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A B S T R A C T

Solving computational fluid dynamics problems requires using large computational resources. The computa-
tional time and memory requirements to solve realistic problems vary from a few hours to several weeks with
several processors working in parallel. Motivated by the need of reducing such large amount of resources
(improving the industrial applications in which fluid dynamics plays a key role), this article introduces a new
predictive Reduced Order Model (ROM) applied to solve fluid dynamics problems. The model is based on
physical principles and combines modal decompositions with deep learning architectures. The hybrid ROM,
reduces the dimensionality of a database via proper orthogonal decomposition (POD), extracting the dominant
features leading the flow dynamics of the problem studied. The number of degrees of freedom are reduced
from hundred thousands spatial points describing the database to a few (20–100) POD modes. Firstly, POD
divides the spatio-temporal data into spatial modes and temporal coefficients (or temporal modes). Next, the
temporal coefficients are integrated in time using convolutional or recurrent neural networks. The temporal
evolution of the flow is approximated after combining the spatial modes with the new temporal coefficients
computed. The model is tested in two complex problems of fluid dynamics, the three-dimensional wake of a
circular cylinder and a synthetic jet. The hybrid ROM uses data from the initial transient stage of numerical
simulations to predict the temporally converged solution of the flow with high accuracy. The speed-up factor
comparing the time necessary to obtain the predicted solution using the hybrid ROM and the numerical solver
is ∼140–348 in the synthetic jet and ∼2897–3818 in the three dimensional cylinder wake. The robustness shown
in the results presented and the data-driven nature of this ROM, make it possible to extend its application to
other fields (i.e. video and language processing, robotics, finances).
1. Introduction

Computational fluid dynamics is connected to high-dimensional
systems solving complex problems, generally described by a large
number of different spatio-temporal flow scales. The need of using large
computational resources to properly solve realistic problems and, the
high complexity of the underlying physics describing the flow motion,
motivates the search of alternative tools providing accurate results,
whilst reducing the computational time and memory requirements
in the computational facilities. In this line, deep learning models,
which are the state-of-the-art solution in many disciplines (i.e. finance,
robotics, video and language processing), are not yet fully applied to
fluid dynamics predictions, leaving it open new possibilities to explore
in this research area.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: sr.abadia@upm.es (R. Abadía-Heredia), manuel.lopezm@uva.es (M. López-Martín), belcar@tel.uva.es (B. Carro), jarribas@tel.uva.es

(J.I. Arribas), josemiguel.perez@upm.es (J.M. Pérez), soledad.leclainche@upm.es (S. Le Clainche).

Modelling complex flows, such as multi-scale, noisy, transitional
or turbulent flows, is a research topic of high interest due to its
multiple applications in several types of industrial and engineering
processes (i.e.: combustion systems, power plants, unmanned vehi-
cles) (Marusic et al., 2003) or their application in natural systems,
for instance, describing the propulsion mechanism driving the flow
motion in marine animals (DeMont & Gosline, 1988), describing the
wake of flying insects (Muijres et al., 2005) or modelling the blood
flow in tumours (Abadia et al., 2021b), to name a few. In some cases,
turbulence can produce undesirable effects, such as increasing drag in
vehicles rising the fuel consumption and consequently the air pollution,
increasing drag in industrial devices producing fatigue loads or struc-
tural vibrations, or in the case of biological applications, turbulence is
vailable online 25 September 2021
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connected with some pathological situations triggering negative biolog-
ical responses, for instance, coronary artery diseases as a consequence
of medical implants (Corrochano et al., 2021; Ferrari et al., 2006).
In some other cases, turbulence can lead to positive effects, such as
heat transfer enhancement or promoting the fluid mixing, maximizing
the efficiency in some industrial systems (Le Clainche et al., 2013).
Motivated by all these applications, modelling and predicting the flow
behaviour in complex or turbulent flows is a research topic of high
interest. Nevertheless, due to the high complexity of the flow solving
realistic systems, developing high-accuracy low-dimensional models,
also known as reduced order models (ROMs), predicting the temporal
evolution of the flow dynamics, is a challenging task, but very useful,
i.e. (i) to assess the performance of different flow control strategies
(controlling the presence of flow instabilities or turbulence) improving
the system efficiency (Brunton & Noack, 2015; Jones et al., 2015; Noack
et al., 2011), or (ii) to identify new physical mechanisms driving the
flow motion (Lassila et al., 2014; Le Clainche, 2019; Mendez et al.,
2019; Sharma, 2011).

Depending on the data available, it is possible to distinguish two
types of ROMs: pre-processed ROMs, which are based on the Galerkin
rojection of the full state equations into sub-spaces of smaller di-
ension that are defined using a modal basis that can be obtained
sing several techniques (Luchtenburg et al., 2009; Noack et al., 2011;
uarteroni et al., 2016), and data-driven ROMs, which are equation-

free models providing accurate descriptions of the flow without a priori
knowledge of the underlying equations, very useful in the analysis of
experimental databases. This second type of ROMs can be developed
based on three main approaches. The first approach is based on modal
decomposition techniques, which decompose the data analysed as an
expansion of hierarchical modes that extract relevant information,
mainly based on physical principles, from the full state equations.
Hence the dimensionality of the original data is reduced to a few rep-
resentative modes, i.e. dynamic mode decomposition (DMD) (Schmid,
2010) or proper orthogonal decomposition (POD) (Sirovich, 1987)
modes, that can be extrapolated in time (Le Clainche & Ferrer, 2018;
Le Clainche et al., 2018a). The second approach uses machine learning
tools, based on e.g. deep neural networks (LeCun et al., 2015) or
alternative black-box approaches, for data forecasting. This second
approach can also be combined with data dimensionality reduction
techniques, such as auto-encoders, accelerating and improving the
performance of the deep learning model (Omata & Shirayama, 2019).
The need of reducing the data dimensionality in fluid dynamics ap-
plications is clear, especially in the analysis of computational fluid
dynamics databases, where the number of degrees of freedom scale
from thousands to millions of points (Brunton et al., 2020). Finally,
the third type of approach, for simplicity called as hybrid ROM, is a
ombination of the two previous one, where the data dimensionality
eduction is performed using modal decompositions, extracting the
nderlying physical mechanism leading the flow motion, and combines
his reduced-dimensional system with deep learning architectures to
onstruct predictive models (Le Clainche et al., 2021).

This article proposes a new method to perform a hybrid ROM based
n physical principles, which combines a reduced basis of POD modes,
aking advantage of their physical insight, with different deep learning
rchitectures to estimate the temporal evolution of the flow. The main
oal of this work is to provide a ROM, suitable to model problems in
luid dynamics with different applications, reducing the computational
ime in the numerical simulations from hundred or even thousands of
ours to a few seconds. Reducing the computational resources required
o solve these types of problems, could be reflected in some benefits
or the industry (i.e. improving time-to-market product efficiency in
everal industrial sectors, among others).

Some previous works explore the idea of combining deep learning
lgorithms with modal decompositions in fluid dynamics and in other
ypes of applications. In most of the cases, these authors take advantage
2

f the properties of the DMD or POD modal expansions to decompose
the flow into groups of spatial modes (the DMD or POD modes) and
temporal coefficients (also known as temporal modes in the case of
POD expansions). In this way, the deep learning architectures can be
used to reconstruct (interpolation) or to predict (extrapolation) the
system dynamics only using the information contained in the temporal
coefficients. For instance, Iuliano and Quagliarella (2013) combined
POD with radial basis functions, namely RBF (i.e. Gaussian, multi-
quadratic, inverse-quadratic), to estimate the evolution in time of the
POD coefficients (only interpolation, no temporal prediction) to con-
struct surrogate models for optimization in aerodynamic design. Freitag
et al. (2018) combined gappy POD with RBF to reconstruct an incom-
plete spatial dataset and applied recurrent neural networks to such
reconstructed field for temporal forecasting in mechanized tunnelling
processes. More in connection with the field of fluid dynamics, Guo and
Hesthaven (2019) combined the POD temporal coefficient with non-
linear regression techniques (Gaussian regression process) to construct
a temporal predictive model that was successfully applied for tem-
poral forecasting in the wake of a two-dimensional circular cylinder.
Following in this line, but with applications in more complex fluid
dynamic problems, Güemes et al. (2019) combined empirical POD (Dis-
cetti et al., 2018) with convolutional neural networks to reconstruct
temporal flow fields in wall bounded turbulent flows from temporal
information contained in wall sensors, in a way equivalent to a linear
stochastic estimation. A similar methodology was used by Guastoni
et al. (2020) to reconstruct two-dimensional velocity-fluctuation fields
at different wall-normal locations in a turbulent open channel flow. Due
to the complexity of these problems, the authors divided the domain
into smaller subdomains to improve the general flow predictions.

This article also combines POD and deep learning architectures to
construct predictive models applied to solve fluid dynamics problems.
In contrast to the work presented in Guo and Hesthaven (2019), the
advantage of using neural networks to extrapolate in time the POD
temporal coefficients instead of other type of non-linear regression
techniques, extends the field of application of the previous method-
ology to solve more complex fluid dynamic problems (i.e., multiple
spatio-temporal flow scales, complex non-linear dynamics). The pre-
dictive hybrid ROM is tested in two complex applications of fluid
dynamics. The first application solves the three-dimensional wake of
a circular cylinder in transitional regime. This is a benchmark problem
to test new models and applications in fluid dynamics. The database
is formed by a group of data collected in the transient stage of a
numerical simulation. The model can predict the temporal evolution of
the flow, reaching the saturated stage, where the numerical simulation
converges in time. Hence, the computational cost of the simulation is
drastically reduced from ∼1600 h to less than 3.5 s using the model.
The second database models the flow in an axi-symmetric synthetic jet
in transition-to-turbulence regime. This type of jet is formed by the
periodic oscillations of a cavity that forces the fluid to pass through
a jet nozzle, continuously leaving and re-entering into the cavity. This
characteristic property of synthetic jets increases the flow complexity,
since the topology patterns of the flow change with the fluid move-
ment. Synthetic jets are used in several industrial applications. Some
examples include flow control (Cattafesta & Sheplak, 2010; Glezer &
Amitay, 2002), enhancement of fluid mixing (Wang & Menon, 2001)
or rise in heat transfer (Pavlova & Amitay, 2006). Moreover, synthetic
jets also model the movement of some marine animals such a jellyfish,
octopus or squids (DeMont & Gosline, 1988).

This article is an extension of the work presented by Lopez-Martin
et al. (2021), who used three-dimensional convolutional neural net-
works for temporal forecasting in complex fluid dynamics problems.
The main novelty of this work lies in the data-dimensionality reduction
strategy carried out in the original data, before applying deep learning
architectures for time predictions. This dimensionality reduction con-
verts the highly complex data, formed by hundred thousands degrees

of freedom, into small spaces composed by 20–100 degrees of freedom,
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simplifying the deep learning architecture requirements. More specifi-
cally, accurate temporal predictions have been carried out using simple
models formed by one-dimensional convolutional and recurrent neural
networks. Moreover, the data-driven nature of the model presented,
and the robustness presented in the applications carried out, show that
this hybrid ROM can be extended to analyse other type of data of simi-
lar nature (complex and high-dimensional time-series data) from other
areas, such as network intrusion detection, network traffic forecasting
or video prediction.

The highlights of this work include: (i) the development of hy-
brid ROMs based on physical principles, (ii) combining modal decom-
positions (POD) with neural networks for temporal forecasting, (iii)
providing a robust architecture to predict the non-linear dynamics
in fluid dynamic problems, (iv) a new model that is able to predict
the saturated regime in numerical simulations using data from the
transient solution and, (v) the reduction of the computational time to
generate fluid dynamic data from hundred or even thousands of hours
to a few seconds. Unfortunately, the method has only been tested in
periodic solutions. Nevertheless, the good performance of the model
and the complexity presented in the two problems analysed, makes it a
promising tool that could be extended for the analysis of more complex
problems in future research.

The article is organized as follows. Section 2 describes the method-
ology to construct the hybrid ROM based on combining POD modal
decompositions with deep learning strategies. Section 3 introduces the
problems studied and shows the main results obtained. Finally, the
main conclusions are presented in Section 4.

2. Methodology

This section introduces the main algorithm to generate the new
predictive ROM, fully data-driven, presented in this article, called as
the hybrid ROM. The algorithm combines POD, to reduce the data
dimensionality based on the physical principles of the flow, with deep
learning predictive models based on convolutional (CNN) and recursive
(RNN) neural networks. It is possible to download the code and test the
hybrid ROM in Abadia et al. (2021a).

For simplicity, the data are organized in the following snapshot
matrix,

𝑿 = 𝑽 𝐾
1 = [𝒗1, 𝒗2,… , 𝒗𝑘, 𝒗𝑘+1,… , 𝒗𝐾−1, 𝒗𝐾 ], (1)

with 𝐾 the total number of snapshots and 𝒗𝑘 the variable of the flow
field considered at time instant 𝑡𝑘. The dimension of the matrix is
𝐽 × 𝐾, with 𝐽 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧, being 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 the number of
grid points defined along the streamwise, normal (or radial) and span-
wise spatial components of the domain. In the applications presented
below, each snapshot contains spatio-temporal information, which is
modelled by the velocity vector evaluated on each grid point defining
the computational domain. Hence, the velocity vector at time instant 𝑡𝑘,
described as 𝒗(𝑥, 𝑦, 𝑧, 𝑡𝑘) = 𝒗𝑘 where 𝑥, 𝑦 and 𝑧 represent the streamwise,
normal (or radial) and spanwise velocity components, is re-organized
as a one dimensional array with dimension 𝑝𝐽 × 1, being 𝑝 the number
of components forming the vector. In the two applications presented
below, one of them is three-dimensional (𝑥, 𝑦 and 𝑧, with 𝑝 = 3 and
𝒗 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)), while the other is two-dimensional (𝑥 and 𝑦, with
𝑝 = 2 and 𝒗 = (𝑣𝑥, 𝑣𝑦)). The dimension of the snapshot matrix (1) is
then 𝑝𝐽 ×𝐾. For simplicity, the algorithm presented below is described
considering the three spatial components.

2.1. Hybrid reduced order model based on proper orthogonal decomposition

Proper Orthogonal Decomposition (POD) is a technique introduced
by Lumley (1967) to identify coherent structures in turbulent flows.
The method decomposes the flow field as a combination of POD modes,
𝜱𝑗 (𝑥, 𝑦, 𝑧), which are obtained by means of optimizing the mean square
of the field under consideration. POD modes form an orthogonal basis
3

t

that is optimal in terms of kinetic energy, which models the spatial
patterns of the flow field combined with some temporal coefficients
𝒄𝑗 (𝑡), as

𝒗(𝑥, 𝑦, 𝑧, 𝑡) ≃
∑

𝑗
𝒄𝑗 (𝑡)𝜱𝑗 (𝑥, 𝑦, 𝑧). (2)

The classical algorithm behind POD is based on the covariance of
a state vector changing with time. However, the size of this covari-
ance matrix is a function of the spatial degrees of freedom of the
data, generally making prohibitively expensive solving problems in
fluid dynamics. These problems are usually defined by two- or three-
dimensional grids containing thousands or even millions of points. As
an alternative, Sirovich (1987) introduced the snapshot method, also
known as singular value decomposition (SVD). Both terms, SVD and
POD, are generally used interchangeably in the literature, hence POD
and SVD modes are the same.

Applying SVD to the snapshot matrix (1), the spatio-temporal data
are decomposed into the POD modes 𝑼 (orthogonal in space), the
temporal coefficients 𝑻 , and the singular values 𝜮 (representing the
amount of energy of each mode and its contribution to the flow field)
as

𝑽 𝐾
1 ≃ 𝑼 𝜮 𝑻 ⊤, (3)

where ()⊤ denotes the matrix transpose, 𝑼⊤𝑼 = 𝑻 ⊤𝑻 are unitary
matrices with dimension 𝑁 ×𝑁 , the (diagonal) matrix 𝜮, contains the
singular values 𝜎1,… , 𝜎𝑁 and 𝑁 is the number of selected POD modes.
These modes are ranked in decreasing order by their singular values,
where the most energetic (highest singular value) modes provide ac-
curate representations of the general flow dynamics (large size flow
scales, experimental data free of noise, et cetera). The number of 𝑁
selected modes is calculated according to a certain tolerance 𝜀 (tunable)
as

𝜎𝑁+1∕𝜎1 ≤ 𝜀. (4)

It is remarkable that this tolerance could represent the level of noise
(i.e.: in experimental data) or the relative size of the flow structures
that will be used to approximate the general flow field. In these
two examples, the modes with singular values below the tolerance
could be connected with noise, or small flow scales, and will be
neglected to represent the general flow dynamics. The error made in
the SVD approximation considering 𝑁 modes compared to the original
data, is measured by means of the relative root mean square error
(𝑅𝑅𝑀𝑆𝐸𝑃𝑂𝐷) as

𝑅𝑅𝑀𝑆𝐸𝑃𝑂𝐷 =
‖𝑽 𝐾

1 − 𝑼 𝜮 𝑻 ⊤
‖

‖𝑽 𝐾
1 ‖

, (5)

where ‖ ⋅ ‖ is the L2-norm.
For simplicity, Eq. (3) is re-written as

𝑽 𝐾
1 ≃ 𝑼 �̂� , (6)

with �̂� = 𝜮 𝑻 ⊤ called as the temporal modes and 𝑼 are known as the
patial modes, or the POD modes, as mentioned before. The matrix �̂� ,
f dimension 𝑁 × 𝐾, contains the information regarding the temporal
volution (𝐾 snapshots) of the flow field in rows. Hence, each row cor-
esponds to each of the 𝑁 temporal coefficients 𝒄𝑗 (𝑡) (with dimension
× 𝐾) from Eq. (2). If these temporal coefficients are extrapolated, or
volved (integrated) in time for 𝑃 time steps, then, the dimension of
he new matrix �̂� ′ is 𝑁 ×𝐾 ′, with 𝐾 ′ = 𝑃 +𝐾. Hence, it is possible to
econstruct the original data using Eq. (3), obtaining a new snapshot
atrix 𝑽 𝐾′

1 as

̄ 𝐾′

1 ≃ 𝑼 �̂� ′. (7)

he new snapshots, 𝐾 + 1, 𝐾 + 2,… , 𝐾 ′, of this matrix are the flow
redictions. This is the essence of the predictive ROM introduced in

his article. More specifically, we use a deep learning architecture based
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Fig. 1. Types of deep architectures to create the predictive ROM: recurrent and
convolutional neural networks. In both cases, the model predict a time-ahead snapshot,
�̂�𝑡+1, based on the previous 𝑞 snapshots. N is the number of POD modes.

on CNN and RNN to solve (integrate) in time the temporal modes �̂� ,
resulting into new snapshots of the flow field obtained at a very reduced
computational cost.

The predictive capabilities of this hybrid ROM are tested using the
RRMSE, which compares the original data 𝑽 𝐾′

𝐾+1 with the predictions
carried out by the deep learning model in the physical space 𝑽 𝐾′

𝐾+1 as:

𝑅𝑅𝑀𝑆𝐸 =
‖𝑽 𝐾′

𝐾+1 − 𝑽 𝐾′

𝐾+1‖

‖𝑽 𝐾′
𝐾+1‖

. (8)

2.2. Deep learning prediction models

This section introduces the deep learning models that have been
applied to predict the temporal evolution of the temporal modes �̂� . The
models proposed predict the snapshot 𝐾 + 1 given at time 𝑡 + 1 in the
temporal matrix, for simplicity written as �̂�𝑡+1, using the information
from the previous 𝑞 snapshots as �̂�𝑡, �̂�𝑡−1, �̂�𝑡−2,… , �̂�𝑡−𝑞+1. As explained
in the previous section, each snapshot represents a column in the matrix
�̂� . An sketch representing the deep learning architectures used, RNN
and CNN, is shown in Fig. 1.

On the one hand, the recurrent model is a multilayer neural network
formed by long short-term memory (LSTM) (Yu et al., 2019) layers and
fully connected (FC) layers. We have considered a different number
of units (dimensionality of the output space) for the LSTM layer. On
the other hand, the convolutional model is composed of convolutional
(Conv) layers followed by FC layers. Considering the matrix structure
of the dataset (columns of �̂� ) we have used Conv 1D (one-dimensional)
layers (Kiranyaz et al., 2021) that apply a one dimensional kernel,
with a stride of 1 and no padding. For the convolutional models, it is
necessary to include a flatten function between the convolutional and
fully connected layers to adapt the matrix structure used by the Conv
1D layers to a vector structure used by the FC layers. The architecture
details for the convolutional and recurrent models are presented in Ta-
bles 1–2. These tables show the number and type of layers, with specific
details for each layer, the activation function, Linear or Rectified Linear
Unit (ReLU), and the tensor dimension of the layers.

The training and validation strategy for the deep learning models is
presented in Fig. 2.
4

Table 1
Architecture details in the RNN. The layers are long short-term memory (LSTM) or fully
connected (FC), 𝑁 is the number of SVD modes, the number of predictors is 𝑞 = 10,
the activation functions are Linear or Rectified Linear Unit (ReLU). The number of
Kernels/neurons (# neurons) and the tensor dimension (Dimension) are indicated for
each layer.

# Layer Layer details # Neurons Activation function Dimension

0 Input 𝑁 10 ×𝑁
1 LSTM 100 or 400 ReLU 100 or 400
2 FC 100 ReLU 100
3 FC 𝑁 Linear 𝑁

For such aim, the columns of matrix �̂� are separated in three blocks
forming three small matrices that are used for the training, validation
and test of the neural network. The dimension of these small matrices
is 𝑁 × 𝐾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (training), 𝑁 × 𝐾𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 (validation) and 𝑁 × 𝐾𝑡𝑒𝑠𝑡
(test), where the total number of columns (snapshots or time samples) is
represented as 𝐾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔+𝐾𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛+𝐾𝑡𝑒𝑠𝑡 = 𝐾. The test data are extracted
with a rolling-window method as outlined in Fig. 3. This method
generates data batches with 𝑞 inputs and one output as expected by the
prediction model (Fig. 1). The offset considered between the successive
rolling windows is 1 (constant).

To train the models we use batch stochastic gradient descent algo-
rithm to minimize the Mean Squared Error Loss (𝑀𝑆𝐸𝐿𝑜𝑠𝑠) between the
real (�̂� 𝑟𝑒𝑎𝑙

𝑡 ) and predicted (�̂� 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑡 ) snapshots of the temporal matrix.

This error is firstly calculated for each time prediction, 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡)
(local error), as

𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) =
1
𝑁

‖�̂� 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑡 − �̂� 𝑟𝑒𝑎𝑙

𝑡 ‖

2, (9)

being 𝑁 the number of singular values. The global loss (𝑀𝑆𝐸𝐿𝑜𝑠𝑠) is
based on averaging the local loss calculated for each time prediction,
over the total temporal extension of the matrix as

𝑀𝑆𝐸𝐿𝑜𝑠𝑠 =
1
𝐾𝛼

∑

𝐾𝛼

𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡). (10)

This temporal extension is indicated by 𝐾𝛼 , which can be 𝐾𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 or
𝐾𝑡𝑒𝑠𝑡 (see Fig. 2), depending on whether we obtain the global loss: in
the validation or the test sets, respectively. Table 3 provides a summary
of the length of the training (𝐾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔), validation (𝐾𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) and test
(𝐾𝑡𝑒𝑠𝑡) sets for each one of the datasets used in this research.

To obtain the best network parameters, and as a regularization
mechanism, we use early stopping over the validation set. In other
words, the loss (𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡)) over the validation set is computed at the
end of each epoch (an epoch is a complete pass of all training samples),
and the training stops when this loss is not reduced after a certain
number of epochs (patience period). Then, the total loss is calculated
with the final size of the matrix 𝐾𝛼 used for the training or validation.

The training parameters for the neural networks used in this re-
search are the following: (a) optimization based on Adam (Kingma &
Ba, 2020) using the default values for the parameters (𝛼 = 0.001 for the
learning rate, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8 see details in Kingma &
Ba, 2020), (b) mini-batch gradient descent with a batch size of 5 and
100 epochs with early stopping and a patience period of 10 epochs, (c)
10 snapshots used to predict the next time-ahead snapshots (𝑞 = 10).

Finally, the RRMSE is also calculated for each time step to quantify
the quality in the predictions carried out by the neural network as

𝑅𝑅𝑀𝑆𝐸(𝑡) =
‖�̂� 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑡 − �̂� 𝑟𝑒𝑎𝑙
𝑡 ‖

‖�̂� 𝑟𝑒𝑎𝑙
𝑡 ‖

. (11)

It is remarkable that the strongly sequential and high-dimensional
nature of the data, together with a relatively small amount of training
data, have been the main drivers for choosing the proposed recurrent
and convolutional models. These models are appropriate for a high-
dimensional time series data structure, since they use a relatively small
number of training parameters, which is necessary to avoid overfitting.
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Table 2
Same as Table 1 for the CNN.

# Layer Layer details # Neurons Kernel size Stride Padding Activation Dimension

0 Input 𝑁 10 ×𝑁
1 Conv 1D 30 3 1 No ReLU 8 × 30
2 Conv 1D 60 3 1 No ReLU 6 × 60
3 Flatten 360
4 FC 100 ReLU 100
5 FC 𝑁 Linear 𝑁
Fig. 2. Data structure used for training, validation and test in the predictive models.
Fig. 3. Rolling window method used to extract the inputs (q) and expected outputs
(one) for the predictive models.

Table 3
Number of snapshots for the training, validation and test sets for each one of the
datasets analysed: the three-dimensional cylinder wake and the synthetic jet.

Dataset 𝐾𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐾𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐾𝑡𝑒𝑠𝑡 𝐾

Cylinder 255 45 199 499
Jet 3411 601 12100 16112

This is the reason for initially not using other successful alternative ar-

chitectures, such as those based on non-iterative neural networks with

random weights (Cao et al., 2020, 2018; Wang & Cao, 2018), which

also have a reduced number of training parameters but have been less

studied in their ability to incorporate sequential data, in addition to

the resulting high dimensionality of the input vectors in case the q

snapshots required as predictors were flattened into a single vector.

Nevertheless, studying the application of these alternative architectures

remains an open topic for future research.
5

3. Application to fluid dynamics

The model described in this article has been tested in two different
complex problems: the three-dimensional wake of a circular cylinder
and a synthetic jet in transition-to-turbulence regime. The databases
are generated numerically, and in both cases, the data analysed contain
information from the initial transient of the numerical simulations. The
hybrid ROM predicts the temporal evolution of the database, modelling
both the transient and the temporally converged solutions, when the
flow is saturated. The speed-up factor compares the total time necessary
to develop and predict a solution using the predictive ROM, which
considers the time employed in the training interval (𝑡𝑡𝑟) and the time
employed for the temporal predictions (𝑡𝑝𝑟𝑒𝑑), with the computational
time required by the numerical solver (𝑡𝑛𝑢𝑚) to simulate the predicted
interval (𝐾𝑡𝑒𝑠𝑡, see Table 3), as

Speed-up =
𝑡𝑛𝑢𝑚

𝑡𝑝𝑟𝑒𝑑 + 𝑡𝑡𝑟
. (12)

The governing equations describing the movement of the viscous
flow, incompressible and Newtonian, for the wake of a circular cylinder
and the synthetic jet, are the Navier–Stokes equations, written in
non-linear form as

∇ ⋅ 𝒗 = 0, (13)
𝜕𝒗
𝜕𝑡

+ (𝒗 ⋅ ∇)𝒗 = −∇𝑝 + 1
Re𝛥𝒗, (14)

where 𝒗 and 𝑝 are the non-dimensional velocity vector and pressure,
respectively, and Re is the Reynolds number, defined as Re= 𝑉 𝐿∕𝜈,
where 𝜈 is the kinematic viscosity of the fluid, 𝑉 is the characteristic
flow velocity, and 𝐿 is the characteristic length. As usual, the equations
are non-dimensionalized with the units for length and time, 𝐿 and 𝐿∕𝑉 .

3.1. Predictions in the three-dimensional wake of a circular cylinder

The flow past a circular cylinder is a benchmark problem in fluid
dynamics that serves to illustrate a large variety of applications. The
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Fig. 4. Iso-surfaces of spanwise vorticity in the three-dimensional wake of a circular
cylinder at Re= 280 and 𝐿𝑧 = 1.66.

flow bifurcations found in the wake of a circular cylinder are char-
acterized by the variations in the Reynolds number, as previously
defined Re= 𝑉 𝐷∕𝜈, where 𝐷 is the cylinder diameter and 𝑉 is the
incoming free stream velocity. At low Reynolds numbers, the flow
remains steady. The first flow bifurcation is identified at Re≃ 46, where
a Hopf bifurcation triggers the two dimensional flow oscillations in the
cylinder wake, forming a von Karman vortex street (Jackson, 1987).
Increasing the Reynolds number, the flow becomes three-dimensional
for some specific values of the spanwise length 𝐿𝑧 = 2𝜋∕𝛽, where 𝛽 is
the spanwise wavenumber (Barckley & Henderson, 1996).

The present article uses the database presented in Le Clainche et al.
(2018c) solving the three-dimensional wake of a circular cylinder at
Re= 280 in a computational domain with spanwise length 𝐿𝑧 = 1.66,
where the solution is periodic. Fig. 4 shows the iso-surfaces of spanwise
vorticity, defined as 𝜕𝑣𝑦

𝜕𝑥 − 𝜕𝑣𝑥
𝜕𝑦 , in the wake of the circular cylinder

modelling this flow.
The numerical database has been generated using the open source

numerical code Semtex (Blackburn & Henderson, 1999) to solve the
fully nonlinear, incompressible Navier–Stokes Eqs. (13)–(14). The di-
mensions and boundary conditions of the computational domain are
set as in the literature (Barckley & Henderson, 1996) and the cylinder
diameter is 𝐷 = 1 (the spatial components are normalized with the
cylinder diameter). The boundary conditions imposed are: Dirichlet
for velocity 𝑣𝑥 = 1 and 𝑣𝑦 = 𝑣𝑧 = 0 (for the streamwise, normal
and spanwise components), and Neumann conditions for the pressure
at the inlet, upper and lower boundaries of the domain; Neumann
conditions for velocity and Dirichlet conditions for the pressure at
the outlet boundary; periodic boundary conditions in the spanwise
direction with period 𝐿𝑧, where the equations are discretized using
64 Fourier equidistant collocation planes. The conditions to model the
cylinder boundaries are Dirichlet for velocity (𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 0) and
Neumann for pressure. The dimensions of the computational domain
(non-dimensionalized with the cylinder diameter 𝐷) are 𝐿𝑦 = ±15 in
the normal direction and 𝐿𝑥 = 15 and 𝐿𝑥 = 50 in the streamwise
direction upstream and downstream the cylinder. For simplicity, a
smaller computational domain, which focuses on the cylinder wake,
is used to construct the hybrid model, with dimensions 𝐿𝑦 = ±2 and
𝐿𝑥 = 10 in the streamwise direction downstream the cylinder.

The database is formed by 599 snapshots collected starting from the
beginning of the numerical simulations (time 𝑡 = 0). The snapshots
are equi-distant in time with time step 𝛥𝑡 = 1. As presented in Fig. 5,
showing the evolution of the streamwise, normal and spanwise velocity
components in a representative point of the cylinder wake, from time
0–100 there is a clear transient region in the streamwise and normal
velocity components. The spanwise velocity is zero until time 300, and
is not fully developed until time ∼ 350. Hence, the transitory of the
numerical simulation is extended at least to time 350, however, the
simulation is not converged at least until time 500 (see details in Le
Clainche et al., 2018c).

The database has been analysed to identify the most relevant POD
modes and reducing the data dimensionality. As it is presented below,
the different flow regimes (transient and saturated) identified in the
6

Fig. 5. Temporal evolution of the streamwise (top), normal (middle) and spanwise
(bottom) velocity components in the three-dimensional cylinder wake at Re= 280
extracted at (𝑥, 𝑦, 𝑧) = (1.5, 1, 𝐿𝑧∕2).

temporal variations of the velocity components along the numerical
simulations, are also identified in such POD modes. The first 100
snapshots (from time 0–100) have been removed from the dataset to
avoid the transient region identified in the streamwise and normal
velocities, resulting in a new database formed by 𝐾 = 499 snapshots
(solution from time 100–599). The POD modes have been computed in
four different matrices modelling the cylinder wake containing 𝐾 = 50
(time 100–150), 100 (time 100–200), 300 (time 100–400) and 499 (time
100–599) snapshots. In the first two cases, the spanwise velocity is still
not developed, in the third case this velocity is under development, and
most of the data are transient, finally the last case also considers the
saturated regime of the numerical simulation (fully converged). Fig. 6
compares the POD (spatial) and temporal modes, 𝑼 and �̂� , number
𝑁 = 1, 2, 5, 10 and 20.

Fig. 6 - left shows the variation of the POD modes along the different
grid points (for the sake of clarity the figure shows a zoomed in view,
since the solution is periodic). As seen, in the modes 𝑁 = 1 and 2 the
results are similar, some small variations are identified in the mode
𝑁 = 5 and larger variations are identified in the modes 𝑁 = 10 and
20, especially in the cases analysed with 50 and 100 snapshots. This
result suggests that even using a small number of snapshots to compute
the POD modes, most of them collected in the transient region of the
simulation, the spatial structure of the POD modes is quite robust, at
least in the most energetic modes, justifying the good performance of
the predictive ROM presented here. On the contrary, in the temporal
modes (Fig. 6 - right), the variations between the different cases are
more evident, in good connection with the variations of the flow
dynamics at the different stages of the simulation. Moreover, these
variations are also evidenced in the case considering all the snapshots.
In the snapshot number 250, which represents the time instant 350, it
is possible to identify a clear change in the tendency of the modes,



Expert Systems With Applications 187 (2022) 115910R. Abadía-Heredia et al.
Fig. 6. POD applied in the three-dimensional wake of a circular cylinder. POD is calculated in the snapshot matrices composed by the data collected in the temporal intervals
100–150 (red), 100–200 (blue), 100–400 (green) and 100–499 (black). POD modes 𝑼 (left) and temporal modes �̂� (right) number 𝑁 = 1, 2, 5, 10, 20 (from top to bottom). The POD
modes present a zoomed in view in some specific grid points for the sake of clarity (the solution is periodic).
Fig. 7. 𝑅𝑅𝑀𝑆𝐸𝑃𝑂𝐷 (as in Eq. (5)) calculated in the three-dimensional wake of a
circular cylinder as function of the number of 𝑁 POD modes. POD is calculated in
the snapshot matrices composed by data from the temporal intervals 100–150 (red),
100–200 (blue), 100–400 (green) and 100–499 (black).

especially in 𝑁 = 1, 10 and 20. This fact is in good agreement with
the presence of the spanwise velocity, which is zero up to time 300
and fully developed at time 350. The temporal modes are maintained
constant for times larger than 400 (snapshot 300), suggesting that this
point could be considered as the end of the transitory in the numerical
simulations.

The error made in the reconstruction of the original matrix using a
different number of POD modes (𝑅𝑅𝑀𝑆𝐸𝑃𝑂𝐷) is presented in Fig. 7
for the four matrices analysed. The results show that retaining 𝑁 = 20
POD modes, the reconstruction error is smaller than ∼1.5% in all the
cases. Retaining 𝑁 = 10 modes, this error is smaller than 1% in the
two smallest matrices and smaller than 2% in the two largest matrices.
Finally, if only 𝑁 = 3 modes are retained, the error is smaller than 9%
in all the cases. It is important to remark that most of the data analysed
are formed by the snapshots collected in the transitory of the numerical
simulation.
7

Based on the previous results, the predictive ROM is constructed
using a snapshot matrix of 255 snapshots for the training interval (see
Table 3) collected from time 100–355, which considers the transient
stage of the simulations, where the spanwise velocity is developed only
in the last 5 snapshots of the data analysed (see previous Fig. 5). The
goal of this test is to show the capabilities of the predictive hybrid ROM
when the information contained in the data analysed is incomplete or
deficient, which results in a highly complex problem. The temporal
matrix of modes is generated using 𝑁 = 20 POD modes, assuming the
error of ∼1.5% in the reconstruction of the data, as explained before.
The three different deep learning architectures previously introduced,
a 1D CNN (Conv 1D), and the two RNN (LSTM) using 100 and 400
layers have been used to predict the saturated regime of the numerical
simulations (up to time 599). The 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) (as in Eq. (9)) and the
𝑅𝑅𝑀𝑆𝐸(𝑡) (as in Eq. (11)) is calculated in the test set (predictions) for
the different architectures, as presented in Fig. 8. As seen, the order
of magnitude of these errors is similar in all the cases, although they
present different temporal fluctuations. The 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) is maintained
smaller than 2.3 ⋅ 10−4 and the 𝑅𝑅𝑀𝑆𝐸(𝑡) is smaller than 2.3%. These
results show the good performance of the different architectures to
carry out temporal predictions.

The global error, defined in Eq. (8), of the predictions carried out
in the three architectures is RRMSE∼8%. It is important to note that
this global error assumes the initial error of the database retaining
20 POD modes (∼1.5%) and the error made in the predictions of
the neural networks (2.3% as maximum error), hence the total error
made in the reconstruction of the physical space can be estimated as
RRMSE∼8−1.5−2.3 = 4.2% when the RRMSE in the neural networks is
maximum and as RRMSE∼8−1.5 = 6.5%, assuming negligible the error
made by the neural networks. Figs. 9 and 10 compare the contours
and iso-surfaces of the streamwise, normal and spanwise velocities
approximated with the deep learning architectures, with the original
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Fig. 8. From left to right: 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) (as in Eq. (9)) and 𝑅𝑅𝑀𝑆𝐸(𝑡) (as in Eq. (11)) calculated in the test set (𝐾𝑡𝑒𝑠𝑡 ≡ flow predictions). From top to bottom: Conv 1D LSTM with
100 neurons and LSTM with 400 neurons.

Fig. 9. From top to bottom: streamwise, normal and spanwise velocity components in the three-dimensional wake of a circular cylinder extracted in two representative snapshots
of the flow predictions. From left to right: original data and flow reconstruction using the CNN and LSTM architectures with 100 and 400 neurons.
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Fig. 10. Same as Fig. 9 but showing the iso-surfaces for the streamwise, normal and spanwise velocities with levels 0.4𝑣𝑥 and 0.2𝑣𝑥 for the streamwise component, 0.25𝑣𝑦 and
0.1𝑣𝑦 for the normal component and 0.2𝑣𝑧 and 0.1𝑣𝑧 for the spanwise component, respectively. The velocity components are normalized with their corresponding maximum value.
data at two representative snapshots in the saturated regime (time 538
and 568). As seen, the streamwise and normal velocity components
are in qualitative good agreement in all the cases. However, some
differences are found in the spanwise velocity, which justifies the rise
in the global RRMSE compared to the predictions carried out by the
neural networks. Moreover, the fact that most of the training intervals
of the neural networks only consider the transient spanwise velocity
justifies this underperformed behaviour. The model LSTM with 100
neurons is able to identify some of the patterns characteristic of this
velocity, providing the best results in the spanwise velocity. Using a
larger training interval considering more snapshots where the spanwise
velocity component is developed, would improve the results presented.
Nevertheless, as mentioned before, this article aims at testing and
showing the capabilities of using deep learning architectures combined
9

Fig. 11. Streamwise velocity contours and streamlines defining the two characteristic
topology patterns in synthetic jets. Left: the flow is injected through the jet nozzle
(vortex ring). Right: the flow re-enters into the cavity by the jet nozzle (saddle point).

to POD modes to construct predictive ROMs in critical situations, with

the aim at showing the potential of this methodology and extend it to

solve more complex problems in future research.
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Fig. 12. Temporal evolution of the streamwise (top), and radial (bottom) velocity
components in the synthetic jet at Re= 1000 and St= 0.03 calculated in the point
(𝑥, 𝑟) = (0.2, 2).

The computational time necessary to predict these three-
dimensional data using the hybrid ROM and the time required to train
the neural networks is presented in Table 4. The table also shows the
speed-up factor of this ROM as defined in Eq. (12). The computational
time of the numerical solver to solve the saturated regime of the three-
dimensional numerical simulations, generating 199 snapshots (𝐾𝑡𝑒𝑠𝑡)
is ∼1600 h (100 h using 16 processors in a computer with 64 Gb of
RAM memory and a processor 𝑖5). The simulations assumed a Fourier
expansion in the spanwise direction, such that each kernel simulated
10
Table 4
Computational time (in minutes) necessary for the temporal predictions and for training
the neural networks using the different architectures in the three-dimensional cylinder
wake. Speed-up factor, defined as in Eq. (12).

Architecture Prediction time (𝑡𝑝𝑟𝑒𝑑 ) Training time (𝑡𝑡𝑟) Speed-up

Conv 1D 0.006 2.509 3817.097
LSTM 100 0.014 3.138 3045.685
LSTM 400 0.023 3.290 2897.675

four adjacent two-dimensional planes. This multiplied by 16 cores gives
a total of 64 planes. More details on this simulation can be found
in Le Clainche et al. (2018b). Hence, the speed up factor is larger than
2897 in the three architectures presented. As expected, the Conv 1D
architecture presents the largest speed-up factor and the LSTM 400
architecture presents the smallest one.

3.2. Predictions in a synthetic jet

The predictive hybrid ROM is now tested in an axi-symmetric
synthetic jet. This type of flow, also known as zero-net-mass flux jet,
is formed by a jet stream that is generated by the oscillations of a
piston or a membrane inside a cavity that is periodically injecting
and suctioning fluid through a jet nozzle. The jet stream generates
momentum, although the net mass flux in the jet is zero.

The complexity of this type of flow is reflected in the two different
topology patterns characteristic of this geometry. In the injection phase,
a vortex ring transporting momentum is generated from the contact of
the flow with the edges of the jet nozzle, while in the suction phase,
a saddle point separates the flow travelling downstream from the flow
re-entering into the cavity. Fig. 11 shows the streamwise velocity and
the streamlines defining the two main topology patterns describing the
flow in synthetic jets.

The flow is characterized by two non-dimensional parameters
(Carter & Soria, 2002): (i) the Strouhal number, St= 𝑓 𝐷∕𝑉 , where 𝑓
Fig. 13. Same as Fig. 6 for the synthetic jet.
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Fig. 14. Same as Fig. 7 for the synthetic jet. Top: general view. Bottom: zoomed in
view.

is the piston oscillation frequency, 𝐷 is the jet orifice diameter and
𝑉 is a characteristic velocity scale, which is based on the momentum
velocity defined as 𝑉 = 𝐷𝑝

𝐷
�̂�𝑝
√

2
, where 𝐷𝑝 and �̂�𝑝 are the piston diameter

and the piston peak oscillation velocity (see Le Clainche et al., 2017
for more details), and (ii) the Reynolds number, as previously defined
Re= 𝑉 𝐷∕𝜈.

The present article uses the database presented in Le Clainche
(2019), Le Clainche et al. (2020) solving an axi-symmetric synthetic
jet at St= 0.03 and Re= 1000, in transition-to-turbulent regime (see
etails in the diagram presented in Carter & Soria, 2002). The database
s formed by 16112 snapshots equi-distant in time with time step 𝛥𝑡 =
0.053, which represent 25.77 cavity oscillation cycles. Each oscillation
11
cycle is formed by 625 snapshots (∼33.3 time units), hence the total
database represents the evolution of the velocity field in ∼854 time
units. The evolution of the streamwise and radial velocities in a rep-
resentative point of the database is presented in Fig. 12 (the spatial
components are normalized with the jet diameter 𝐷). Although the
database contains the transient solution from the numerical simulations
(the transitory extends to the 13th cycle as explained in Le Clainche,
2019; Le Clainche et al., 2020), the velocity components show the
evolution in time of a regular and periodic signal, in good agreement
with the oscillating frequency imposed in the cavity upstream the jet
nozzle.

To generate the database, numerical simulations were carried out
using the numerical code Nek5000 (Fischer et al., 2008). The sim-
ulations are converged in time (saturated flow) after 13 cycles (see
details in Le Clainche, 2019; Le Clainche et al., 2020). The boundary
conditions set in the numerical solver are 𝑣𝑥 = 𝑣𝑝(𝑡) = 𝑉𝑝 ⋅ sin(2𝜋𝑓𝑡)
nd 𝑣𝑟 = 0 for the streamwise and radial velocity components, respec-
ively, and Neumann boundary conditions for the pressure at the inlet
oundary. Non-slip boundary conditions (𝑣𝑥 = 𝑣𝑟 = 0) are imposed
o model the jet wall. Axi-symmetric conditions are imposed in the
ottom part of the domain. Finally, zero-stress and Dirichlet boundary
onditions are imposed for the velocity (∇𝐮⋅𝐧=0, with 𝐧 = unit normal)
nd pressure (𝑝 = 0), respectively, in the top and outlet surfaces. To
void boundary reflections, the length and radius defining the external
oundaries of the computational domain are 𝐿 = 80𝐷 and 𝐻 = 40𝐷.
he remaining dimensions of the computational domain are: 𝐷 = 1
nd 𝐷𝑝 = 5𝐷 for the jet and cavity diameters, and 𝐿𝑐 = 5𝐷, 𝐿𝑜 = 0.2𝐷,
𝑐 = 𝐷𝑝∕2 = 2.5𝐷 and 𝑅 = 0.5𝐷 for the cavity length, jet stroke, cavity

adius and jet orifice radius, respectively.
Fig. 13 shows the POD and temporal modes, 𝑼 and �̂� , computed

n four different snapshot matrices for the synthetic jet, containing the
napshots from the beginning of the numerical simulations.

These matrices are formed by 𝐾 = 2014, 4028, 8056 and 16,112
napshots, representing 3.22, 6.44, 12.88 and 25.77 (full database)
avity oscillation cycles. The three first cases represent the transient
egion of the numerical simulations, when the flow is not converged
Fig. 15. Same as Fig. 8 for the synthetic jet case with 𝑁 = 20 modes.
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Fig. 16. Same as Fig. 8 for the synthetic jet case with 𝑁 = 100 modes.
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and still changing in time. The figure compares the modes number 𝑁 =
, 2, 5, 10 and 20. Regarding the spatial modes (Fig. 13 - left), the first
nd second POD modes are similar for all the test carried out, however,
he remaining modes present different shapes among the different test.
his result suggests that, as in the cylinder wake, the spatial structure of
he most energetic POD modes is quite robust and permanent in time,
ven when the data analysed are transient. Regarding the temporal
odes (Fig. 13 - right), the solution obtained in the four cases analysed

s similar for all the modes. This result is justified by the fact that
he flow oscillates with an imposed forcing frequency, so the temporal
ynamics of the flow is driven by this frequency and its harmonics
ince the beginning of the numerical simulations (see details about the
hysical mechanisms driving the flow in Le Clainche et al., 2020).

Fig. 14 shows the error (𝑅𝑅𝑀𝑆𝐸𝑃𝑂𝐷) made when the original
atrix is reconstructed as function of the number of POD modes

etained.
The curves present a similar tendency in the four analyses carried

ut. More specifically, this error is ∼2% for the reconstruction carried
out retaining 200 modes, and ∼16% when the number of modes retained
s 20. In contrast to the cylinder wake flow presented in the previous
ection, it is necessary retaining a larger number of modes to obtain
he same accuracy in the reconstruction, suggesting that, although the
emporal dynamics in the synthetic jet is simpler than in the previous
ase (the temporal modes presented in Fig. 13 - right are similar in all
he cases), the complexity of the spatial structures is much larger in the
et flow.

The predictive model has been tested in a temporal matrix formed
y 3411 snapshots (see Table 3), which represents 5.45 cavity oscil-
ation cycles. Two tests have been carried out keeping 𝑁 = 20 and
00 modes for the temporal matrix. The 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) (as in Eq. (9)) and
he 𝑅𝑅𝑀𝑆𝐸(𝑡) (as in Eq. (11)) calculated in the predictions (test set)
or the different architectures is presented in Figs. 15 and 16 for the
ases with 𝑁 = 20 and 100 modes. As seen, this error is similar in
he three cases, as well as the temporal fluctuations, which follow a
eriodic scheme, in contrast to the case of the cylinder wake, where the
emporal evolution of the case studied was influenced by the develop-
ent of the spanwise velocity component. The errors made in the Conv
12

h

Fig. 17. Streamwise (left) and radial (right) velocities in the synthetic jet in the 24th
cavity oscillation cycle. Original data (black thin line) and the predictions carried out
with the deep learning architectures: Conv 1D (red), LSTM with 100 neurons (blue)
and LSTM with 400 neurons (black thick line). Temporal matrix composed by 𝑁 = 20
top) and 100 (bottom) modes. Point extracted at (𝑥, 𝑟) = (0.2, 2).

1D architecture in the case considering 20 modes is slightly larger than
in the remaining cases. More specifically, this error varies within the
intervals 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) ∈ [6 ⋅ 10−5, 3 ⋅ 10−3] and 𝑅𝑅𝑀𝑆𝐸(𝑡) ∈ [0.3, 6]% for
he Conv 1D in the case with 20 modes and 𝑀𝑆𝐸𝐿𝑜𝑠𝑠(𝑡) ∈ [8⋅10−5, 10−3]
nd 𝑅𝑅𝑀𝑆𝐸(𝑡) ∈ [0.2, 3.5]% for the remaining architectures in the case
ith 100 modes.

The global error, defined as in Eq. (8), made in the temporal
redictions calculated in the physical space is RRMSE∼18% for both the
ases using 𝑁 = 20 and 100 modes. This error considers the prediction
rror from the neural networks (𝑅𝑅𝑀𝑆𝐸(𝑡) ∈ [0.3, 6]% for the Conv
D with 20 modes and 𝑅𝑅𝑀𝑆𝐸(𝑡) ∈ [0.2, 3.5]% for the remaining
ases) and also the reconstruction error the original matrix retaining,
hich is ∼16% and 5% for 𝑁 = 20 and 100, respectively. The reason of
btaining this global RRMSE in both test cases is presented in Fig. 17
hat compares the evolution of the streamwise and radial velocities
n the original data with the reconstructed fields predicted using the
ifferent neural network architectures in the 24th cycle (last minus one
ycle of the entire database).

As seen, the original flow field presents high frequency peaks with
igh amplitude localized in the region with the highest velocity, which
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Fig. 18. From top to bottom: streamwise and radial velocity components in the synthetic jet extracted at several representative snapshots from the cycle 18th (time ∈ [600, 634]).
From left to right: the original data and the predictions carried out using the CNN and LSTM architectures with 100 and 400 neurons and 𝑁 = 20 POD modes. A complete oscillation
cycle is defined in the interval [0, 2𝜋[, where 𝜙 represents the phase of the cycle within such interval.
corresponds to the injection phase and the formation of the vortex ring
characteristic of this type of flow. These high frequency peaks could
be connected with the presence of velocity fluctuations and the origin
of flow instabilities in the jet flow, as presented in Le Clainche (2019),
Le Clainche et al. (2020), not detailed in this article for the sake of
brevity. To properly represent such high frequency peaks it would be
necessary to retain a larger number of modes to reconstruct the original
solution with high accuracy and increase the snapshots number from
the original database. However, (i) this would increase the dimension
of the temporal matrix and the complexity of the dataset analysed
(consequently it could lead to some difficulties in the performance
of the different deep learning architectures) and, (ii) it would also
reduce the predictive capabilities of the model, decreasing the speed-up
factor compared to the original solution. However, this article aims at
showing the performance of a new predictive hybrid ROM combining
the most relevant POD modes with a robust architecture of neural
networks. This ROM is valid to predict the temporal evolution of the
most relevant patterns driving the flow dynamics, since it is based on
physical principles. The natural extension of this ROM in future works
would be its application to most complex non-periodic flows, where
only the dominant patterns can be predicted, as presented in various
examples from the literature (Guastoni et al., 2020; Güemes et al.,
2019; Le Clainche & Ferrer, 2018; Le Clainche et al., 2018a, 2021). The
synthetic jet flow analysed is in transition-to-turbulent regime, which
justifies the solution presented. Moreover, similar results in synthetic
jets are obtained when using other types of ROMs (see Le Clainche,
2019; Lopez-Martin et al., 2021).
13
The contours of the streamwise and radial velocities for the pre-
dictions carried out with the deep learning architectures in the data
formed by 𝑁 = 20 and 100 POD modes are compared in Figs. 18 and 19,
respectively, with the original velocity field at several representative
snapshots. As seen, the results are in qualitatively good agreement in
all the cases.

It is notorious that in the case retaining 𝑁 = 100 modes the
results obtained do not improve the case with 𝑁 = 20 modes. This
suggests that the relevant patterns representing the flow are described
by a few relevant POD modes. Increasing the number of modes, would
improve the description of the small flow structures present in the flow
(small flow perturbations), reducing the global RRMSE. However, as
mentioned before, this would increase the complexity of the neural
network. The present predictive ROM is based on physical principles,
solving in time the evolution of the main patterns driving the flow
dynamics.

Table 5 compares the speed-up factor and the computational time
necessary for training the neural networks using the different architec-
tures in the cases with 𝑁 = 20 and 100 modes and the time necessary for
the temporal predictions in the synthetic jet. The computational time
of the numerical solver to solve ∼20 oscillation cycles of the cavity, and
generate 12100 snapshots (𝐾𝑡𝑒𝑠𝑡) is ∼192 h (24 h using 8 processors in a
computer with 32 Gb of RAM memory and a processor 𝑖5). As presented
in the table, using the three different deep learning architectures the
speed-up factor is always larger than 168 for the case with 𝑁 = 20
and larger than 148 for the case with 𝑁 = 100, being the Conv 1D
architecture the case with the largest speed-up factor and the LSTM
400 architecture the case with the smallest one.
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Fig. 19. Same as Fig. 18 for the matrix analysed containing 𝑁 = 100 modes.
Table 5
Same as Table 4 for the synthetic jet in the tests carried out using 𝑁 = 20 and 100
modes.

Architecture 𝑁 Prediction time (𝑡𝑝𝑟𝑒𝑑 ) Training time (𝑡𝑡𝑟) Speed-up

Conv 1D 0.31 65.95 347.76
LSTM 100 20 0.79 131.27 174.46
LSTM 400 0.82 141.14 168.28

Conv 1D 0.37 74.91 306.04
LSTM 100 100 0.63 56.24 405.14
LSTM 400 0.95 154.33 148.38

4. Conclusions

This article introduces a new predictive ROM that is based on
physical principles. The hybrid ROM combines modal decompositions
to reduce the dimensionality of a database, with deep learning archi-
tectures to predict the temporal evolution of the dataset studied. The
model is applied to study two fluid dynamics problems of interest,
the three-dimensional wake of a circular cylinder and a synthetic
jet. Nevertheless, the data-driven nature of this ROM and the robust-
ness shown in the results presented, encourage using this model for
data forecasting in other research fields, such as language and video
processing, finances, robotics, et cetera.

The methodology of this hybrid ROM is summarized in three main
steps. Firstly, POD is applied to reduce the data dimensionality from
hundred thousands degrees of freedom to a few POD modes (from 20
to 100, depending on the case studied). The original spatio-temporal
14
data are divided into spatial POD modes, which only contain informa-
tion related to the spatial domain, and temporal modes (or temporal
coefficients), which only contain information related to the tempo-
ral evolution of the flow. Secondly, a deep learning architecture is
applied to the temporal modes to predict more temporal snapshots.
Finally, the spatial modes are combined with the new predictions of
the temporal modes to reconstruct the original field. Two different deep
learning architectures have been used, a one-dimensional convolutional
neural network and a recurrent neural network, more specifically, a
long-short-term memory (LSTM) scheme using 100 and 400 neurons.

The databases analysed are generated numerically. The training set
of the neural networks only uses data from the initial transient stage
of the numerical simulations, and they are used to predict the tem-
porally converged solution. The methodology presented is robust and
the results obtained are accurate. The speed-up factor in the numerical
simulations using this ROM is quite high: the computational time to
solve the evolution of the flow in time is reduced from ∼1600 h when
using the numerical solver, to ∼3.5 s (at most, it depends on the type
of architecture) when using the hybrid ROM in the three dimensional
cylinder wake and from ∼192 h to ∼155 s (at most, it depends on the
type of architecture) in the synthetic jet. These results shed light on
the good performance of hybrid ROMs based on physical principles,
combining neural networks with modal decompositions.
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