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Abstract

In this article, we study an inventory system for items that have a power demand pattern and whe

shortages are allowed. We suppose that only a fixed proportion of demand during the stock-out perio

is backordered. The decision variables are the inventory cycle and the ratio between the initial stock an

the total quantity demanded throughout the inventory cycle. The objective is to maximize the Return o

Inventory Investment (ROII) defined as the ratio of the profit per unit time over the average inventory cos

After analyzing the objective function, the optimal global solutions for all the possible cases of the invento

problem are determined. These optimal policies that maximize the ROII are, in general, different from tho

that minimize the total inventory cost per unit time. Finally, a numerical sensitivity analysis of the optim

inventory policy with respect to the system input parameters and some useful managerial insights deriv

from the results are presented.
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). E-mail adresses: augusto@mat.uva.es (Luis A. San-José), jsicilia@ull.edu.es (Joaqúın Sicilia), vpando@uva.es
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Introduction

is well known, stock management models answer two important questions: when and how m

so as to optimize a certain objective function related to the inventory control. Generally, the o

ion represents the profit per unit of time or the average cost of inventory. However, in some com

y be more interesting to maximize the return on investment (ROI), instead of maximizing th

nit of time or minimizing the cost of inventory. This approach to maximizing return on invest

management has already been used in the literature on the topic. Thus, Otake and Min (2001)

tory and investment in quality improvement policies under return on investment maximization. L

) developed a return on inventory investment maximization model under an investment budget co

ventory and capital investment in setup and quality operations. They obtained various managerial

nventory reduction and the uniqueness of the global optimal solution. Wee et al. (2009) developed

nishment inventory model with stock-dependent demand and shortage cost constraint under pro

maximization. Yaghin and Ghomi (2012) studied a hybrid multi objective integrated pricing and lo

l in a fuzzy environment, considering three decision criteria: profit, return on inventory investm

litative objective related to customer satisfaction. Yaghin et al. (2013) formulated a fuzzy in

l integrating the marketing-inventory and price discrimination decisions, which maximized the tota

he return on inventory investment (ROII) concurrently. Chen and Liao (2014) studied the re

tory investment maximization problem for an intermediary firm of a deteriorating item. Yaghi

) considered the return on inventory investment maximization in a joint pricing and lot-sizing p

fuzzy environment. Misook (2017) analysed the difference of return on inventory investment by t

ndustry characteristics and showed that the ROII of high-growth, low-leverage, large firms was

that of all other firms. Yaghin et al. (2018) developed an integrated model of ordering, shipp

ential pricing in a two-echelon supply chain under return on inventory investment maximization

tly, Pando et al. (2019, 2020) developed inventory models with stock-dependent demand and no

ng cost under the return on investment maximization. Pando et al. (2021) studied an inventory

e the demand rate potentially depends on both selling price and stock level, in which the goal

mization of the profitability index. Baker et al. (2021) analysed how households can derive sub
2
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cial returns from strategic shopping behaviour and optimal inventory management of consumer

elis and Qiu (2021) studied how capital efficiency metrics, such as return on investment, affect ord

-alone single stocking stage under demand uncertainty or within bilateral supply chains of a supp

er interacting with the use of a trade-credit-contract.

hen shortages occur during the inventory cycle, there are some customers who are willing to wait

replenishment, while others decide not to wait and they buy the products from other sellers. This

tion is modelled in inventory systems assuming partial backordering. Some recent papers on in

ls allowing partial backlogging are the articles of Mishra and Singh (2010), Roy et al. (2011), Pent

e (2011), Sicilia et al. (2012), Hasanov et al. (2012), San-José et al. (2017, 2018), Alfares and G

) and Shaikh et al. (2019). Usually, in the stock-out situation, the customers make the decision to

ntil the next replenishment, depending on the time they would have to wait and the possible compe

company if they wait. Thus, the future willingness to do business with the company also depend

remaining until the arrival of the next replenishment. This approach was partially assumed in C

005). Later, San-José et al. (2009) developed an inventory system where both backorder unit cost a

sale cost have an affine structure: a variable cost depending on the period of time where shortag

fixed cost. Among other works that use this last approach to model the shortage cost, we can m

apers of Sicilia et al. (2012), and San-José et al. (2014, 2017).

real-life inventory systems, the demand rate of an item usually depends on time so, based on this a

several approaches have been proposed in the literature to model this situation. One of these app

ders that demand follows a power pattern during the scheduling period or inventory cycle. It leads t

ent ways of drawing units from the inventory. These ways are characterized by the demand pattern

describe the behaviour of demand. Thus, this pattern allows us to model situations where either a

of demand occurs at the beginning of the period, or scenarios where a larger portion of demand

d the end of the inventory cycle. In this line, Dye (2004) studied a deteriorating inventory mod

r demand pattern, time-varying deterioration and general time-proportional backlogging rate. Ra

anjikkodi (2012) presented an inventory model where the demand rate potentially depends on tim

ull deterioration rate for three different scenarios: complete, partial and no backlogging. Keshavar
3
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019a) studied an economic production model for multiple items with full backlogging, production r

onal to demand rate and demand rate depending linearly on price and time with a power demand p

aniwon and Omar (2019) developed an EOQ model with a power demand pattern and partial back

delayed deteriorating item. Keshavarzfard et al. (2019b) analysed a production-inventory model

r demand pattern, a production rate proportional to the demand rate and defective items, wher

e imperfect units are recovered or a certain fraction of these defective units are reworked and oth

ved. Keshavarzfard et al. (2019c) developed a production system with power demand rate, depend

on rate and defective items. They considered three different situations for the inventory system re

ate that imperfect products are withdrawn from the stock. San-José et al. (2019) developed an in

m where customer demand has a power pattern, shortages are allowed and the inventory cycle m

teger multiple of a fixed time period. San-José et al. (2021) studied a new lot-size inventory prob

cts whose demand pattern is dependent on price, advertising frequency and time.

he main contribution of this paper is to provide the optimal inventory policy that maximizes the

ventory investment (that is, the ratio of the profit per unit time to the average inventory cost

mer demand depends on time and shortages are partially backlogged. To the best of our knowled

first paper that simultaneously assumes the following issues, which have not been considered tog

terature:

) the demand rate of the item follows a power demand pattern,

) shortages are allowed, but only a proportion of the demand during the shortage period is backlo

) both backorder unit cost and lost unit sale cost are composed of a variable cost, which depends

h of the waiting time until the next replenishment and a fixed cost, and

) the objective is the maximization of the return on inventory investment.

ltaneous consideration of the above assumptions allows us to model a wide variety of real-life sit

therefore, makes the inventory model more realistic.

he rest of the paper is organized as follows. Section 2 presents the assumptions and notation used t

he paper. Section 3 formulates mathematically the inventory problem. Optimal inventory polic

ng partial backlogging, complete backlogging and full lost sales are developed in Section 4. In th
4
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n, the particular case with constant demand rate is also analysed. Several numerical examples ar

ction 5. A numerical sensitivity analysis of the optimal inventory policy with respect to the system

eters and some useful managerial insights derived from the results are presented in Section 6.

conclusions and future research lines are set up in Section 7.

Hypothesis of the inventory system

inventory system analysed in this paper has the following properties. A single item is considered

tory system. The replenishment is instantaneous. The inventory cycle T is a decision variable

m. The fluctuations of the inventory level during the period T are continuously repeated in sub

ds. The lead-time is zero or negligible. The average demand of the item is deterministic, with a r

per inventory cycle. The way in which quantities are taken from the inventory depends on the tim

are withdrawn. Let λ(t) denote the demand rate at time t (0 < t < T ). This demand rate is supp

e function

λ(t) =
r

n

(
t

T

)(1−n)/n

e n is the index of demand pattern, with n > 0. Note that if n > 1, then a greater part of demand

e beginning of the period. If n = 1, the demand rate is constant throughout the inventory cycle

then a larger portion of demand occurs toward the end of the inventory cycle.

hus, the total quantity demanded along the inventory cycle is
∫ T
0
λ(t)dt = rT . At the beginning

tory cycle, there are S units in stock. This amount, which is unknown and must be determin

on ρ of the demand during the inventory cycle. That is, S = ρrT , with 0 ≤ ρ ≤ 1. Shortages are

et b denote the total number of shortages during the inventory cycle. Only a fraction β, with 0 ≤

at unsatisfied demand will be backordered. When the number of backorders is βb, the inventory m

nished. The ordering cost A is constant and independent of the ordered amount. The price c of acq

rchasing and the selling price s of a unit of the item are known constants. The holding cost per u

nit time h is also a known constant. The unit backorder cost considers a constant cost ω0 plus a

ωϕ, where ϕ is the amount of time the customers wait before receiving the item. The goodwill c

ale is also described by a linear function of time for which lost sales exist with slope π and interce
5
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he notation used throughout the paper is summarized in Table 1.

Table 1. List of notation

Length of the inventory cycle where the net stock is positive (≥ 0).

Length of the inventory cycle when net stock is less than or equal to zero (≥ 0).

Scheduling period or inventory cycle, that is, T = τ + Ψ (> 0, decision variable).

t) Inventory level at time t, with 0 ≤ t ≤ T .

t) Demand rate at time t.

Average demand per cycle (> 0).

Demand pattern index (> 0).

Replenishment cost (> 0).

Unit acquisition cost (> 0).

Selling price per unit (s ≥ c).
Unit holding cost per unit time (> 0).

Constant cost per backordered unit (≥ 0).

Shortage cost per backordered unit and per unit time (≥ 0).

We assume that ωo + ωϕ is the backorder cost per unit, when the shortage time is ϕ and th

demand is backordered.

Constant goodwill cost per lost unit (≥ 0).

Unit goodwill cost per unit time (≥ 0).

We consider that π0 + πϕ is the lost sale cost per unit, when the shortage time is ϕ and the

demand is lost.

Maximum level of the stock (≥ 0).

Demanded quantity during the stock-out period (≥ 0).

Fraction of demand which is backordered (0 ≤ β ≤ 1).

Lot size per cycle, that is, Q = βb+ S (≥ 0).

Ratio between the initial inventory and the total quantity demanded during the inventory c

that is, ρ = S/(rT ) (≥ 0, decision variable).

Fixed unit shortage cost, that is, α0 = ω0β + π0(1− β).

Time-dependent average shortage cost, that is, α1 = ωβ + π(1− β).

(ρ) Auxiliary function, defined as g1(ρ) = (1− β)ρ+ β.

(ρ) Auxiliary function, defined as g2(ρ) = (h+ α1)ρn+1 − (n+ 1)α1ρ+ nα1.

Formulation of the problem

is section, an inventory model for a single item over an infinite horizon under power demand pa

oped. Let I(t) denote the net inventory level at time t, with 0 ≤ t ≤ T . At the beginning of the in

, the replenishment of products raises the inventory level up to the maximum level S. Next, in the
6
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d τ , the inventory decreases due to demand. Thus, the inventory level at time t is given by

I(t) = S − rT
(
t

T

)1/n

= rT

(
ρ−

(
t

T

)1/n
)

for t ∈ [0, τ ].

g into account that at t = τ the inventory level is zero, it then leads to τ = ρnT . Next, shortage

g the time period (τ , T ] and a fraction β of shortages are backordered. Thus, the net inventory leve

tock-out period is given by

I(t) = βrT

(
ρ−

(
t

T

)1/n
)

for t ∈ [τ , T ).

efore, the minimum net stock level is I(T ) = −β (1− ρ) rT . The total quantity demanded dur

-out period is b =
∫ T
τ
λ(t)dt = (1− ρ) rT . The lot size is

Q = S + βb = ((1− β) ρ+ β) rT .

aking into account the above assumptions, the total profit per cycle P (ρ, T ) is the difference b

evenue per cycle sQ and the sum of the ordering cost A, the purchasing cost cQ, the holding c

rdering cost and the lost sale cost per cycle. The holding cost per cycle is given by

HC (ρ, T ) = h

∫ τ

0

I(t)dt =
hr

n+ 1
ρn+1T 2

ackordering cost is

BC (ρ, T ) =

∫ T

τ

(
ω0βλ(t) + ω

∫ t

τ

βλ(u)du

)
dt

= ω0β (1− ρ) rT + ωβrT 2

(
n

n+ 1
− ρ+

ρn+1

n+ 1

)

he goodwill lost sale cost is given by

LC (ρ, T ) =

∫ T

τ

(
π0 (1− β)λ(t) + π

∫ t

τ

(1− β)λ(u)du

)
dt

= π0 (1− β) (1− ρ) rT + π (1− β) rT 2

(
n

n+ 1
− ρ+

ρn+1

n+ 1

)

, the total profit along an inventory cycle is

PC(ρ, T ) = (s− c)Q− (A+HC (ρ, T ) +BC (ρ, T ) + LC (ρ, T ))

consequently, the return on inventory investment (ROII) is defined by

ROII(ρ, T ) =
PC(ρ, T )

CC(ρ, T )
,

e CC(ρ, T ) is the total cost per cycle, which is given by cQ+A+HC (ρ, T ) +BC (ρ, T ) + LC (ρ,
7
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Optimal solution

d the optimal inventory policy, three scenarios can be considered: (i) partial backordering (i.e., 0 <

ll backordering (i.e., β = 1) and (iii) full lost sales (i.e., β = 0). Next, we study the case when β ∈

Partial backordering scenario (0 < β < 1)

β > 0, after a few algebraic manipulations, and using (1), the return on inventory investment g

2) can be expressed as

ROII(ρ, T ) =
s

c+AC (ρ, T )
− 1,

e AC (ρ, T ) represents the average inventory cost (without including the purchasing cost) per order

m. That is,

AC (ρ, T ) =
CC (ρ, T )− cQ

Q

=
1

((1− β) ρ+ β) rT
(A+HC (ρ, T ) +BC (ρ, T ) + LC (ρ, T ))

=
A

rg1(ρ)T
+

g2(ρ)

(n+ 1)g1(ρ)
T +

α0(1− ρ)

g1(ρ)
,

e α0 = βω0 + (1 − β)π0, g1(ρ) = (1 − β)ρ + β and g2(ρ) = (h + α1)ρn+1 − (n + 1)α1ρ + nα

βω + (1− β)π. Note that g1(ρ) is a linear function on [0,∞) with positive slope. Also, g2(ρ) is a

onvex function on [0,∞) and has a minimum at point

ρa = (α1/(α1 + h))
1/n ∈ [0, 1),

g2(ρa) = α1n
(

1− (α1/(α1 + h))
1/n
)
> 0.

vidently, in this case β > 0, the optimal solution that minimizes AC (ρ, T ) is the same as the

ion that maximizes the ROII function given by (2), because this equation (2) can be expressed

, our problem is to solve the following nonlinear program

min
T>0

0≤ρ≤1
AC (ρ, T ) .

o do so, we first consider fixed ρ ∈ [0, 1] and the variable T > 0. Thus, we obtain the function AC

, T ), which is a strictly convex function that attains its minimum at

T ∗ρ =

√
(n+ 1)A

rg2(ρ)
,

8
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value

W (ρ) = ACρ(T
∗
ρ ) =

1

g1(ρ)

(√
4Ag2(ρ)

(n+ 1)r
+ α0(1− ρ)

)

=
1

(1− β)ρ+ β

(√
4A ((h+ α1)ρn+1 − (n+ 1)α1ρ+ nα1)

(n+ 1)r
+ α0(1− ρ)

)

ext, taking into account the definition of the function g2(ρ), we can consider the following two ca

0 and (ii) α1 = 0. Remember that α1 is the time-dependent average shortage cost.

Case α1 > 0

(7), the first derivative of W (ρ) can be expressed as

W ′(ρ) =
L(ρ)√

(n+ 1)rg2(ρ)g21(ρ)
,

e

L(ρ) =
√
A (g1(ρ)g′2(ρ)− 2(1− β)g2(ρ))− α0

√
(n+ 1)rg2(ρ)

ituting the functions g1(ρ) and g2(ρ) into (10), we have

(ρ) = (h+ α1)
√
A (ρ(n− 1)(1− β) + β(n+ 1)) ρn − α0

√
(n+ 1)r [(h+ α1)ρn+1 − α1 (ρ(n+ 1)−

−α1

√
A (2n+ β(1− n)− (n+ 1)(1− β)ρ) .

om (9), it is clear that sign(W ′(ρ)) = sign(L(ρ)). Moreover, since g2(ρ) is a positive and convex fu

ows that g′2(ρ) < 0 for ρ < ρa, where ρa is the point at which g2(ρ) attains its minimum. Thus, fro

e that L(ρ) < 0 for ρ ≤ ρa. Therefore, we only need to analyze the function L(ρ) for ρ ∈ (ρa, 1].

nce the second derivative of W (ρ) is

W ′′(ρ) =
2g2(ρ)g1(ρ)L′(ρ)− L(ρ) (4g2(ρ)g′1(ρ) + g1(ρ)g′2(ρ))

2
√

(n+ 1)rg32(ρ)g31(ρ)
,

lows that if ρ0 is a point with L(ρ0) = 0 and L′(ρ0) > 0, then W ′′(ρ0) > 0 and ρ0 is a local mini

nction W (ρ). Derivating Eq. (10) and taking into account that g′1(ρ) = 1− β, we have

L′(ρ) = −
√
A(1− β)g′2(ρ) +

√
Ag1(ρ)g′′2 (ρ)− α0

√
(n+ 1)r

g′2(ρ)

2
√
g2(ρ)

efore, if ρ0 is a root of the function L, then, from (10), we obtain

α0

√
(n+ 1)rg2(ρ0) =

√
A
(
g1(ρ0)g′2(ρ0)− 2(1− β)g2(ρ0)

)

9
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consequently,

L′(ρ0) =
(n+ 1)

√
Ag1(ρ0)

2ρ0g2(ρ0)
f1(ρ0),

e

f1(ρ) =
ρ

n+ 1

[
2g2(ρ)g′′2 (ρ)− (g′2(ρ))

2
]

= (h+ α1)2(n− 1)ρ2n+1 + 2α1(h+ α1)(1− n2)ρn+1 + 2α1(h+ α1)n2ρn − α2
1(n+ 1)ρ

function f1(ρ) is, as can be seen in the following theorem, very useful for determining the optimal

e ratio between the initial inventory and the total quantity demanded during the inventory cycle.

rem 1 Let α0 = βω0 + (1− β)π0, α1 = βω+ (1− β)π, ρa = (α1/(α1 + h))
1/n

and W (ρ), L(ρ) an

ctions given, respectively, by (8), (11) and (12). Suppose α1 > 0. The function W (ρ) attains its m

at the point ρ∗characterized as follows:

If n < h/(2α1 + h), then let ρb = argρ∈(ρa,1) {f1(ρ) = 0}) be the only root of the equation f1(ρ) =

interval (ρa, 1).

(a) If L(ρb) < 0, then ρ∗ = 1.

(b) Otherwise, let ρ1 = argρ∈(ρa,ρb] {L(ρ) = 0}) be the unique root of the equation L(ρ) = 0 in the

(ρa, ρb]. Thus, we have:

i. If W (ρ1) <
√

4Ah
(n+1)r , then ρ∗ = ρ1.

ii. If W (ρ1) ≥
√

4Ah
(n+1)r , then ρ∗ = 1.

If n ≥ h/(2α1 + h), then the following cases can occur:

(a) If α0 < (2β + n− 1)
√

Ah
(n+1)r , then let ρ∗ be the unique root of the equation L(ρ) = 0 in the

(ρa, 1].

(b) Otherwise, ρ∗ = 1.

f. See the Appendix.

heorem 1 establishes the optimal ratio ρ∗ between the initial stock and the total quantity de

ghout the inventory cycle when the time-dependent average shortage cost (α1) is not zero. Nex
10
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8), the minimum average inventory cost W (ρ∗) per unit time (without including the purchasing

lated. In addition, from Eq. (6), the optimal inventory cycle T ∗ is determined.

ext, we study the case when the time-dependent average shortage cost is zero.

Case α1 = 0

(7) it is clear that, in this scenario, the derivative of the function W (ρ), for ρ ∈ (0, 1), is

W ′(ρ) =
M(ρ)√

(n+ 1)rg21(ρ)
,

e M(ρ) is defined on the interval (0, 1] by

M(ρ) =
√
Ahρn−1 ((n− 1) g1(ρ) + 2β)− α0

√
(n+ 1)r

=
√
Ahρn−1 ((n− 1)(1− β)ρ+ (n+ 1)β)− α0

√
(n+ 1)r

he behaviour of the function M(ρ) with respect to the value of the demand pattern index n can

e Appendix.

he following theorem provides the optimal value of ρ in this situation.

rem 2 Let α0 = βω0 + (1 − β)π0, α1 = βω + (1 − β)π = 0, and W (ρ) and M(ρ) be function

ctively, by (8) and (14). The function W (ρ) attains its minimum value at the point ρ∗characte

s:

Let n < 1:

(a) If α0 ≥ β
√

4Ah
(n+1)r , then ρ∗ = 1.

(b) Otherwise, ρ∗ = 0.

Let n = 1:

(a) If α0 > β
√

2Ah
r , then ρ∗ = 1.

(b) If α0 = β
√

2Ah
r , then the minimum is attained at any point of the interval [0, 1].

(c) Otherwise, ρ∗ = 0.

Let n > 1:
11
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(a) If α0 ≥ (2β + n− 1)
√

Ah
(n+1)r , then ρ∗ = 1.

(b) Otherwise, let ρ∗ = argρ∈(0,1) {M(ρ) = 0}) be the unique root the equation M(ρ) = 0 in the

(0, 1).

f. See the Appendix.

heorem 2 determines the optimal ratio ρ∗ between the initial stock and the total quantity de

ghout the inventory cycle when the time-dependent average shortage cost (α1) is zero. Next, from E

inimum average inventory cost W (ρ∗) per unit time (without including the purchasing cost) is ob

, from Eq. (6), the optimal inventory cycle T ∗ is established.

Full backordering scenario (β = 1)

e same manner as in the previous section, we can see that the problem of the maximum ROII(ρ, T

) is equivalent to the problem of the minimum cost per unit of item given by AC (ρ, T ). In this c

g1(ρ) = 1, α0 = ω0 and α1 = ω. Thus

AC (ρ, T ) =
1

T

(
A

r
+
g2(ρ)

n+ 1
T 2 + ω0(1− ρ)

)
,

therefore, the problem is also equivalent to minimizing the average cost per unit time. Note that Th

2 also provide the optimal policies in this scenario.

Full lost sales scenario (β = 0)

is case, we have g1(ρ) = ρ, α0 = π0 and α1 = π. Thus, the return on inventory investment (ROII)

tten as

ROII(ρ, T ) =





−1 if ρ = 0

s

c+AC (ρ, T )
− 1 if ρ > 0

,

e now AC (ρ, T ) = A
rρT + (h+π)ρn+1−(n+1)πρ+nπ

(n+1)ρ T + π0(1−ρ)
ρ .

α1 = π > 0, then it is easy to check that Theorem 1 remains valid (since Lemma 1 of the App

rue).

ext, we analyse the case α1 = π = 0. Now, the function M(ρ) is derived to (n−1)
√
Ahρn+1−π0

√
(n

efore, we can give the following result.
12



Journal Pre-proof

Theo oint ρ∗

chara

1.

2.

3.

Proo

T manded

throu fraction

of ba inimum

avera o, from

Eq. (

4.4

Next . If we

consi y cycle.

Acco for this

parti

Coro izes the

retur ∗)2
)])

,

where

Proo

C turn on

inven e initial

stock on the

scena
Jo
ur

na
l P

re
-p

ro
of

rem 3 Let β = 0 and π = 0. The function W (ρ) given by (8) attains its minimum value at the p

cterized as follows:

If n > 1 and π0 < (n− 1)
√

Ah
(n+1)r , then ρ∗ = ρ0 =

(
(n+1)rπ2

0

(n−1)2Ah

)1/(n+1)

.

If n = 1 and π0 = 0, then ρ∗ is any point of the interval (0, 1].

Otherwise, ρ∗ = 1.

f. See the Appendix.

heorem 3 establishes the optimal ratio ρ∗ between the initial stock and the total quantity de

ghout the inventory cycle when the unit goodwill cost per unit time is zero, i.e. π = 0, and the

cklogged demand (β) is zero, that is, all the shortages are lost sales. Next, from Eq. (8), the m

ge inventory cost W (ρ∗) per unit time (without including the purchasing cost) is calculated. Als

6), the optimal inventory cycle T ∗ is determined.

Case n = 1 (Constant demand rate)

, we discuss an inventory model which is a particular case of the model developed in this article

der a demand pattern index n equal to 1, we obtain a uniform demand rate along the inventor

rding to the results obtained in the previous subsections, we can establish the following result

cular situation.

llary 1 Let n = 1, α0 = βω0 + (1−β)π0 and α1 = βω+ (1−β)π. The value of (ρ, T ) that maxim

n on inventory investment (ROII) defined by (2) is (ρ∗, T ∗) =

(
ρ∗,

√
2A/

[
r
(
α1 (1− ρ∗)2 + h (ρ

ρ∗ is given in Table 2.

f. See the Appendix.

orollary 1 presents the optimal inventory policy (ρ∗, T ∗) in closed-form that maximizes the re

tory investment when the demand rate is constant. Note that the optimal ratio ρ∗ between th

and the total quantity demanded throughout the inventory cycle can notably vary, depending

rio characterized by the input parameters of the inventory system.
13
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Table 2. Optimal value of ρ when n = 1

β = 0 β > 0

π0 = 0 π0 > 0

α1 = 0

α0 < β
√

2Ah/r

α0 = β
√

2Ah/r

α0 > β
√

2Ah/r

—

(0, 1]

—

—

—

ρ∗ = 1

ρ∗ = 0

[0, 1]

ρ∗ = 1

α1 > 0

α0 < β
√

2Ah/r

α0 = β
√

2Ah/r

α0 > β
√

2Ah/r

—

(0, 1]

—

—

—

ρ∗ = 1

ρ∗ = ρ1

ρ∗ = 1

ρ∗ = 1

where ρ1 =
α0

√
α1rh

(
2A
(
α1 + β2h

)
− rα2

0

)
+ α1

(
2A (α1 + βh)− rα2

0

)

2A (α1 + βh)
2 − (α1 + h) rα2

0

Numerical examples

is section, we include some numerical examples to illustrate the proposed model in different scenar

associated optimal policies.

ple 1 We consider the first numerical example proposed in San-José et al. (2017). That is, we

1, r = 1000, A = 500, c = 8, s = 10, h = 2, ω0 = 0.1, ω = 3.2, π0 = 2 and π = 0. If

ing Theorem 3, we obtain ρ∗ = 1 and, from (6), T ∗ = 0.707107. That is, the same policy that ma

otal inventory profit per unit time given in San-José et al. (2017). If β > 0, applying now The

tain ρ∗ = 1 for β <
(
380− 200

√
2
)
/161 and ρ∗(β) = argρ∈(x0,1) {L(ρ) = 0}). The optimal poli

n in Table 3. From these results, we can make the following comments: The optimal inventory p

ant when β ≤ 0.603461. However, when β > 0.603461, if β increases then: (i) The ratio ρ∗ betw

l inventory and the total demand throughout the inventory cycle, the stock-in period τ∗ and the ma

level S∗ are strictly decreasing; (ii) the stock-out period Ψ∗, the economic lot size Q∗ and the ma

/cost ratio are strictly increasing and (iii) the inventory cycle T ∗ starts increasing but then decre
14
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Table 3. Numerical results associated with Example 1

β ρ∗ T ∗ τ∗ Ψ∗ Q∗ S∗ b∗ ROII∗(

0 1 0.707107 0.707107 0 707.107 707.107 0 6.2223

≤ 0.603461 1 0.707107 0.707107 0 707.107 707.107 0 6.2223

0.7 0.838052 0.826641 0.692768 0.133873 786.479 692.768 133.873 6.5469

0.8 0.745820 0.884613 0.659762 0.224851 839.643 659.762 224.851 7.3016

0.9 0.683918 0.904164 0.618374 0.285790 875.585 618.374 285.790 8.2632

1 0.636740 0.900521 0.573397 0.327123 900.521 573.397 327.123 9.3279

ple 2 This example assumes the parameters of Example 1, but modifying the value of n to n

optimal policies obtained are given in Table 4. These results present certain insights into the beh

ventory system studied here. Thus, we can make the following observations: (i) the optimal in

y is constant when β ≤ 0.403570; (ii) if β > 0.403570 and the value of β is increasing, then: (a) t

tween the initial inventory and the total demand throughout the inventory cycle and the stock-in

e strictly decreasing, (b) the inventory cycle T ∗ and the maximum stock level S∗ start increas

decrease and (c) the stock-out period Ψ∗, the economic lot size Q∗ and the maximum profit/cost r

ly increasing.

Table 4. Numerical results associated with Example 2

β ρ∗ T ∗ τ∗ Ψ∗ Q∗ S∗ b∗ ROII∗(

0 1 0.935414 0.935414 0 935.414 935.414 0 10.265

≤ 0.403570 1 0.935414 0.935414 0 935.414 935.414 0 10.265

0.5 0.947559 1.02211 0.893336 0.128777 995.312 968.512 53.6005 10.360

0.6 0.910924 1.07777 0.853557 0.22421 1039.37 981.768 96.0030 10.600

0.7 0.88445 1.10829 0.815338 0.292950 1069.87 980.227 128.061 10.927

0.8 0.863954 1.12115 0.777837 0.343309 1090.64 968.619 152.527 11.308

0.9 0.847140 1.12146 0.740750 0.380710 1104.32 950.033 171.426 11.724

1 0.832665 1.11268 0.703955 0.408722 1112.68 926.487 186.190 12.164
15
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ple 3 This example considers the same parameters as in the first example, but modifying the v

π0 to n = 0.75 and π0 = 0.5, respectively. The optimal policies are given in Table 5. We can disc

ing issues: if β > 0.360373 and β increases, then: (a) the ratio ρ∗ between the initial inventory

demand throughout the inventory cycle and the maximum stock level S∗ are decreasing, (b) the in

T ∗ and the stock-in period τ∗ start increasing but then decrease and (c) the stock-out period

mic lot size Q∗ and the maximum profit/cost ratio are strictly increasing.

Table 5. Numerical results associated with Example 3

β ρ∗ T ∗ τ∗ Ψ∗ Q∗ S∗ b∗ ROII∗(

0 1 0.661438 0.661438 0 661.438 661.438 0 5.1319

≤ 0.360373 1 0.661438 0.661438 0 661.438 661.438 0 5.1319

0.4 0.867527 0.745461 0.670097 0.075365 686.209 646.708 98.7531 5.1943

0.5 0.720175 0.850255 0.664703 0.185552 731.293 612.33 237.923 5.6519

0.6 0.652434 0.89008 0.646150 0.243934 766.339 580.721 309.363 6.2714

0.7 0.612015 0.901582 0.623845 0.277736 796.642 551.782 349.800 6.9304

0.8 0.584545 0.898776 0.600848 0.297928 824.096 525.375 373.401 7.5846

0.9 0.564306 0.888313 0.57837 0.309948 849.610 501.280 387.033 8.2159

1 0.548545 0.873694 0.556888 0.316805 873.694 479.260 394.434 8.8173

ple 4 This example considers the same parameters as in Example 3, but modifying the values

0 to h = 6.5, ω0 = 0 and π0 = 0, respectively. We have the optimal policies given in Table 6.

the following comments: if β ≥ 0.1 and the value of β is increasing, then: (a) the ratio ρ∗ betw

l inventory and the total demand throughout the inventory cycle starts decreasing but then increa

tock-in period τ∗ and the maximum stock level S∗ are strictly decreasing, (c) the inventory cycle

tock-out period Ψ∗ start increasing but then decrease and (d) the economic lot size Q∗ and the ma

/cost ratio are strictly increasing.
16
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Table 6. Numerical results associated with Example 4

β ρ∗ T ∗ τ∗ Ψ∗ Q∗ S∗ b∗ ROII∗(%)

0 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461

0.05 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461

0.1 1 0.366900 0.366900 0 366.900 366.900 0 −6.76461

0.2 0.254030 1.01790 0.364226 0.653679 410.443 258.578 759.326 −4.18143

0.3 0.238749 0.971428 0.331793 0.639635 453.778 231.928 739.500 −1.99654

0.4 0.232945 0.914667 0.306693 0.607974 493.707 213.067 701.599 −0.25428

0.5 0.230169 0.862925 0.286754 0.576172 530.772 198.619 664.306 1.17313

0.6 0.228747 0.817751 0.270481 0.547270 565.474 187.058 630.693 2.37062

0.7 0.228044 0.778487 0.256901 0.521586 598.200 177.530 600.958 3.39464

0.8 0.227769 0.744184 0.245359 0.498826 629.248 169.502 574.682 4.28400

0.9 0.227767 0.713986 0.235401 0.478585 658.849 162.622 551.363 5.06632

1 0.227949 0.687188 0.226701 0.460487 687.188 156.644 530.544 5.76184

Sensitivity analysis and managerial insights

is section, managerial implications based on the sensitivity analysis of the parameters are displayed

stions are provided to inventory managers that could help them to improve the efficiency of the in

ol.

follows from the theoretical results presented in the previous sections that if the unit purchasi

ases, then the total cost per cycle goes up and the total profit throughout the inventory cycle goe

equently, the return on inventory investment decreases. Retailers can offset against this additional p

ost by buying in bulk or by applying discounting strategies that provide a lower unit cost of the p

if the unit selling price increases, the total profit over the inventory cycle goes up and the re

tment in inventory increases.

he first numerical example presented in Section 5 reveals that if β = 0, that is, shortages are lost sal

ptimal policy that maximizes the return on inventory investment coincides with the one that ma
17
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rofit per unit time. However, when there is a strict fraction of demand which is backordered,

< 1, the optimal policy that maximizes the ROII is, in general, different from the one that ma

rofit per unit time.

addition, from the numerical examples we can deduce that there is a value β0 such that the

tory policy is constant when β ≤ β0. However, when β > β0 the inventory policy varies. In this la

fraction of backordered demand β increases, then the economic lot size Q∗ and the return on in

tment increase in the four examples.

ext, in order to study the effect of some parameters on the optimal inventory policy and the ma

, two tables are included showing the variations, in percentage terms, of the optimal values ρ∗, T ∗,

∗, b∗ and the maximum ROII for different changes in the parameters. First, we consider the par

ample 2, but modifying the value of π to π = 0.5 and the fraction of backordered demand β to β =

ase, the optimal ratio between the initial inventory and the total quantity demanded during the in

is ρ∗ = 0.867611, the optimal inventory cycle is T ∗ = 1.11511, the optimal stock-in cycle is τ∗ = 0.

ptimal stock-out period is Ψ∗ = 0.333248, the optimal lot size is Q∗ = 1085.59, the inventory

967.483, the quantity demanded during the stock-out period is b∗ = 147.628 and the maximum

ventory investment is ROII∗ = 11.2788%. Next, we calculate the variations, in percentage terms

al inventory policy varying each of the parameters, while keeping all the others fixed. Thus, Table

ffects of the parameters r, n, A and h when each of these parameters varies its value by ±25%, ±1

. Next, we present some findings obtained from the sensitivity analysis.

he optimal inventory cycle, the economic lot size, the initial inventory level and the optimal re

tory investment are moderately sensitive to the parameters r, n, A and h. Thus, a 10% increas

of the average demand r per cycle leads to an increment of 4.74% in the economic lot size, a 4.98%

e initial stock and a 4.73% increase in the ROII. However, that increment in the average demand re

uction of the optimal inventory cycle of 4.83%. Therefore, to increase the ROII the decision maker

the demand by implementing marketing policies or quantity discount.

lso, a 25% increase in the demand pattern index n leads to an increment of 8.42% in the economic
18
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Table 7. Effects of the parameters r, n, A and h on the optimal inventory policy and the maximu

∆ ∆ρ∗(%) ∆T ∗(%) ∆τ∗(%) ∆Ψ∗(%) ∆Q∗(%) ∆S∗(%) ∆b∗(%)

r +25% 0.672237 −10.9663 −9.46247 −14.4946 11.4255 12.0403 6.38912

+10% 0.277824 −4.83007 −4.16768 −6.38417 4.73876 4.97776 2.78086

+5% 0.140543 −2.50059 −2.15766 −3.30518 2.40003 2.51826 1.43146

−5% −0.144060 2.69388 2.32443 3.56069 −2.46586 −2.58136 −1.51976

−10% −0.291925 5.60750 4.83845 7.41184 −5.00271 −5.23072 −3.13488

−25% −0.761912 16.0210 13.8237 21.1764 −13.1024 −13.6472 −8.63936

n +25% 2.28866 7.97862 6.04784 12.5086 8.41910 10.4499 −8.21679

+10% 1.01392 3.25717 2.45895 5.12996 3.44378 4.30412 −3.60400

+5% 0.525989 1.63993 1.23617 2.58725 1.73522 2.17455 −1.86367

−5% −0.569066 −1.66314 −1.24950 −2.63362 −1.76288 −2.22274 2.00422

−10% −1.18722 −3.34988 −2.51212 −5.31543 −3.55441 −4.49733 4.16994

−25% −3.41768 −8.55280 −6.37317 −13.6666 −9.10987 −11.6782 11.9293

A +25% −0.600441 12.2280 10.5509 16.1627 12.1079 11.5541 16.6441

+10% −0.264743 5.06005 4.36608 6.68823 5.01048 4.78191 6.88284

+5% −0.137116 2.56085 2.20964 3.38485 2.53578 2.42022 3.48245

−5% 0.147848 −2.62728 −2.26698 −3.47263 −2.60162 −2.48332 −3.57075

−10% 0.307912 −5.32645 −4.59599 −7.04025 −5.27449 −5.03494 −7.23686

−25% 0.881369 −13.9226 −12.0134 −18.4019 −13.7873 −13.1639 −18.8945

h +25% −3.24630 −7.11800 −14.4735 10.1395 −7.65544 −10.1332 12.6423

+10% −1.34332 −3.16460 −6.38393 4.38857 −3.39646 −4.46541 5.36025

+5% −0.679466 −1.64389 −3.30613 2.25603 −1.76301 −2.31219 2.73579

−5% 0.695605 1.78375 3.56303 −2.3908 1.90995 2.49176 −2.85622

−10% 1.40788 3.72729 7.41681 −4.92904 3.98759 5.18764 −5.84314

−25% 3.64988 10.7854 21.1726 −13.5850 11.5061 14.8289 −15.7139
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45% increase in the initial stock, a 7.98% increase in the length of the optimal cycle, and a 9.04%

e ROII.

n increment in the replenishment cost A results in an increase in the optimal inventory cycle, the ec

ze and the initial stock, but the return on inventory investment decreases. The impact of the replen

is positive on the stock-in period and is negative on the ratio between the initial inventory and t

tity demanded during the inventory cycle. Thus, a 25% increase in the value of A leads to a 10.55%

e length of the stock-in period, and a 0.6% decrease of the ratio between the initial inventory and t

tity demanded.

ith respect to the unit holding cost h, if this cost increases then the optimal inventory cycle, the ec

ze, the initial inventory level, and the return on inventory investment decrease. A 10% incremen

holding cost results in a reduction of 3.40% in the economic lot size, a 4.47% decrease in the initia

6% decrease in the length of the optimal cycle, and a 4.19% decrease in the ROII.

herefore, from the above comments, it is recommended that the decision-maker should be alert

ations in the parameters A and h.

able 8 displays the variations, in percentage terms, of the optimal inventory policies when each of

eters that determine the shortage cost has changed by ±25%, ±10% and ±5%. From these res

stablish the following insights.

he variation of the parameters that appear in the backlogging costs do not have great influence

iour of the return on inventory investment. The effect of ω0, or ω, on the ROII is almost negligible

decrease in the value of the parameter ω0 or ω, leads to an increase in the ROII less than 0.2

, respectively.

lso, the maximum ROII is not very sensitive to movements of the goodwill parameters π0 and π.

decrease in the value of the parameter π0, or π, leads to an increase in the ROII less than 0.7% and

ctively. In particular, the effect of a modification of π on the ROII is also almost negligible. Note

decrease in the value of the parameter π leads to an increase in the ROII less than 0.07%.

n increment in any shortage cost ω0, ω, π0, or π, has a negative effect on the economic lot size, the

inventory cycle, the length of the stock-out period and the demanded quantity during the stock-out
20
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Table 8. Effects of the parameters ω0, ω, η0 and η on the optimal inventory policy and the maximum RO

∆ ∆ρ∗(%) ∆T ∗(%) ∆τ∗(%) ∆Ψ∗(%) ∆Q∗(%) ∆S∗(%) ∆b∗(%)
∆R

+25% 0.237158 −0.157510 0.435506 −1.54884 −0.115305 0.079275 −1.70928 −0.2

+10% 0.094847 −0.062488 0.174651 −0.618861 −0.045593 0.032300 −0.683682 −0.1

+5% 0.047421 −0.031158 0.087400 −0.309318 −0.022708 0.016249 −0.341836 −0.0

−5% −0.047416 0.030986 −0.087550 0.309093 0.022531 −0.01645 0.341826 0.0

−10% −0.094828 0.061799 −0.175250 0.617961 0.044886 −0.033088 0.683641 0.1

−25% −0.237040 0.153202 −0.439251 1.54321 0.110887 −0.084201 1.70902 0.3

+25% 2.23234 −2.76562 2.75208 −15.7112 −2.37873 −0.595015 −16.9907 −1

+10% 0.980536 −1.23524 1.20365 −6.95735 −1.06263 −0.266817 −7.58181 −0.6

+5% 0.506885 −0.642649 0.621211 −3.60791 −0.552881 −0.139021 −3.94317 −0.3

−5% −0.543836 0.699441 −0.664079 3.89852 0.601829 0.151802 4.28840 0.3

−10% −1.12893 1.46370 −1.37574 8.12556 1.25953 0.318241 8.97043 0.7

−25% −3.18662 4.25246 −3.85543 23.2751 3.66032 0.930328 26.0241 2

+25% 1.18760 −0.830253 2.14038 −7.79993 −0.620330 0.347490 −8.54859 −1

+10% 0.474467 −0.319308 0.867282 −3.10328 −0.235008 0.153644 −3.41880 −0.5

+5% 0.237158 −0.157510 0.435506 −1.54884 −0.115305 0.079275 −1.70928 −0.2

−5% −0.237040 0.153202 −0.439251 1.54321 0.110887 −0.084201 1.70902 0.3

−10% −0.473993 0.302078 −0.882262 3.08077 0.217337 −0.173347 3.41777 0.6

−25% −1.18465 0.722542 −2.23403 7.65922 0.509863 −0.470666 8.54223 1

+25% 0.101781 −0.129753 0.124563 −0.726426 −0.111635 −0.028104 −0.795907 −0.0

+10% 0.040880 −0.052158 0.050019 −0.291884 −0.044875 −0.011299 −0.319922 −0.0

+5% 0.020468 −0.026122 0.025042 −0.146162 −0.022475 −0.005659 −0.160223 −0.0

−5% −0.020524 0.026208 −0.025107 0.146605 0.022549 0.005679 0.160748 0.0

−10% −0.041105 0.052504 −0.050281 0.293655 0.045173 0.011377 0.322025 0.0

−25% −0.103188 0.131915 −0.126196 0.737495 0.113499 0.028591 0.809053 0.0
21
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, a 25% increase in the value of ω or π0 leads to a 2.38% or 0.62% decrease of the economic lot s

7% or 0.83% decrease of the length of the inventory cycle. However, the impact of any shortage c

, or π, is positive on the length of the stock-in period and on the ratio between the initial invent

otal quantity demanded during the inventory cycle. Thus, a 25% increase in the value of ω or π

2.75% or 2.14% increase of the lenght of the stock-in period, and a 2.23% or 1.19% increase of t

een the initial inventory and the total quantity demanded.

lso, an increase in the fixed shortage costs ω0, or π0, results in an increase in the initial inventor

ver, an increment in some of the variable shortage costs ω or π, leads to a decrease in the initial in

herefore, the parameters ω0 and π have an insignificant influence on the return on inventory inve

, the inventory manager should not worry about those parameters. However, the parameters ω

a major effect on the ROII. For this reason, the decision-maker should try to reduce the shortage

rdered unit and the constant goodwill cost per lost unit as much as possible.

Conclusions

e models of the inventory control, it is very common to consider as the objective the inventory pol

mizes the profit per unit of time. However, from the point of view of investors or shareholders,

ore interesting for the company to maximize the return on inventory investment than obtaining

. In this paper, we consider this approach for an inventory system with power demand pattern i

ages are allowed. It is assumed that only a fixed fraction of the demand during the stock-out p

ed with the arrival of the next replenishment. We also consider that both the unit backorder cost

lost sale cost are composed of a fixed cost plus a variable cost which depends on the length of the

until the next replenishment.

e thoroughly analyse the inventory problem and obtain the optimal global solutions for all the

rios of the inventory system (including the full lost sale case). The optimal policies obtained here t

different, in general, from those that maximize the profit per unit time. As a particular case, w

ptimal inventory policy in closed-form for the uniform demand case. To illustrate the results obta
22
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aper, several numerical examples are provided. Furthermore, we analyse the sensitivity of the

bles and the maximum ROII with respect to the system input parameters. From those numerical

rive some useful managerial insights. In particular, it is recommended that the decision-maker sh

to the fluctuations in the replenishment cost and the holding cost. Also, we advise to the decision

d boost the demand by implementing marketing policies or quantity discount.

me future research lines in this subject are the following: (i) to assume in the inventory system t

nishment is non-instantaneous; (ii) to suppose that the demand rate also depends on the selling pr

velop the inventory system considering stochastic demand; (iv) to incorporate in the model the po

items may suffer some deterioration over time and (v) to consider a non-linear holding cost.
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pendix

is appendix, we give the proofs of the main results and also provide some properties of the function

(ρ), which are given, respectively, by (12) and (13).

e begin by analysing the behaviour of the function f1(ρ), function required to prove Theorem 1.

ma 1 Let ρa = (α1/(α1 + h))
1/n

and f1(ρ) be given by (12). Then:

f1(ρa) > 0 and f ′1(ρa) > 0.

f1 is a strictly increasing linear function when n = 1.

f1 is a strictly convex function on the interval (ρa, 1) when n > 1.

f1 is a strictly concave function on the interval (ρa, 1) when n < 1.

f.
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It is immediate because ρa < 1, f1(ρa) = 2α2
1n

2(1 − ρa), f ′1(ρ) = (h + α1)2(2n2 − n − 1)ρ2n + 2

α1)(1− n2)(1 + n)ρn + 2α1(h+ α1)n3ρn−1 − α2
1(n+ 1) and f ′1(ρa) = 2α2

1n
3(1/ρa − 1).

It is obvious, since in this case f1(ρ) is reduced to 2α1hρ.

The second derivative of the function f1 can be written as f ′′1 (ρ) = 2(h + α1)n(n − 1)ρn−2f2(ρ)

f2(ρ) = (h + α1)(2n + 1)ρn+1 + α1

(
n2 − (n+ 1)

2
ρ
)

. Thus, as n > 1, we only need to sho

f2 is a positive function in the interval (ρa, 1) to complete the proof. Since f ′2(ρ) = (h + α1

3n + 1)ρn − α1 (n+ 1)
2

and f ′′2 (ρ) > 0 for all ρ > 0, then f ′2(ρ) is a strictly increasing functi

f ′2(ρa) = α1n (n+ 1) > 0. Therefore, f ′2(ρ) > 0 for all ρ ∈ (ρa, 1) and we deduce that f2 is

increasing function on (ρa, 1). The rest of the proof follows from f2(ρa) = α1n
2(1−ρa) > 0. Conse

f2(ρ) > 0 on (ρa, 1).

As n > 1 and f2(ρ) is a positive function on (ρa, 1), this leads to f ′′1 (ρ) < 0 and, therefore, f1

strictly concave function on (ρa, 1).

ow, we prove Theorem 1.

f of Theorem 1.

If n < h/(2α1 + h), then n < 1 and, from (12), f1(1) = h (2α1n+ (n− 1)h) < 0. Applying Le

and Bolzano’s Theorem, f1 has a unique root ρb on the interval (ρa, 1), because f1(ρ) is conc

f ′1(ρa) > 0. Thus, as f1(ρa) > 0, then f1(ρ) > 0 for ρ ∈ (ρa, ρb) and f1(ρ) < 0 for ρ ∈ (ρb, 1). No

as L(ρa) = −2nα1 (1− β) (1−ρa)
√
A−α0

√
n(n+ 1)α1r(1− ρa) < 0, we can consider the followin

(a) If L(ρb) < 0, then necessarily L(ρ) ≤ 0 for ρ ∈ (ρa, 1). Thus, W (ρ) is a strictly decreasing f

which attains its minimum at ρ∗ = 1.

(b) If L(ρb) ≥ 0, then the function L(ρ) has a unique root ρ1 on the interval (ρa, ρb]. Compar

values of W (ρ1) and W (1) =
√

4Ah/ ((n+ 1)r), we obtain the optimal solution.

If n ≥ h/(2α1 + h), then three scenarios can occur:

A. h/ (2α1 + h) ≤ n < 1. Now f1(1) ≥ 0 and, by Lemma 1, the function f1(ρ) is always pos

(ρa, 1). Thus, the function W (ρ) has at most a local minimum on the interval (ρa, 1).
24
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B. n = 1. Since f1 is a strictly increasing function with f1(ρa) > 0, it follows that W (ρ) has at

local minimum on the interval (ρa, 1).

C. n > 1. Taking into account that f1 is a strictly convex function with f ′1(ρa) > 0, we deduc

the above two cases, that the function W (ρ) has at most a local minimum on the interval (ρ

Therefore, in the three scenarios, we can ensure that the function L(ρ) has at most a root ρ on the

(ρa, 1). Since L(ρa) < 0, L(ρ) has a unique root in such interval if and only if L(1) > 0. Tak

account that L(1) = (2β + n − 1)h
√
A − α0

√
(n+ 1)rh, we obtain L(1) > 0 if and only if the co

proposed in 2(a) is satisfied.

he following lemma provides some characteristics of the function M(ρ) given by (13).

ma 2 Let M(ρ) be given by (13). Then:

If n > 1, then M(ρ) is a strictly increasing function with M(0) = −α0

√
(n+ 1)r < 0.

If n = 1, then M(ρ) is a constant function with M(ρ) = 2β
√
Ah− α0

√
2r.

If n < 1, then M(ρ) is a strictly decreasing function with limρ→0+ M(ρ) =∞ when β > 0 and limρ→

−π0

√
(n+ 1)r, if β = 0.

f.

om (13), we obtain

M ′(ρ) =
(n2 − 1)g1(ρ)

√
Ahρn−3

2
.

est of the proof is already immediate.

ow, we prove Theorem 2.

f of Theorem 2.

is immediate taking into account Lemma 2, M(1) = (2β + n− 1)
√
Ah− α0

√
(n+ 1)r, W (0) = α0

=
√

4Ah/ ((n+ 1)r).

he proof of Theorem 3 is given below.

f of Theorem 3.

ote that, in this case, M(0) = −π0

√
(n+ 1)r < 0. We can consider the following scenarios:

If n < 1, then M(ρ) < 0 for ρ ∈ (0, 1) and, therefore, W (ρ) attains its minimum at ρ∗ = 1.
25
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If n = 1, then: (i) If π0 > 0, then M(ρ) < 0 for ρ ∈ (0, 1) and, as in the previous case, ρ∗ = 1 an

π0 = 0, then M(ρ) = 0 and W (ρ) =
√

2Ah/r for ρ ∈ (0, 1]. Thus, the minimum is attained at al

of the interval (0, 1].

If n > 1, then the function M(ρ) is strictly increasing with M(1) = (n − 1)
√
Ah − π0

√
(n+ 1)r

if M(1) ≤ 0, then W (ρ) is strictly decreasing and it attains its minimum at ρ∗ = 1 and, if M(1)

equivalently, π0 < (n−1)
√
Ah/((n+ 1)r)), then W (ρ) attains its minimum at argρ∈(0,1){M(ρ) = 0

f of Corollary 1.

he cases with α1 = 0 are immediate from Theorems 2 and 3. Also, if α1 > 0 and α0 ≥
√

2Ah/

ion ρ∗ = 1 is obtained from Theorems 1 and 3.

o prove the result for α1 > 0 and α0 <
√

2Ah/rβ, we observe that, from the part 2(a) of Theorem

al solution ρ∗ can be obtained by solving the equation L (ρ) = 0 with ρ ∈ (ρa, 1) and ρa = α1/ (α

= 1, we have g2 (ρ) = α1 (1− ρ)
2

+ hρ2 and the function L(ρ) is simplified to

L (ρ) = 2 (βhρ− (1− ρ)α1)
√
A− α0

√
2r (hρ2 + α1(1− ρ)2)

plicitly obtain the value of ρ∗, we consider the function Λ(ρ) = L(ρ)L1(ρ), where

L1 (ρ) = 2 (βhρ− (1− ρ)α1)
√
A+ α0

√
2r (hρ2 + α1(1− ρ)2).

easy to check that Λ(ρ) can be written as 2
(
q2ρ

2 + 2q1ρ+ q0
)
, where q2 = 2A(α1 + βh)2 − α2

0(α

α1

(
α2
0r − 2A(α1 + βh)

)
and q0 = α1(2α1A−α2

0r). That is, Λ(ρ) is a quadratic and strictly convex f

two real roots (or a double root), one of which is ρ∗. Since Λ(1) > 0, ρ∗ is necessarily the larges

of Λ(ρ). Thus, ρ∗ = (−q1 +
√
q21 − q0q2)/q2. Now, substituting the values of q0, q1 and q2, we

ρ1.

inally, using Eq. (6), we obtain the optimal cycle time T ∗ as

T ∗ =

√√√√ 2A

r
(
h (ρ∗)2 + α1 (1− ρ∗)2

) .
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osé, L.A., Sicilia, J., González-de-la-Rosa, M., Febles-Acosta, J., 2019. Analysis of an inventory

h discrete scheduling period, time-dependent demand and backlogged shortages. Computers and Op

search 109, 200–208.

h, A.A., Khan, M.A.A., Panda, G.C., Konstantaras, I., 2019. Price discount facility in an EOQ

deteriorating items with stock-dependent demand and partial backlogging. International Transac

erational Research 26, 1365–1395.
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