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ABSTRACT Network intrusion detection focuses on classifying network traffic as either normal or attack
carrier. The classification is based on information extracted from the network flow packets. This is a complex
classification problem with unbalanced datasets and noisy data. This work extends the classic radial basis
function (RBF) neural network by including it as a policy network in an offline reinforcement learning
algorithm. With this approach, all parameters of the radial basis functions (along with the network weights)
are learned end-to-end by gradient descent without external optimization. We further explore how additional
dense hidden-layers, and the number of radial basis kernels influence the results. This novel approach is
applied to five prominent intrusion detection datasets (NSL-KDD, UNSW-NB15, AWID, CICIDS2017
and CICDDOS2019) achieving better performance metrics than alternative state-of-the-art models. Each
dataset provides different restrictions and challenges allowing a better validation of results. Analysis of
the results shows that the proposed architectures are excellent candidates for designing classifiers with the
constraints imposed by network intrusion detection. We discuss the importance of dataset imbalance and
how the proposed methods may be critically important for unbalanced datasets.

INDEX TERMS Communication system security, intrusion detection, neural networks, radial basis function

networks.

I. INTRODUCTION

Network intrusion detection (NID) focuses on classifying net-
work traffic as either normal or attack carrier. The classifica-
tion is based on information extracted from the network flow
packets. It is a major problem for modern data networks with
an active research community currently focused on applying
machine learning and deep learning models [1]-[4]. Radial
Basis Function Neural Networks (RBFNN) [5] are vari-
ants of the feed-forward Neural Network (NN) architecture.
RBFNNSs has been used for NID in their basic configuration.
A basic RBENN classifier is made of a single hidden-layer
NN where each neuron implements a radial basis activation
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function (RBF), usually a Gaussian function. In addition to
the network weights, these networks have two additional
types of parameters that need to be optimized: (a) the center of
the RFB functions, and (b) its dispersion/scaling parameter.
The optimization of these three types of parameters: centers,
dispersion factors and weights, are generally carried out
following specific methods for each of them [6], causing a
complex training process. The optimization methods used for
estimating centers and dispersion factors are usually cluster-
ing techniques (e.g., k-means) or generic optimization meth-
ods, such as: Immune Radial Basis Function (IRBF), Particle
swarm optimization (PSO) and Quantum PSO (QPSO). For
network weights, the optimization methods used are least
squares or gradient descent. This nonintegrated and laborious
training process makes it difficult to increase the complexity
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of the network, resulting in the use of simple network archi-
tectures consisting of a single hidden layer network (basic
RBEFNN).

We propose a novel extension of the RBFNN basic
model. The RBFNN basic architecture is based on a single
hidden-layer where each neuron implements a radial basis
activation function e.g., Gaussian. These functions are also
called radial kernels, and are defined by two parameters: a
center and a scaling/dispersion parameter [6]. These param-
eters are usually optimized (learned from data) separately
and with ad-hoc techniques, such as: clustering techniques
(e.g., k-means) or generic optimization methods (e.g., PSO,
Quantum PSO). The weights between the RBF layer and
the output layer are also separately optimized using least
squares or gradient descent. Therefore, the learning process
for the basic RBFNN consists of optimizing three types of
parameters (centers, dispersion/scaling, and weights) within
three distinct and separate learning tasks [6].

In this work we address the above mentioned problems of
RBFNN by extending its basic architecture as follows:

(a) End-to-end learning of the entire set of parameters
using gradient descent; reducing three separate opti-
mization processes, one for each of the model parame-
ter types (weights, centers, and dispersion parameters),
to a single optimization mechanism driven by mini-
mization of the classification error (loss function).

(b) An alternative optimization scheme for the network
parameters based on offline Deep Reinforcement
Learning (DRL) principles by including the entire
RBFNN network as the policy network of a reinforce-
ment learning model; in this way, the loss function is
replaced by a more generic reward function [7].

(c) Increase the complexity of the RBFNN network by
including additional network layers with different con-
figurations, which is made possible by the end-to-end
training of the entire network.

This work shows that the basic RBFNN, that has already
obtained good classification results for NID, can be success-
fully extended to more complex architectures while maintain-
ing its basic properties of clustering the feature space into
separate groups with an indicator of the level of membership
in that group. The group membership score is produced by
the RBF function which provides a value that depends on the
distance between the inputs and each cluster center. It is a
useful representation learning technique and is even better
when the parameters that define the location of the groups
(centers and dispersion factors) are learned with the ultimate
goal of minimizing the classification loss function, which
is achievable by the simultaneous end-to-end training of all
model parameters.

This work explores the extension of the RBFNN model
considering two separate learning frameworks:

(a) A classic supervised learning framework, where the
complete set of model parameters are optimized by
minimizing a loss function (e.g., cross-entropy, hinge-
loss) related with the classification error.
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TABLE 1. List of abbreviations.

Abbreviation Full Form

AUC Area Under the Curve

AWID Aegean Wi-Fi Intrusion Dataset

CE Cross Entropy

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

DL Deep Learning

DQN Deep Q-learning Network

DDQN Double DQN

DRL Deep Reinforcement Learning

ELM Extreme Learning Machine

FC Fully Connected

FN False Negative

FP False Positive

GBM Gradient Boosting Machine

HS Hinge Loss

1D Intrusion Detection

IRBF Immune Radial Basis Function

KA Kernel Approximation

KDD Knowledge Discovery and Data Mining

LI Linear

LM Linear Model

LR Logistic Regression

ML Machine Learning

MLP Multilayer Perceptron

MNIST Modified National Institute of Standards and
Technology

NID Network Intrusion Detection

NN Neural Network

PCA Principal Component Analysis

PSO Particle Swarm Optimization

QPSO Quantum PSO

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

ReLU Rectified Linear Unit

RF Random Forest

RL Reinforcement learning

ROC Receiver Operating Characteristics

SGD Stochastic Gradient Descent

SM SoftMax

SOM Self-Organizing Map

SOTA State Of The Art

SVM Support Vector Machine

N True Negative

TP True Positive

UNSW University of New South Wales

XAl eXplainable Artificial Intelligence

(b) A reinforcement learning framework, with two ele-
ments: an agent (implementing a policy) and an envi-
ronment. The policy produces actions based on the
current state of the environment, and the environment
produces new states and rewards depending on the
agent’s actions. The rewards are values that indicate the
adequacy of the agent’s actions to a final goal. A rein-
forcement learning framework attempts to optimize the
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policy by maximizing the expected sum of rewards
produced by the environment under the actions gener-
ated by the policy. The iterative process between the
environment and the agent (policy) is exercised with
the objective of optimizing the expected total value of
rewards in all successive steps.

This framework is originally intended for interactive agent-
environment scenarios (online scenario) [8], but can be
extended to supervised learning problems with labeled
datasets (offline scenario) [7] by interpreting the actions as
predicted labels, the state of the environment as predictor
variables, and the environment as a sampling function that
randomly selects samples from the labeled dataset. In this
approach, the function that implements the environment is
also responsible for generating rewards as values related
to the prediction quality of the labels. The inclusion of
the RBFNN as the policy network of an offline reinforce-
ment learning framework assumes and further extends this
approach.

The offline reinforcement learning scenario is important
for applications where rewards cannot be directly assigned by
the environment without human intervention, which means
that we have to rely on labeled datasets to score the actions
based on closeness between predictions and ground truth
values (stored in the labeled dataset). NID corresponds to this
type of application.

We tested the applicability of the proposed methods for
various NID scenarios; however, the proposed methods are
generic and perfectly applicable to implement classifiers in
other fields. We have chosen NID for its complexity and
strong limitations in terms of noisy and unbalanced data sets,
which also appear in other fields (e.g., medicine, malware
detection, agriculture. . .), and which could also benefit from
these results.

We present a comprehensive analysis of results based on
several performance metrics (Accuracy, F1-score, Precision
and Recall) where the proposed extensions to the RBFNN
architecture are applied to several distinctive intrusion
detection (ID) datasets: AWID, UNSW-NB15, NSL-KDD,
CICIDS2017 and CICDDOS2019. These are five of the most
representative ID datasets [1]. The datasets exhibits quite
different behaviors, allowing a better generalization of the
conclusions. The five datasets correspond to five different
NID scenarios, according to the types and distribution of
intrusions. The proposed new models are compared to a broad
set of alternative machine learning (ML) and deep learning
(DL) models for all five datasets. The results obtained show
that the new RBFNN extended architectures achieve the best
results in most of the performance metrics for the five pro-
posed scenarios.

Some interesting conclusions from this work, when the
proposed methods are applied to NID, are: (a) The inclusion
of additional dense layers in RBFNN networks has a signif-
icant impact on the classification performance. (b) Equally
important is the selected loss function and learning
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TABLE 2. Comparative summary between proposed RBFNN-based

methods and similar alternative methods.

Models End-to- RBF Weight Loss
end Parameters | Parameters Functions
Learning Learning Learning
Existing No PSO, QPO, Linear Cross-entropy
RBFNN IRBF or Regression (CE) when
SGD (analytical) using SGD
or SGD
Proposed Yes SGD SGD CE, Hinge
RBFNN loss or based
on DRL

framework for these networks. In particular, the proposed
offline reinforcement learning scheme provides the best
results, especially in the case of highly unbalanced and/or
noisy datasets, which are common in network intrusion
detection.

As a summary, Table 2 provides a comparison between the
proposed RBFNN-based methods and alternative proposals
based on similar models.

The main contributions of this research are to propose
novel extensions of the RBFNN architecture, with the follow-
ing objectives: (a) Propose a novel method for optimization
of parameters/weights within a reinforcement learning frame-
work, where the RBFNN classifier plays the role of the policy
network in a Deep Reinforcement Learning (DRL) training
scheme. (b) Adapt the reinforcement learning scheme from
the usual online interactive agent-environment scenario to
an offline scenario working with a labeled dataset (offline
reinforcement learning) [7], [9]. (c) Provide an end-to-end
training process where the weights, centers, and dispersion
parameters of an RBFNN are learned simultaneously by gra-
dient descent. (d) Propose extensions to the classic RBFNN
configuration from a single hidden layer network to a mul-
tilayer network. (e) Show that the different RBFNN variants
resulting from these new premises produce classifiers that can
be especially useful for NID, considering the results obtained
when applied to five different and representative ID datasets

This paper is organized as follows: Section II presents the
works related to this research following different criteria. The
data used for the experiments and the proposed algorithms are
presented in Section III. The results of the different experi-
ments are given in Section IV, with the final conclusions in
Section V.

Il. RELATED WORKS

There is a significant literature that presents solutions for
network intrusion detection based on RBFNN. The RBFNNs
introduced in the literature are usually not based on end-
to-end training of the network using gradient descent, but
on alternative optimization methods, e.g., linear regression,
genetic optimization. These related works mainly use simple
networks with a single hidden layer (the RBF layer itself),
and typically a two-stage model optimization is applied,
training the RBF parameters and the neural network weights
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separately. Meanwhile, our proposed extension to RBFNN
produces multi-layer models, allowing end-to-end training of
the parameters of the entire network and with the ability to be
flexible in the learning framework chosen (either supervised
or reinforcement learning). In particular, our proposed archi-
tecture is, to our knowledge, the first offline reinforcement
learning architecture with an RBFNN and, consequently, the
first application of this model to NID.

The related works on RBFNN can be grouped into the
following categories oriented by goals and methods used:

(@)

153156

Application of regular RBFNN to NID with differ-
ent network optimization methods: Authors in [10]
use the NSL-KDD dataset for intrusion detection
by applying an RBFNN. They optimize the network
parameters without using end-to-end training and gra-
dient descent, but an algebraic solution based on the
calculation of the pseudo-inverse matrix. They report
high accuracy on an ad-hoc test set of 40000 sam-
ples that does not correspond to the proposed test
set of 22544 samples provided by NSL-KDD. The
work in 11] proposes an RBFNN where an optimal
network structure and weights are obtained with a
combination of quantum-behaved particle swarm opti-
mization (QPSO) and gradient descent applied to the
QPSO algorithm. An overview of the challenges for
RBFNN-based intrusion detection systems is provided
in [12], identifying as the most important aspects the
optimization of the location of cluster centers and width
spread for the RBF neurons and the optimization of
the network weights. This literature review presents the
recursive least mean squares method as the main pro-
posal to adjust the weights, and various optimization
algorithms to optimize the other RBF parameters, such
as: IRBF, PSO and QPSO. None of the works in this
review present an end-to-end learning approach based
on gradient descent across the entire network. In [13]
the authors use a simple RBFNN for intrusion detection
in a host-based scenario with a proprietary dataset from
the University of New Mexico. The model consists of a
single hidden layer RBFNN where the output weights
are optimized with linear regression with no gradi-
ent descent. They claim to obtain excellent detection
results for this dataset. A similar approach to [13] is
adopted in [14] for the KDD99 dataset, also reporting
excellent results. The work in [15] presents RBFNN
as an important asset to mitigate adversarial examples,
applying the results to image datasets e.g. MNIST and
CIFAR10. Authors in [16] propose an RBFNN with
an optimization algorithm to obtain the cluster centers
for the RBF network based on an immune optimization
algorithm and a least squares recursive method to adjust
the network weights. An alternative solution to calcu-
late the RBF centers different from the usual k-means
approach is offered in [17], using an eigenvector based
clustering method; once the centers are obtained, the
weights are optimized by gradient descent. There is no

(b)

(©)

subsequent end-to-end training of the entire network.
The work in [18] presents a simple one-hidden layer
RBFNN to detect intrusions for the KDD99 dataset.
They use Levenberg-Marquardt as the optimization
algorithm, with an ad-hoc method to determine the
RBF centers. Authors in [19] present a particle swarm
optimization algorithm (PSO) for the optimization of
parameters of the RBF layer. The algorithm is applied
to the KDD99 dataset. In [20] the imperialist compet-
itive algorithm is proposed to perform network opti-
mization in an architecture that combines RBFNN with
a self-organizing map.

RBFNN extensions: In [21] is introduced a novel
architecture for intrusion detection with kernel prin-
cipal component analysis for features dimensionality
reduction and an extreme learning machine model
(ELM). It is applied to the KDD99 and UNSW-NB15
datasets with state-of-the-art (SOTA) results, achiev-
ing an average Fl-score for the 10 labels predic-
tion (UNSW-NB15) of 0.604. A different approach is
adopted in [22] with a combination of RBF and Elman
recurrent neural network which is appropriate for data
with a time-series structure. The Elman layer is added
as an additional layer after the RBF layer. The work
in 23] proposes an iterative learning process that allows
incorporating new intrusion labels by comparing the
maximum value associated with the already expected
labels with a threshold per label; if a sample provides
output values smaller than the threshold it implies a
new label and the addition of a new RBF neuron.
The allocation of initial center values is done with
an unsupervised self-organizing map algorithm. The
method is applied to the KDD99 intrusion detection
dataset. Authors in [24] use a neural network formed
by an initial stage of stacked autoencoders to perform
dimensionality reduction followed by an RBF layer.
They apply the method to the UNSW-NB15 dataset
for the 2-labels scenario using the MATLAB platform
and an unclear procedure to perform RBF parameters
optimization. Training the RBFNN network end-to-
end using gradient descent is presented theoretically
in 25] under a proposal for regularization theory and
regularization networks.

Online reinforcement learning: Applications of
online reinforcement learning with RBFNN networks
are mainly in the control engineering field. A Deep
Q-Learning (DQN) reinforcement learning model is
used in [26] with a RBF neural network as the pol-
icy network. The network weights are learned with
gradient descent, but the RBF parameters are learned
separately. The method is applied in the control field.
A temporal difference reinforcement learning approach
is applied in [27] with an RBFNN where their param-
eters are learned independently of the weights. The
application is for a scheduling optimization problem.
In [28], to solve a maze problem is used a DQN model
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with an RBFNN with their parameters learned with
an evolutionary algorithm. The work in 29] applies a
RBF layer at the end of the network and all parameters
are adjusted by gradient descent. It extends the DQN
model to continuous control. The model is applied
to a continuous state space for control applications.
Likewise, in [30] the authors use gradient descent and
particle swarm optimization (PSO) for the learning of
parameters of a neural network used with an actor-critic
reinforcement learning framework. It is applied to an
adaptive controller implementation. This line of work
is also applied in 31]-[33] with an actor-critic DRL
model applied to a continuous state-space applied to
control problems. In this case the RBF parameters are
adjusted as part of the training. In all these works,
the DRL framework is applied to an online optimiza-
tion/control problem. There are also interesting online
learning works based on autoencoders [34], [35].

(d) Offline reinforcement learning: The application of
deep reinforcement learning (DRL) to NID is a topic
of increasing interest [36]. DRL is generally limited
to online environments modeled by a Markov deci-
sion process corresponding to an interactive environ-
ment. This scheme cannot work with a dataset of
recorded attacks, which is the subject of offline rein-
forcement learning [9]. There are currently few applica-
tions of offline reinforcement learning for NID [7], [37]
even though it is currently an important area of
research as an extension/alternative to supervised learn-
ing schemes [9].

Table 3 presents a summary of the related works offering
a comparison between their main characteristics. The two
groups of proposed solutions, with their main characteristics,
are also included at the end of the table, to help compare
the alternative works and the differences with the proposed
methods.

lll. WORK DESCRIPTION

This Section describes (a) the datasets used to perform the
comparison between the models proposed in this work, and
(b) the new proposed models in detail. The datasets applied
are introduced in Section III.A. The different proposed mod-
els are described in Section IIL.B.

A. SELECTED DATASETS

To explore the different challenges imposed by an intrusion
detection problem [1], which is characterized by complex
behavior patterns with unbalanced datasets, we have used
five ID datasets with distinctive properties to draw better
conclusions on the prediction performance of the proposed
models.

We will use the NSL-KDD and UNSW-NB15 datasets
for binary classification and the AWID, CICIDS2017 and
CICDDOS2019 datasets for multiclass classification. The
two-label scenario for NSL-KDD provides a reasonable bal-
anced dataset obtained from an underlying very different
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TABLE 3. Categorization of related works with their main distinctive
characteristics, and comparison with the characteristics of the proposed
solutions.

Work Characteristics Dataset
Linear regression (analytical
[10] solution) INSL-KDD
[11] QPSO plus gradient descent KDD99
Linear regression (analytical
[13] solution) Proprietary
Linear regression (analytical
[14] solution) KDD99
Random initialization of MNIST,
RBFNN [15] parameters plus gradient descent|CIFAR
classic Immune optimization algorithm
[16] and least squares KDD99
Eigenvector based clustering  |{UC Irvine ML
[17] method plus gradient descent  [Repository
Levenberg-Marquardt weight
optimization, with ad-hoc
[18] method for RBF centers KDD99
[19] PSO plus linear regression KDD99
Imperialist competitive
[20] algorithm plus SOM KDD99
Kernel PCA for dimensionality [KDD99,
[21] reduction plus ELM UNSW-NBI15
RBF layer and Elman recurrent {1999 DARPA
g(]:el?lzi\olns [22] neural network ID Evaluation
Unsupervised SOM plus linear
[23] regression KDD99
Stacked autoencoders plus RBF
[24] layer UNSW-NB15
DQN with nonintegrated
optimization: k-means plus
[26] |gradient descent. Online control
Temporal difference with
nonintegrated optimization: k- |Scheduling
[27] means plus gradient descent. optimization
DQN with nonintegrated
optimization: evolutionary plus [Path
[28] |gradient descent. optimization
Online RL Continuous
[29] DQN with gradient descent control
Actor-critic with nonintegrated
optimization: PSO plus gradient |Continuous
[30]-[33] |descent. control
DQN, DDQN, actor-critic, NSL-KDD,
[7] policy gradient without RBFNN |AWID
Offline RL DDQN, Dueling DRL, actor-  |[NSL-KDD,
[37] critic without RBFNN AWID
All the parameters (Weights,  |[NSL-KDD,
Centers and Dispersion) are UNSW-NBI15,
learned jointly end-to-end with [AWID,
Extended gradient descent. Cross-entropy [CICIDS2017,
RBFNN This work|and Hinge losses. CICDDOS2019
NSL-KDD,
DDQN with RBFNN as policy [UNSW-NBI15,
network, with all the parameters |[AWID,
Extended learned jointly end-to-end with |CICIDS2017,
DRL+RBFNN|This work|gradient descent. CICDDOS2019

frequency distribution of basic attacks between the training
and test sets. Additionally, it presents a change in the distri-
bution of the majority class between the Normal and Attack
classes for the training and test sets. This change in the distri-
bution of the majority class is reversed for the UNSW-NB15
dataset for the two-label scenario. UNSW-NB1S5 is also very
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60%
NSL-KDD - 2 labels
50%
40%
30%
20%

10%

0%

Normal Attack
M Training Set 53.46% 46.54%
M Test Set 43.08% 56.92%

FIGURE 1. Frequency of intrusions for the training and test datasets
(NSL-KDD) for the 2-labels scenario.

different from NSL-KDD in having the same basic attacks
for the training and test sets with a very similar frequency
distribution between them, which is far from being the case
for the NSL-KDD dataset. The AWID dataset is the most
unbalanced one with four basic attacks and has been chosen
to verify the behavior of the different models for a multiclass
classification. The CICIDS2017 and CICDDOS2019 datasets
also have four unbalanced classes, but not as unbalanced as
AWID.

Each dataset (NSL-KDD, UNSW-NBI15, AWID,
CICIDS2017 and CICDDOS2019) with the chosen label
configuration (2, 2, 4, 4 and 4, respectively) provides different
characteristics, restrictions and challenges allowing a better
validation of results (Section IV).

1) NSL-KDD DATASET

The NSL-KDD dataset is an intrusion detection dataset
evolved from the original KDD-99 [38] dataset. The
NSL-KDD dataset is considered classic, but it remains a
reference for intrusion detection problems as it is extremely
well-known with a large literature that uses it. The NSL-KDD
dataset is composed of 125,973 and 22,544 training and test
samples, respectively. It contains 41 features, with 38 con-
tinuous and 3 categorical. The continuous features have been
scaled to the [0—1] range. The categorical features are one-
hot encoded. The resulting dataset has 122 features with 38
continuous and 84 (one-hot encoded) binary features. The
features are formed by aggregating the information con-
tained in the data packets associated to the normal/attack
traffic.

The total number of distinct labels is 40. The num-
ber of labels presented in the training and test datasets is
different with 23 in the training and 38 in the test sets.
There are labels in the test set which are not in the train-
ing set and vice versa (16,6% of the test samples corre-
spond to a class that is not present in the training set);
this contributes to creating a particularly noisy dataset. The
original labels can be grouped according to various hier-
archies into different categories [38]. Fig. 1 presents the
frequency distribution of the labels grouped into two cat-
egories: Normal and Attack, for the training and test sets.
In this work we will use this grouping into two distinct
categories.
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70%
60%
50%

40%
30%
20%
10%

0%

UNSW-NB15 - 2 labels

Normal Attack
M Training Set 31.94% 68.06%
M Test Set 44.94% 55.06%

FIGURE 2. Frequency of intrusions for the training and test datasets
(UNSW-NB15) for the 2-labels scenario.

2) UNSW-NB15 DATASET

The UNSW-NBI15 [39] is an intrusion detection dataset.
It is a more recent and larger dataset than NSL-KDD, with
2,540,044 and 82,332 training and test samples, respectively.
The dataset provides 10 labels (9 attacks plus normal traffic)
with 42 features: 39 continuous and 3 categorical. Follow-
ing a preprocessing similar to that presented for NSL-KDD
(Section III.A.1), the total number of final features is 196.
Similar to NSL-KDD, the features are formed by aggregating
the information of the data packets.

It is an imbalanced dataset. Fig. 2 presents the frequency
distribution of the labels grouped into two categories: Nor-
mal and Attack, for the training and test sets. In this work
we will use this grouping into two distinct categories. The
label distribution for the training and test sets is quite sim-
ilar to NSL-KDD, but with the majority class swapped in
the training set (i.e., Normal is the majority class for the
NSL-KDD training set while Attack is the majority class for
the UNSW-NB15 training set).

3) AWID DATASET

Aegean Wi-Fi Intrusion Dataset (AWID) [40] is a public
intrusion detection dataset with three types of attacks for the
IEEE 802.11 networks. It is also a larger and more up-to-
date dataset than NSL-KDD. AWID provides several dataset
instances from which the AWID-CLS-R has been chosen.
This dataset has four classification labels: normal, flood-
ing, injection, and impersonation. It provides 1,795,574 and
575,642 training and test samples, respectively. The dataset
has a total of 154 continuous and categorical features. The
number of features can be reduced to 24 after removing
features with less importance and with null and constant
values [40], which after a preprocessing similar to NSL-KDD
(Section III.A.1) produces a final feature number of 58.

It is an imbalanced dataset with frequencies from 91% to
9% for the Normal and Attack labels. It is more unbalanced
than the NSK-KDD and UNSW-NB15 datasets, but contrast-
ing with NSL-KDD, the label frequencies for the training
and test sets are extremely similar, more similar than the
corresponding frequency distribution in UNSW-NB15. Fig. 3
presents the frequency distribution of all distinct labels for the
training and test sets. In this work we will use the original
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90%

0% AWID - 4 labels

70%

60%

50%

40%

30%

20%

10%

0% - — — — —
Normal Injection Impersonation Flooding

M Training Set 90.96% 3.64% 2.70% 2.70%
M Test Set 92.21% 2.90% 3.49% 1.41%

FIGURE 3. Frequency of intrusions for the training and test datasets
(AWID) for the 4-labels scenario.

60%

0% CICIDS2017 - 4 labels

40%

30%

20%
“HHmn
0%

Q

Normal PortScan DDoS Bot
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FIGURE 4. Frequency of intrusions for the training and test datasets
(CICIDS2017) for the 4-labels scenario.

four labels to perform multiclass classification, which will
allow us to test the algorithms under a particularly unbalanced
dataset.

4) CICIDS2017 AND CICDDOS2019 DATASETS
CICIDS2017 [41] and CICDDOS2019 [42] datasets are
two recent intrusion detection datasets from University of
New Brunswick (UNB), Canada. CICIDS2017 contains three
types of attacks plus normal traffic. CICDDOS2019 is ded-
icated to distributed denial of services (DDoS) attacks,
also containing three types of DDoS attacks plus normal
traffic. CICIDS2017 has 70 continuous and 7 categorical
features with 562539 training and 139670 test samples.
CICDDOS2019 has 67 continuous and 7 categorical features
with 539579 training and 134884 test samples. The features
have been processed, eliminating the features with very low
variance, scaling the continuous features in the range of
values [0-1], and one-hot-encoding the categorical ones.
Figs. 4 and 5 present the frequency distribution of all
distinct labels for the training and test sets of these datasets.
CICIDS2017 and CICDDOS2019 have been selected for
being modern multi-class NID data sets with different types
of attacks. They are unbalanced but not as extremely unbal-
anced as AWID, and offer the opportunity to explore other
types of prediction behaviors for the proposed classifiers.

B. MODEL DESCRIPTION

We propose a novel extension of the RBFNN basic model.
The RBFNN basic architecture is based on a single
hidden-layer where each neuron implements a radial basis
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activation function e.g., Gaussian. These functions are also
called radial kernels, and are defined by two parameters: a
center and a scaling/dispersion parameter [6]. These param-
eters are usually optimized (learned from data) separately
and with ad-hoc techniques, such as: clustering techniques
(e.g., k-means) or generic optimization methods (e.g., PSO,
Quantum PSO). The weights between the RBF layer and
the output layer are also separately optimized using least
squares or gradient descent. Therefore, the learning process
for the basic RBFNN consists of optimizing three types of
parameters (centers, dispersion/scaling, and weights) within
three distinct and separate learning tasks [6].

In this work, an end-to-end learning process is proposed
in which the three types of parameters are learned simultane-
ously end-to-end by gradient descent. We consider the centers
and dispersion parameters as additional special weights that
are included in the computational graph of the network [43].
This end-to-end and simultaneous learning of the complete
set of parameters allows us to consider: (a) additional loss
functions (e.g., hinge-loss for maximum class separation),
(b) additional layers (and layer configuration) to be incorpo-
rated after the first RBF layer, and (c) to include the entire
RBFNN network as the policy function of a DRL model,
where the differentiable loss function is replaced by a more
generic and not necessarily differentiable reward function [7].

The extended RBFNN models described here are divided
into two groups according to: (a) using a supervised learning
framework based on direct minimization of the classification
errors (Fig. 6), or (b) using an offline reinforcement learning
framework to train the RBFNN model (Fig. 8). In both cases,
all model parameters are learned end-to-end by gradient
descent.

1) EXTENDED RBFNN WITHIN A SUPERVISED LEARNING
FRAMEWORK

Fig. 6 shows the proposed RBFNN architecture where the
first hidden layer is always a layer with neurons that imple-
ment a radial basis activation function. In Fig. 6, the RBF
layer is shown in detail by zooming into an RBF neuron.
The RBF activation (1) is different to a sigmoid or ReLU
activation. The dot product between the input and the weights,
appropriate for a sigmoid or ReLU activation, is replaced in
the case of an RBF neuron by the difference between the input
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FIGURE 6. Generic architecture of the extended RBFNN within a
supervised learning framework.

and the RBF center. The RBF activation acts on this differ-
ence by computing its squared norm followed by a scaled
exponential function instead of a sigmoid or ReLU func-
tion. The resulting expression is differentiable and feasible
to incorporate into an end-to-end gradient descent algorithm.

A radial basis function (RBF) is a real-valued function
whose output depends on the distance between the input and
a certain fixed point that we will call the center. The center
values have similar dimension to the input values. For this
study we will use a particular type of RBF: Gaussian RBF,
which has the form shown in (1), where X is the input vector,
B is a scaling/dispersion parameter (scalar value), C is the
centers vector and ||. . .||2 is the squared vector norm, which
in our case will be the squared Euclidean distance [6]:

¢ (X) =exp(—B X — CII*) ey

Note: In mathematical expressions a term in bold indicates
a vector.

Each neuron implementing the activation function in (1)
will have a distinct center and dispersion values; these val-
ues are considered fixed after training, but will be adjusted
during training to achieve an optimal value that minimizes
the defined loss function. The first layer should always be the
RBF layer since the intention is to apply the different RBF
functions (one per RBF neuron) to the input, i.e., each RBF
neuron will provide a value related to the distance from the
input to its center (C), where the distance is scaled by the
scaling/dispersion parameter (8). A graphical representation
of how the RBF layer works is provided in Fig. 7, for an RBF
layer with three neurons, where X is a particular input sample
and C;j and B; are, respectively, the center and dispersion
parameter for the RBF neuron j.

After the RBF layer, the architecture may have several
subsequent layers, which may be generic in nature, but, for
this work, we have considered fully connected (FC) dense
layers (Fig. 6). The final layer will provide the prediction
(Y) which can be generated with: 1) a softmax activation that
offers normalized probabilities, which are interpreted as the
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FIGURE 7. Graphical depict on how an RBF layer works. The diagram
shows an RBF layer with three neurons acting on an input sample (X;),
where the output of neuron j (i.e., ¢;) is computed with an RBF function
(1) with particular center () and dispersion (Bj) parameters.

probability of the associated class; or 2) a linear activation
that produces real values, and where the selected class is
associated with the highest output value. Related to the type
of output produced, we can employ different types of loss
functions. In this work we apply two loss functions: cross-
entropy (2), and hinge-loss (3):

Cross Entropy (Y, Y )

1 N L A N
= N Zi:o ijl [Yi,jl(?g (Yi,j) + (1 — Y,'J) log (1 — YiJ-)]
2

Hinge Loss (Y, Y, A)

1 N A A
= Z#Z_[max(o,y,,j ~Fie Ay IWIE ()

In (2), the cross-entropy between two sets of N predicted
values (Y') and their corresponding ground-truth values (Y) is
an average of the log probability of the predicted class, where
L is the number of predicted classes, and Y; j is a {0,1} value
associated to the one-hot encoded ground-truth value for class
j of sample i. In this case, 17,3 j corresponds to the associated
predicted value for class j of sample i, which is a value in the
range [0, 1] and interpreted as the probability that sample i
(i.e., X;) belongs to class j.

In (3), the hinge-loss is also defined as the average of a
distance between two sets of N predicted values (f/) and
their corresponding ground-truth values (Y). In this case, the
distance is a real value distance (for each sample i), between
the output for each class other than the correct class (indexed
by z;) if the distance is greater than a margin (A), and zero
otherwise. In this case, f/,; j corresponds to a real value (not a
probability), and the predicted class for sample i (i.e., X;) is
chosen by selecting the class j that maximizes Y ; ;. The cross-
entropy loss requires the use of a softmax activation for the
last layer and the hinge-loss a linear activation. In (3) (hinge-
loss) the term ||W||2 corresponds to the norm of the weight
vector (sum of the squares of its values) and is a regularization
term to avoid over-fitting, with the parameter y adjusting the
effect of this regularization term.

Previous to the final adjustment by gradient descent, and,
instead of a random initialization, we use an initialization
of the RBF centers using k-means and a fixed value for
the dispersion parameter (normally a value of 2). Some
more complex alternative methods for centers initialization
are: (a) Learning Vector Quantization (LVQ) [44], (b) RBF
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center selection based on Fisher Ratio Class Separability
measure [45], and (¢) PCA based k-means, which is a novel
method that could be of interest for large datasets [17]. It is
important to note that this is just an initialization of parame-
ters that will be further adjusted by gradient descent during
training; therefore, in our case, it is not necessary to use
complex methods, the simple and fast k-means algorithm is
sufficient to provide an effective initialization that improves
the convergence and the time required for the learning
process.

To train the RBFNN model within a supervised learn-
ing framework (Fig. 6), we have used 100 epochs and a
batch size of 20 to 200 samples (depending on the dataset).
We have used early-stopping to avoid overfitting with a
patience period of 10 and using a validation set of 20% of
the training set [43].

2) EXTENDED RBFNN WITHIN AN OFFLINE REINFORCEMENT
LEARNING FRAMEWORK

An alternative proposal consists of extending the training of
an RBFNN from a regular supervised scheme to an offline
reinforcement learning scheme, where the RBFNN plays the
role of the policy network interacting with a specifically
designed ‘environment’ (Fig. 8). As presented in the Intro-
duction, a reinforcement learning framework contains two
elements: an agent (implementing a policy) and an environ-
ment. The policy produces actions based on the current state
of the environment, and the environment produces new states
and rewards depending on the agent’s actions. The rewards
are values that indicate the adequacy of the agent’s actions
to a final goal. The objective is to optimize the policy by
maximizing the expected sum of rewards produced by the
environment under the actions generated by the policy. The
policy can be implemented through an intermediate function
that gives a value for the quality (Q function) of each state-
action pair, and by choosing the action that maximizes the Q
function we can select the best action for each state produced
by the environment, hence implementing the policy. The
Q function can be parameterized, and implemented with a
neural network (NN). This NN can be trained end-to-end
with a loss function that attempts to reduce the error between
the output of the network and the estimation of the sum of
future rewards that depends on the Q function (Bellman’s
equation) [8]. Using a reinforcement learning scheme, the
RBFNN parameters can be updated, during training, using
one of several deep reinforcement learning approaches e.g.
Deep Q-Learning (DQN), Double DQN (DDQN), Policy
gradient, Actor-critic [46].

The offline reinforcement learning adopted is outlined in
Fig. 8, where a specifically designed environment generates
new training samples by random sampling the dataset and
producing reward values based on the errors made by the pol-
icy network, which is implemented by the RBFNN (Fig. 8).
This learning approach allows assimilating the loss function
(supervised learning) to the reward generation process (rein-
forcement learning), and the space of possible actions to the
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FIGURE 8. High-level view of the extended RBFNN playing the role of the
Policy Network in an offline reinforcement learning framework. The
circled numbers indicate the process steps following the algorithm in

Fig. 9. The symbol — acts as an assignment operator. The operator i

means that their left and right operands are defined as being equal.?lhe
whole process is repeated multiple times indicated by the circular loop
symbol (to the left of the DRL environment).

labels to be predicted by the algorithm. The reward function
is open to any function that associates a higher value with
better predictions. In this work we have used the DDQN [47]
as our DRL algorithm, and a simple 1/0 reward function
(1 in case of positive reward and 0 otherwise), but other DRL
algorithms and reward functions are possible. Fig. 8 provides
a high-level view of the process involved, where 4 steps can
be observed in each learning cycle. Each learning cycle is
iterated multiple times until the learning process is complete
(indicated by the circular loop symbol to the left of the DRL
Environment). The convergence of the learning process is
discussed in Section IV.G.

Fig. 9 provides a more detailed view of the offline DRL
training algorithm presented in Fig. 8. The training pro-
cess is based on a cycle with 4 basic steps, shown as cir-
cled numbers in Fig. 8 which correspond to the numerical
sequence in Fig. 9. The algorithm in Fig. 9 corresponds to
an adapted Q-learning algorithm [8] that allows creating an
intrusion detection classifier using a labeled dataset. The
Q-learning algorithm attempts to find the best Q-function for
the agent (the RBFNN model). A Q-function receives as input
a state-action pair and generates a score value that indicates
how good it is to take that action for that state. The Q-function
can be obtained iteratively by (4) (Bellman’s equation) [8];
where S; is the current state, S, is the next state, A, is the
current action, R, is the current reward value.

The parameters « and A are two hyperparameters: learning
rate and discount factor, respectively. The future Q-value
(Q:41) is formed by updating the current value (Q;) with a
weighted sum of the current reward (R;) plus the difference
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between the discounted maximum Q-value for the next state
(choosing the best future action) (max Q; (S;+1,A)) with the

current Q-value (Q; (S;.A;)). The learning rate is established
by the optimization function used to train the NN and, in our
case, this parameter is dynamically adjusted using the Adam
optimization algorithm [48]. The parameter A defines the
importance of future rewards and is set low in our case
because the next state is uncorrelated with the current state
(due to random sampling of the labeled dataset), and the goal
is to achieve a correct prediction for the current state i.e.,
a high current reward:

Or+1 (S Ap) < O (St A)) + @ 4
where: ® =« |:R, + )\mjlx O (S4+1,A)— 0 (S,A,)j| (®)]

In the above equation (and the rest of the paper) the sym-
bol < acts as an assignment/update operator. As seen in
Fig. 8 and Fig. 9, in this work, we have defined a correspon-
dence between the state S; with the features X, extracted from
the samples of the dataset, and the action A; with the predicted
label Y, where the ground-truth label is represented as Y.

The Q-function is provided within the Policy Network
which is implemented by the extended RBFNN architecture
(Fig. 6). The input to the RBFNN is the current state, associ-
ated to the features from the labeled dataset, and the output
represents the Q-function for the set of available actions,
where each action corresponds to the selection of a possible
intrusion label. The Q-function corresponds to how good it is
to take some particular action in the current state. The action
that, for the current state, provides the highest Q-value will
be chosen as the predicted action (predicted label).

The algorithm used to train the extended RBFNN architec-
ture within a reinforcement learning framework, is presented
in Fig. 9. The algorithm in Fig. 9 begins with a random
initialization of the weights of the RBFNN network that
implements the Q-function (Q;—¢), and setting the discount
factor (1) to a low value. The algorithm has two loops: one to
iterate through the number of epochs and another inner loop
that iterates through the number of batches within each epoch.
At the beginning of each epoch-loop there is a shuffle of the
dataset to ensure subsequent random sampling. The 4 steps
within the batch-loop are:

1) Load samples from the dataset (X;, Y, X;11, Ys41)-

2) Obtain the prediction Y, made by the RBFNN (the

policy) for the current X;. This prediction corresponds
to the action that maximizes the Q-function for the
current state (arg mjlx 0 (81, A)).

3) Assignareward to the error between the predicted label
(Y;) and the ground-truth label (Y;). We have chosen
a simple reward where an error is associated with a
reward of 0 and a correct prediction with a regard of 1.
Other rewards have been analyzed [7] but this simple
one has provided the best results.

4) Calculate a reference Q-value, given by Qref;; where,
Qref ;= Ri+A mjx 0O (St+1,A), formed by the current
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FIGURE 9. Algorithm to train the extended RBFNN architecture working
as the Policy Network of a reinforcement learning framework. The 4-step
sequence of the inner-loop corresponds to the circled numbers in Fig. 8.
The symbol « acts as an assignment operator.

reward (R;) and the discounted maximum Q-value
achievable for the next state with the best possible
action.

It is important to realize that the Q-value for the next state
is calculated with the current Q-function (Q;). The value
of Qref is used to perform a batch training of the RBFNN
as a regression network minimizing a quadratic loss, where
the loss is: (Qref, — O; (St,At))z, that is, we try to mini-
mize the difference between the current Q-value (Q; (S;, A;))
with the reference one (Qref ). This batch-step training will
perform a weights update of the RBFNN producing a new
version of the Q-function (Q;41) according to (4).

It is interesting to compare the proposed offline DRL algo-
rithm (Fig. 8) with the original online DRL algorithm based
on the DQN framework [49] which is depicted in Fig. 10. The
learning process of an online DQN framework (Fig. 10) is
done in two basic steps. In step 1, the policy network (imple-
mented with a neural network) interacts with the environment
several times. This iteration produces a sequence of states,
rewards and actions. This sequence is organized as a sequence
of tuples, with four elements per tuple: (S;,A;, Si+1, Ry)-
After a number of iterations, this sequence is stored and used
in step 2 of the learning process. In step 2, the stored tuples
are randomly sampled (called experience replay) and used to
update the Q function in a process similar to the outlined in
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FIGURE 10. High-level view of the extended RBFNN playing the role of
the Policy Network in an online reinforcement learning framework. In this
case, the learning process has essentially two steps. In step 1, the policy
network interacts with the environment multiple times. The result of this
iteration is a sequence of samples each formed by a tuple:

(St Aty St+15 Re)- In step 2, the sequence of previously gathered and
stored samples is used to update the policy network through the Q
function. The whole process is repeated multiple times indicated by the
circular loop symbol (to the left of the DRL environment).

Fig. 9 [49]. After step 2, the policy network is updated (via
the Q function), and the new updated policy network will
be used to interact with the environment in the next round
of the process (in the following step 1). Steps 1 and 2 are
repeated multiple times, until the learning process is complete
(indicated by the circular loop symbol to the left of the DRL
Environment). We can see that similar principles are used in
both the online and offline versions of the algorithm, with
the exception of the necessary adaptation of the environment
(offline version) and a different organization of the training
steps.

To train the RBFNN model with the offline DRL learning
framework (Fig. 8), we have used 30 to 100 epochs and a
batch size of 20 to 100 samples (depending on the dataset).
In this case the activation function of the last layer is a
linear function, and the training is performed as a regression
network. We have included an initial exploration phase with
an e-greedy algorithm, where the best action produced by
the policy is selected with probability p or a random action
with probability 1-p. During the first 7 epochs (exploration
phase), the action produced by the policy has been assigned
by an annealed e-greedy to a random label with a probability
ranging from 10% to 0.1%, with a smooth linear reduction of
this probability between its maximum and minimum values
during the exploration phase. After the initial exploration
phase, the label produced by the policy is always the one with
the highest output value (best action).

IV. RESULTS

In this Section, we apply several representative machine
learning (ML) classification models to the five datasets pre-
sented in Section III.LA (NSL-KDD, UNSW-NB15, AWID,
CICIDS2017 and CICDDOS2019) in order to compare their
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prediction performance results with the ones obtained by
the proposed new models based on RBFNN (Section IIL.B).
The ML models used for comparison are similar for all
datasets providing a homogeneous test benchmark. All of
these alternative ML methods and results are shown in
Figs. 10-12 for each dataset, along with the results pro-
duced by the proposed methods under the RBFNN cate-
gory. The alternative ML models used for comparison are
some of the most representative models currently in use at
NID [4], [50], [51]: (a) Multinomial Logistic Regression
(LR), (b) Linear and RBF Kernel Support Vector Machine
(SVM), (c) Random Forest (RF), (d) Gradient Boosting
Machine (GBM) with tree stumps, (e¢) AdaBoost based on
trees, (f) Neural Network (NN) with simple dense layers in
a Multilayer Perceptron (MLP) configuration, (g) Convolu-
tional Neural Network 1-Dimensional (CNN-1D) [52], and
(h) Linear Model with a Kernel Approximation (LM+KA)
[53]. The extended RBFNN models are divided into two
groups according to the use of the DRL learning framework to
train the RBFNN model (DRL+RBFNN) (Section III.B.2),
or the use of a supervised learning framework based on
direct minimization of the classification errors (RBFNN)
(Section III.B.1); in any of these cases, all the RBFNN param-
eters (centers, dispersion and weights) are trained end-to-
end and simultaneously. The NSL-KDD and UNSW-NB15
datasets will be used for binary classification and the AWID,
CICIDS2017 and CICDDOS2019 datasets for multiclass
classification. All results are obtained with the five selected
datasets (Section III.A) using their original training and test
sets without any reassignment or ad-hoc selection of train-
ing/test sets, which could provide better claimed results
but make it difficult to perform homogeneous comparisons
between results from different studies.

The classification metrics proposed are: Accuracy,
F1-score, Precision and Recall. These performance metrics
are based on the number of correct/incorrect predictions,
separating true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), based on identifying
an intrusion with a ’positive’ case, and normal traffic with a
’negative’ case. The above metrics are defined as follows:

#TP 4 #TN
Accuracy = (6)
#TP 4 #TN + #FP 4+ #FN
- #TP
Precision = ——— 7)
#TP + #FP
#TP
Recall = ———— (8)
#TP + #FN
Fl — score = 2 x Precision x Recall ©)

Precision + Recall

In the above equations, the symbol ‘#’ represents the car-
dinality operator e.g., the total number of false negatives is
represented as #FN.

For this work, which deals with unbalanced datasets,
we will consider the Fl-score as the reference metric
to rank the models. For the multi-class scenario (AWID,
CICIDS2017 and CICDDOS2019 datasets) it is necessary to
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aggregate the results for the different classes (label values),
having different aggregate options: macro, micro, samples
and weighted; opting for the weighted average as defined
in [54]. The ROC-AUC metric, which is an important metric
for binary classification, has not been used because some
methods (e.g., SVM) have difficulties to generate a probabil-
ity associated to the predicted label. Nevertheless, ROC-AUC
has been used to compare different RBFNN models within
this study (Fig. 16).

The results in Tables. 4-8 are color-coded with an array of
colors from green to red, where the darkest green represents
the best results and the darkest red the worst. The color code
is applied column-wise, which allows to appreciate where the
highest concentration of best results is found by category. All
results for the RBFNN models are presented in Figs 10-12
in the RBFNN category (“Extended RBFNN models’’) with
the column: “Model detail”, detailing the model configu-
ration using common symbols with specific meaning and
structure. Each model configuration is represented by the fol-
lowing common string: RBF(x)+yFC(z/, z2. . .), v, w. Where
x stands for the number of RBF neurons of the RBF layer;
y stands for the number of subsequent fully connected (FC)
layers, and when this number is one it means the RBF layer
is the only hidden layer; the series z/, z2, ... stands for the
number of neurons in each of the FC layers; v stands for the
loss functions used which can be cross-entropy (CE), hinge-
loss with a margin value of 1 (HS), hinge-loss with a margin
value of 0 (HP) or a loss function obtained indirectly by using
a DDQN deep reinforcement learning scheme (DDQN); and,
w stands for the last layer activation function which can be
linear (LI) or softmax (SM). The symbol [RND], following
one of the z/, z2... series indicates that the corresponding
layer has its weights set at random and are not trainable;
in this case, the resulting model shares similarities with an
Extreme Learning Machine (ELM) [55].

Tables 4-8 also include the required execution times for
training and prediction (applied to the corresponding test set).

The results presented in Figs. 10-12 for the RBFNN cat-
egory are for the most representative or best performing
network configurations for each data set. It is important to
mention that the binary classifiers for the NSL-KDD and
the UNSW-NB15 datasets produce uncalibrated probability
outputs. Fither strongly biased towards zero (NSL-KDD)
or one (UNSW-NB15), this is related to how the majority
class of the training set is encoded, being the Normal class
(class 0) for the NSL-KDD and the Attack class (class 1) for
the UNSW-NB15. These uncalibrated results have been con-
sidered to establish the corresponding separation threshold
between classes to achieve the best F1-score.

A. NSL-KDD RESULTS

The results for the NSL-KDD dataset are given in Table 4.
We can observe how the best results (F1-score) are obtained
for the DRL+RBFNN and RBFNN models with several sub-
sequent FC layers, and how their width has the greatest effect
on prediction performance. With the addition of a single
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TABLE 4. Performance metrics for all models applied to the NSL-KDD
dataset. Detailed results with column-wise color-coded metrics (from
green to red, the greener the better). In addition, the two best values per
column are marked in bold-italic.

Mockl - Accuracy | F1 [Precision| Recall |fEXec-Times(sec)

ategory Model detail Training| Test
IR |Logistic Regression 0707 | o681 | 089% | o549 || 864 | 0.0
Linear Kernel 0774 | 0772 | 0907 | o672 || 437 0.02
RBF Kernel 0880 | 0893 | 0908 | 0878 || 169216665

svm

RF Random Forest 0.747 0.721 0.969 0.574 1946 | 3.87
GBM Gradient Tree Boosting 0.776 0.761 0.969 0.627 560.5 [ 4.39
AdaBoost _|Adaboost with Trees 0.761 0.740 0.968 0.599 2014 | 1.69
NN Neural Net (MLP), 3FC (200,50),CE,SM 0.797 0.788 0.968 0.665 601.0 [ 0.61
CNN CNN-1D 0.806 0.799 0.969 0.680 13897 | 130
LM+KA Nystroem 0.887 0.894 0.956 0.840 533.6 | 055
RBF(40)+2FC (20),CE,SM 0.873 0.892 0.865 0.921 2651 | 049
RBF(60)+2FC (20),CE,SM 0.889 0.904 0.890 | 0917 || 3639 | 059

Alternative ML models

089 | 0911 | 0890 | 0932 || 3646 | 1.03
RBF(80)+2FC (20),HS,LI 0780 | 0767 | 0967 | 0636 | 677.3 | 0.9
RBF(80)+2FC (20),HP,LI 0780 | 0785 | 0887 | 0704 | 6702 | 1.02

RBFNN

RBF(80)+4FC (200,40,20),CE,SM 0892 | 0904 | 0914 | 0894 || 6835 | 105
RBF(80)+4FC (160[RND],40,20),CE,SM | 0.902 | 0915 | 0901 | 0929 |[ 4005 | 112

oRUrRBENN |REF(BOJ*4FC (150,100,20),0DQN,LI 0899 | 0915 | 0871 | 0.964 || 1331.1] 165
RBF(80)+3FC (40,20),DDQN, LI 0907 | 0923 0873 | 0979 || 12755 ] 123

layer we obtain excellent results, not improving much when
adding additional layers. The best results are obtained for the
cross-entropy loss function with a softmax activation for the
last layer. The use of the hinge-loss does not provide good
results and this behavior is also seen in the other datasets.

We can also observe how the best performance is obtained
when the training paradigm is shifted to a reinforcement
learning scheme (DRL+RBFNN) [model: RBF(80)+3FC
(40,20),DDQN,CE,LI], with the RBFNN as the policy net-
work and the loss function is replaced by a 0/1 reward
scheme based on providing a reward of 1 when the pol-
icy network makes the correct prediction and O otherwise
(Section I11.B.2).

The best Recall metrics are achieved with the proposed
models while the best alternative machine learning models
(SVM+RBF and LM+KA) achieve best Precision metrics.
This behavior is also observed with the AWID dataset and
is reversed for the UNSW-NB 15 dataset. One reason for this
behavior is that Normal traffic is the majority class during
training for NSL-KDD and AWID, while is the minority class
for UNSW-NB15 (Figs. 1-3). The Recall metric is particu-
larly important for NID applications as an important goal is
to reduce the number of false negatives.

Fig. 11 provides a graphical representation comparing the
Fl-score and Accuracy for the best performing models in
Table 4. The chart in Fig. 11 shows how the best predic-
tion results are gathered around the proposed RBFNN mod-
els with the reinforcement learning variant (DRL+RBFNN)
obtaining better results. The next best models are linear
models with an expansion of the dimensionality of features
using kernel approximation techniques (LM+KA), and SVM
models with an RBF kernel. Previous work has already shown
that these alternative models are especially suitable for this
data set [53].

Extended RBFNN models

B. UNSW-NB15 RESULTS

The results for the UNSW-NB 15 dataset are given in Table 5.
As with the NSL-KDD dataset (Table 4), most of the best
results are obtained with a RBFNN model with several sub-
sequent FC layers, with the width of the first dense layer
being especially important. The second best result is found
to be for the CNN-1D model which seems to be particularly
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FIGURE 11. Chart showing a comparison of the Accuracy and F1 metrics
for the best models applied to the NSL-KDD dataset.

appropriate for this dataset as shown in [52]. The best result
is for the extended RBFNN model with additional layers
[model: RBF(80)+-4FC (160[RND],40,20),CE,SM]. This is a
model with untrained random weights in the last layer, similar
to an ELM network which has already shown excellent results
in classification [55]. It is interesting to appreciate the good
behavior of these ELM-like networks, also showing good
performance results for the other two datasets. In the original
ELM, it is the first layer that has untrained random weights,
and the last layer is trained with a linear regression algorithm
(without gradient descent), in our case the architecture is dif-
ferent, but maintains the fundamental property of performing
a random projection of the data with a shallow (and wide)
neural network.

Most RBFNN models perform better than alternative ML
models. In this case, the RBFNN models trained without a
DRL framework perform better. Similar to the NSD-KDD
and AWID datasets, the best results are obtained with a cross-
entropy loss.

Fig. 12 provides a chart comparing the Accuracy
and Fl-score for the best models in Table 5. As with
the NSL-KDD dataset, the best results are grouped around
the proposed models. The next best results correspond to the
CNN and Random Forest models within the alternative ML
models. The best model is an RBFNN with several dense
trapezoidal-shaped layers (the first layers wider than the last
with a monotonic reduction in width size), this behavior
is similar to that observed for the NSL-KDD dataset. It is
also interesting how the inclusion of an initial non-trainable
random layer (similar to an ELM model) can improve the
prediction results.

C. AWID RESULTS

The results for the AWID dataset are given in Table 6.
These results correspond to a multiclass (4 classes) classi-
fication with an extremely unbalanced dataset. We see how
the RBFNN models have some difficulties with extremely
unbalanced datasets, and how the reinforcement learning
training framework helps in this scenario. In this case, the
best results correspond to the RBFNN models trained with
a reinforcement learning approach (RBFNN+DRL) [model:
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TABLE 5. Performance metrics for all models applied to the UNSW-NB15
dataset. Detailed results with column-wise color-coded metrics (from
green to red, the greener the better). In addition, the two best values per
column are marked in bold-italic.

Model Exec. Times (sec)

Aty ‘Model detail Accuracy F1 Precision| Recall
LR Logistic Regression 0.843 0.868 0.809 0.938
:; sM Linear Kernel 0.846 0.870 0.815 0.933
g RBF Kernel
2 RF Random Forest 0.879 0.900 0.828 0.985
§ GBM Gradient Tree Boosting 0.857 0.884 0.801 0.985
3 AdaBoost |Adaboost with Trees 0.852 0.880 0.795 0.984
£ NN Neural Net (MLP), 3FC (200,50),CE,SM | 0.866 | 0.889 | 0.814 | 0.981
§ CNN CNN-1D 0.898 0.913 0.855 0.980 1393.4 | 5.48
LM+KA Nystroem 0.885 0.895 0.901 0.888 6115 | 2.80
RBF(40)+1FC,CE,SM 0.893 0.903 0.903 0.902 7101 | 251
z RBF(80)+1FC,CE,SM 0.898 0.905 0.924 0.888 935.6 | 7.03
E - RBENN RBF(80)+2FC (20),CE,SM 0.894 0.901 0.928 0.875 1159.0 | 5.83
= RBF(80)+4FC (160,40,20),CE,SM 0.901 | 0.906 14889 | 534
§ 2 RBF(80)+4FC (200,40,20),CE,SM 0.901 | 0906 | 0.947 15133 | 543
8 RBF(80)+4FC (160[RND],40,20),CE,SM 0.940 0.890 972.5 | 6.09
& DRL+RBFNN |RBFIBOJ+4FC (150,100,20),0DQN, 1 0888 | 0899 | 0.891 | 0.907
RBF(80)+3FC (100,20),DDQN, LI | 0852 | 0868 | 0853 | o0.884
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FIGURE 12. Chart showing a comparison of the Accuracy and F1 metrics
for the best models applied to the UNSW-NB15 dataset.

TABLE 6. Performance metrics for all models applied to the AWID
dataset. Detailed results with column-wise color-coded metrics (from
green to red, the greener the better). In addition, the two best values per
column are marked in bold-italic.

Model = Accuracy | F1 | Precision | Recall ||EXecTimesisec)
ategory Model detail Training | Test
% LR Logistic Regression 0.951 0.927 0.951
3 SVM Linear Kernel 0.925 0.919 0.917 0.925 145.1
E RF Random Forest 0945 | 0927 | 0946 | 0945 || 2727 | 074
s GBM___|Gradient Tree Boosting 0946 | 0923 | 0914 | 0946 |[ 5218 [ 070
H AdaBoost _|Adaboost with Trees 2298 | 1125
® NN Neural Net (MLP), 4FC (100,100,20)CESM | 0922 | 0886 | 0865 | 0922 |[ 1367.8 | 636
K CNN CNN-1D | 0913 | 0922 | 0943 0913 |[4068:8
=< LM+KA 0951 | 0927 | 0904 | 0951 |[1s8a5| 375
z RBF(80)+2FC (20),CE,SM 0925 | 0894 | 0866 | 0925 |[ 22038 11.79
Z. ngrnn  |REFIS)2FC (10)CE,SM 0924 | 0920 | 0919 | 0924 | 13919 817
] RBF(10)+2FC (10),CE,SM 0.948 0.926 0.905 0.948 26196 | 8.78
E E RBF(10)+4FC (20[RND],20,20),CE,SM 0.916 0.899 0.884 0.916 607.8 | 9.00
§ RBF(80)+3FC (80,20),DDQN, LI 0.934 0914 10.55
& DRL+RBFNN RBF(80)+3FC (100,20),DDQN. LI 0.954 0.926 | 0.954

RBF(80)+3FC (100,20),DDQN,LI], followed by Random
Forest, Multiclass-Logistic regression (LR) and linear models
with a kernel approximation (LM+KA).

Fig. 13 provides a chart comparing the Accuracy and
F1-score for the best models in Table 6. The RBFNN-+DRL
models achieve the best results in Accuracy, Fl-score and
Recall metrics. The good results obtained when applying
reinforcement learning to RBFNN can be justified by the
initial exploration phase with an e-greedy algorithm that
avoids easily falling into the local minima forced by the large
proportion of Normal traffic.

D. CICIDS2017 RESULTS
The results for the CICIDS2017 dataset are given in Table 7.
They correspond to a multiclass (4 classes) classification.
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FIGURE 13. Chart showing a comparison of the Accuracy and F1 metrics
for the best models applied to the AWID dataset.

TABLE 7. Performance metrics for all models applied to the CICIDS2017
dataset. Detailed results with column-wise color-coded metrics (from
green to red, the greener the better). In addition, the two best values per
column are marked in bold-italic.

CNN CNN-1D
LM+KA _ [Nystroem

RBF(80)+2FC (20),CE,SM
RBF(5)+2FC (10),CE,
RBF(10)+2FC (10),CE,SM
RBF(10)+4FC (20[RND],20,20),CE,5M
RBF(80)+3FC (80,20),DDQAN, LI
RBF(80)+3FC (100,20),DDQN.LI

Motel Accuracy F1 Precision | Recall | [Exec-Times(sec
Category Model detail
2 IR Logistic Regression X 0749 0.748] 0.749)
3 svm Linear Kernel X 0742] _ 0.745]  0.739)
E RF Random Forest X 0.886|  0.971] 0.848]
s GBM___|Gradient Tree Boosting 0990  0.839
S AdaBoost _|Adaboost with Trees
g NN Neural Net (MLP), 4FC (100,100,20),CE,SM 0.886]  0.995]  0.844|
3
2

RBFNN

Extended RBFNN
models

DRL+RBFNN
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FIGURE 14. Chart showing a comparison of the Accuracy and F1 metrics
for the best models applied to the CICIDS2017 dataset.

Fig. 14 provides a chart comparing the Accuracy and
F1-score for the best models in Table 7.

The CNN and RBFNN models show the best prediction
results (F1-score, Precision and Recall). The DRL + RBFNN
models also perform well, but not as good as the simpler
RBFNN models.

E. CICDDOS2019 RESULTS
The results for the CICDDOS2019 dataset are given in
Table 8. They also correspond to a multiclass (4 classes) clas-
sification. Fig. 15 provides a chart comparing the Accuracy
and F1-score for the best models in Table 8.

The RBFNN models show the best prediction results
(F1-score, Precision and Recall). The CNN and DRL +
RBFNN models provide second best results
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TABLE 8. Performance metrics for all models applied to the
CICDDO0S2019 dataset. Detailed results with column-wise color-coded
metrics (from green to red, the greener the better). In addition, the two
best values per column are marked in bold-italic.

Model
A F1 | Precisi
Category Model detail —— recision
2 LR Logistic Regression 0.845 0.889)
b sVm Linear Kernel 0.846]  0.894]
E RE Random Forest 0.830] _ 0.908]
s GBM___|Gradient Tree Boosting 0.992]
2 AdaBoost __|Adaboost with Trees 0.865|
s NN Neural Net (MLP), 4FC (100,100,20),CE,SM 0.860]  0.896]
& [_cNN_ [oNND 0.995
< LM+KA | Nystroem | 0992 0.989)
z RBF(80)+2FC (20),CE,SM 0.994]
£, Reenn |RBF(5)+2FC (10).CESM 0.997] 0.994]
=3 RBF(10)+2FC (10),CE,SM 0.991] 0.994]
3 H RBF(10)+4FC (20[RND],20,20),CE,SM 0.997
5 oRLrmarNN | REFIBOL3FC (80,20),DDQN,LI 0817  0.988]
&5 i RBF(80)+3FC (100,20),DDQN.LI 0.996 0.993]
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FIGURE 15. Chart showing a comparison of the Accuracy and F1 metrics
for the best models applied to the CICDD0S2019 dataset.

F. IMPACT OF NUMBER OF KERNEL FUNCTIONS

It is interesting to investigate the importance of the number of
RBF neurons. Fig. 16 provides a chart showing the evolution
of the ROC-AUC score for the NSL-KDD and UNSW-NB15
datasets and for different numbers of RBF neurons. We have
chosen the ROC-AUC to perform this comparison, as we did
not want to further calibrate the results, and the ROC-AUC is
a model performance metric that is independent of the prob-
ability separation threshold. An interesting conclusion from
Fig. 16 is that the number of RBF neurons is much less impor-
tant than it initially appears, as long as that number is greater
than a certain threshold that is dataset dependent. This might
seem counterintuitive, since, in its extreme case, having a
number of neurons as large as the number of training samples
would allow a perfect fit, however, this extreme case would
also imply an architecture prone to overfitting with a behavior
similar to a K-Nearest Neighbors with a k equal to 1 [56].

G. GENERIC RESULTS

To give a joint vision of the results, in Table 9 are shown the
confusion matrices for four datasets. We can observe the
difficulties in detecting some of the minority classes for
the AWID dataset, which is the most unbalanced of the five
datasets, and is the one that benefits the most from joining
reinforcement learning training with the RBFNN architec-
ture. Despite this, the proposed models obtain the best classi-
fication performance metrics for this dataset. The confusion
matrices for NSL-KDD and UNSW-NB15 are quite different,
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FIGURE 16. Evolution of the ROC-AUC metric vs. the number of RBF
neurons (first hidden layer), for two datasets: NSL-DD and UNSW-NB15.

TABLE 9. Confusion matrices for the NSL-KDD, UNSW-NB15, AWID and
CICDD0S2019 datasets using the best proposed models, as shown in
Sections IV.A-C2.

Predicted
NSL Normal | Attack
Real Normal 7887 1824
e Attack 274 | 12559
Predicted
UNSW-NBIS Normal | Attack
Real Normal 34412 2588
Attack 4993 40339
Predicted
AWID Normal | Impers. | Flood. Inject.
Normal 527856 2615 313 0
Real Impersonation 1018 19061 0 0
ea Flooding 5648 84 2365 0
Injection 16682 0 0 0
Predicted
CICIDS2017 Normal Bot DDoS | PortScan
Normal 81867 30 54 8
Real Bot 251 123 0 0
DDoS 49 0 25341 0
PortScan 14 0 9 31924
Predicted
CICDDoS2019 Normal Syn Normal | UDPLag
Normal 705 44 0 37
Syn 1 111294 10 17
Real UDP 9 3 22312 69
UDPLag 4 6 238 135

with a large proportion of correct classifications for the
majority and minority classes. The confusion matrices for the
CICIDS2017 and CICDD0S2019 datasets are also presented.
These datasets are also multiclass and unbalanced, although
not as unbalanced as AWID. We can see that for both datasets,
the vast majority of the predictions are correct for all labels.
The best results for CICIDS2017 and CICDDo0S2019 are also
obtained with an extended RBFNN model (without using
DRL), while the best model for AWID is a DRL+RBFNN
model.

To ensure that the best results obtained by the proposed
models can be considered superior to the alternative machine
learning models, Table 10 provides the p-values obtained by
applying the Wilcoxon signed-rank test to verify whether the
best Fl-score obtained with the proposed model is greater
than the results obtained with alternative machine learn-
ing models. This test is applied separately to each dataset.
The p-values obtained confirm that the proposed models
offer an F1-score higher than the alternative models with a
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TABLE 10. Significance of results using Wilcoxon signed-rank test to
verify a higher F1-score of the best proposed model compared to
alternative ML models.

Model p-value Signiﬁg :}: )e Ll
NSL-KDD 0.20% Yes
UNSW-NBI15 0.20% Yes
AWID 0.69% Yes
CICIDS2017 1.11% No
CICDDoS2019 0.39% Yes

ﬂ‘
|
| I

0.10 \
\

0 75 50 100
Iteration

FIGURE 17. Loss (mean-squared error) evolution for Q-learning during
training for the AWID dataset (DRL+RBFNN model).

significance level of 1%, for all datasets with the exception
of CICIDS2017 where the results are also superior but with a
significance level slightly higher (1.11%).

It is interesting to show the convergence of the
DRL+RBFNN models during training (Section III.B.2).This
convergence is appreciated in Fig. 17, which shows the evo-
lution during training for the loss function of the Q-learning
algorithm used to train the RBFNN inside a DRL frame-
work. We see the usual noisy optimization path in these
models and how the initial phase is noisier due to the greater
effect of the initial exploration phase with an e-greedy algo-
rithm [7]. Fig. 17 is obtained with [model: RBF(80)+3FC
(100,20),DDQN,LI] and the AWID dataset.

It is also important to examine the complexity [57] of
the different algorithms and their correspondence with their
prediction performance. Fig. 18 provides a graph showing
the number of parameters of the different models together
with their Fl-score. Fig. 18 is done for the AWID dataset,
but similar results are obtained for the other datasets. The
number of parameters of the models based on neural networks
corresponds to their number of weights. For random forest,
gradient boosting and AdaBoost, we have used the number
of nodes of all the trees built by their respective algorithms
as the number of parameters. For linear models (logistic
regression and linear SVM) the parameters are directly the
parameters used by the models. The number of parameters is
not a perfect indicator of complexity, as other factors must
be considered [57]: (a) pre-processing of features (e.g., ker-
nel approximation); (b) optimization algorithm (e.g., boost-
ing models); (c) ensemble architecture (e.g., random forest);
(d) number of iterations required by the learning process
(e.g., number of epochs required by the different NN models);
(e) inclusion of an initial exploration/exploitation phase that
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FIGURE 18. Comparison of F1-score and complexity (number of
parameters) of all models applied to AWID (Section IV.C).

tends to slow down the training phase (e.g., reinforcement
learning). However, and despite its limitations, the number
of parameters can be used as a first approximation to model
complexity [57], and from this point of view, Fig. 18 is appro-
priate to compare the different NN models and determine
that the proposed models provide a good balance between
complexity and prediction performance.

Considering all the previous results obtained by applying
the proposed RBFNN architectures to the different challenges
presented by the five datasets, the main conclusions are:

(a) The extended RBFNN architectures proposed in
this work obtain the best performance metrics. The
extended DRL+4-RBFNN achieves the best perfor-
mance in two of the five scenarios, and the extended
RBFNN architecture obtains the best results in the third
scenario. The DRL learning scheme applied to RBFNN
networks seems to stand out over other architectural
alternatives for highly unbalanced datasets (AWID) or
noisy label (NSL-KDD) scenarios.

(b) The importance of the network structure after the initial
RBF layer, showing that the addition of extra dense
layers improves performance. The best architecture for
the dense layer block appears to be a trapezoidal shape
with a descending number of layers and with the first
dense layer being wider than the RBF layer.

(c) The great impact of the loss function and the learning
approach (supervised vs. reinforcement). In particular,
how using a DRL learning approach can provide better
results mainly with extremely unbalanced datasets, and
how the hinge-loss in its various configurations does
not provide good results.

(d) The limited impact of the number of RBF neurons on
performance, as far as this number is greater than a
certain threshold which is generally not large.

(e) The best execution times required for training and pre-
diction are obtained with linear ML models (logistic
regression and linear SVM). The proposed models are
in an intermediate position in terms of execution times,
with the DRL 4+ RBFNN models being the worst in
this regard. Models based on CNN’s architectures offer
prediction capabilities similar to the proposed models
with generally higher execution times.
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We implemented all the neural network models
(NN, RBFNN, DRL+4RBENN) in python using
Tensorflow/Keras [43], and the rest of ML models in python
using the scikit-learn package [54].

H. CHALLENGES AND LIMITATIONS
It is important to explicitly mention the challenges and limi-
tations of this work, which are:

- The difficulties of DRL methods when increasing the
dimensionality of the action space (number of labels) are
known. This is an issue that should be considered and
addressed in future research.

- The additional prediction performance of these methods
comes with additional RBF layer complexity and increased
processing time, mainly for the training stage.

- A good initial assignment of the RBF cluster centers is
important, and introducing additional methods to optimize
this initial step is challenging.

- The execution times of the proposed models are high,
but lower than the required times of alternative deep learning
models (e.g., CNN-1D) with similar prediction performance.

V. CONCLUSION

Network intrusion detection is an increasingly important
problem in modern data networking, and it is an active
research field in which many types of machine learning and
deep learning models have been applied. We propose novel
extensions to the RBFNN model. These extensions are based
on an end-to-end training scheme using gradient descent
for all the parameters of the network: the network weights,
and the centers and dispersion parameters of the radial basis
functions. This end-to-end training scheme allows us to pro-
pose several alternative loss functions, different from the
cross-entropy generally used for classification. It also allows
a complete RBFNN network to be included as the policy
network of an offline reinforcement learning model where
the loss function is replaced by a reward function that is
not necessarily differentiable. This approach also offers the
opportunity to include additional dense hidden layers after
the initial RBF layer.

We show through extensive analysis of results, with
five different intrusion detection datasets, that the proposed
RBFNN extended architectures achieve the best results in
most of the performance metrics for the five proposed
datasets. We also show that the inclusion of additional dense
layers and the application of the reinforcement learning
framework for training are both crucial to increasing the per-
formance metrics of the models. The reinforcement learning
scheme applied to RBFNN networks stands out above other
architectural alternatives, especially in the case of highly
unbalanced and/or noisy datasets which are common in net-
work intrusion detection.

As promising directions for future work, we propose:
(a) To continue with this line of research, particularly in
exploring new loss functions and their application to RBFNN
end-to-end training, e.g., contrastive loss. (b) It would also
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be of interest to analyze the impact of alternative rein-
forcement learning algorithms e.g., actor-critic, policy-
gradient, adversarial [37]. (c) To apply eXplainable Artificial
Intelligence (XAI) techniques to extrapolate the particular
policy/classification procedure inferred by the proposed
algorithms [58].
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