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a b s t r a c t

A new age-structured model for a closed population with space-limited recruitment is
proposed. The problem incorporates a time delay in the settlement process representing,
for a marine population of invertebrates, the pelagic larval phase previous to the sessile
stage. The model possesses a nontrivial steady state which is investigated. For a deeper
analysis of the stability of this equilibrium, depending on the delay, an appropriate
numerical method is proposed. The nontrivial equilibrium of the numerical scheme,
based on the representation of the solution along the characteristics lines, is also
analyzed. For a test model associated with the dynamics of a population of barnacles,
numerical experiments describing the asymptotic behavior of the solutions varying the
delay are provided. In this case, the delay behaves as a destabilizing parameter of the
dynamics of the model.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When modeling population dynamics, age is actually one of the most natural and important parameters characterizing
he population. Typically, age-structured models arise as a consequence of the balance of births and deaths across
ime, and they are revealed as a valuable tool for the dynamical analysis of the population. In this line, the classical
otka–McKendrick system, though extremely simple as a model, provides fundamental insights into age-structured
henomena [1–3].
Here, we focus our attention on populations of marine invertebrates, such as barnacles, that possess sessile adults and

elagic larvae contained in a local area. The sessile individuals are adhered to a limited area but the larvae can freely move
efore their settlement. The basic processes taken into account in order to design a simple model describing the dynamics
f adults are: larval recruitment, settled individuals growth and adults mortality. On the other hand, it is important to
ote that, for a population of sessile marine invertebrates, free space available for settlement is the obvious and principal
imiting resource.
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A basic model for an open marine population of invertebrates with space limited recruitment, can be depicted by
∂p(t, a)

∂t
+

∂p(t, a)
∂a

= −µ(a) p(t, a), t > 0, 0 < a < a†,

p(t, 0) = k (A − s(t)) , t > 0,

s(t) =

∫ a†

0
β(a) p(t, a) da, t > 0,

p(0, a) = p0(a), 0 ≤ a < a†,

where p(t, a) denotes the density of adults of age a at time t . In the balance law, describing aging and dying, µ(a) is the
age-specific death rate. In the boundary condition, representing the settlement process, k is the instantaneous settling
rate per unit of free space, A is the total area of available substrate and s(t) is the occupied space by the individuals at
time t (then, A− s(t) provides the size of free space available by the larvae). In the occupied space, β(a) is the size of the
individual of age a. Last equation establishes the initial configuration given by p0(a). In the problem, a† represents the
maximum age of individuals. Note that this model describes an open system because the reproductive cycle is not closed:
newly settled larvae can be carried from outside the region.

This is a modification of the original model by Roughgarden et al. [4], considered in [5,6], which incorporates a finite
value of a†, a mathematically tractable assumption that is reasonable from a biological point of view. With respect to the
vital functions: β ∈ L∞

+
(0, a†), and µ(a) is positive and locally integrable on [0, a†), satisfying that∫ a†

0
µ(a) da = +∞. (1)

Hypothesis (1) assures that every individual dies before the limit age because the survival probability, the proportion of
newly settled larvae who can survive to age a given by

l(a) := exp
(

−

∫ a

0
µ(σ ) dσ

)
, (2)

vanishes at the maximum age a†.
It is known that the previous system possesses a unique positive steady state, and the stability of this equilibrium

has been analyzed in [4–6]. For example, an essential result is the so-called ‘‘ fifty percent free space rule ’’(see [6]): if the
proportion of free space at the steady state is greater than one half, then the steady state is globally asymptotically stable.

A more general recruitment process for this open marine population model has been considered in [7]. In that work,
the steady state of the corresponding system has been analyzed, and the rich dynamics of the solutions have been revealed
from a numerical point of view.

Most marine populations are thought to be well connected via long-distance dispersal of larval stages. However, the
alternative process of larval retention near local populations is shown to exist and may be of great importance in the
maintenance of marine population structure and management of coastal marine resources [8]. Therefore, closed models
could be of interest in the description of these populations.

In order to close the reproduction cycle of the population, different alternatives to the model have been considered.
In [9], a closed metapopulation, composed of many local subpopulations contributing larvae into the common larval pool,
is presented. In [10], the population is divided in different life stages: sessile adults and pelagic larvae, and the model
incorporates the contribution of the latter population to the recruitment process from the former. The problem involves
a coupled system of differential equations describing the dynamics of the different stages. A numerical investigation of
the mechanisms that govern the stability of this system has been carried out in [11].

Based on this last idea, here we propose a simple model which incorporates, into the settlement process, the space
limitation for the passage of adulthood as well as the reproductive mechanism in order to close the system. Moreover,
the larval stage of new individuals is observed by means of a time delay in the incorporation of newborns to the sessile
population.

In Section 2 we introduce the new age-structured population model, we characterize the positive steady state of the
system and investigate its stability. In Section 3 we describe a numerical method for the numerical approximation of the
solution to the model, and justify the value of this scheme to provide additional information related to the dynamics of
the model. In Section 4, for a test model associated with the dynamics of barnacles, we carry out an extensive numerical
simulation that shows the effect of the delay in the behavior of the solution. In Section 5 we discuss the results obtained.

2. The model

We modify the basic open model described in Section 1 in order to close the reproductive cycle of the population.
In addition, we introduce a time τ , 0 ≤ τ < a†, which represents a delay in the larval recruitment. This delay can be
interpreted as the period of time that lasts the pelagic larval stage of the population until the sitting. For example, it is
well known that barnacle larvae typically have a minimum amount of time (2 weeks or more) that they must spend in
the water before they are competent to settle [4].
2
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As in the open model, we consider a population of sessile adults, structured by age, whose density function p(t, a)
satisfies the balance law

∂p(t, a)
∂t

+
∂p(t, a)

∂a
= −µ(a) p(t, a), t > 0, 0 < a < a†. (3)

With respect to the boundary condition, for a closed population with settlement limited by the occupied space, we
propose the new recruitment equation

p(t, 0) = k
(
A − s(t)

)
s(t − τ ), t > 0. (4)

Again, the boundary condition implicates the occupied space s, but now, evaluated at two different time levels.
herefore, the model involves these size values at time levels after −τ , that is:

s(t) =

∫ a†

0
β(a) p(t, a) da, t > −τ , (5)

Finally, from the time delay in the boundary condition, we require the initial configuration over the time interval
−τ , 0], that is, we start with the initial data

p(t, a) = p0(t, a), −τ ≤ t ≤ 0, 0 ≤ a < a†. (6)

Notice, from (4), that the incorporation of new individuals into the existing population is limited by the amount of
noccupied space available. On the other hand, the new term included in the boundary condition represents the increase
n births due to the settled population, which is described by the occupied space as a weighted function of the total size
f the population. However, this magnitude appears with a delay τ corresponding to the time that the larvae stay in the
ater from their birth till their settlement. Now, the system is closed: the trivial density produces no newborns.
Firstly, in order to avoid the difficulties arising from the singularity of the mortality rate near the maximum age, we

onsider a change of variable in the problem. This change was introduced for the theoretical analysis of the original model
n [6], and for its numerical analysis in [12]. So, we introduce the new unknown function q(t, a), related to the density
unction p(t, a), by means of the survival probability (2) as:

p(t, a) = l(a) q(t, a). (7)

hen, the problem (3)–(6) is reduced to the following simpler one for q
∂q(t, a)

∂t
+

∂q(t, a)
∂a

= 0, t > 0, 0 < a < a†, (8)

q(t, 0) = k
(
A − s(t)

)
s(t − τ ), t > 0, (9)

s(t) =

∫ a†

0
φ(a) q(t, a) da, t > −τ , (10)

q(t, a) = q0(t, a), −τ ≤ t ≤ 0, 0 ≤ a < a†, (11)

here

φ(a) = β(a) l(a), (12)

s the expected space size occupied by the population at age a, φ ∈ L∞
+
(0, a†), and satisfies φ(a†) = 0. Also, we assume

hat the initial configuration is q0(t, a) = p0(t, a)/l(a), for t ∈ [−τ , 0], in L1
+
(0, a†).

Note that we can recover the solution p(t, a), to the original model (3)–(6), from the solution q(t, a), to the simplified
problem (8)–(11), by means of (7). Hereinafter, we deal with this new version of the system.

Unlike the original model, system (8)–(10) possesses two smooth steady states: the trivial solution, and the function
q∗ defined by

q∗(a) =
A k I(φ) − 1

k I(φ)2
, 0 ≤ a ≤ a†, (13)

here

I(φ) =

∫ a†

0
φ(a) da. (14)

ctually, if AkI(φ) = 1, the model only possesses the trivial equilibrium. Otherwise, in order to assure the positivity of
he nonzero state (13), we impose the following condition on the parameters of the model

A k I(φ) > 1. (15)

inally, for this nontrivial equilibrium, the associated amount of occupied space is

s∗ =
A k I(φ) − 1

. (16)

k I(φ)

3
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In order to analyze the stability of an equilibrium, we linearize the problem at the steady state. To this end, we
epresent the difference between a solution of (8)–(10) and the equilibrium as:

u(t, a) = q(t, a) − q∗(a),

hen the linearized system associated to this perturbation of the equilibrium is

∂u(t, a)
∂t

+
∂u(t, a)

∂a
= 0, t > 0, 0 < a < a†, (17)

u(t, 0) = k
((

A − s∗
)
S(t − τ ) − s∗ S(t)

)
, t > 0, (18)

S(t) =

∫ a†

0
φ(a) u(t, a) da, t > −τ . (19)

Trying out an exponential solution u(t, a) = e λtu(a) in (17)–(19), then the following characteristic equation arises

1 = k
(
(A − s∗) e−λτ

− s∗
) ∫ a†

0
φ(a) e−λa da.

For q∗, the nontrivial steady state (13) with occupied space s∗ defined by (16), this equation reads

1 =
e−λτ

+ 1 − A k I(φ)
I(φ)

∫ a†

0
φ(a) e−λa da. (20)

Therefore, if the real part of a complex root λ of the characteristic equation is nonnegative, then we obtain the
instability condition

1 ≤
⏐⏐ e−λτ

+ 1 − A k I(φ)
⏐⏐ . (21)

For the stability analysis of the steady state we will look for conditions about the parameters which contradict (21).
To this end, we try to adapt the analysis developed in [13] for a delay age-structured model.

In the case without delay (τ = 0), inequality (21) is written as

1 ≤ | 2 − A k I(φ) | , (22)

and then we can conclude the stability of the nontrivial steady state assuming the following restrictions of the parameters

Proposition 1. Let us consider the system (8)–(10) without time delay (τ = 0), and the values of the parameters
satisfying (15). Then, the steady state (13), with occupied space (16), is locally asymptotically stable if the proportion of free
space at the steady state satisfies

π := 1 −
s∗

A
=

1
A k I(φ)

>
1
3
. (23)

roof. Notice that, the parameter restrictions given by (15) and (23) lead to 1 < A k I(φ) < 3, which contradicts (22).
Therefore, under the previous conditions, in the case with no delay we deduce that all the roots of the characteristic
equation have negative real parts. □

Remark 1. This result can be derived from the general analysis developed in [7], for general recruitment functions, with
no delay, in open population models.

Remark 2. Note that the condition (15), about the positivity of the nontrivial steady state, is equivalent to assuring that
the proportion of free space at this equilibrium is strictly less than 1.

From Proposition 1, we can also conclude that, assuming (15) and (23), there exists τ > 0, such that the steady
state (13) is locally asymptotically stable for τ ∈ [0, τ ).

On the other hand, again from the restriction (15) necessary for the positivity of the steady state, λ = 0 is not a root
of the characteristic equation (20). Then, when τ increases, the stability of q∗ can only be lost if any of the characteristic
roots crosses on the imaginary axis. Hence, we can look for purely imaginary roots λ = ±iω, ω ∈ R. In such a case, the
nstability condition (21) is equivalent to

0 ≤ (A k I(φ) − 1) (A k I(φ) − 1 − 2 cos (ω τ )) . (24)

ssuming (15), there is no choice of the parameters of the model (not even (23)) which prevents (24) for all ω ∈ R.
Accordingly, we cannot assure the stability of the nontrivial steady state for large values of the time delay. Therefore,

in these situations, we investigate the stability of the equilibrium from an experimental point of view.
4
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3. The numerical method

For the numerical integration of the model with delay we adapt the scheme proposed in [12] for the open marine
opulation model. Following that work, we deal with problem (8)–(11) obtained after the change of variable that factors
ut the unbounded mortality in the balance law. We consider a numerical procedure based on the discretization of
he representation of the theoretical solution along the characteristic lines (for a general review about the numerical
ntegration of age-structured population models, see [14]). To this end, note that the solution of (8) satisfies, for each
> 0, and a with 0 < a < a†, and each h > 0 such that a + h < a†, that

q(t + h, a + h) = q(t, a). (25)

For the discretization of the problem, we introduce a constant step size for both variables (time and age), that we
choose as a divisor of the time delay τ > 0. Therefore, given a positive integer J∗, we denote the step size h = τ/J∗. On
the one hand, we introduce a uniform grid over the age interval [0, a†). Then, if J denotes the nearest positive integer
strictly less than a†/h, we consider the discrete ages aj = j h, j = 0, 1 . . . , J , (note that aJ < a†). On the other hand, we
define the discrete times tn = n h, n = −J∗, −J∗ +1, . . . , 0, 1, . . .. At each time level n, the numerical solution is described
by a (J + 1)-dimensional vector Qn

= [Q n
0 ,Q n

1 , . . . ,Q n
J ], where Q n

j represents the numerical approximation to q(tn, aj),
j = 0, 1, . . . , J . The numerical method consists of the discretization of (25), (9) and (10), providing a recursive procedure
that describes the numerical solution Qn+1, n = 0, 1, . . ., from the previously computed approximations as follows

Q n+1
j+1 = Q n

j , j = 0, 1, . . . , J − 1, (26)

Q n+1
0 = k

(
A − Sn+1) Sn+1−J∗ , (27)

Sn+1
= Ih(Φ.Qn+1). (28)

The procedure is started by means of suitable approximations to the initial configuration (11). For example, we would
consider the grid restriction

Q n
j = q0(tn, aj), n = −J∗ + 1, . . . ,−1, 0, j = 0, 1, . . . , J.

Then, from the boundary condition (27), we use the corresponding numerical sizes of occupied space

Sn = Ih(Φ.Qn), n = −J∗ + 1, . . . ,−1, 0. (29)

n (28) and (29), the numerical method involves the values of the expected space size function φ, defined in (12), at the
rid points, that are represented by means of the vector Φ. Furthermore, Ih(U) denotes a quadrature rule to approximate
he integral, over the interval [0, a†], of the function whose values at the grid points aj, j = 0, 1, . . . , J , are collected by
he vector U = [U0,U1, . . . ,UJ ]. Finally, in the numerical computation of the occupied space, the vector product denoted
by a dot must be interpreted component-wise.

In this work, we consider the following open quadrature formula

Ih(U) = h U1 +

J−1∑
j=1

h
2

(
Uj + Uj+1

)
+ (a† − aJ )UJ . (30)

t is based on the composite trapezoidal rule but, at the first age subinterval, we use the rectangle rule based on the right
ode in order to obtain an explicit method and, at the last one, the rectangle rule based on the left node that avoids the
aximum age.
It is important to keep in mind that the numerical method can be adapted to the model with no delay (τ = 0) by

using (26)–(28): we state J∗ = 0 and, for an arbitrary integer positive J , we define h = a†/(J + 1). Now, we start the
method with Q 0

j = q0(0, aj), j = 0, 1, . . . , J .
In any case, regardless of the size of the delay (including τ = 0), the scheme possesses two steady states: the trivial

ne, and the numerical counterpart of (13), Q∗
= [Q ∗

0 ,Q ∗

1 , . . . ,Q ∗

J ] described by

Q ∗

j =
A k Ih(Φ) − 1

k Ih(Φ)2
, j = 0, 1, . . . , J. (31)

or the nontrivial equilibrium, the amount of occupied space is

S∗
=

A k Ih(Φ) − 1
k Ih(Φ)

. (32)

s for the model, we impose

A k Ih(Φ) > 1, (33)

hich establishes that the numerical steady state (31) has positive components.
Taking into account the second-order accuracy of the composite quadrature rule (30), when it is applied to a sufficiently

mooth integrand, in the following result we obtain the convergence of the equilibrium of the numerical method, as the
tep size goes to zero, towards the steady state of the theoretical model.
5
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Proposition 2. Assume that function φ in (12) is of class C2([0, a†]) and let q∗ denote the steady state defined by (13). For
any h > 0, let Q∗ denote the steady state (31) of the numerical method.

Then, as h → 0,⏐⏐ q∗(aj) − Q ∗

j

⏐⏐ = O(h2), j = 0, 1, . . . , J. (34)

Proof. The integral I(φ) defined by (14) is positive because φ is a positive function on (0, a†). So, from the convergence of
the composite quadrature rule (30), Ih(Φ) is also positive for h sufficiently small: more precisely, fixed ε, with 0 < ε < I(φ),
there exists a positive h0 such that Ih(Φ) > ε, for 0 < h ≤ h0.

Now, consider the function

g(θ ) =
A k θ − 1

k θ2 ,

related with the definition of both steady states (13) and (31). Note that g is a smooth function except at θ = 0. In
articular, g ∈ C1([ε, +∞)). For h, with 0 < h ≤ h0, applying the mean value theorem to this function g on the closed
nterval with endpoints Ih(Φ) and I(φ), we conclude that there exists θ∗ in this interval such that⏐⏐ q∗(aj) − Q ∗

j

⏐⏐ = | g(I(φ)) − g(Ih(Φ)) | =
⏐⏐ g ′(θ∗)

⏐⏐ | I(φ) − Ih(Φ) | , j = 0, 1, . . . , J.

Then, taking into account that g ′ is bounded on [ε, +∞), and the second-order accuracy of the quadrature rule, we
conclude (34). □

Remark 3. As a consequence, condition (15) about the parameters of the model assures also the positivity of the numerical
nontrivial steady state, for h sufficiently small.

If we investigate the stability of a numerical steady state, we arrive to a discrete framework similar to that achieved
for the model. Denoting the difference between a numerical solution of (26)–(28) and the equilibrium as

Un
j = Q n

j − Q ∗

j ,

the linearized system associated to this perturbation of the steady state is

Un+1
j+1 = Un

j , n = 0, 1, . . . , j = 0, 1, . . . , J − 1, (35)

Un+1
0 = k

((
A − S∗

)
Σn+1−J∗

− S∗ Σn+1
)
, n = 0, 1, . . . , (36)

Σn+1
= Ih(Φ.Un+1), n = −J∗, −J∗ + 1, . . . , (37)

If we look for a discrete solution to (35)–(37) of the form Un
j = λnUj, we obtain the characteristic equation

1 = k
(
(A − S∗) λ−J∗

− S∗

)
Ih(Φ.Λ),

where Λ = [1, λ−1, . . . , λ−J
]. For Q∗, the nontrivial steady state (31) with occupied space S∗ defined by (32), this equation

is equivalent to

1 =
λ−J∗

+ 1 − A k Ih(Φ)
Ih(Φ)

Ih(Φ.Λ). (38)

n instability condition, similar to (21), is obtained by considering that there exists a complex root λ of (38) such that
λ| ≥ 1, that is

1 ≤

⏐⏐⏐ λ−J∗
+ 1 − A k Ih(Φ)

⏐⏐⏐ . (39)

The stability analysis of the nontrivial numerical steady state follows a similar analysis to that we carried out for the
corresponding equilibrium of the model in the previous section.

For the numerical scheme associated to the model with no delay (τ = 0), the instability condition obtained by taking
J∗ = 0 in (39) allows us to prove a discrete version of Proposition 1, in an analogous way.

Proposition 3. Let us consider the system (26)–(28) without time delay (τ = 0), and the values of the parameters
atisfying (33). Then, the steady state (31), with occupied space (32), is locally asymptotically stable if the proportion of
umerical free space at the steady state satisfies

Π := 1 −
S∗

A
=

1
A k Ih(Φ)

>
1
3
. (40)
6
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Remark 4. Following a reasoning similar to that we used in the proof of Proposition 2, we conclude that conditions (15)
and (23), about the stability of the nontrivial steady state of the model with no delay, also establish the same behavior
for the numerical equilibrium, when h is sufficiently small.

If we set a constant value of the step size h, assuming the parameter restrictions (33) and (40), we can establish the
stability of the numerical equilibrium for small values of J∗ and, consequently, for small values of the delay. However,
when τ increases (or, equivalently, J∗), the numerical equilibrium will become unstable only if any of the roots of the
characteristic equation (38) leaves the unit disk. If we test a root on the unit circle: that is, λ = eiω , ω ∈ [0, 2π ), the
instability condition (39) provides a discrete version of (24). Thereby, as in the analysis performed for the equilibrium of
the model, we cannot determine the local stability of the numerical steady state for large values of the time delay.

However, for the numerical method, we can resort to numerical simulation to observe the dynamics of the solutions.

4. Numerical experiments

With the following simulation we will analyze the asymptotic behavior of the numerical solutions to the model with
delayed recruitment. To this end, we consider some of the vital parameters associated to a population of barnacles which
were used in [4]: we take the total area of available substrate A = 100 cm2, and the maximum age of an individual
a† = 103 weeks (that is, close to 2 years). We suppose that the area occupied by an organism increases as the power law

β(a) = M
(

a
a†

)4

,

which represents, assuming a circular area, a growth in diameter according to the square of the age. Here, M = 7.07 cm2

s the area of a hypothetical barnacle that lives to the maximum age and corresponds to 3 cm in diameter.
For the mortality rate, we consider the same function as in [7,12]

µ(a) =
1

a† − a
.

n that case, the survival probability can be obtained from (2): that is,

l(a) = 1 −
a
a†

.

Here we use the exact values of this function at the grid points. However, note that there exist different practical
numerical methods to approximate such values for more general mortality functions (see, for example, [15,16]). When
using numerical approximations to the survival probability in a general linear age-structured population model with finite
life-span, a converge analysis of the numerical solution to the original model before the change of variables can be found
in [17]. Therefore, the expected size function is

φ(a) = M
(

a
a†

)4 (
1 −

a
a†

)
.

In the experiments we analyze the role of the settling rate k as a destabilizing parameter of the steady state. To this
end, we take the value of k corresponding to a prescribed value of the proportion of the free space at the nontrivial steady
state (13). That is, given π ∈ (0, 1) we take

k =
1

Aπ I(φ)
=

30
AM π a†

. (41)

Remember that, from Remark 2, this choice of k assures (15).
We start the experimentation with the model with no delay (τ = 0). For this case, the stability of the nontrivial steady

tate is established by Proposition 1, and the previous choice of the settling rate will allow us to test condition (23). To
his end, we use the numerical method and perform the simulation over a period of time long enough to observe the
ynamics of the solution. In the following experiments, we take the value of the step size h = 1/7 (representing a day):

other values we have considered provide the same behavior.
With respect to the initial condition, in a similar analysis carried out in [7,12] for an open marine population model,

the numerical simulation starts with the trivial initial data: the ‘‘fouling’’ phenomenon that represents the accumulation
of organisms on an initially empty substrate. However, for the closed marine population model presented in this work,
the zero function is a steady state of the model. To avoid this equilibrium, we consider a small perturbation of the fouling
condition: we modify the trivial function by taking Q 0

0 = ε, and Q 0
j = 0, j = 1, . . . , J . This situation represents a previously

empty substrate which has incorporated new larvae from the outside of the closed environment (for example, accidentally
by a blow sea, or intentionally in an hypothetical barnacle farm). In the simulations we will present, we choose ε = 0.01.

We observe that, for the values of k corresponding to the prescribed values of π on the interval (0.30, 1), the numerical
solution is attracted by the corresponding steady state. In Fig. 1 we present, for some values of k (corresponding to
π = 0.31, 0.50, 0.70 and 0.90 in such interval of stability), the evolution with time of the free space. As a consequence, the
7
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Fig. 1. Evolution of the free space for the model with no delay (τ = 0), for different values of the settling rate k corresponding to a prescribed
alue of π , the proportion of free space at the steady state: Stable case.

umerical simulations ratify the stability condition (23). Moreover, we observe that the equilibrium is still an attractor
or some values of π less or equal than 1/3.

On the other hand, we observe a value of the settling rate (k = 1.3732e − 3, corresponding to π = 0.30) from which
he steady state is destabilized: the numerical solution, starting from the previous initial perturbation of the fouling data,
s not attracted by the equilibrium. To correctly establish this unstable situation, now we consider, as the initial condition,
small perturbation of the steady state Q∗ described by (31): we chose Q 0

0 = Q ∗

0 + ε, and Q 0
j = Q ∗

j , j = 1, . . . , J . As in
the previous case, we take ε = 0.01.

In Fig. 2 we present the evolution with time of the free space in this unstable situation, for some representative values
of k (corresponding to π = 0.23, 0.24, 0.25 and 0.26). From the numerical simulation we conclude that a change in the
value of the settlement rate gives rise to a different behavior of the solution. So, for example, when π ∈ [0.24, 0.30],
we observe that the numerical solution is attracted to a limit cycle, a periodic solution which exhibits a different profile
as the parameter k grows (see the three first pictures in Fig. 2). This periodic structure is lost for greater values of the
settling rate: when π ∈ [0.22, 0.23] we observe a behavior similar to chaos in the dynamics of the numerical solution
(see the last picture in Fig. 2). Therefore, we note a period doubling route to chaos. Finally, when π ≤ 0.21 the numerical
solution blows up.

Notice that, for values of the settlement rate k ≥ 1.7165e − 3, corresponding to π = 0.24 (third picture in Fig. 2) the
simulation produces negative levels of the free space along the integration. This undesirable behavior was already noted in
the original open population model [5]: such a system shows an important drawback because the population density can
become negative. Therefore, we observe a similar objection for the new closed model and, then, it can only be considered
useful to describe the dynamics of the populations for meaningful biological situations while the non-negativity of the
solution is guaranteed.

Now we face the case with a delay (τ > 0). For a given value of τ , again we vary the settlement rate taking (41)
to obtain a prescribed proportion of free space at the steady state. In the experiments, for simplicity, we restrict our
attention to integer values of the delay. So, in order to keep h = 1/7 (as in the case with no delay), we consider J∗ = 7 τ .
Again, firstly we simulate an initially empty substrate with an unexpected recruitment of external larvae. This situation is
represented by the perturbation of the trivial data at t = 0 previously mentioned: Q 0

0 = ε, Q n
j = 0, j = 1, . . . , J; but, for

n = −J∗+1, . . . ,−1, Q n
j = 0, j = 0, 1, . . . , J . We will see if the computed solution is attracted by the expected equilibrium.

Otherwise, we repeat the experiment starting from a small perturbation of the numerical equilibrium described by (31):
that is, for n = −J∗ + 1, . . . ,−1, Q n

j = Q ∗

j , j = 0, 1, . . . , J , but at n = 0, we modify it as we formerly established:
Q 0
0 = Q ∗

0 + ε, Q 0
j = Q ∗

j , j = 1, . . . , J . Again, we show the results obtained with ε = 0.01.
In Table 1, for different values of the delay, we present the stability threshold of the steady state represented by means

of its limiting value that we denote πstable(τ ). Fixed τ , we vary the settlement rate k corresponding to a prescribed value
of π (the proportion of free space at the steady state), and we label πstable(τ ) as the smallest value (taking two decimal
places) which offers a numerical solution attracted by the steady state: a smaller π (greater k) produces instability.

On the one hand, as we expected, the stability threshold of the steady state with no delay is preserved for some positive
values of τ : in this case till τ = 7. On the other hand, for larger values of τ , the delay behaves as a destabilizing parameter
8
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v

w

Fig. 2. Evolution of the free space for the model with no delay (τ = 0), for different values of the settling rate k corresponding to a prescribed
alue of π , the proportion of free space at the steady state: Unstable case.

Table 1
Stability threshold of the nontrivial steady state depending on the delay.
τ 0–7 8–11 12–13 14–15 16 17–18

πstable(τ ) 0.31 0.32 0.33 0.34 0.35 0.36

of the equilibrium. We observe that the interval of stability is reduced as τ increases. Notice that for τ = 16, the stability
condition (23), theoretically obtained for the model with no delay, is no longer fulfilled. It should be noted that, as the
delay increases, this analysis becomes harder because the numerical solution exhibits very small oscillations, sustained
along the simulation, which seem to be characteristic of the delay.

Finally, remember that, for a fixed value of k, the proportion of free space at the steady state is independent of τ ,
and the value of the delay only influences the stability of such an equilibrium: that is, in the stable case, the numerical
solution is attracted by the same value, regardless of τ . However, in the unstable case, the dynamics of the numerical
solution may change.

For example, returning to the value that marks the beginning of the instability interval when τ = 0: k = 1.3732e − 3
(corresponding to π = 0.30), we deduce experimentally that the steady state is unstable regardless of the delay value
τ ≥ 0. In the case with no delay, we observe that the solution is attracted towards a limit cycle (with a profile very
similar to that presented in the first picture of Fig. 2). Considering a simulation long enough to properly observe the
structure that appears, we confirm that the free space oscillates periodically (we estimate that the period is approximately
p = 148.7143), varying between the two extreme values fmin = 21.35, and fmax = 40.83. When we introduce a delay,
e observe a similar profile for τ ∈ [0, 17], but with different period and extrema. Table 2 presents, for some delays,
9
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Table 2
Estimation, depending on the delay, of the characteristic values of the limit cycle: p, fmin ,
fmax represent, respectively, the period, and the minimum and the maximum values of
the free space.
τ p fmin fmax

0 148.7143 21.35 40.83
1 147.1429 21.60 40.38
2 145.4286 21.61 40.31
3 144.0000 21.34 40.64
4 142.2857 20.76 41.42
7 137.4286 17.27 46.45
9 133.8571 13.52 52.17
11 129.8571 8.51 59.96
13 125.2857 1.84 69.90
15 120.1429 −7.63 81.70
16 117.2857 −14.63 88.16
17 112.4286 −28.39 97.04

the characteristic values of the corresponding limit cycle. Note that, the largest values of τ in the table produce negative
evels of free space, that do not make sense from a biological point of view. Lastly, for τ = 18 the numerical solution
lows up.

. Concluding remarks

In this work we introduce a new model to describe the time evolution of a closed age-structure population of marine
nvertebrates. As in previous scenarios, the recruitment process is limited by the amount of free space available to larvae
ut, here, we close the reproduction process in order to adequately depict an isolated population. On the one hand, we
nclude a term in the settlement process that accounts for new births produced exclusively by the existing population. As
consequence, the resulting system has richer dynamics than its predecessor the open population model: it is remarkable
he appearance of limit cycles in the unstable case. On the other hand, a time delay compatible with the initial larval phase
revious to the settlement stage is introduced.
The model possesses a unique nontrivial steady state and, for the case with no delay, its stability is established when

he parameters satisfies that the proportion of free space at the steady state is greater than a third of the total available
pace. However, for the case with an arbitrary positive time delay we cannot establish, theoretically, an interval of stability
f the steady state.
In order to deepen in the stability analysis of the nontrivial equilibrium, we propose a suitable numerical method for

he approximation of the solutions to the model. Again, the stability of the corresponding numerical steady state is only
stablished for a small, but indeterminate, value of the delay. However, numerical simulations provide a new perspective
or studying long-time dynamics in any general case.

The experimental simulations that we have performed, for a test model associated with the dynamics of a population of
arnacles, extends slightly the stability interval of the model with no delay. It also allows us to conclude that the stability
hreshold of the steady state is maintained over a certain interval of the delay, starting from zero, which we compute
xperimentally. Out of this range, the delay is a destabilizing parameter of the equilibrium. Finally, in the unstable case,
he numerical method reveals itself as a valuable tool for the asymptotic analysis of the solutions to the model.
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