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Abstract
A robust approach for clustering functional directional data is proposed. The proposal
adapts “impartial trimming” techniques to this particular framework. Impartial trim-
ming uses the dataset itself to tell us which appears to be the most outlying curves. A
feasible algorithm is proposed for its practical implementation justified by some the-
oretical properties. A “warping” approach is also introduced which allows including
controlled time warping in that robust clustering procedure to detect typical “tem-
plates”. The proposed methodology is illustrated in a real data analysis problem where
it is applied to cluster aircraft trajectories.

Keywords Cluster analysis · Robustness · Functional data analysis · Directional
data · Warping

Mathematics Subject Classification 62H30 · 62H11 · 62G35

1 Introduction

Modern technologies are increasingly allowing us to measure phenomena continuously
in time. In those cases, although the curves are often discretized, data sets can be seen as
made of curves rather than finite-dimensional measurements. Functional Data Analysis
(Ramsay and Silverman 2005; Ferraty and Vieu 2006) are the set of statistical tools
specially developed to deal with this particular type of data. In particular, functional
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Cluster Analysis is recently receiving considerable attention, as can be seen in recent
review papers as Jacques and Preda (2014), Hitchcock and Greenwood (2015), and
Yassouridis and Leisch (2017).

In this work, we will focus on providing a functional clustering approach that can
be applied to cluster functional directional data and where robustness also plays an
important role. See Mardia and Jupp (2009) and Ley and Verdebout (2017) for some
general references on directional statistics.

It is known that (even) a small fraction of contaminating data can be very detrimental
in Cluster Analysis (García-Escudero and Gordaliza 1999). This justifies the interest of
applying robust clustering techniques that are able to resist certain amount of outlying
observations (García-Escudero et al. 2010; Ritter 2015; García-Escudero et al. 2015).
Moreover, the application of robust clustering techniques may be also useful in order to
detect anomalous features in our data, which can be very interesting once we are able
to explain their anomalous behaviour. In this work, robustness is achieved by allowing
to discard a proportion α of functional directional data throughout an “impartial”
trimming procedure. The term impartial means that it is the data itself the one that
tell us which are the most anomalous curves. This impartial trimming approach was
introduced in Rousseeuw (1984), Gordaliza (1991) and Cuesta-Albertos et al. (1997).

Impartial trimming has been already applied in Functional Cluster Analysis in
García-Escudero and Gordaliza (2005), Cuesta-Albertos and Fraiman (2007) and,
more recently, in Rivera-García et al. (2019). The approach adopted now in our work
is more closely related with Cuesta-Albertos and Fraiman (2007) because we are not
using projections into finite-dimensional functional subspaces.

The proposed methodology will be introduced in Sect. 2 together with some theoret-
ical results for the proper characterization of the optimal solutions to the underlying
problems. These theoretical results are latter applied in Sect. 3 to derive a feasible
algorithm for the practical application of the methodology.

The proposed algorithm will be extended in Sect. 4 to allow for “time warping”
in the curves assigned to each cluster. Time warping is an appealing idea to address
misalignment problems within clusters and to detect typical “templates” which are
also useful to describe the detected clusters.

Some guidelines about how to make sensible choices for the number of clusters k
and for the trimming level α are given in Sect. 5.

Section 6 provides a simple simulation study to illustrate the ability of the proposed
methodology to properly recover alignments in unaligned data, and simultaneously
trim outlying curves.

Finally, Sect. 7 presents a real data application aimed at clustering aircraft trajecto-
ries that motivated our interest in clustering functional directional data. This real data
example serves to illustrate all the material introduced in previous sections. Other
applications for this methodology are surely possible. For instance, another direct
application could be to cluster weather stations based on the observed evolution of
local wind directions. Detecting anomalous weather stations, and explaining why they
exhibit such strange behavior, can be an interesting task.
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Robust clustering of functional directional data 183

2 Methodology

We are going to use the extrinsic distance in the unit sphere S
1 such that, for every

pair ω1 and ω2 in [0, 2π ] (or, analogously, ω1 and ω2 in S
1), we take

d(ω1, ω2) = 1 − cos(ω1 − ω2) (1)

to measure their distance. Given ω1, . . . , ωn in S
1, the directional mean ω is defined

as

ω = arg min
ω∈S1

n∑

i=1

d(ωi , ω).

In this work, we are interested in clustering θ1, . . . , θn “directional functions”
where each θ i belongs to C([0, 1],S1) as the set of continuous functions defined on
[0, 1] and taking values in S

1 when S
1 is equipped with extrinsic distance in (1). This

means that we start from a sample θ1, . . . , θn in where every θ i satisfies

θ i :[0, 1] → S
1

t �→ θ i (t),

and θ i is assumed to be a continuous function in S
1. To simplify notation, we simply

use the notation F for denoting C([0, 1],S1).
The extrinsic distance in S

1 can be extended to a distance in the set of directional
functions F just by considering an integrated extrinsic distance defined as:

D(θ1, θ2) =
∫ 1

0
d(θ1(t), θ2(t))dt =

∫ 1

0

(
1 − cos(θ1(t) − θ2(t))

)
dt . (2)

For robust clustering purposes, we consider the impartial trimming approach, where
we try that the sample itself inform us which are the “most outlying” directional
functions to be trimmed. In this approach, we search for k directional functions
{m1, . . . ,mk} ⊂ F (with k << n) or “prototypes” that better serve to summarize
our set of observed curves θ1, . . . , θn , but allowing a proportion α ∈ [0, 1) of curves
to be trimmed in an “optimal” way. These m1, . . . ,mk serve to create a partition of
the non-trimmed θ i directional functions, by assigning each θ i to cluster J , if θ i is
closest to mJ than to the other m j prototypes when using the distance in (2). The
fraction α of trimmed θ i directional functions, as suspicious of being outliers, are left
unassigned.

To be more precise, let us introduce some further notation in this functional direc-
tional framework. For θ ∈ F and

M = {m1, . . . ,mk} ⊂ F ,
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let us define

D(θ; M) = D(θ; {m1, . . . ,mk}) := inf
j=1,...,k

D(θ,m j ).

The trimmed k-mean problem can be now defined through the following double min-
imization procedure:

inf
H⊂{1,...,n}:card(H)=�n(1−α)�

inf
M⊂F :card(M)=k

∑

i∈H
D(θ i ; M), (3)

where �x� is the least integer greater than or equal to x .
Note that this double minimization is done on every possible subset of indexes H

such that H ⊂ {1, . . . , n} and card(H) = �n(1 − α)�, and every possible set of k
function M = {m1, . . . ,mk} in F . The result of that double minimization is the set
of optimally non-trimmed functions, i.e. those with indexes in H, and a set with the k
optimal center or prototype directional functions given by M = {m1, . . . ,mk}.

To gain insights on how this complex double maximization can be simplified, let
us present some additional notation and two main results. Given k centres M =
{m1, . . . ,mk}, let us define the optimal radius as

rα(M) = inf{r ≥ 0 : card{i : D(θ i ; M) ≥ r} ≤ [nα]}.
In other words, if

D(θ (1); M) ≤ D(θ (2); M) ≤ ... ≤ D(θ (n); M),

then rα(M) = D(θ (�n(1−α)�); M).
By using this notation, we introduce the subset H(M) ⊂ {1, . . . , n}, with

card(H(M)) = �n(1 − α)�, defined as

H(M) = {i : D(θ i ; M) ≤ rα(M)}. (4)

Theorem 1 show that, if the optimal set M were known, then the optimal set H
including all the non-trimmed curves can be chosen as those with indexes in H(M).
Notice that H(M) can easily determined from M just by sorting all the D(θ i ; M)

distances.

Theorem 1 Let VH(M) = ∑
i∈H D(θ i ; M). We have that VH(M)(M) ≤ VH(M) for

every H with card(H) = �n(1 − α)� for VH(M)(M) as defined in (4).

Proof Since card(H) = card(H(M)) = �n(1 − α)�, we trivially have that

card{H ∩ H(M)c} = card{Hc ∩ H(M)}.
We have VH(M) ≤ VH because

VH =
∑

i∈H∩H(M)

D(θ i ; M) +
∑

i∈H∩H(M)c

D(θ i ; M)
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Robust clustering of functional directional data 185

≥
∑

i∈H∩H(M)

D(θ i ; M) + rα(M) · card{H ∩ H(M)c}

=
∑

i∈H∩H(M)

D(θ i ; M) + rα(M) · card{Hc ∩ H(M)}

≥
∑

i∈H∩H(M)

D(θ i ; M) +
∑

i∈Hc∩H(M)

D(θ i ; M)

= VH(M).

��
Therefore, if M were known, there is no needed to explore the combinatorial set of

all possible H subsets. Moreover, it is also trivial to see that H(M) can be optimally
split as

H(M) = H1(M) ∪ ... ∪ Hk(M),

with

H j (M) = {i ∈ H(M) such that D(θ i ; M) = D(θ i ,m j )}

(again, only depending on sorting these D(θ i ; M) distances).
Consequently, if we introduce

V (M) =
k∑

j=1

∑

i∈H j (M)

D(θ i ,m j ),

then the double minimization in (3) can be rewritten as a single minimization, only
depending on the set of k optimal directional functions M , as

inf
M⊂F :card(M)=k

V (M).

On the other hand, if we assume H = H1 ∪ ... ∪ Hk were known, the optimal m j

can be easily obtained by computing pointwise directional means:

Theorem 2 Let H = H1 ∪ ... ∪ Hk fixed and let us define

VH(M) =
k∑

j=1

∑

i∈H j

D(θ i ,m j )

for M = {m1, . . . ,mk}. The minimal value of VH(M) is attained when

t �→ m j (t) = arg min
ω

∑

i∈H j

d(θ i (t), ω) = arg min
ω

∑

i∈H j

(1 − cos(θ i (t) − ω)),
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for t ∈ [0, 1] and j = 1, ..., k.

Proof This result easily follows from the fact that

∑

i∈H j

D(θ i ,m j ) =
∫ 1

0

⎛

⎝
∑

i∈H j

d(θ i (t),m j )

⎞

⎠ dt .

Given that d(·, ·) is positive, the minimization of that integral is done throughout a
pointwise minimization of the integrating term. ��

Notice that closed expressions for m j (t) are available as

m j (t) = arg

(∑
i∈H j

exp(i · θ i (t))

card(H j )

)
,

(i denotes the imaginary unit) or, analogously,

m j (t) = atan2

⎛

⎝ 1

card(H j )

∑

i∈H j

sin θ i (t),
1

card(H j )

∑

i∈H j

cos θ i (t)

⎞

⎠ .

Theorem 1 and Theorem 2 will be applied to derive a feasible algorithm in Sect. 3.

3 Algorithm

Given a sample of directional functions θ1, . . . , θn ⊂ F , a fixed number of clusters k
and a fixed trimming level α:

1 Initialize B times: Each initialization starts from k randomly chosen initial cen-
troids m(0)

1 , . . . ,m(0)
k (for instance, k randomly chosen θ i directional functions

from our sample).
2 Iterate: Given centroids m(l−1)

1 , . . . ,m(l−1)
k at stage l − 1:

2.1 Let di j = D(θ i ,m
(l−1)
j ), Di = min j=1,...,k di j and sort these values in D(1) ≤

... ≤ D(n).

2.2 Take H(l)
j = {i : di j = Di and Di ≤ D(�n(1−α)�)} for j = 1, ..., k.

2.3 Update centroids m(l)
1 , . . . ,m(l)

k , by considering the pointwise directional
means:

t �→ m(l)
j (t) = arg

⎛

⎝

∑
i∈H(l)

j
exp(i · θ i (t))

card
(
H(l)

j

)

⎞

⎠ .

3 After L iterations of steps 2.1–2.4, we compute the value of the target function∑k
j=1

∑
i∈H(L)

j
D(θ i ,m

(L)
j ) resulting from this random initialization.
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Robust clustering of functional directional data 187

4 Return as algorithm’s output those partitions and templates yielding the smallest
value in Step 3.

The theoretical justification of this algorithm follows from the application of Theo-
rem 1 and Theorem 2, that guarantee the monotonically decrease of the target function
in the iterative part of the algorithm. B random initializations are considered to avoid
that the algorithm get stuck in local minima of the target function (3). A stopping rule
can be also added to avoid unnecessary iterations if, after applying Step 2, the iterated
solution does not change.

4 Algorithmwith warping

When studying some processes it is usual to find some common patterns that occur
at different speeds. One example can be found in some features of living beings
(humans, animals, plants) of the same species where growth occur at different paces.
Another example is the recognition of speech signals where the same word can be
pronounced with varying speeds. It is in this last context where a family of techniques,
known as dynamic time warping (DTW) algorithms, where introduced to deal with
these different speeds (Sakoe and Chiba 1971). The global aim of these algorithms
is to ensure that the varying speeds do not affect the similarity analysis of the curves
and therefore allow the mentioned patterns to be detected. This is achieved through an
appropriate time warping alignment function, φ, of the curves to be compared. A good
reference that explains in more detail the theory of the DTW methodology applied
here is Kruskal and Liberman (1983).

In the following we adapt the notation in Giorgino (2009) to our context. Let θ1
and θ2 two directional functions and φ = (φ1, φ2), where φ1, φ2 : [0, 1] → [0, 1] are
two functions that warp the time for θ1 and θ2 respectively. In order to have consistent
warpings, some constraints have to be imposed on φ. First, φ1 and φ2 must be non-
decreasing continuous functions to ensure that time order is not reversed and to avoid
time jumps. Also, starting and ending curve points must match, i.e., φ1(0) = φ2(0) = 0
and φ1(1) = φ2(1) = 1. In other words, we do not allow the beginning or end of any
curve to be trimmed. In order to have some control over the local changes in time speed,
we may also impose that φ1(t), φ2(t) ∈ [t − δ, t + δ] for a preset value δ ∈ (0, 1],
i.e., φ(t) must lie in a band around t .

Now, using the distance defined in (1), an accumulated distortion function dφ is
defined as

dφ(θ1, θ2) =
∫ 1

0
d
(
θ1(φ1(t)), θ2(φ2(t))

)
mφ(t)Mφdt, (5)

wheremφ(t) is a weighting function and Mφ the corresponding normalization constant,
both to have comparable values for different choices of φ (see, e.g., Giorgino 2009,
for more details). Then, the use of a DTW procedure to compare θ1 and θ2 requires
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to find the optimal value of
−→
D defined as:

−→
D (θ1, θ2) = inf

φ
dφ(θ1, θ2),

under the assumed conditions on φ and where d in (5) corresponds to the extrinsic
distance in S

1.
To compute the value of

−→
D for two given curves θ1 and θ2 a numerical approxima-

tion of (5) is necessary, which we carry out through a discretisation in [0, 1] of θ1 and
θ2. If we consider a grid of equispaced nodes of size N in [0, 1] for both curves, then
the computation of

−→
D can be carried out with DTW algorithms for discrete time series

as those reviewed and described in Giorgino (2009), where the previous constraints
on φ have a direct transpose. Although there is the possibility of estimating these φ

functions, in our case we are only interested in computing the value of
−→
D . Moreover,

even though the computational complexity of the DTW algorithm for two time series
of length N in the general case is O(N 2), in our case, the computational complexity
can be notably reduced when adding control over local changes in time speed.

The use of the DTW methodology is not essential in our proposal and could be
replaced by other alternatives for curve registration (see, e.g., Marron et al. 2015, )
and the same applies to the chosen constraints on the φ functions.

Our proposed algorithm follows similar lines as the algorithm introduced in Sangalli
et al. (2010) but the DTW distance,

−→
D , is used instead.

Given directional functions θ1, . . . , θn ⊂ F , we search again for H = H1 ∪ ... ∪
Hk ⊂ {1, 2, ..., n} with card(H) = �n(1 − α)� and for k templates ξ1, . . . , ξ k ∈ F
minimizing

k∑

j=1

∑

i∈H j

−→
D (θ i , ξ j ).

The k templates ξ j may be seen as a kind of representative directional function for
all the directional functions assigned (after warping) to cluster j . Notice that again
a fraction α of directional functions with the (hopefully) most outlying behavior are
trimmed.

A modified trimmed k-mean including warping can be given as:

1 Initialize B times: Each initialization starts from k randomly chosen initial tem-
plates ξ

(0)
1 , . . . , ξ

(0)
k (as done in the algorithm presented in Sect. 3). k randomly

chosen θ i directional functions from our sample can be chosen for this purpose.
2 Iterate: Given ξ

(l−1)
1 , . . . , ξ

(l−1)
k :

2.1 Let di j = −→
D (θ i , ξ

(l−1)
j ), Di = min j=1,...,k di j and D(1) ≤ ... ≤ D(n).

2.2 Take H(l)
j = {i : di j = Di and Di ≤ D(�n(1−α)�)} for j = 1, . . . , k.

2.3 Let θ̃ i j be the directional function θ i after optimally warping it into the refer-

ence template ξ
(l−1)
j , for i = 1, . . . , n and j = 1, ..., k.
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Robust clustering of functional directional data 189

2.4 Update templates as ξ
(l)
j being the pointwise directional mean of those θ̃ i j ’s

warped directional functions with i ∈ H(l)
j .

3 After L iterations of steps 2.1–2.4, we compute the value of the target function

k∑

j=1

∑

i∈H(L)
j

−→
D (θ i , ξ

(L)
j ).

4 Return as the algorithm’s output those partitions and templates yielding the small-
est value in Step 3.

5 Choice of parameters

The correct choice of all the involved parameters, k (number of groups) and α (trim-
ming level), is not an easy problem. The proper choice of k is a classical problem in
Cluster Analysis and several proposals can be found in the literature trying to address
it. The choice of α is an additional problem appearing now due to the trimming method-
ology adopted. Moreover, the choice of these two parameters should be done in an
unified fashion because their effects are clearly interrelated. For instance, a high trim-
ming level α could allow to entirely discard smaller clusters so that the total number
of clusters k has to be decreased.

Sometimes the real data problem at hand provides some information on these two
parameters, but in many others they are completely unknown and some guidance on
their choice is welcome.

In this section, we review a simple approach introduced in García-Escudero et al.
(2003), which is based on analyzing the decreasing pattern of the so-called trimmed
k-variance functionals defined as

Wk : α �→ Wk(α) for k = 1, 2, ...,

where Wk(α) is the minimum value attained in the minimization problem in (3) for
fixed values of k and α. In fact, it is suggested the analysis of numerical second
derivatives of these functionals. In order to approximate them, let us consider an
equispaced grid of trimming levels {α1, α2, . . . , αL} ⊂ [0, 1] with αl = l/(L + 1)

and take

Ŵ
′′
k (αl) ≈ Wk(αl−h) − 2Wk(αl) + Wk(αl+h)

(h/(L + 1))2 ,

defined for l ∈ {h + 1, h + 2, . . . , h − n}. We, thus, consider the numerical second
derivative functionals as W

′′
k : αl �→ Ŵ

′′
k (αl), defined for k = 1, 2, . . . and l ∈

{h + 1, h + 2, . . . , h − n}. The tuning parameter h controls the roughness of these
numerical second derivative functionals, in such a way that they are more rough and
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data dependent when h is small. Notice also that high values of h make it impossible
the determination of W

′′
k for some values of αl close to 0.

We can say that K is a sensible choice for the number of clusters k if the associated
numerical second derivative functionals are clearly different when k < K but they
almost coincide when k ≥ K . In fact, detecting peaks in these functionals indicates
that a higher number of clusters k is surely needed. Initial large and positive values for
Ŵ

′′
k (αl) also indicates that a higher trimming level would be required as we are still

probably trimming outlying observations with this αl trimming level. A more detailed
explanation for all these heuristic rules, together with simple justifications, can be
found in García-Escudero et al. (2003).

6 Simulation study

We generate random sets of directional functions {θ i }ni=1 such that

θ i : [0, 1] → (cos(ωi (t)), sin(ωi (t))) ∈ S
1 (6)

where

ωi (t) = m1(hi (t)) with m1(t) = 2π

(
t + 1

3e
−(t−1/3)2

0.01

)
for i = 1, . . . , 20

and

ωi (t) = m2(hi (t)) with m2(t) = 2π

(
t − 1

3e
−(t−2/3)2

0.01

)
for i = 21, . . . , 40.

In both cases, hi (·) for i = 1, . . . , n are going to be random warping functions that
are piecewise linearly defined and such that hi (0) = 0, hi (1) = 1 and hi (0.5) = ai
for ai being randomly drawn from a normal distribution with mean equal to 0.5 and
standard deviation equal to 0.07. We are so obtaining two clusters of (unaligned) direc-
tional functions. For applying the discretized version of our proposed methodology,
we consider an equispaced grid of size 200 in the [0, 1] interval. To introduce con-
tamination, we randomly replace 2 (5% contamination) or 4 (10% contamination) out
of these 40 directional functions by directional functions defined as in (6) but with
ωi (t) = ui + 2π t where ui are randomly drawn from an uniform distribution in the
[0, 2π ] interval.

Figure 1 summarizes the results obtained after applying the proposed methodology
on 100 simulated data sets generated as explained above. Trimmed procedures are
applied with α = 0.1 (Trimming: 0.1) and compared with the untrimmed ones
with α = 0 (Trimming: 0). Warping can be considered with δ = 0.1 (Warping:
Yes) or not (Warping: No). The same 100 simulated data sets are applied for the
comparison of the four different available approaches.

Each row in Fig. 1 shows the results for different numbers of outlying directional
functions included (0, 2 and 4). The left column shows boxplots summarizing the
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Robust clustering of functional directional data 191

Fig. 1 Results of the simulation
study in terms of the proportion
of missclassified observations
(left column) and in terms of the
warped distance from the
directional functions used to
generate the two clusters and the
output templates (right column).
Different amount of outlying
directional functions are
considered in each row

performance of the procedures in terms of the proportion of wrongly classified direc-
tional functions among the non-contaminated ones. Additionally, the right column
shows boxplots with log(NDistance) for

NDistance = min
{−→
D (̃θ1, ξ1) + −→

D (̃θ2, ξ2),
−→
D (̃θ1, ξ2) + −→

D (̃θ2, ξ1)
}
,

where θ̃1 and θ̃2 are the target “reference” directional functions θ̃ j : [0, 1] →
(cos(m j (t)), sin(m j (t))) ∈ S

1, for j = 1, 2, and ξ1 and ξ2 are the output templates
obtained from the algorithms in each case, when k = 2. Recall that m1 and m2 are the
functions used to generate the two clusters before considering the hi warping func-
tions. The NDistance values are thus measuring how “close” the output templates are
with respect to the target reference directional functions, after their proper alignment
through

−→
D .

We can see that even a small fraction of contaminating directional functions can
create wrong assignment decisions that trimming is able to prevent once outlying
directional functions can be removed. Figure 2c shows an example of the very bad
performance of the proposed methodology allowing warping but without trimming. We
can see how the two main clusters are artificially joined together and a small cluster
made of few outliers is detected. Of course, the estimation of the target reference
directional functions is harmfully affected.

Even in cases where no wrong assignments are obtained, it can be noticed that
NDistance seems to be reduced (with and without trimming) when warping is allowed
in the algorithm. Given that we are allowing warping in

−→
D when computing NDistance,

it is easy to understand that methods allowing warping are going to provide better
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performance in that aspect. As can be seen in Fig. 2a, the simple pointwise directional
mean (step 2.3 in the algorithm in Sect. 3) cannot provide ξ j templates (wider blue
lines) that correctly capture the target directional reference θ̃ j functions since the
resulting ξ j templates are clearly “oversmoothed” due to the non-alignment of the
directional functions in each detected cluster. On the other hand, Fig. 2b shows that
this oversmoothing phenomenon is corrected when considering a proper alignment
before computing the pointwise directional means (step 2.4 in the algorithm in Sect.
4).

We might think that wrongly trimming some non-outlying directional functions
could be detrimental, but we can see that the effect of a (slightly) greater trimming
level than needed does not necessarily imply worse performance. In fact, smaller
proportions of missclassified directional functions and smaller values of NDistance are
seen after trimming. This fact could be explained by how the most extremely unaligned
curves are discarded as they are surely the trimmed ones.

7 Application to clustering of aircraft trajectories

The motivation of this application is framed within a research project named AIR-
PORTS: Airport Improvement Research On Processes & Operations of Runway, TMA
& Surface leaded by Boeing Research and Technology Europe and devoted to analyze
the efficiency of commercial flights when taking into account the aircraft trajecto-
ries actually flown. After a complex data intake and preprocessing procedure, some
Key Performance Indexes (KPI) measuring important aspects as fuel consumption
or polluting emissions, were computed. ADS-B (Automatic Dependent Surveillance-
Broadcast) signals were considered to determine the real aircraft positions during
their flights, after their proper integration with the planned routes from Eurocontrol.
This implies a huge amount of information to be processed throughout more than
500 millions of ADS-B signals including, among others, information on the position
(latitude, longitude and height) of each plane with a frequency that varies according
to the receivers, but that in emission can be 2 times per second.

In a second phase, KPIs were constructed by comparing the real trajectories flown
with respect to possible alternative synthetic trajectories that the plane could have
flown (such as geodesics and geodesics based on the flight plan) which were gener-
ated by using a flight simulator owned by Boeing Research and Technology Europe.
The different efficiency KPIs serve to detect which alternative trajectories would have
been more efficient. Due to the huge number of trajectories and routes to be compared,
Cluster Analysis methods applied to the trajectories were needed to carry out com-
parative studies between groups of trajectories with their respective KPIs. Moreover,
in that clustering problem, there were numerous trajectories that can be considered as
atypical and for which their automated detection was interesting. As we will see later,
some of these atypical flights corresponds to operational deviations due to adverse
weather conditions, congestion problems in the airspace, strikes, ... and also trajecto-
ries including ovals close to the destination to wait for the right moment to land.
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Fig. 2 Outputs of the algorithm for one of the samples in the simulation study. Green and red colors are used
for showing functions belonging to the two clusters detected while trimmed directional functions appear in
grey color. Blue color is used for representing the output templates. Plot a shows the result when warping
and α = 0.1 is considered. Plot b shows the result when no warping and α = 0.1 is considered. Plot c
shows the result when warping and α = 0 is considered (color figure online)

In air navigation, heading is the horizontal angle between the direction of flight
and magnetic north. It is common in aviation to characterize trajectories by measuring
heading (data in S1), altitude (in meters or feet), and speed (in “mach” units). Using
the evolution of these three features over time to group similar trajectories would be
equivalent to looking for groups using the evolution of longitude, latitude and altitude
(functional data in R

3). To simplify this complex functional clustering problem, we
focus exclusively on the evolution in time of only the heading after normalizing the
flight times so that the time is restricted to the interval [0, 1] in such a way that this
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Fig. 3 Numerical second derivative of the trimmed k-variance functionals for the aircraft trajectories dataset

problem reduces to a clustering problem of directional functions in F . This simplified
problem, together with the need to avoid the damaging effect of atypical trajectories,
led us to consider robust clustering for functional directional data as a very relevant
problem to be addressed.

We will show a typical example for the problem addressed. In that example, a data
set of n = 3955 aircraft trajectories corresponding to 6 months of flights from Madrid
airport (LEMD) to Barcelona airport (LEBL) are clustered using the instant headings
measured every second. Length of trajectories ranges from 2017 to 4494 seconds.
After scaled to the interval [0, 1], we will apply the procedure described in Sect. 3 to
the θ i (t) curves, i = 1, . . . , 3955, representing the scaled heading of the aircrafts. The
trajectories included in our dataset begin and end when the plane crosses the altitude
threshold of 1000 meters.

To compute the values
−→
D described in Sect. 4 the size of the grid used in the

discretisation has been N = 2017, i.e. the minimum length of the trajectories in the
data set. Regarding the choice of the δ value to control local changes in time, although
the main transformation of the time scale comes from the scaling to the interval [0, 1],
we have selected δ = 3

2017 , which means that locally we allow to advance or delay up
to 3 steps in the grid. However, the choice of this δ value is not critical and identical
or almost identical results are obtained for δ values that do not change much, e.g., up
to 10 steps in this case. On the other hand, values above 100 steps in our case already
produce deformations in the curves that are not very plausible.

In order to assess an appropriate value of k, as described in Sect. 5, a numeri-
cal approximation to the second derivative of the trimmed k-variance functionals is
computed (see Fig. 3) with αl trimming values {0.01, 0.02, ...} and h = 10.

According to this figure, the minimum k that reaches similar numerical second
derivative of the trimmed k-variance functionals with respect to the following ones is
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Fig. 4 (From left to right, top to bottom) Centroid trajectories for each cluster, some trimmed trajectories,
and some trajectories in cluster 1–4 (dark red, orange, green and blue colors, respectively) (color figure
online)

k = 4. We also observe that the acceleration (second derivative value) is positive and
high for α values with α < 0.2, but it is notable smaller and closer to 0 if we consider
α > 0.2. Then, a suitable value for α to remove outliers could be around α = 0.20.

With these choices, k = 4 and α = 0.2, we carry out the proposed methodology
and obtain the clusters and centroids together with the trimmed trajectories. Figure 4
represents the θ i (t) trajectories in the cylinder F while Fig. 5 represent the trajectories
in 2D.

Trimmed trajectories have been represented in 2D (white color) in the second panel
of Fig. 5. It can be observed that most of these trajectories correspond to holding
manoeuvres (oval courses), that take place in predeterminated places of the airspace
just before the arrival to destination; and some other strange trajectories. These holding
patterns can be observed at the cylinder in the second plot of Fig. 4 as trajectories that
turns around one or more times.

Clusters can be mainly described in terms of the departing and arrival runway
direction used, but not only. Cluster 4 (blue color) is composed by trajectories that
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Fig. 5 (From left to right, top to bottom) All 2D trajectories, trimmed trajectories (white), trajectories in
cluster 1–4 (dark red, orange, green and blue colors, respectively) (color figure online)

depart from the south of the airport and approaches destination both from the northeast
and southwest. Those from the northeast are in the majority and this is reflected in the
corresponding centroid (blue color) in the first plot of Fig. 4. On the opposite, clusters
1–3 are composed by trajectories which depart from the north of LEMD, and the main
differences among them are in the way of approaching LEBL. Cluster 1 (dark red) is
composed by trajectories that approach LEBL from the northeast and the last section
is characterized by a sharp turn towards the airport. Cluster 2 (orange) is composed
by trajectories that approach LEBL from the southeast but before the last section of
the path they open up to the sea (to the east), in a sharp turn. Finally, cluster 3 (green)
is composed by trajectories that approach LEBL both from the northeast -but with a
smoother (than those in cluster 1) turn-, and from the southwest -but without the turn
observed in Cluster 2-.

One could think of a registration process (alignment or “warping”) that allows
detecting representative routes described by their headings regardless of their speeds.
This will serve to simplify future analyses by grouping flights close to these repre-
sentative routes. The DTW method makes it easy to control the maximum degree of
“time lag” allowed.

Figure 6 shows the output of applying the algorithm with warping of Sect. 4 to the
previous dataset, using k = 4 and α = 0.20. The trajectories drawn in the four plots
show very slight differences with the corresponding ones in Fig. 4 indicating that in
this case the scaling to the interval [0, 1] is sufficient to correct the differences in flight
durations and speeds.
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Fig. 6 Output of the algorithm with warping applied to the aircraft trajectories example (k = 4, α = 0.2).
From left to right, top to bottom, some trajectories in cluster 1–4 (dark red, orange, green and blue colors,
respectively). White color curves represent the template routes, ξ j , for each group j = 1, . . . , 4 (color
figure online)

The use of alternative registration procedures like those in Srivastava and Klassen
(2016) could be another approach to follow in this type of problem.

8 Conclusions and further directions

A new methodology for robust clustering directional functional data has been intro-
duced and a feasible algorithm has been proposed and justified. Robustness against
outlying curves is pursued by allowing that a fixed fraction α of curves, hopefully
the most outlying ones, are left unassigned or trimmed. The procedure is extended to
allow for time warpings in the directional functions. An application to group aircraft
trajectories is presented to illustrate the interest of the proposed methodology.

This work reveals many potential lines of work to consider in the future. For
instance, it is interesting to study the possibility of carrying out a feasible dimen-
sionality reduction in a way that can alleviate the computational cost or adequately
handle the periodicity in the observed curves. Providing more automated ways of
determining the parameters k and α in this particular problem is also an interesting
line of research. As with other methods that follow a k-means approach, the procedure
ideally assumes that the underlying clusters have the same spread/variation compared
to other clusters. To address this problem, it might make sense to consider trimmed
versions of mixtures of von Mises-Fisher distributions (Banerjee et al. 2003) in a way
analogous to how TCLUST (García-Escudero et al. 2008) generalizes the trimmed
k-means. Finally, trimming entire curves can be very extreme if outlying measure-
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ments only occur at a few particular time points for that curve. It would be useful to
develop procedures that are capable of discarding only the outlying measurements in
each curve and keeping the valuable information in non-outlying measurements.
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