
the end users who must select their preferred proxy, all these factors are generally ignored, and they
tend to pick one random proxy, or at most one that is geographically near [7]. This pattern of behavior,
however, causes some proxies to tend to be saturated, while others are idle, and the performance
perceived by end users degrades.

In the literature, some attempts [7,8] have been made to automatically select the proxy for each
client using information from the proxy performance, measured for example by the latency (or ‘time to
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first byte’ or the response) or response time (time until a requested document is completely retrieved,
or ‘time to last byte’). Both metrics take into account many factors that determine the best proxy for the
client: The round trip time to arrive, determined by the delays of the links in the path, the performance
and load of the node acting as proxy and the quality of its outbound link (the last two issues reflect
better in the response time [9]). It should be noted that a client who wants to automatically select
a proxy must probe all of them or, in suboptimistic approaches, a subset of them [7]. However,
in large networks with many clients and proxies, probing traffic is not neglectable and affects the
overall network carrying capacity [8], as well as proxy performance, as they spend a significant time
answering probes.

One way to overcome this would be that each client probes a reduced set of proxies, and then
shares this information with other clients. In this way, a given client would have a sparse view of the
performance associated to client/proxy pairs, but could use this information to estimate the response
times that each of the proxies would give to its own requests. Therefore, each client should be able to
select the best proxy according to the response times that were either measured or estimated.

For this approach to work, estimations must be accurate. In the literature, works like [10-12]
have tried matrix factorization algorithms to estimate different quality of service (QoS) measures in
communication networks using a similar approach (i.e., the relevant metrics are measured only for a
few of the client/server pairs, the rest being estimated from these few measurements). For example,
reference [12] estimates both response times and transfer rates offered by web services from sparse
probes made by clients and shared among them. To the best of our knowledge, these ideas have not
been tested yet to estimate any QoS metric in the context of community networks.

The goal of this paper is thus to evaluate the feasibility of using matrix factorization algorithms to
estimate the response times offered by web proxies in community networks. To do so, a community
network is recreated using a testbed, and all clients are set to probe all proxies every 10 s for two
days. This dataset is then used in our experiments to replicate a situation in which only a small
percentage of the client/proxy response times are measured, and the rest estimated. Three different
matrix factorization algorithms, of different computational complexity, are evaluated to discuss the
feasibility of the approach.

The structure of the paper is as follows. Section 2 discusses some relevant related work concerning
the estimation of QoS metrics and in particular web proxy response times. Then, Section 3 presents the
matrix factorization algorithms that are tested. In Section 4, the experimental approach followed in
this research is detailed, while Section 5 presents and discusses the results before the conclusions close
the paper.

2. Related Work

Monitoring has always been key to ensure the correct performance of a complex, distributed
system, like a community network. It is a first step to control the quality of service, detect anomalies or
decide on resource assignment. It is particularly relevant in the problem of web proxy selection in a
community network, as clients can select the one that optimizes a certain QoS metric.

There are some interesting works on informed proxy selection for wireless networks. However,
most of these works have some important limitations: Despite proposing interesting solutions, they
tend to fail in considering heterogeneity, monitoring overhead and lack practical testing in a real-world
environment. For example, proposals such as [13] fail in heterogeneous environments because they
are based on solutions that operate at the routing layer and require modifications to the infrastructure
routers. In the rest of this section we discuss works directly related to ours, summarizing their main
features in Table 1.
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Table 1. Monitoring approaches for proxy selection.

Approach Monitoring Visibility Layer Estimation
Salsano [14] i:i?gj'}l;rcf Passive/Active Full App. (UDP) X
Abujoda [15] ggﬁ{;ﬁ::g Passive Full P X
Cooperative .
Bong-Jun Ko [16] on the same path Active Full P X
Dimogerontakis [7] Coope.ra'tlve Passive Full App. (HTTP) History-based
gossiping
Batbayar [8] Standalone Active JPartial - App. (HTTP) x
Cooperative Partial

Batbayar [17] Active App. (HTTP)  Similarity-based

nearby clients nearby clients

In monitoring for selection, one basic approach is to have a ’full visibility matrix’, i.e., a matrix
with as many rows as monitoring elements (e.g., clients) and as many columns as monitored items (e.g.,
proxies), with all the QoS metric values actually measured. A full visibility matrix can be obtained
following a standalone brute force approach in which each client probes each proxy [14]. While
applicable in small networks, this solution does not scale well to large ones because of the additional
traffic and workload on the proxies introduced by the probes. This problem can be tackled with the
reduction of the number of measured proxies by a client.

The full visibility can also be achieved with the cooperation of clients that measure just a subset
of items and share the results among them. In this case, “centralized cooperation” can be an approach
to achieve full visibility. In [15], all the nodes, not only clients, collect statistics about network usage
and send them to the central monitoring module. This approach fails in scalability as all collected
information must be sent, stored and computed in the SDN controller, and fails in heterogeneous
environments as they are based on solutions that require modifications to infrastructure routers.
Furthermore, they challenge the governance philosophy of community networks [18,19] because they
would introduce single points of failure and control of the network performance. To achieve the full
visibility, some works use a distributed cooperation [7,16]. An approach for distributed cooperation in
monitoring the QoS offered by proxies is reusing probes, for example a piggyback strategy. In [16],
intermediate nodes capture probes issued by other clients in order to estimate their own information
without issuing a new probe. The obvious limitation to this comes from the fact that a node should be
in the way to many proxies, which is seldom the case in a community network, where clients are at
the edges of the topology [4]. Again, this problem can be tackled with the reduction of the number of
measured proxies by client. In [7], each client only probes one proxy and shares the information in a
gossiping way on an overlay network of clients. It uses distributed cooperation among clients to probe
all the proxies without using brute-force. The limitation of this work is the information freshness,
the time elapsed since the last probe of a proxy. Both the low probe redundancy (one per client)
and the gossiping protocol can have an important impact on the information freshness, especially in
large networks.

In proxy selection, some works do not aim to achieve a complete visibility matrix, they consider
that partial visibility is sufficient. Again, the reason is the reduction in the number of measured proxies
per client to scale well in large networks. For example, testing only those which are geographically near,
topologically near or selecting a random set. In [8], clients follow a standalone strategy probing only
a few randomly selected proxies. In [17], a distributed cooperative strategy is proposed, but clients
only probe their currently selected proxy and two randomly selected proxies. Then they share the
results with nearby proxies and assume that what their ‘similar’ neighbors have measured is also valid
for them. In these cases, solutions are scalable but clients have a very reduced visibility of available
proxies, a sparse visibility matrix, that may lead to inadequate informed proxy selection.

In this monitoring for the proxy selection problem, some simple estimation techniques are used to
address the issue of information freshness. In [7], a stochastic history-based approach is used to update
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the information, and in [17] an approach based on similarity with other clients. However, none of these
real implementation and practical testing works use prediction techniques to deal with the missing
values. The missing values is a major problem in proposals with partial visibility and in distributed
systems with problems in disseminating the monitored samples.

In other related research problems and use cases (e.g., the prediction of the QoS of web services or
the IP traffic), some interesting works propose to use prediction techniques to forecast future values.
For example in [20], deep learning (specifically a deep belief network) is applied to predict IP traffic.
While the results are accurate, the computational cost is such that predictions cannot be carried out in
the client nodes, but in dedicated and centralized equipment that needs to be accessed also through
the network, adding additional traffic and delays. Zhang et al. [21] uses a Radial Basis Function
Neural Network to predict the response time of web services. An interesting feature of this work is
online learning, in other words, the model is dynamically updated during use. These works use a time
series prediction approach, but they do not address the limitations of the partial visibility and also the
missing values.

Collaborative filtering is another estimation technique that is computationally much lighter,
feasible to be carried out in regular devices like the user computers running the web clients.
Collaborative filtering has already been applied in a number of similar problems, yet not to monitor
and select the best proxy to access the web in a community network. It is used to overcome the
limitations of the partial visibility and the missing values. In [22], a collaborative filtering algorithm
is proposed to recommend cloud services. It is based in Spearman correlation coefficient among the
vectors of probing results from each client. Additionally, to carry out the estimations, each client
only considers those other clients that are geographically near. [23] uses a mixed method in which
the actual QoS measurements are combined with user preferences (e.g., price) to select the best web
service provider for each user. It is based in Pearson correlation coefficient. Finally, to recommend
IoT services in a large scale industrial environment, [24] uses another mechanism based on the Kernel
Least Mean Square (KLMS), which is computationally very demanding. In general, these works have
limited applicability because they tend to fail in considering computing overhead, require dedicated
equipment and/or lack of accuracy.

Matrix factorization is a subset of techniques for collaborative filtering that has been successfully
employed to estimate the full visibility matrix from sparse measurements (partial visibility), predicting
the missing values. Here we review some proposal that have been applied to estimate QoS metrics
of certain types of web services. A first proposal, reference [10] does not meet the restriction to be
carried out only in the client side, since it uses matrix factorization on an aggregation of both client and
proxy values, thus requiring modifications to the infrastructure, unadvisable in community networks.
Zheng et al. [22] proposes a modified collaborative filter so that the prediction considers measurements
by both other similar clients and other nearby ones (in the topological sense). Chen et al. [25] uses the
same dataset as [12], complementing QoS information with coarse-level location data, like country or
Internet Autonomous System (AS) Number. While it is interesting to select a web service provider at a
worldwide scale, this information is not helpful in a community network in which all nodes will likely
belong to the same country and a very few, closely located ASs. Furthermore, the encoding used is
computationally demanding. Zhang et al. [26] propose another modified collaborative filter to take
advantage of the temporal evolution of the values in the visibility matrix to predict the missing values.
Finally, Zhu et al. [12] proposes a matrix factorization algorithm that also considers the temporal
evolution of the QoS metric. This proposal features two relevant contributions: The algorithm is
prepared for online learning (i.e., each time a new measurement is made, the model is updated
with that measurement only), which makes it computationally very affordable, and it takes into
consideration the time evolution (i.e., recent similarities with other clients are more relevant than
past similarities).
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To the best of our knowledge, there are no works in the literature where the visibility matrix is
estimated with matrix factorization algorithms in the problem of monitoring and selecting the best
proxy to access the web in community networks.

3. Matrix Factorization Algorithms to Estimate Unknown Proxy Response Times

Let us consider a set of c clients and p proxies in a community network. If, periodically, each
client probed a subset of proxies (i.e., less than p) and shared the collected results with the rest of
clients, each client could create a visibility matrix of measurements M € R°*?. Each item m ij in the
matrix would be the collected metric value (in our case, the response time) between client c; and
proxy p;. This item will be known if client ¢; has successfully probed proxy p;, or an unknown value
otherwise. It can be reasonably assumed that there will be a significant correlation between certain
parts of the matrix, as clients that have similar connection conditions will likely experience similar
response times from a given proxy (e.g., if clients share most of the path to the proxy). This can be
exploited by matrix factorization algorithms by detecting similarities from actual measurements that
can be used to estimate the missing values of matrix M. For example, the simple matrix factorization
method [27] searches for matrices C € R?*¢ and P € R?*? so that matrix M = CTP with rank d
minimizes the euclidean distance to the target matrix (M), computed using only known values in the
latter. Therefore, each item m; ; with unknown value will be estimated by 7f; ;. The main steps of this
process are illustrated graphically in Figure 1a, which shows how some response time measurements
are taken by issuing HTTP probes and waiting for the full response, and Figure 1b, which uses a partial
matrix to apply the factorization algorithm in order to obtain a full, estimated matrix for the metric.
In the factoring matrices, s denote the latent factors.

This paper evaluates three different algorithms in order to estimate, in a community network,
the response times offered by web proxies to clients, from just a subset of actual measurements of
client/proxy response times. The evaluated algorithms are the following:

e  PMEF (probabilistic matrix factorization) [28] is a widely-employed matrix factorization algorithm
that performs well on large, sparse and very imbalanced datasets. This algorithm can be used to
estimate the unknown values of the visibility matrix at a given time using only the measures that
are present in the matrix at that time (i.e., the metric values collected by clients in the last round
of probes). Estimations are thus made without taking into account the past temporal evolution
of values in the visibility matrix (i.e., the metric values collected by clients in previous rounds
of probes).

e NTF (non-negative tensor factorization) [26] can leverage the past temporal evolution of values
in the visibility matrix to estimate the unknown values at a given time. This algorithm uses
three-dimensional tensors (i.e., arrays) to represent the evolution of matrix values over time
and follows a tensor factorization model with non-negative constraints to obtain estimations.
This approach makes NTF a computationally demanding algorithm.

e AMF (adaptive matrix factorization) [12] can also make estimations of unknown values of the
visibility matrix at a given time taking into account the past temporal evolution of matrix values.
This algorithm generates an estimation model for the visibility matrix obtained after the last round
of probes based on the model that was generated for the visibility matrix corresponding to the
previous round of probes, which is updated using a Box-Cox transformation [29] of the metric
values obtained in the last round of probes. In this way, AMF can be seen as an iterative version
of matrix factorization algorithms that is less computationally demanding than NTE.

The implementation of AMF used in this paper is taken from [30], while those for NTF and PMF
are available in [31].
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Figure 1. Illustrative representation of the estimation process: (a) Response time measurement for
some client/proxy pairs, and (b) estimation of the full matrix using matrix factorization.

4. Experimental Design

4.1. Dataset Generation

In order to test the feasibility of matrix factorization for the estimation of response times offered
by web proxies, a community network was emulated over the PlanetLab testbed [32]. To do so, several
virtual nodes where deployed in Planetlab servers distributed across Europe and the Middle East, 8 of
them acting as web clients and 5 others with simple web proxy software [33] that allowed them to act
as web proxies. The location of the different nodes is described in Table 2, where it can be seen that
there are three (somewhat vague) geographical clusters (around western, northern and eastern Europe)
that might cause that a given client perceives better response times from some proxies than others,
though of course that can depend more on the quality of links than the distance or number of hops,
as it also happens in community networks. It is true that community networks have a larger number
of both clients and proxies, and thus the size of this dataset is small in those dimensions, but large in
the number of time slices, which would allow to reflect on the benefits of matrix factorization methods
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that take into account the evolution of past measurements. The dataset is not large, yet is generated
in realistic, non-manipulated conditions, and thus we consider it is valid to study the feasibility and
potential of matrix factorization to estimate proxy response times.

Table 2. Client and proxy distribution in PlanetLab nodes.

ID Node Country
Clientl cse-yellow.cse.chalmers.se Sweden
Client2 mars.planetlab.haw-hamburg.de Germany
Client3 pl2.uni-rostock.de Germany
Client4 planet3.cs.huji.ac.il Israel
Client5 planetlab3.di.unito.it Italy
Client6  planetlab-1.ing.unimo.it Italy
Client7 planetlab-2.cs.ucy.ac.cy Cyprus
Client8 ple43.planet-lab.eu France
Proxyl ple3.planet-lab.eu France
Proxy2 planet4.cs.huji.ac.il Israel
Proxy3  cse-white.cse.chalmers.se Sweden
Proxy4 planetlabl.informatik.uni-kl.de Germany
Proxy5 planetlabl.cs.aueb.gr Greece

Each client probed all proxies every 10 s during two days. In all cases, all probes requested the
same document [34]. Every time the download was completed, the response time was registered (in
milliseconds), considering the time elapsed from the moment the client sends the request until the last
byte of the response is received. Response time can be considered an adequate performance metric for
web proxy selection in community networks since it is strongly correlated to the proxy performance [8].
Moreover, it is able to detect three different types of bottlenecks: Congested network path between the
client and the proxy, high load of the web proxy, and saturated Internet access [8].

Table 3 collects the actual number of response time measurements taken by each client from
each proxy, which were included in the dataset available at [35]. In all cases it can be observed that
not all the 17,280 requests were successful, as it could be expected. Most of the failures are due to
communication problems between the client and the proxy (e.g., TCP connection times out or HTTP
response is not 200-OK). In some other cases, the proxy had problems in retrieving the requested
document from the original server. This type of problem is also present in community networks, so it
is fine that they get reflected in the dataset as missing measurements. It should be noted that a failure
in taking one measurement does not stop clients to continue probing and registering subsequent time
response measurements.

Table 3. Number of measurements of response time actually collected for each client/proxy pair.

Proxyl Proxy2 Proxy3 Proxy4 Proxy5 Total

Clientl 15,476 15,474 15,474 15,476 11,664 73,564
Client2 15,486 15,484 15,485 15,486 11,666 73,607
Client3 15,474 15,474 15,473 15,474 11,665 73,560
Client4 14,697 14,697 14,697 14,697 14,697 73,485
Client5 14,742 14,742 14,742 14,742 14,742 73,710
Client6 14,678 14,678 14,678 14,678 14,678 73,390
Client7 15,472 15,470 15,470 15,471 11,658 73,541
Client8 15,502 15,500 15,500 15,501 11,667 73,670
Total 121,527 121,519 121,519 121,525 102,437 588,527

Figure 2 shows the distribution of measurements for each client/proxy pair. All values of these
boxplots are listed in the Appendix A Clearly, they are not normally distributed in most of the cases.
It can also be seen that dispersion is significant. In principle, this suggests that the estimation of
response times will not be a trivial task.
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Figure 2. Boxplots describing the distribution of response time measurements collected for each
client/proxy pair.

This dataset can be seen as a series of 17,280 matrices of 8 x 5 response time values (though some
may be missing). The purpose of this research is to show that if, at a give time slice only a subset of the
matrix values were measured, the others could be estimated. The dataset could also be seen as a set of
40 time series (one for each client-proxy pair) of 17,280 values each (some may miss). While the aim
of this research is not employing time series to do forecasting, we performed some analysis of these
series to better understand the underlying phenomena. Dickey—Fuller tests confirmed all time series
are stationary, and a seasonal decomposition found no seasonal component in them.

4.2. Baseline Algorithm and Estimation Accuracy Metric

The evaluated matrix factorization algorithms should be compared to a simple algorithm with
negligible computational cost, in order to assess the potential benefit of introducing them. In this
paper, we propose that each client ¢; that wants to estimate the response time offered by proxy p;, i.e.,
to have a value for 7; ;, will simply average all the known measurements taken by other clients of
the same proxy p;. This algorithm is simple, it makes sense as some of the measurements taken by
other clients will be very good estimators, yet it ignores the information that not all other clients will
be equally similar to client c;. Therefore, if matrix factorization algorithms exploit well the existing
information, it is expected that they will achieve superior accuracy than the baseline.

Accuracy will be measured using the mean average error (MAE) between estimations and actual
values. This metric is commonly used in the literature (e.g., [10,11]) to compare estimation algorithms
in problems similar to the one dealt with in this paper.

4.3. Experiments Carried Out

In this paper, we want to explore how the number of known values in the visibility matrix affects
the estimation. As our dataset is not generated from a very large network, we have carried out three
sets of experiments. In the first one, each client probes every 10 s two randomly chosen proxies out of
the five existing ones. It should be noted that the same client may probe different proxies in the next
probing round, 10 s later. In the second and third sets of experiments, clients probe three and four (out
of five) proxies, respectively. This design allows us to test estimations using visibility matrix with 40%,
60% and 80% of known values (densities), while the rest of the items are estimated and compared to
the actual values to compute the accuracy.

Besides, to eliminate the variance introduced by the random selection of the proxies that each
client should probe, experiments have been repeated five times for each density. Results reported will
show the average and standard deviation of MAE across these five experiments. If the latter is low it
will allow us to conclude that the selection of which particular proxies to probe at each time slice has
no significant impact.

Finally, it should be noted that each of the evaluated algorithms has some parameters that
control their behavior. As this study focuses on exploring the feasibility of the approach, only
a limited heuristic optimization of them was carried out. The values for these parameters were:
For AMF, the dimensionality of latent factors was 10, the learning rate was 0.8, the regularization
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factor was 0.0003, the maximum number of iterations was 50, convergence rate was 0.006 and the
weight of exponential moving average was 0.3; for NTF, the dimensionality of latent factors was 10,
the regularization factor was 40 and the maximum number of iterations was 300; finally, for PMF,
the dimensionality of latent factors was 10, the learning rate was 0.8, the regularization factor was 0,
the initial learning rate was 0.01 and the maximum number of iterations was 600.

5. Results

Table 4 shows the results obtained after applying the methods described in Sections 3 and 4.2
on the dataset described in Section 4.1. For each method and density, the average and standard
deviation are shown, with low standard deviations showing no significant impact of the particular
choice of proxies to probe at each time slice. It can be seen that AMF performs best, with a small
error and low variability, which shows the potential of matrix factorization algorithms to estimate
the response times of unknown proxies from a given client using some available measurements of
other client/proxy pairs that have been shared by other clients. The fact that this method performs
a pre- and post-transformation of the data to accommodate data coming from a largely asymmetric
distribution to methods better suited to normally distributed sources is probably the main reason why
AMF beats the competitors. Furthermore, the result is noticeably better than the baseline, justifying the
larger computational cost (it should be noted that the cost of probing and distributing measurements
among neighbors is the same for any of the evaluated methods, including the baseline).

It is also worth noting how the results of PMF are not very good. This is probably due to the fact
that discovering latent factors of similarity between clients and between proxies with such a small
number of them is better performed when considering past data and its evolution over time, as both
AMF and NTF do.

Table 4 also allows to observe how increasing proxy sampling density slightly improves the
performance of all the methods. With a larger number of client/proxy pairs that would allow to
evaluate density starting from small values (around 5%), it is expected that the first increments would
have a clearer impact on the estimation results [12]. Figure 3 shows a small interval of the estimations
made at a client of the response time that would be obtained using a given proxy, illustrating AMF
makes very accurate estimations and detects well the most relevant changes in response time.

Real values —— Baseline PMF —— NTF —&=— AMF —%—
— 3000
E 2500 A
g 2000 A
Eaw|  ASp /AN

/ <= _ — o / \_O

¢ e YeET bt el L
~

0

12430 12435 12440 12445 12450 12455 12460 12465 12470

Rounds

Figure 3. Illustrative interval of estimation of response time of proxy 5 from client 6, using the matrix
factorization and baseline algorithms, with 60% density.

Table 4. Average and standard deviation of the mean average error (MAE) for the baseline algorithm
as well as probabilistic matrix factorization (PMF), non-negative tensor factorization (NTF) and
adaptive matrix factorization (AMF), with different densities of sampling of the dataset. Values
are in milliseconds.

Density  Baseline PMF NTF AMF

40% 231+052 570£097 140+6.18 104 £0.38
60% 220£029 438+1.05 123£1.62 100£0.36
80% 214+042 359+151 116+3.36 96 + 0.56
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In order to better understand the results, Tables 5 and 6 detail the performance of AMF and the
baseline algorithm for each client/proxy pair, for a 40% density (each time a client has to probe the
proxies, it measures the response time of two of them out of the five, shares the measured results and
estimates the response time of the remaining three). The observations made here are also valid for
60% and 80% densities. First of all, it can be observed that in all cases AMF is better than the baseline,
justifying its choice. Searching more in detail, it can be seen from Figure 2 that clients 1-3 and 8 obtain
more stable measurements from their probes. Besides, the measured response times have low values
for proxies 1, 3 and 4. Observing the results of both methods, it can be seen that AMF makes very
accurate estimations for these client/proxy pairs, while the baseline makes worse estimations. This is
due to the fact that AMF is learning the relative importance of the information shared by neighbor
clients, taking into account only those which are similar to the one making the estimation.

Interestingly, a weak point of matrix factorization algorithms is the estimation of client/proxy
pairs with response times in a range that hardly overlaps with the rest of the measurements. Observe
in Figure 2 how proxy 2 offers client 7 response times much higher than it does to other clients,
or how client 8 receives from proxy 1 extremely faster responses than other clients. As a consequence,
AMF cannot estimate these pairs so accurately, yielding higher MAEs. In a similar fashion, client
4 estimations are accurate yet worse than those achieved for other clients (with both AMF and the
baseline). This is because for proxies 1 and 3-5 the response times are higher than what all others
clients observe, while in the case of proxy 2 the measurements are far more variable and noisy. It should
be noted that this situation can always be present, but it would be less likely if the number of proxies
and clients was higher.

Finally, observing the overall behavior for proxy 2 can also lead to some interesting reflections.
This proxy has the highest range of response times, as seen in Figure 2. This is problematic if at a
given polling time the various clients measure quite different times between them, which hinders the
algorithm from learning the structure of the similarities between clients. This is the reason why AMF
has here results which are closer to the baseline, with accuracy being in any case more variable for both
methods. Again, with more clients and proxies, it would be more likely to detect some similarities
between clients even for the most erratic proxies, thus improving the predictions.

Table 5. Average MAE obtained by AMF for each client/proxy pair, with a 40% density. Values are in
milliseconds.

Client1 Client2 Client3 Client4 Client5 Client6 Client7 Client8 Average

Proxy 1 50 55 51 170 109 119 108 203 108 £ 0.69
Proxy 2 136 141 139 138 183 194 209 137 159 +£1.75
Proxy 3 43 44 41 163 107 116 100 51 82 +0.50
Proxy 4 57 50 57 158 113 125 87 56 87 £ 0.52
Proxy 5 59 53 56 151 93 91 73 53 80 + 0.49
Average 69 69 69 156 122 130 118 102 104 +£0.38

Table 6. Average MAE obtained by the baseline algorithm for each client/proxy pair, with a 40%
density. Values are in milliseconds.

Client1 Client2 Client3 Client4 Client5 Client6 Client7 Client8 Average

Proxy 1 239 188 207 490 230 216 364 362 286 +£0.43
Proxy 2 181 180 183 297 277 242 528 250 267 £1.03
Proxy 3 254 194 201 363 158 162 393 160 236 £0.88
Proxy 4 151 149 190 416 174 190 229 146 205+ 1.19
Proxy 5 109 86 86 338 173 133 98 106 144 £ 0.84
Average 191 163 178 382 203 190 334 209 231 £0.52

6. Conclusions

In community networks, access to the web is normally achieved through proxies contributed
by other members of the community. Workload and link quality affect the response times that these



Electronics 2020, 9, 88 11 of 14

proxies may offer, and thus their selection is very relevant to the final perception of users. While each
client could periodically probe all proxies to select the best one, this paper has proposed an approach
in which each client probes only a (random) fraction of the available proxies, shares the measurements
with other clients and builds an incomplete matrix of response times that can be used for the estimation
of the remaining values.

With this aim, we have evaluated several matrix factorization algorithms, which have been
successfully used in other domains. These algorithms have been compared to a simple baseline, which
averages the response times offered by a target proxy to other clients, without regard to potential
similarities between clients. The results obtained confirm the feasibility of the approach, as the AMF
algorithm clearly outperforms the baseline, justifying its computational cost, which is nevertheless low
as this algorithm is incremental and does not require to build a new model from scratch every time
a new measurement is taken. The analysis of the results also points out how this type of algorithm
is stronger when there is a structure (the latent factor) that reflects the similarities between clients
concerning the response times they measure from the different proxies, but can perform worse when
estimating client/proxy pairs that are very different from the rest. In the discussion of these findings,
we mentioned that a larger dataset would allow to draw more solid conclusions on sampling density
and achieve more solid generalization. Therefore, work in the near future will involve the generation
of a larger dataset, with many more clients and proxies, to validate the results, and the artificial
manipulation of behavior of some proxies to check if service degradation can be correctly detected
by all clients. Future work also includes the evaluation of different algorithms (within the context
of load balancing, reference [36] reviews some popular ones) that may be employed by each client
to decide the web proxy it uses at a given time, based on the visibility matrix obtained with matrix
factorization algorithms.
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Appendix A

Boxplots are a standardized way of displaying the distribution of data based on a five number
summary: Minimum, first quartile (Q1), median (Q2), third quartile (Q3) and maximum. maximum is
defined as Q3 + 1.5 * IQR and minimum as Q1 — 1.5 * IQR where the Interquartile Range (IQR) is the
range from Q1 to Q3.
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Table A1. Numerical values of boxplots depicted in Figure 2. For each cell from top to bottom:
Maximum, Q3, Q2, Q1 and minimum. Values are in milliseconds.

Proxyl Proxy2 Proxy3 Proxy4 Proxy5

252 1103 365 412 955

230 974 254 342 758

Client 1 216 967 230 320 656
215 888 180 295 626

208 845 154 272 560

560 1211 378 359 755

379 1071 302 326 667

Client 2 270 1061 301 316 639
258 977 251 304 608

218 930 226 293 579

570 1204 381 391 767

352 1071 296 303 670

Client 3 240 1062 292 269 640
205 982 239 244 605

203 938 211 215 573

1205 1882 1162 881 1087

883 1157 797 749 882

Client 4 780 848 664 675 842
668 673 553 661 745

561 438 433 617 677

514 1223 659 488 672

319 977 455 354 578

Client 5 191 970 446 305 555
189 813 319 264 515

185 731 251 220 484

652 1469 823 781 686

382 1051 534 510 591

Client 6 261 979 452 388 568
202 772 341 329 527

117 633 245 239 496

1161 1575 1151 814 696

781 1445 813 616 622

Client 7 735 1377 788 525 602
527 1358 587 484 572

413 1315 475 418 548

81 846 484 438 679

66 825 370 353 603

Client 8 59 816 343 325 584
56 811 294 296 552

51 804 256 268 528
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