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Abstract: Efficient water management in agriculture requires a precise estimate of evapotranspiration
(ET). Although local measurements can be used to estimate surface energy balance components, these
values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture
environment. This extrapolation can be done using satellite images that provide information in
visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite
sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric
behavior of vegetation that is highly correlated with the ET. In this context, our working hypothesis
states that it is possible to generate a strategy of integration and harmonization of the Normalized
Difference Vegetation Index (NDVI) obtained from Landsat-8 (L8) and Sentinel-2 (S2) sensors in
order to obtain an NDVI time series used to estimate ET through fit equations specific to each crop
type during an agricultural season (December 2017–March 2018). Based on the obtained results it
was concluded that it is possible to estimate ET using an NDVI time series by integrating data from
both sensors L8 and S2, which allowed to carry out an updated seasonal water balance over study
site, improving the irrigation water management both at plot and water distribution system scale.

Keywords: agricultural water management; evapotranspiration; harmonization remote sensing data

1. Introduction

Under the constant pressure of population growth, food consumption is increasing in nearly all
regions of the world. The world population is expected to reach 9 billion by 2026 [1], which implies an
increase in the worldwide area under irrigation of 300,000 km2, along with a 40% increase in water and
energy demand over the next 20 years [2]. The sector with the greatest water use in Chile is agriculture,
accounting for 78% of the total water availability [3], which supplies an irrigated area of 11,000 km2 [4].
However, in various regions of the country, water use rights exceed the actual availability of water
resources, which has led to numerous regions being declared depleted in terms of both surface and
groundwater [5]. In this scenario, it is clear that one of the main challenges of the 21st century is to
increase agricultural water productivity [6]. Thus, precise information on agricultural water demands
is crucial for efficient management of water and crop productivity [7,8]. This high-water-demand
scenario has triggered a search for solutions to narrow the gap between irrigation water demand and
availability in terms of quantity and quality through the use of new technologies [9–11].

Water resource management strategies must rely on the estimation of crop water demand. One of
the most widely used methods to determine water demand is the estimation of evapotranspiration
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(ET). Several studies have been done to evaluate the effect of water applied in crop yield [12–16]
to optimize the water management in agriculture. Nonetheless, this process is difficult to correctly
quantify when dealing with large areas, as there is great spatiotemporal variability due to the complex
interactions between the soil, vegetation, and climate [17]. Currently, ET estimates are mainly based
on observations from terrestrial weather stations. Several approaches have been proposed in the
literature to estimate ET using weather station observations: (i) A two-step approach by multiplying
the weather-based reference evapotranspiration ETr by crop coefficients (Kc) [18–20]. Crop coefficients
are determined according to the in situ type of crop and the crop growth stage [19]. (ii) On the basis of
the Penman–Monteith (P–M) equation [21], with crop to crop differences represented by the use of
specific values of surface and aerodynamic resistances [22–26].

Presently it is possible to estimate ET for different crops, providing spatial and temporarily
distributed information over a wide area, using information gathered from aircraft or satellite platforms.
Two main strategies for ET estimation from remote sensing can be distinguished as follows: (i) Methods
that use visible and near infrared sensors to extract a vegetation index (VI) and the radiative surface
temperature to estimate the corresponding skin temperature [27,28]; (ii) Residual methods using the
surface energy balance (SEB). These methods calculate ET by subtracting sensible heat and soil heat
fluxes from net radiation [29]. Among the best-known methods that belong to this category are the
surface energy balance index (SEBI) [30], the two-source model (TSM) [31], the evapotranspiration
mapping algorithm (ETMA) [32], and the Mapping Evapotranspiration at high Resolution using
Internalized Calibration (METRIC) model [33], which is based almost entirely on the Surface Energy
Balance Algorithm for Land (SEBAL) model developed by Bastiaanssen et al. [34]. METRIC and
SEBAL estimate crop ET by calculating the surface energy balance using spectral information from
multispectral satellite images in the optical, near infrared, and thermal ranges. Only remote sensing
imagery that provides spectral information in the thermal band may be used as input for these models.
Unfortunately, most current satellite sensors do not provide this information, but they do include a
set of spectral bands that allows the radiometric behavior of vegetation to be determined by focusing
on the spectral contrast presented by plant cover in the red and near infrared bands [12]. Most
VI are based on this principle; one which allows multitemporal data series to be constructed, thus
providing essential information on water consumption patterns in various crop types and helping keep
information on different agricultural covers up to date, as well as for monitoring of the biophysical
properties of plants, such as plant cover, vigor, and growth dynamics [35]. In particular, a strong
relationship between ET and the VI, known as the Normalized Vegetation Difference Index (NDVI),
has been demonstrated [36]. In [6,37], the authors demonstrated that it is possible to estimate ET using
NDVI using models trained previously with ET maps obtained by the METRIC model (considering
visible, infrared, and thermal bands of Landsat 7 ETM+) and NDVI maps.

Images from the Landsat Program have generally been used for water consumption analysis
and crop yield estimation. This is because of their high-spatial resolution in the visible spectrum
(30 m) and the inclusion of the thermal bands (60 m), which allow for the quantification of the
evapotranspiration in large areas at a temporal resolution of approximately 16 days in a precise and
consistent way [38]. This acquisition frequency, however, can become a problem, especially in areas
where climate conditions do not always allow good quality data to be available. As one might expect,
a higher temporal frequency would be better. Sentinel-2 from European Space Agency (ESA) provides
good spatial (20–60 m) and temporal (five days) resolutions for the visible spectrum, but lacks the
Thermal Infrared (TIR) band [38]. Recently, methods have been developed with the aim of taking
advantage of the characteristics of both products (Landsat-8 and Sentinel-2), with efforts to generate
harmonized time series of surface reflectances for land monitoring applications being especially
relevant [39–41]. The combination of the products of both programs allows for an effective increase in
spatial and temporal coverage, providing a greater availability of data to users [42].

In this context, our working hypothesis states that it is possible to prepare a seasonal water
balance in crops using serial data from Landsat-8 and Sentinel-2, obtained through the integration and
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harmonization between the NDVI of both sensors, known as NDVI′. The expected result of this work
is a NDVI′ time series used to estimate ET through specific adjustment equations for each type of
crop, which allows one to continuously characterize the demand for water during an irrigation season.

2. Material and Methods

2.1. Study Site

The study was carried out in one of the characteristic zones of the Central Valley of Chile. It has
an area of 70 km2 irrigated by the Convento Viejo reservoir, which has a water storage capacity
of approximately 237 million m3. The area is located in the O’Higgins Region (252,626.83 E and
6,153,791.95 S, Zone 19, Datum WGS 84) along the South Lolol Canal (Figure 1). It is characterized
by a temperate Mediterranean climate (with winter rain), a condition that favors the development of
various crops such as forestry, orchards, cereal, and table grapes and vine, with 85.8% of the region’s
agroforestry area concentrated there [43]. The main agricultural land-use types identified in the study
site were plums, olives, almonds, blueberries, table grapes and vines, industrial tomatoes, maize,
wheat, cereals, and alfalfa. In this sense, for this work, the area was divided according to two types of
cover: orchards (2.7 km2) and annual crops (1.1 km2) (Figure 2).

Figure 1. Study site, located in the O’Higgins Region, Chile (252,626.83 E and 6,153,791.95 S, Zone 19,
Datum WGS 84). It has an area of 70 km2.
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Figure 2. The main agricultural land-use types.

2.2. Satellite Imagery

For this study, satellite images obtained from the Landsat-8 (L8) (L1T processing level,
radiometrically calibrated and orthorectified) and Sentinel-2 (S2) satellites (1C processing level,
with upper atmosphere reflectance values and orthorectified) were used. In Table 1, the characteristics
of the spectral bands of each satellite are presented. For the image selection, the absence of clouds
over the study area during the agricultural season (December 2017 to March 2018) was considered.
The images selected are shown in Table 2.

Table 1. Technical characteristics of the Landsat-8 (L8) and Sentinel-2 (S2) satellite images.

Landsat-8 OLI Sentinel-2 MSI

Temporal Resolution: 16 Days Temporal Resolution: 5 Days
Bands (µm) Spatial Resol. (m) Bands (µm) Spatial Resol. (m)

B1: Coastal 0.435–0.451 30 B1: Coastal 0.433–0.453 60
B2: Blue 0.452–0.511 30 B2: Blue 0.458–0.523 10
B3: Green 0.533–0.590 30 B3: Green 0.543–0.578 10
B4: Red 0.636–0.673 30 B4: Red 0.650–0.680 10

B5: Vegetation Red Edge 0.698–0.713 20
B6: Vegetation Red Edge 0.733–0.748 20
B7: Vegetation Red Edge 0.773–0.793 20
B8: NIR 0.767–0.908 10

B5: NIR 0.85–0.88 30 B8a: NIR 0.848–0.881 20
B9: WV 0.931–0.958 60

B9: Cirrus 1.363–1.384 30 B10: Cirrus 1.338–1.414 60
B6: SWIR 1.567–1.651 30 B11: SWIR 1.539–1.681 20
B7: SWIR 2.107–2.294 30 B12: SWIR 2.072–2.312 20
B8: PAN 0.503–0.676 15
B10: TIRS 10.60–11.19 100
B11: TIRS 11.50–12.51 100
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Table 2. L8 and S2 satellite image dates (DOY: Day Of Year).

Date Satellite Date Satellite Date Satellite

10 December 2017 (DOY 344) S2B 19 January 2018 (DOY 19) S2B Mar/10/2018 (DOY 69) S2B
20 December 2017 (DOY 354) S2B 08 February 2018 (DOY 39) S2B Mar/15/2018 (DOY 74) S2A
25 December 2017 (DOY 359) S2A 13 February 2018 (DOY 44) S2A Mar/20/2018 (DOY 79) S2B
30 December 2017 (DOY 364) S2B 18 February 2018 (DOY 49) S2B Mar/25/2018 (DOY 84) L8-S2A
04 January 2018 (DOY 4) L8 21 February 2018 (DOY 52) L8 Mar/30/2018 (DOY 89) S2B
09 January 2018 (DOY 9) S2A 05 March 2018 (DOY 64) S2A

2.3. Methods

The workflow used to achieve the research objective is shown in Figure 3. At the start, the spectral
bands from the L8 and S2 satellites were atmospherically corrected using the Semi-Automatic
Classification plugin in the open-source software QGIS 2.8.9. Then, the co-registration of the L8 and
S2 images was carried out with the AutoSync tool in Erdas IMAGINE v.2011. This tool algebraically
recognizes the coordinates of common points between the two satellite images. To carry out this
process, the L8 satellite image was chosen as a reference, such that the other images were geometrically
fitted to it. Subsequently, the subsampling of S2 from 10 m to 30 m pixel size was carried out using the
linear interpolation method.

Figure 3. Overall diagram of the proposed methodology.

To obtain the harmonization between the NDVI maps of the L8 and S2 sensors, the first step
is to generate the NDVI maps during the season for both sensors, applying Equations (1) and (2),
respectively; where NDVIL8 and NDVIS2 are the normalized difference vegetation indices for the L8
and S2 satellites, respectively.

NDVIL8 =
B5− B4
B5 + B4

(1)

NDVIS2 =
B8− B4
B8 + B4

(2)

For NDVIL8 and NDVIS2 harmonization, images from coinciding dates or with minimal temporal
separation during the analyzed season were selected. For each pair of images, 618 sampling points in
the annual crops and 638 in the orchard cover were selected. These points were chosen at random,
and those out of the confidence interval were eliminated. The confidence interval is defined as absolute
value difference between NDVIL8 and NDVIS2 for each pair of identified points. This value must be
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less or equal to the average value of difference. With the sampling points selected, a scatter plot for
both agricultural covers was plotted, with the x-axis representing the NDVIS2 variable and y-axis the
NDVIL8 variable. The fitting equation for the two variables was obtained from linear least squares
regression, to which the 1:1 line represents perfect agreement between the NDVIs. In addition, for each
graph, the Pearson correlation coefficient (r) was determined. The fitting equation that relates the
harmonized vegetation index ( ̂NDVIL8) is presented in Equation (3).

̂NDVIL8i = aNDVIL8
i · NDVIS2i + bNDVIL8

i (3)

where i is the type of agricultural land-cover considered (orchards or annual crops), and aNDVIL8
i and

bNDVIL8
i are the coefficients of linear fit between NDVIL8i and NDVIS2i for the analyzed season. Thus,

the multimodal NDVI time series is composed of a total of three NDVIL8 and 14 ̂NDVIL8 maps,
and is called NDVI′.

Following the workflow outlined in Figure 3, linear fitting between ETL8 and NDVIL8 for each
L8 image (Table 2) was carried out. The ETL8 maps at 30 m spatial resolution were generated from L8
images throughout the agricultural season using the SEB methodology proposed in Allen et al. [33]
and implemented and validated by Fonseca-Luengo et al. [44]. The fit equation for five defined type
of annual crops and six types of orchard covers, considering all L8 images is as follows:

ETL8k,j = aETL8
k,j · NDVIL8i,j + bETL8

k,j (4)

where k represents the different types of agricultural land use considered in Figure 2 (plums, olives,
almonds, blueberries, table grapes and vines, industrial tomatoes, maize, wheat, cereals, and alfalfa),
and j is the number L8 satellite images (DOY 4, DOY 52, and DOY 84, Table 2). Meanwhile, aETL8

k,j and

bETL8
k,j are the coefficients of linear fit. Thus, for each map of ETL8 and NDVIL8 during the analyzed

season, different fit equations for each orchard and annual crop type in the study area were obtained.
Finally, with Equation (5), it is possible to estimate evapotranspiration (ÊT) for different

agricultural land uses considered, by means of the NDVI′ time series.

ÊTk,m = aETL8
k,j · NDVI′i,m + bETL8

k,j (5)

where m represents the total amount of S2 images that were captured 30 days before and 30 day after
the day j when the L8 image were captured.

To determine daily evapotranspiration during the season, it was necessary to obtain the actual
crop factor (Fc) from the ratio between ÊTk,m and reference evapotranspiration (ETr), estimated using
the Penman–Monteith model [19] at the time the images were captured. In Equation (6), the Fc for
each type of cover (k) and the whole series (m) is described:

Fck,m =
ÊTk,m

ETr,m
(6)

Thus, daily estimated evapotranspiration ÊTc was the product of ETr and the Fc obtained in each
of the satellite images and extrapolated to the analyzed agricultural season.

Whereas, potential evapotranspiration (ETp) was determined from the potential crop factor
(Fcp), obtained from the literature [8,45], associated with the percentage of coverage during plant
development. However, in our proposed method, this factor was adjusted to the NDVI values
obtained from the satellite images during the season. This factor was called NDVI potential crop
factor (FcpNDVI) and the way to obtain it was through the linear relationship between the Fcp and the
NDVI′ of each crop. For this, the extreme values of Fcp were related to the NDVI′ values for each crop,
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while for the orchards, the difference was made between young trees and adult trees. The FcpNDVI is
described in Equation (7).

FcpNDVI
k,m = aFcp

k,m · NDVI′i,m + bFcp
k,m (7)

Thus, daily ETp was the product of ETr and adjusted Fc during the agricultural season for each
crop in the study area.

To determine the water balance during the agricultural season, the estimated water demand and
the potential demand of each of the annual crop and orchard types in the study area were determined.
The two water demands are described in Equations (8) and (9), respectively.

Estimated Demandk,m =
n

∑
d=1

(ÊTc)
n
k,m (8)

Potential Demandk,m =
n

∑
d=1

(ETp)
n
k,m (9)

where d is the start day and n the final day of the analyzed agricultural season. Thus, the seasonal
water balance is composed of a comparison between estimated water demand and potential demand
of each of the crops in the studied area.

The methodology evaluation was carried out by comparing the estimated water demand with
the volume of water applied during the analyzed period. To this end, annual crops and orchards
representative of the study site were selected. Meanwhile, information on the volumes applied was
compiled from the records of the volume meters installed on the different farms. To compare the two
variables, statistical indicators used root mean square error (RMSE), which measures the variation
of the estimated values with respect to the observed values, and the bias indicator (BIAS), which
provides information on the tendency of the model to over- or underestimate a variable.

3. Results

In Table 3, the image dates used to fit the harmonization between L8 and S2 are shown.

Table 3. Image dates used to fit the harmonization between L8 and S2.

Landsat 8 Sentinel 2

04 January 2018 (DOY 4) −→ 09 January 2018 (DOY 9)
21 February 2018 (DOY 52) −→ 18 February 2018 (DOY 49)
25 March 2018 (DOY 84) −→ 25 March 2018 (DOY 84)

The scatter graph between NDVIS2 and NDVIL8 for the three pairs of images for the orchards
and annual crops are shown in Figure 4.

Using Equation (3), the harmonized relation for NDVIL8 and NDVIS2 to orchards is

̂NDVIL8 = 0.8288 · NDVIS2 + 0.1172. (10)

In addition, the harmonized relation for the annual crops is

̂NDVIL8 = 0.8588 · NDVIS2 + 0.0997. (11)

In Figure 4, it is possible to observe that the relationship between NDVIL8 and NDVIS2 is close
to 1:1 for both cover types. In addition, the Pearson coefficient values (r) were 0.88 for the orchards
and 0.94 for the annual crop cover. The difference observed between orchards and the annual crops
could be due to the partial cover of the orchards, a topic that has been investigated by Souto et al. [46].

In addition, in Figure 4, it can be seen for both cover types that L8 tends to give large values of
NDVI compared to S2, with values almost up to 0.6. Although Tello et al. [47], found a correlation
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coefficient (r) of 0.99 for the NDVI in agricultural crops, this relationship was determined without
distinguishing between different cover types.

(a) Orchards (b) Annual Crops

Figure 4. Scatter graph between NDVIS2 and NDVIL8 for: (a) orchards and (b) annual crop agricultural
covers. The dashed line is 1:1 and the solid line corresponds to the linear least squares fitting.

The available NDVI′ maps during the growing season are shown in Figure 5. The time series
was composed by NDVIL8 and ̂NDVIL8, making a total of 17 images during the agricultural season.

Figure 5. Composition of the NDVI′ multimodal time series during the growing season.

Using this multimodal NDVI′ time series, the ÊT was estimated for each orchard and annual
crop in the study site.

The results show that there is a significant correlation between ETL8 and NDVIL8 in each of the
orchards and annual crops on the three analyzed days. This is reflected by the Pearson correlation
coefficient (r) values, which overall are above 0.8. Upon comparing this correlation to what appears in
the literature, it can be seen that the r values are very similar in [48–50]; this being dependent on the
type of cover under study. Thus, a total of 18 and 15 fitting equations for the orchards and annual crop
agricultural covers, respectively, were obtained. Using each of these fitting equations, it was possible
to estimate ÊT for the season which extends from December 2017 to March 2018, specifically for each
type of orchard and annual crop type in the study area. Nonetheless, ÊT estimation could have been
improved if more images from the season had been obtained for the ETL8–NDVIL8 fitting, which in
our study area was impeded by the presence of clouds.

By replacing the coefficients from Table 4 in Equation (3), the ÊT maps were obtained for each crop
of the study site (Figure 6). In Figure 6, it is possible to observe the temporal and spatial distribution
of ÊT represented by monthly images, which was estimated using the different ETL8–NDVIL8 fitting
equations for each orchard and annual crop type in the study area.
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Table 4. Coefficients of linear fit between evapotranspiration (ETL8) and NDVIL8 and Pearson
correlation coefficient (r) for orchards and annual crops on the three analyzed days.

04 January 2018 21 February 2018 25 March 2018
DOY 4 DOY 52 DOY 84

a ̂NDV IL8 b ̂NDV IL8 r a ̂NDV IL8 b ̂NDV IL8 r a ̂NDV IL8 b ̂NDV IL8 r

O
rc

ha
rd

s

Almonds 9.6331 −2.2964 0.95 9.5884 −2.6277 0.89 5.5133 −0.4960 0.79
Blueberries 4.970 −0.0216 0.84 3.5310 0.2247 0.84 2.6192 0.7221 0.80
Plums 7.6880 −1.3594 0.77 6.3071 −1.1207 0.84 5.0152 −0.5987 0.79
Olives 8.0158 −1.8227 0.89 9.8622 −2.7053 0.77 7.5290 −1.3265 0.77
Table grapes 9.5418 −3.0590 0.94 3.1905 0.9724 0.55 3.3327 0.3498 0.86
Vine 9.2916 −2.5368 0.96 6.0001 −1.0156 0.93 3.1834 0.9047 0.84

A
nn

ua
lC

ro
ps Corn 8.1881 −1.5872 0.97 5.0615 −0.4432 0.90 2.2771 1.3574 0.70

Alfalfa 5.3963 −0.4837 0.80 4.4676 −0.6641 0.82 3.1753 0.0803 0.81
Cereals 8.1596 −1.7149 0.98 6.6392 −1.3811 0.93 6.3676 −0.8058 0.82
Wheat 7.8890 −1.5880 0.95 5.5146 -0.7694 0.93 3.5682 0.2759 0.63
Tomato 8.9797 −2.1934 0.98 5.8506 −1.0944 0.94 4.2877 −0.1040 0.89

(a) 20 December 2017 (DOY 354) (b) 19 January 2018 (DOY 19)

(c) 13 February 2018 (DOY 44) (d) 10 March 2018 (DOY 69)

Figure 6. Daily evapotranspiration (ÊT) maps for the four months of the growing season (December
2017 to March 2018), for the agricultural cover of the study area. Annual crops, industrial tomatoes,
and orchards; plums are enlarged in the insets.

The overall results show that ÊT presents the highest values on 20 December and 19 January, in
the range of 5 and 6 mm·day−1. Meanwhile, on 13 February and 10 March the values are between 4 and
5 mm·day−1 This lessening of ÊT starting on 13 February can be attributed to the senescence period,
particularly for the annual crops, which present different phenological periods than the orchards.

ÊT of industrial tomatoes varies from 3 mm·day−1 in December to up to 6 mm·day−1 in January,
a variation that coincides with the development of the crop as it reaches maturity in late February
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and early March. However, the difference in ÊT of plums is lower than that of industrial tomatoes,
with values between 3 and 5 mm·day−1.

In general, orchards presented a relatively homogeneous water demand over the irrigation season
because the canopy cover does not change during the season. It is important to point out that ET is
closely related to the cover percentage of orchards, as well as annual crops [8,45].

The selected crops are identified in Figure 7 to show the behavior of the daily ÊTc during the
analyzed period, which were obtained from the ÊT maps that were generated during the agricultural
season following the proposed methodology.

Figure 7. Identification of the selected orchards and annual crops to show the behavior of daily ÊTc

during the analyzed season.

The results shown in Figure 8 show the variability in water consumption through ÊTc of the
different orchards and annual crops, showing that in general the analyzed orchards present a similar
ÊTc behavior during the season. However, the behavior of table grapes presents higher values than
those of the other orchards, reaching 7 mm·day−1 in December. Additionally, it is observed that during
the first days of December orchards obtained the highest ÊTc values recorded during the season;
attributed to better irrigation management during this period or possibly the contribution of soil
evaporation rather than the transpiration of the trees themselves.

In the case of the annual crops, the behavior of the ÊTc is extremely variable among them,
reflecting the natural differences in the water needs of each crop, with corn and the industrial tomato
registering the highest values of ÊTc, in a range varying between 3 to 6 mm·day−1.
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(a) (b)

(c) (d)

Figure 8. Estimation of daily crop evapotranspiration (ÊTc) and precipitation (Pp) during the analyzed period for: (a) plume, olive, and blueberry; (b) table grape,
vine, and almond; (c) industrial tomato, maize, and wheat; (d) cereal and alfalfa; using the described methodology.
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The global results of water demand for the crops estimated with our proposed methodology
(Figure 9) show that the applied volume of water to the crops was lower than the potential demand for
all the season. This indicates that the water applied to different crops was insufficient or inadequate
during the season.

Figure 9. Estimated and potential seasonal water demand for orchards and annual crops representative
of the study area.

In the particular cases of olives, table grapes, and maize (Figure 9, B, D and H), the estimated
water demand was practically identical to the potential demand, showing that the amount of water
applied during the season was the required one. This scenario is the least frequent in the studied
area, even though the availability of the resource in the sector does not show restrictions. However,
the rest of the crops showed an estimated water deficit, ranging from 6% to 48% for olive trees (B) and
wheat (I), respectively.

The water deficit obtained by the different crops during the analyzed period can generate
considerable damage to its yield. In the case of wheat, a water deficit causes a decrease in grain
yield, especially when water scarcity occurs during the sensitive stages of growth (the flowering and
grain filling stage) [51]. In blueberries, water deficit in any period of its phenological stage affects the
vegetative growth, substantially reducing the potential yield, and in addition, it is a determining factor
for the production in the following season [45,52]. Almond trees are considered drought tolerant,
but irrigation scarcity is critical to the production of high yields with high quality nuts, mainly in
the preharvest stage [53]. In plum trees, water stress in the final stages of fruit growth significantly
decreases their size, but accelerates ripening, and increases the concentration of sugars [54]. For vines,
water deficit in the stages after grapes veraison can improve the quality of the wine with almost no
reduction in yield [55,56]. On the other hand, the imposition of severe drought stress in inappropriate
phenological stages can cause a significant decrease in yield and even a decrease in quality in extreme
cases [57]. As we have seen, the response of annual crops and orchards to a lack of water is different in
each case and the decisions that must be taken in irrigation management must be appropriate for each
one of them.

The results shown in Figure 10 show that the estimated volume of water applied for maize,
plums, and olive trees (A, B, C, and D) satisfies the estimated water requirements through the potential
demand. In the case of the adult plum tree (B), the water applied during the season is less than the
amount of water required by the orchard. In addition, it is shown that the potential demand obtained
for the adult plum tree was lower than that of the young plum, which can be attributed to the lack of
water applied during the season or inadequate water management.
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Figure 10. Estimated, applied, and potential water volumes for the orchards and annual crops selected
for the evaluation of the methodology.

Olive trees in general are resistant to a lack of water and show a high recovery capacity after
prolonged periods of drought, but adequate irrigation management is required to produce economical
yields. However, a certain degree of stress improves oil quality [58,59].

For industrial tomatoes (F), the applied volume exceeded the estimated volume by 1300 m3·ha−1,
but this is almost identical to the potential volume. This shows that the plants only evapotranspire the
amount of water that is able to be retained in the soil at the root zone and not the excess applied water.
Excessive irrigation in tomato plants can cause excessive leaf growth, plants with high vegetative vigor
tend to produce low quality fruit, and even in some varieties, large variations in moisture levels in the
soil during fruit ripening can cause fruit cracking, spots, rot, and variation in size and shape [60].

Statistically, the total estimated water demand through the proposed methodology based on the
volume applied had an RMSE of 0.6 mm·day−1 and a BIAS of −0.4 mm·day−1.

Although the methodology implemented is able to effectively reproduce the amount of water
applied, the considerable lack of water during the vital stages of plant development is demonstrated.
Both water scarcity and inadequate applications can be combined with an uneven distribution of
water in the field, often due to the low uniformity of irrigation systems. This especially occurs when
irrigation systems are not properly designed, operated, and maintained. This can cause a substantial
decrease in crop yield and economic income [61].

4. Conclusions

On the basis of the obtained results, we conclude that it is possible to construct an NDVI time
series by integrating L8 and S2 data, allowing the estimation of ÊT during an agricultural season and
suitably demonstrating the responses of crops to irrigation excess and shortage problems associated
with water management. This is based on the Pearson correlation coefficient (r > 0.8) values that
were obtained for the orchards and annual crop cover. In addition, a comparison between estimated
water demand and information on potential requirements meant that the water balance was kept
up to date, according to the water needs of different agricultural cover types. This can encourage
better management of applied water levels and production in different stages of the irrigation season.
Further research on this topic, focusing on potential water demands for orchards and annual crops,
will allow for better and more precise application of the proposed method.
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