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Abstract: Pseudo-Invariant Calibration Sites (PICS) have been widely used by the remote sensing
community in recent decades for post-launch absolute calibration, cross-calibration, and the
monitoring of radiometric stability. The Committee on Earth Observation Satellites (CEOS) has
established several official PICS for these purposes. Of these, Libya-4 is the most commonly used,
due to its high uniformity and stability. The site was chosen as a large-area site for medium resolution
sensors, and with high-resolution sensors now common, smaller sites are being identified. This
work has identified an improved area of interest (AOI) within Libya-4 by using combined Landsat
8 and Sentinel 2 data. The Optimized Ground Target (OGT) was determined by calculating the
coefficient of variation along with the use of a quasi-Newton optimization algorithm combined with
the Basin–Hopping global optimization technique to constrain a search area small enough to perform
a final brute-force refinement. The Coefficient of Variation CV of the proposed OGT is significantly
lower than that in the original CEOS area, with differences between the CV of both zones in the order
of 1% in the visible near-infrared (VNIR) bands. This new AOI has the potential to improve the
cross-calibration between high-resolution sensors using the PICS methodology through an OGT with
more homogeneous and stable characteristics.

Keywords: PICS; Libya-4; CEOS; Coefficient of Variation; Quasi-Newton Optimization; Basin-Hopping;
Landsat 8; Sentinel 2

1. Introduction

In response to the increasing demand for remote-sensing products and services, a growing
number of Earth-observation satellites are being placed into service [1]. As a consequence, there is an
unprecedented availability of optical data [1,2], with it however, the challenge of data interoperability
becomes more prominent [3,4]. The aforementioned products and services can have the benefit of
being created from disparate data sources if such interoperability is achieved, although, in order to
obtain that, it is necessary to analyze the compared behavior of the different sensors [3,4].

Space-borne optical instruments are characterized and calibrated pre-launch. Even with the same
design and manufacturing process, there are no two identical sensors [5]. Once in orbit, and due to the
degradation in the space environment, even those with on-board calibration systems usually require
the use of data acquired on reference ground targets as part of their calibration procedures [6]. These
ground targets are also used to perform the comparison between sensors.

Using Meteosat-4 data, Cosnefroy et al. [7] searched spatially uniform and temporally stable
surfaces and found 20 desert locations in North Africa and Saudi Arabia. Subsequently, the Committee
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on Observation Satellites System (CEOS) selected six of these locations as Pseudo-Invariant Calibration
Sites (PICS). PICS must have, as an essential characteristic, very high radiometric stability over
long periods of time and over a significant spatial extent [8]. PICS-based methodologies have been
traditionally used in optical remote sensing, especially for absolute calibration [9], cross-calibration [10],
and trend monitoring [11]. The Libya-4 PICS, in this paper described as Libya-4 AOI, has an area
of 100 × 100 km2, useful for low and medium resolution sensors. As higher resolution instruments
became available, several authors started using different sub-areas, either because they considered
the Libya-4 AOI too large or simply because the swath of the sensor was too narrow to acquire the
complete surface [12–15]. The CEOS eventually acknowledged the need for a smaller area and defined
one of 20 × 20 km2 [16] (CEOS AOI) within the Libya-4 AOI.

Govaerts [17] showed that AOI sizes in the range of 10 × 10 km2 on Libya-4 had less stability
concerning optical properties of the surface due to the dune effect than AOIs of larger area and might
have influenced the post-launch calibration of the sensors. The use of an AOI with an optimal size
reduces the possible uncertainty generated by the dune effect, improving the stability of the indirect
calibration [17]. Tuz Zafrin Tuli [18] showed that there is a long-term temporal variability in some PICS.

The purpose of this work is to support PICS-based calibration methodologies for medium to
high-resolution sensors by locating an Optimized Ground Target location (OGT) within Libya-4 with
the highest possible spatial and temporal stability, based on the study of the variability of Libya-4
from a wide temporal series of combined Landsat 8 OLI (L8-OLI) (Operational Land Imager) and
Sentinel 2 Multispectral Instrument MSI (S2-MSI) data using a novel numeric methodology. We use
the Coefficient of Variation (CV) and a quasi-Newton optimization algorithm [19–21] combined with a
global optimization technique [22] to constrain a search area small enough to perform a final brute-force
refinement in order to define the zone with the size and optimal space-time stability.

2. Materials and Methods

2.1. Study Area

Libya-4 was one of the six PICS recommended by the CEOS Working Group on Calibration and
Validation (WGCV) [23] along with Mauritania-1, Mauritania-2, Algeria-3, Algeria-5, and Libya-1. It is
located in the Great Sand Sea (28.55◦ N, 23.39◦ E) at an average height of 118 m above sea level. The
study area was covered by unvegetated sand dunes and it usually had high atmospheric stability with
low aerosol content as well as a low presence of cloudiness [24].

Libya-4 met all the characteristics of a good PICS [8]: Low reflectance anisotropy, high surface
reflectance, high spatial and temporal uniformity, and a large ground surface.

On L8-OLI, the Libya-4 CEOS site was located at path 181 and row 40 referenced in the Second
Worldwide Reference System (WRS-2) [25] with an approximate scene area of 185 × 180 km2 [26]. In
order to completely cover the area of Libya-4 for S2-MSI, it was necessary to use 6 tiles (34RFT, 34RFS,
34RGT, 34RGS, 35RKN, and 35RKM), spatially referenced using the Military Grid Reference System
(MGRS), with an approximate size per tile of 100 × 100 km2 and 10 km of overlap (Figure 1) [27].

CEOS defined an AOI of 20 × 20 km2 that allowed higher resolution sensors that could not cover
the full area in order to have a more localized reference zone [16]. The AOI of L8 and the tile 34RGS of
S2 contained the CEOS AOI.

In addition to the different AOIs mentioned above, the hyperspectral data set of the Hyperion
sensor of the now-decommissioned EO-1 satellite was taken into account (Figure 2). These Hyperion
data allowed for a better spectral characterization of the Libya-4 surface due to the 220 continuous
spectral bands covering the visible near-infrared (VNIR) and Short-Wave Infrared (SWIR), ranging
from 400 nm to 2500 nm with a spectral resolution of approximately 10 nm [28].
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(AOI), as well as the acquisition zones of the Hyperion sensor on Libya-4.

In this work, we sought a common OGT for L8 and S2, and for that reason, we used the data of the
tile WRS-2 181/40 of L8, and for S2, the data of the 6 MGRS tiles (34RFT, 34RFS, 34RGT, 34RGS, 35RKN,
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and 35RKM), which specifically covered the L8 area plus a small buffer. L8 images were slightly bigger
than the WRS-2 tile (Figure 2).

2.2. Satellite Sensors

In order to evaluate the spatial and temporal homogeneity of Libya-4, L8-OLI and S2-MSI data
were selected for their excellent quality [27,29].

L8 was launched on February 11, 2013, from Vandenberg Air Force Base, with two payloads:
The Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI instrument
had 9 spectral bands in the VNIR and SWIR range with a spatial resolution of 30 m, except for
the panchromatic band that had a resolution of 15 m. In this work, we used L8 Collection 1 Tier
1 calibrated top-of-atmosphere (TOA) reflectance products referenced to WRS-2 in the Universal
Transverse Mercator projection (UTM/WGS84) for the red, green, blue, and near infrared NIR bands.
This product was radiometrically and geometrically calibrated and orthorectified using ground control
points and a digital terrain model. It performed very well when comparing long time series of data at
pixel level [30]. In 2017, a reprocessing of the data for the Landsat series was carried out, creating the
so-called Collection-1, which we have used in this work [31].

S2 was part of the Copernicus Programme of the European Commission for the study and
knowledge of planet Earth. The S2 programme currently consists of two twin satellites (S2A and
S2B) orbiting in the same plane with a phase difference of 180 degrees. S2A was launched on June 23,
2015, while S2B was launched on March 7, 2017. The MSI payload was carried on board each of the
satellites. This optical instrument had 13 spectral bands covering the region of VNIR to SWIR with
spatial resolutions of 10 m for bands 2, 3, 4, and 8 and 20 m for the bands 5, 6, 7, 8A, 11, 12, and 60 m for
the rest [27,32]. The blue, green, red, and NIR bands with a 10 m resolution were used for this work,
corresponding, respectively, to the bands 2, 3, 4, and 8. It should be noted that S2 had two bands in the
NIR spectral region, 8 and 8A, the latter being narrower with a spectral response close to the NIR band
of Landsat 8. We used MSI’s wide NIR band (8) to maintain spatial consistency with the rest of the S2
bands. For S2 data, we employed the L1C product, which was structured in MGRS tiles of images of a
size of 100 × 100 km2 and were delivered in UTM/WGS84 projection. The images were in values of
TOA reflectance multiplied by 10,000 [32].

The main characteristics of L8-OLI and S2-MSI bands are summarized in Table 1.

Table 1. Satellite sensors, spectral bands, and spatial resolution characteristics.

Band # Band Spatial Resolution (m) Central Wavelength (nm)

Landsat 8 OLI

2 Blue 30 482.0
3 Green 30 561.4
4 Red 30 654.6
5 NIR 30 864.7

Sentinel 2 A MSI

2 Blue 10 492.4
3 Green 10 559.8
4 Red 10 664.6
8 NIR 10 832.8

Sentinel 2 B MSI

2 Blue 10 492.1
3 Green 10 559.0
4 Red 10 664.9
8 NIR 10 832.9

2.3. Coefficient of Variation (CV)

We used the CV as an indicator of the radiometric homogeneity of Libya-4, both temporally and
spatially. The CV is an operator that has been used as a measure of spatial homogeneity [33–35], as
well as for the measurement of temporal homogeneity [36]. The CV can be defined as the quotient
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between the standard deviation and the average of values; therefore, it is a dimensionless unit that is
usually represented as a percentage (Equation (1)).

CV =
σ∣∣∣x∣∣∣ (1)

where
∣∣∣x∣∣∣ is the average value of the sample and σ is the standard deviation.

The Google Earth Engine was used to create the CV images of L8 and S2 data, given its cloud
computing capacity and flexibility [37].

2.4. Spatial and Temporal Uniformity

In order to select and characterize the OGT on Libya-4 that met the criteria of greater spatial and
temporal homogeneity, a long time series of data were used. The data from L8-OLI and S2-MSI sensors
were used from the beginning of the missions until the last data available in 2018. The use of a human
operator to reliably discern different types of clouds, shades, and other related elements present in the
images has been proven to be fundamental in validating the quality of the images [38]. For this reason,
datasets that show clouds, cloud shadows, suspended dust, and other obvious features that may
negatively impact the analysis were filtered out by means of a quicklook photointerpretation, requiring
the AOI to be covered by L8 in order to be visually clear. The use of a visual assessment to determine
clouds, shadows, suspended dust, or other problematic elements was made due to the false positives
that cloud detection algorithms present, especially for high-reflectance surfaces like deserts [39], along
with the absence of thermal bands in S2 that made it difficult to generate a reliable cloud mask [40]. L8
quicklooks were downloaded from the Earth Resources Science and Observation Data Center (EROS)
of the United States Geological Survey (USGS) and S2 quicklooks were from the Copernicus Hub. A
total of 598 scenes from S2 and 64 scenes from L8 were used in the Google Earth Engine.

For the purposes of this work, we defined a coefficient in order to simultaneously study spatial
and temporal homogeneity. We took the TOA reflectance image of the band i, of the acquisition j, and
convolved it using the standard deviation operator and a 300 m square kernel to obtain the image
σi j. The same process was repeated using the average operator to obtain the image xi j. Hence, after
performing these spatial operations, there were two rasters per image band and the acquisitions, for
computational convenience, were arranged in a data cube where the j axis (acquisition) represented
the time component. The data was flattened across the time dimension and the image pairs were
combined, following Equation (2), which defines the spatiotemporal CV (CVST).

CVST
i
nm =

√∑J
j=1

(
σ

i j
nm

)2

∑J
j=1 xi j

nm

(2)

Here, the presence of (n, m), the pixel coordinates, indicated that the operations were pixel-based.
J is the number of acquisitions.

It is worth highlighting that these operations were not tied to any sensor specifically. They worked
equally for L8-OLI and S2-MSI. For this reason, each sensor was considered independently, with
the calculation performed for the specific bands of that sensor. It is also important to note that the
convolutions that were previously performed reduced the impact that small geometric errors can
produce on the pixel-based operations.

The CVST made comparable the homogeneity of different spectral bands. Figure 3 shows the
workflow of Libya-4 spatial and temporal uniformity analysis, applied on the L8 NIR band.
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Figure 3. L8-Operational Land Imager near infrared OLI NIR band example of the spatial and temporal
Coefficient of Variation (CV) calculation workflow.

Once L8 and S2 Red, Green, Blue, and NIR (RGBNIR) CVST images were generated, a quasi-Newton
optimization algorithm [41], known as the Limited Memory Broyden Fletcher Goldfarb Shanno (LM
BFGS) method, was combined with the Basin–Hopping Global Optimization Technique (BH-GOT) [42]
to narrow down the study area, focusing the analysis on the square zones with lower average CVST

for each band. This optimization technique allowed for a function to be minimized. The algorithm
implemented for this step minimized the average CVST in a square area where the bidimensional
coordinates of its center and its side length were degrees of freedom. Hence, the optimization results
provided the location and size of the squares with lower average CVST. The bidimensional coordinates
“hop” across the WGS-2 path 181 and row 40 tile, which included the Libya-4 AOI, while the area
fluctuated from a minimum of 20 × 20 km2 (Figure 4), large enough to avoid the dune effect identified
by Govaerts [17] and maximum of 100 × 100 km2. This optimization technique has been applied in
different areas such as physics, chemistry, mathematics, and biology [22,43–45].

Considering each band individually, we divided the optimized geometries into five classes, based
on the CVST, and selected those that had the lowest CVST values so that they were categorized into the
first class [46]. As the areas were grouped (Figure 4), it was possible to perform a geometric union of
all of them, followed by the creation of a bounding box (Figure 5).
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The bounding box contained the best areas identified for each spectral band and was then small
enough to execute a brute-force CVST calculation on all bands simultaneously, using a square moving
window of variable size and the average operator. The window was set to move in 30 m steps and had
a minimum size of 20 × 20 km2. This operation allowed us to select the AOIs with the lowest CVST in
all the bands and sensors simultaneously (Figure 6). Using an average operator was feasible since
the histograms for each spectral band for the CVST images were so similar that the band weights on
average could be considered balanced, as shown in the Results Section below.
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The general workflow and the intermediate processes performed to establish a location and size
of the OGT is shown in Figure 7.
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3. Results

The spatial and temporal homogeneity of Libya-4, expressed by the CVST for each
Red-Green-Blue-near infrared RGBNIR band of L8 and S2, is presented in Figures 8 and 9 and
shows the maximum and minimum CVST values of each band in a color scale. The Western and
central zones of the selected L8 and S2 AOI presented a lower CVST, and therefore, greater spatial and
temporal uniformity, whereas the Northern zone had the highest CVST values, meaning that these
areas were the least homogeneous. Independently of the band or sensor, the results of CVST on Libya-4
identified the most and least homogeneous areas. The average values in the CVST range for L8 were
approximately 3.147% in the blue band and 3.641% in the red band. For S2, the mean CVST values
were in the range of 3.734% for the blue band to 4.210% for the red band. For both satellites, the lowest
average CVST and standard deviation corresponded to the blue band and the highest average CVST

value and standard deviation with the red band. Table 2 shows the average Libya-4 AOIs CVST values
of each band, sensor, and standard deviation. The CVST standard deviation ranged from 1.661% to
1.808% for L8 and from 1.965% to 2.552% for S2. The minimum values were obtained in the blue band
and the maximum values in the NIR band for both sensors.
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Table 2. Average CVST for each band of L8 and S2 in the study AOI of Libya 4.

Band CVST
Average (%)

CVST
Standard Deviation (%)

Landsat 8

NIR 3.576 1.808
Red 3.641 1.725
Green 3.632 1.731
Blue 3.147 1.661

Sentinel 2

NIR 4.184 2.552
Red 4.210 2.360
Green 4.114 2.139
Blue 3.734 1.965

For each RGBNIR band of L8 and S2, the best AOI class obtained after the classification of the CVST

optimization is shown in Figures 10 and 11. Each AOI had a different size with a minimum extension of
20 × 20 km2. The lower the color transparency, the lower the average CVST of the AOI. The optimized
AOIs of all bands were distributed in a relatively small area in the middle and lower zone of the 34RGT
MGRS tile. This visually coincided with the CVST distribution values in Figures 8 and 9. It is also worth
mentioning that the optimized areas were also very similar across bands.
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The similarity of the results obtained from each of the sensors provides evidence that the CVST is
a good indicator for the location of homogeneous areas in Libya-4. Tables 3 and 4 show the average
CVST, its standard deviation, and the area for the five best AOIs of each band and sensor.

Table 3. Percentage of the average CVST value for the five best AOIs of each band and sensor.

AOI

CVST
Average

(%)
NIR
Band

CVST
Std. Dev.

(%)
NIR
Band

CVST
Average

(%)
Red

Band

CVST
Std. Dev.

(%)
Red

Band

CVST
Average

(%)
Green
Band

CVST
Std. Dev.

(%)
Green
Band

CVST
Average

(%)
Blue
Band

CVST
Std. Dev.

(%)
Blue Band

Landsat
8

1 2.3510 1.1615 2.4431 1.0869 2.2977 1.0346 1.8308 0.7565
2 2.3573 1.1822 2.4473 1.0591 2.3040 0.9579 1.8334 0.8175
3 2.3625 1.1671 2.4515 1.0350 2.3052 1.0286 1.8357 0.7658
4 2.3681 1.1661 2.4535 1.0318 2.3106 1.0722 1.8361 0.8089
5 2.3753 1.0799 2.4555 1.1019 2.3164 0.9422 1.8362 0.8332

Sentinel
2

1 2.6760 1.2922 2.7319 1.2942 2.5270 1.1236 2.1563 0.8760
2 2.6790 1.3244 2.7342 1.2216 2.5274 1.1132 2.1563 0.8793
3 2.6799 1.3185 2.7347 1.1861 2.5299 1.1326 2.1575 0.9828
4 2.6829 1.3274 2.7408 1.2067 2.5361 1.2476 2.1583 0.9207
5 2.6836 1.3126 2.7412 1.3170 2.5394 1.2239 2.1583 0.8930

Table 4. Area in km2 of the five best AOIs of each band and sensor.

AOI

Area km2

(Ellipsoidal,
WGS84)

NIR Band

Area km2

(Ellipsoidal,
WGS84)

Red Band

Area km2

(Ellipsoidal,
WGS84)

Green Band

Area km2

(Ellipsoidal,
WGS84)

Blue Band

Landsat 8

1 423.693 401.722 416.296 408.967
2 404.103 416.332 406.534 413.851
3 416.300 409.028 411.396 428.676
4 446.283 433.745 404.106 411.407
5 456.528 413.842 406.564 406.535

Sentinel 2

1 422.050 408.149 413.845 438.705
2 403.300 406.536 403.303 445.454
3 425.354 408.151 437.021 402.498
4 422.875 429.506 405.719 417.120
5 435.345 413.844 431.163 416.306

The number of AOIs used to generate the bounding box was four in NIR, three in red (2 outliers
removed), six in green and blue bands for L8 and 13 in NIR for S2, eight in red, six in green, and twelve
in blue band. On the fraction of the Libya-4 area defined by the bounding box, the brute-force search
described in Section 2.4 was performed. The bands had similar distributions of values and therefore an
unweighted average was appropriate for the average calculation and can be justified using Figure 12.
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The brute-force algorithm iteratively swiped the bounding box area searching for a minimum
average CVST, and similarly to BH-GOT with three variables and a minimum of 20 × 20 km2, but this
time the area searched was within the bounding box and the maximum square size was the bounding
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location, size, and CVST that resulted from the brute-force process. The 10 best AOIs found were very
similar in their spatial location, average CVST, and surface. Figure 14 shows the best CVST found for
each square side length.
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Table 5. Features of the 10 best AOIs that were the result of the brute-force algorithm.

AOI CVST Average
(%)

CVST Standard
Deviation (%)

Area km2

(Elipsoidal, WGS84)
AOI Side Size

(km)

AOIs Common
Landsat 8 &
Sentinel 2

1 2.3778 1.0368 400.000 20.000
2 2.3779 1.0366 401.201 20.030
3 2.3780 1.0367 402.404 20.060
4 2.3782 1.0368 403.608 20.090
5 2.3783 1.0358 404.814 20.120
6 2.3785 1.0360 406.023 20.150
7 2.3786 1.0377 407.232 20.180
8 2.3787 1.0376 408.444 20.210
9 2.3789 1.0378 409.658 20.240

10 2.3790 1.0372 410.873 20.270
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We can now define the OGT as the AOI with the minimum average CVST. The chosen AOI avoids
the dune effect, with an area of 20 × 20 km2 and is completely contained in the Libya-4 AOI. It has the
following coordinates (Table 6):

Table 6. OGT corner coordinates in the UTM 34 N, WGS84 projection.

OGT Corner Easting (m) Northing (m)

Lower Left 746,850 3,218,250
Lower Right 766,860 3,218,250
Upper Right 766,860 3,238,230
Upper Left 746,850 3,238,230

It has an average CVST in the order of 2.5% for the NIR, red, and green bands, while it is close to
2% for the blue band, significantly better than the values obtained on the CEOS AOI, which are in the
3%–4% range for the visible near-infrared (VNIR) bands (Table 7).
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Table 7. Average CVST values for the L8 and S2 band on OGT and Committee on Observation Satellites
System (CEOS) area.

NIR Band
CVST (%)

Red Band
CVST (%)

Green Band
CVST (%)

Blue Band
CVST (%)

CEOS Zone
Landsat 8 3.5151 3.3724 3.2194 2.7248

OGT
Landsat 8 2.3561 2.4539 2.3047 1.8308

CEOS Zone
Sentinel 2 4.1590 3.9481 3.6733 3.2507

OGT
Sentinel 2 2.6698 2.7297 2.5192 2.1585

The comparison between the average CVST values of the OGT and the CEOS zone allows us to
compare the fitness of this OGT for its use in post-launch radiometric performance and cross-calibration
tasks. Both the CEOS AOI and the OGT have an area of 20 × 20 km2, which means that the size of the
AOI is not an influential factor in the comparison. Values for both areas are shown in Table 7.

Figure 14 shows the relationship between the average CVST of the best AOI, determined by the
brute-force algorithm for a given side length. This shows a near-linear relationship, with two zones
showing a negative relationship in which the average CVST decreases despite the increase of the AOI
area (Figure 14).

4. Discussion

The PICS have been used over the last decades for absolute calibration, cross-calibration, and
radiometric trend monitoring, as suggested by CEOS [9–11,47], and Libya-4 is one of the most widely
used. It was initially defined for low to medium resolution sensors. Since S2-MSI and L8-OLI are
high-resolution sensors, it was necessary to define a smaller and more homogeneous area with the
purpose of reducing the uncertainties of the methodologies based on Libya-4 data. To meet this
requirement, CEOS defined a smaller area within Libya-4.

Taking advantage of S2-MSI and L8-OLI data availability, we revisited the problem of defining a
smaller area using a thorough methodology based on the use of a long time series of data from both
sensors combined and a set of numeric methods. The data combination defined as CVST (Equation (2))
and the use of a global optimization technique allowed us to identify an area, namely OGT, which has
~1.5 times better spatio-temporal homogeneity than the CEOS AOI (Table 7) for all bands and more
appreciable differences in L8 and S2 NIR bands. The variations of CVST between zones are higher in
comparison with S2 data, which is probably a consequence of its higher spatial resolution that makes it
more sensitive to spatial variations.

CVST images are very similar regardless of the band and sensor, indicating that the coefficient,
as defined, is a good metric of the spatio-temporal homogeneity. The indication is confirmed after
the optimization process. The barycentre of the best square areas found by the algorithms are located
very close to each other. A significant number of them intersect for almost their entire surface, which
highlights the robustness of this methodology.

While not used in this study, it is worth mentioning that there are data for the Hyperion sensor
over this OGT. Hyperion is a hyperspectral instrument and its data could further enhance sensor
comparison through the spectral band adjustment factor (SBAF) [48].

In general, the relationship between the CVST and the AOI side size follows a linear trend, which
is broken twice when the area created by the brute-force algorithm engulfs very high and low CVST

spots (Figure 14).
The OGT (AOI #1 in Table 5) has a CVST of 2.377% and an square side length of ~20 km, while the

worst one found by the brute-force algorithm has a CVST of 2.485%, not far from the best value, but
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with a side length of ~29.3 km (Figure 14), corresponding to the minimum side length of the bounding
box. The low CVST values obtained demonstrate the low spatio-temporal uncertainty of the study area
where the OGT is located.

5. Conclusions

We have found that, in general, the average CVST improves as the surface is reduced. The
brute-force algorithm consistently yields areas with surfaces close to the minimum of 20 × 20 km2 set
to avoid the dune effect.

The OGT defined here is a square area of ~20 × 20 km2. The CEOS AOI, with the same area,
yields CVST values in the range of 2.73%–4.16%, while the OGT range is 1.83%–2.73%. The results
show that the new OGT performs significantly better in terms of homogeneity than the CEOS AOI,
further reinforcing the possible use of this area for sensor cross-calibration and trend monitoring.

While this work has been done using L8 and S2 data, we do not consider that the OGT usage
should be limited to OLI and MSI. On the contrary, the uniformity, which the area shows, can be an
advantage for other optical sensors with similar resolutions, especially for those with no on-board
calibration devices. Very high-resolution sensors, which typically have narrow swaths, can also have
the benefit of using smaller and well-defined areas with the best uniformity.

We also consider that the methodology could be applicable to find OGTs within other PICS and
Extended Pseudo Invariant Calibration Sites EPICS.
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