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Adversarial environment reinforcement learning 

algorithm for intrusion detection  

Guillermo Caminero, Manuel Lopez-Martin, Belen Carro 

Abstract— Intrusion detection is a crucial service in today's data networks, and the search for new fast and robust algorithms that 

are capable of detecting and classifying dangerous traffic is essential to deal with changing threats and increasing detection difficulty. 

In this work, we present a new intrusion detection algorithm with an excellent prediction performance. The prediction is based on a 

classifier which is a simple and extremely fast neural network. The classifier implements a policy function that is trained with a novel 

reinforcement learning model, where the behavior of the environment is adjusted in parallel with the learning process.  

Intrusion detection frameworks are based on a supervised learning paradigm that uses a training dataset composed of network 

features and associated intrusion labels. In this work, we integrate this paradigm with a reinforcement learning algorithm that is 

normally based on interaction with a live environment (not a pre-recorded dataset). To perform the integration, the live environment is 

replaced by a simulated one.  

The principle of this approach is to provide the simulated environment with an intelligent behavior by, first, generating new samples 

by randomly extracting them from the training dataset, generating rewards that depend on the goodness of the classifier’s predictions, 

and, second, by further adjusting this initial behavior with an adversarial objective in which the environment will actively try to increase 

the difficulty of the prediction made by the classifier. In this way, the simulated environment acts as a second agent in an adversarial 

configuration against the original agent (the classifier). We prove that this architecture increases the final performance of the classifier. 

This work presents the first application of adversarial reinforcement learning for intrusion detection, and provides a novel technique 

that incorporates the environment’s behavior into the learning process of a modified reinforcement learning algorithm.  

We prove that the proposed algorithm is adequate for a supervised learning problem based on a labeled dataset. We validate its 

performance by comparing it with other well-known machine learning models for two datasets. The proposed model outperforms  the 

other models in the weighted Accuracy(>0.8) and F1(>0.79) metrics, and especially excels in the results for the under-represented labels. 

Index Terms— Intrusion detection; reinforcement learning; adversarial learning. 
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I. INTRODUCTION

Considering the importance of current security attacks on modern highly demanding networks, the economic importance of 

services running on these networks and the increased demands on data networks imposed by these services, it is very important to 

rely on automatic systems capable of detecting intrusions in a fast and reliable manner. Such a system is an Intrusion Detection 

Systems (IDS) [1], being its final goal to fast and accurately analyze network traffic and to predict potential threats. 

IDS is identified as one of the main applications of machine learning research to new data networks [2][3][4][5][6]. IDS presents 

important prediction problems, since it must handle large, noisy, and unbalanced datasets. Moreover, the features extracted from 

the network traffic are complex and usually with a noisy assignment of labels to its corresponding ground-truth state, due to the 

difficulty to ascertain the true value of the intrusion state. This difficulty is the reason why the association between the features 

and the intrusion labels is done manually. 

The data used to train an IDS algorithm are normally provided as a dataset of recorded network features with their associated 

intrusion labels. The network features are usually recorded in an automatic manner with a post-manual assignment of their 

associated labels. This dataset of network features and their associated intrusion labels is the basic element to train all classic 

Machine Learning (ML) models in a supervised learning framework. However, this is not the framework used to train a Deep 

Reinforcement Learning (DRL) algorithm [7], which is based on the interaction of an agent with an environment. This environment 

receives actions from the agent and returns new states and rewards [7], which are used by the algorithm to optimize the agent’s 

policy function. The policy function is used by the agent to compute the next best action, based upon the current state and reward 
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(Markov property) [8] provided by the environment. The ultimate goal of the DRL framework is for the agent to produce actions 

that maximize the total sum of rewards granted by the environment, along a trajectory of interactions between the agent and the 

environment. To translate the DRL terminology to an IDS problem, we can assimilate: 1) the states to network traffic samples, 2) 

the actions to label predictions and 3) the rewards to a value associated with the goodness of the prediction, i.e. classification 

accuracy (better prediction implies a greater reward value). Considering the differences between supervised and DRL frameworks, 

the reinforcement learning (RL) model needs an evident adaptation, because we want to use it with a dataset of pre-recorded 

samples formed by network features and associated intrusion labels. 

 

Never used before in IDS, a Reinforcement Learning (RL) algorithm can provide very interesting properties for intrusion 

detection: (1) It is a very general framework with a flexible reward function, that does not require to be differentiable. (2) Once 

the training is done, the resulting policy function is usually a simple and fast neural network. (3) Thanks to the use of simple reward 

functions, the algorithm is suitable for online training, which allows a rapid response to changes in network conditions. 

 

Considering the above points, we propose a new model that integrates a simulated environment, which provides samples of 

network traffic and rewards with an agent, which implements the classifier, and which is trying to predict the correct intrusion 

label based on the network samples given by the environment. The rewards generated by the environment will be positive/negative 

depending on the correct/incorrect prediction of the agent. The algorithm is trained with the objective of maximizing the total sum 

of rewards. An important characteristic of this simulated environment is that it randomly extracts the new samples (states) from 

the dataset of pre-recorded samples. This initial strategy of random extractions provides good results, however we have designed 

for the environment a more sophisticated behavior that is learned during training, acting against the agent’s policy (adversarial), 

so better results may be obtained. That is, the environment behavior is actively trying to reduce the rewards given to the agent, by 

increasing the classifier’s incorrect predictions and forcing it to learn the most difficult cases. The resulting new algorithm is then 

called Adversarial Environment using Reinforcement Learning (AE-RL). How the sampling process and reward function is 

implemented by the modified environment constitute the specific nature of the proposed model. AE-RL is particularly suited to 

incorporate a supervised problem which make use of a labeled dataset into a DRL framework.  

 

One of the problems of RL algorithms (when dealing with labeled datasets) occurs when the dataset is not properly balanced. 

This fact is important in all machine learning algorithms, with a special emphasis on the RL algorithms, since they do not know a 

priori the correct label used to adjust the weights and minimize the error function. These algorithms learn from transitions through 

trial and error, therefore when a dataset is highly unbalanced, it is difficult for the algorithm to classify under-represented samples 

without incurring in over-fitting for the rest of the data. Facing this dilemma as the main motivation, we propose AE-RL. With this 

objective, the method aims to maximize the total sum of rewards by obtaining a balanced learning for classification tasks. For this 

purpose, the intelligent environment is used to provide the most interesting samples based on an exploration-exploitation principle 

that is present in all reinforcement learning algorithms. The resulting sampling strategy permits a more balanced learning for the 

less frequent samples. This novel approach allows us to overcome the exploration problems in these algorithms and to deal with 

unbalanced datasets. 

 

To evaluate the performance of AE-RL, we have compared it with a series of well-known and widely used supervised machine 

learning models: Linear and Radial Basis Function (RBF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), 

Gradient Boosting Machine (GBM), Random Forest, AdaBoost, Multinomial Logistic Regression and Convolutional Neural 

Networks (CNN), and several classic DRL algorithms:  Double Deep Q-Network (DDQN), Dueling DDQN and Asynchronous 

Advantage Actor Critic (A3C). These algorithms cover most of the different areas of machine learning that are used to implement 

classifiers: neural networks, linear models, kernel methods, bagging and boosting models, deep learning and reinforcement learning 

models. In particular, it is important to highlight the differences between the performance results of AE-RL with the other DRL 

algorithms, which have a related but not similar nature. A detailed presentation of results is provided in section IV. 

 

The AE-RL algorithm produces a dynamic sampling process which usually implies an over-sampling/under-sampling of the 

minority/majority classes of an unbalanced dataset. This is achieved with the intelligent sampling provided by the simulated 

environment and is quite different from other classic static over-sampling/under-sampling algorithms. Classic over-sampling 

methods create new samples close in “distance” to existing samples that belong to some specific minority class (e.g. Synthetic 

Minority Over-sampling Technique, SMOTE) [9], and additionally can give a higher “weight” to samples that are harder to learn 

(closer to a majority class) (e.g. Adaptive Synthetic Sampling, ADASYN) [10]. Similarly, the under-sampling techniques reduce 

the number of samples of the majority classes, either by random under-sampling or by substituting a number of samples by a 

representative one (either original or synthetic).  Considering these analogies, it is interesting to compare the performance results 

of AE-RL with these other classic over-sampling/under-sampling methods. This comparison is provided in Section IV. The static 

over-sampling/under-sampling methods produce the new samples prior to training. In contrast, the model proposed for AE-RL 

generates the samples dynamically during training and depends on the training process. Additionally, the samples produced by 
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many over-sampling/under-sampling methods are synthetic, that is, new samples that are related to the original ones but not 

identical. In contrast, AE-RL does not generate synthetic samples, so it better preserves the original information contained in the 

data set. 

 

It is also interesting to appreciate the differences of AE-RL with the bagging (e.g. Random Forest) and boosting (e.g. AdaBoost, 

GBM) algorithms, when dealing with the problems of generalization and dataset imbalance [11]. AE-RL modifies the training 

frequency of each sample based on its training error, dealing with imbalance and providing excellent generalization errors (Section 

IV: accuracy and F1 metrics on the test dataset). Boosting methods are also directed by the sample training error, but they operate 

by changing the weights given to each sample, increasing the weights of the samples with larger errors in a series of additive 

models (ensemble model). Boosting deals well with generalization and imbalance. Bagging is based on training a series of models 

using random sampling with replacement (bootstrap) of the original dataset, the final model is based on averaging the results of all 

the models (ensemble model). In the case of bagging, the successive resampling of the dataset is based on random sampling and it 

is not based on training results. Bagging deals well with generalization but not directly with imbalance unless additional cost 

factors are introduced. 

 

To carry out the experiments, we have chosen two well-known datasets:  NSL-KDD [12] and AWID [13]. These intrusion 

detection datasets have been extensively studied, contain a sufficient number of samples to obtain significant results and are highly 

unbalanced, with most of the samples associated with a few labels. Both datasets are divided into training and test sets. All 

performance results for both datasets are provided over the test sets. 

 

As a summary, the motivations/contributions of this work are: 

- To propose a new classifier model for intrusion detection in networking. 

- To present a classifier which is fast, flexible and with excellent performance metrics for prediction. 

- To integrate the RL framework with a supervised classification problem. 

- To explore the important field of research of multi-agent and adversarial RL, and its application to intrusion detection. 

- To apply, for the first time, an adversarial RL to address the training bias associated with an unbalanced dataset. And, to 

provide a comparison of the results of our proposed model with other models which deal with this imbalance problem using 

static (e.g. SMOTE, ADASYN) methods. 

 

The paper is organized as follows: Section II identifies related works. Section III presents the dataset used for the experiments 

and the model proposed in detail. Section IV shows the results obtained and finally, Section V provides discussion and conclusions. 

II. RELATED WORKS 

There are many works in the literature presenting results for intrusion detection using different datasets. Nevertheless, comparing 

results is a difficult task, since an important source of differences relies on the test set used to obtain the detection scores. In many 

published works it is different from the original test set, or it is not clear which one was used.  

As far as we know, there are no previous works applying DRL for intrusion detection with the same premises used in this work, 

however many consider existing machine learning and deep learning models. In this section we present the most representative of 

these works applied to the NSL-KDD and AWID datasets.  

We also discuss the most significant works applying reinforcement learning (RL) to intrusion detection and classification in 

general, and related works that, applying techniques other than DRL, adjust the class distribution of a dataset by over-

sampling/under-sampling to achieve a balanced training. 

 

Machine learning and intrusion detection: Intrusion detection can be addressed as anomaly detection [14] or as a classification 

problem, depending on the available data. In this analysis we focus on the classification perspective. Many works apply ML for 

intrusion detection with the NSL-KDD dataset: in [15] they report an accuracy of 79.9% for test data for the 5-labels prediction 

scenario, applying an MLP with three layers. Authors in [16] report an F1 of 98% for the 5-labels scenario using AdaBoost with 

Naive Bayes as weak learner and a previous feature selection; test results are based on 10-fold cross validation over the training 

data, not on the test set. Finally, in [17] a variational autoencoder is proposed to perform detection on NSL-KDD with a 5-labels 

configuration, obtaining an overall accuracy of 80%. 

Considering the AWID dataset, the original work that first presented the dataset [13] is an excellent source of results for different 

ML models for intrusion detection. In this work, the authors apply 8 algorithms (AdaBoost, Hyperpipes, J48, Naïve Bayes, OneR, 

Random Forest, Random Tree and ZeroR) to the dataset. They perform a thorough comparison of the models, and the J48 model 

presents the best results reporting an accuracy of 96% and a F1of 94.8%. 

Recently, a survey in [4] presents a complete review of the ML models for intrusion detection in IoT networks. 

 

Reinforcement learning and intrusion detection: The work in [18] presents an anomaly detector based on reinforcement 

https://en.wikipedia.org/wiki/Data_set
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learning with a simulated network environment, where anomalies are injected in a controlled manner and the reward is based on 

the correct detection of the anomalies. From a logical point of view, this experiment presents similarities with the present work: 

although the environment is physically simulated, the reward function is manually controlled and is not generated by the 

environment itself, and the real-time generation of sequences of actions, states and rewards could be assimilated to those registered 

in a dataset. However, the techniques applied in [18] notably differ from the present work, since they use a Q-learning algorithm 

based on a look-up table, that requires a discretization of states to avoid an explosion in the table size. In contrast, current DRL 

models use function approximators based on neural networks (NN), which allow generalizing their application to states of any size 

with continuous or discrete values. In [19][20][21] they also employ look-up tables with temporal difference (TD) learning [22] 

for intrusion detection in live sequences of traffic flows.  

 

Multi-agent reinforcement learning and intrusion detection: Authors of [23][24], in a different framework perform intrusion 

detection by applying reinforcement learning based on a multi-agent architecture, forming a hierarchy to detect anomalies. The 

configuration of agents is not adversarial. They require the discretization of the state space to apply a look-up table. None of the 

above works apply DRL models to intrusion detection. The results provided apply to its own simulated network and cannot be 

compared with the results of this work. 

 

Reinforcement learning and classification: In [25] a DRL approach based on an actor-critic model to perform classification 

over several well-known UCI datasets (e.g. Iris, Hepatitis...) is presented. Considering the applied technique this work is similar 

to ours; however, there are differences in the taken approach to perform classification, based on extending the state space dimension 

with additional ancillary variables (features) used as memory cells, in a copy and erase process together with a complex reward 

scheme. This has a major impact on complexity and computational performance (e.g. training times) and follows a very different 

strategy from the one presented in this work, which applies simple reward functions and does not require feature engineering. Also, 

in [26] a demonstration of classification by reinforcement learning is shown, and it is compared with traditional classifiers such as 

SVMs obtaining similar ratios without the need of feature engineering. Authors in [27] present an actor-critic reinforcement 

learning model based on Temporal Difference (TD) learning, applied to classification using a fuzzy adaptative learning control 

network. The resulting model is applied to the very simple Iris dataset. 

 

Adversarial reinforcement learning: There are excellent overviews of multi-agent and adversarial reinforcement learning, and 

none of them present results for intrusion detection [28][29][30]. Current applications are mainly found in the field of games or 

related commercial application (e.g. e-negotiation systems).  

In [31] an adversarial environment is described, in which the objective is a classifier that makes mistakes by performing small 

modifications to the training data. This framework is not applicable to the type of classification provided in this paper, whose 

intention is to make correct classifications instead of forcing an error in the algorithm. 

 

Adversarial in cyber environments: In [32] a simulated network environment as a cybersecurity zero-sum game with 

incomplete information is presented, where two adversarial agents (attacker and defender) try to win the game. The result of the 

game cannot be transformed into a classifier and the applied methods for the policy of reinforcement learning are Monte Carlo and 

Q-learning (based on a look-up table), so not DRL. Authors in [33] introduce an adversarial environment based on reinforcement 

learning where a defender and attacker dynamically adjust their behavior. The work focuses on cybersecurity attacks and is 

specifically aimed at the Heartbleed attack. The study is mainly theoretical and is based on an ad-hoc RL algorithm; the results are 

based on numerical simulations not on real data.  

 

Over-sampling of unbalanced datasets for intrusion detection: In [34] a complete analysis of several over-sampling 

algorithms applied to the NSL-KDD data set is provided. [34] proposes a new over-sampling method called Variational Generative 

Model (VGM) based on a variational autoencoder. This work applies the new method together with 7 variants of SMOTE and 

ADASYN to the NSL-KDD dataset (5-labels scenario) to generate synthetic data that is used to train several well-known classifiers 

(Random Forest, Logistic Regression, Linear SVM and MLP). The classifiers obtain the best performance increase when 

generating new data with VGM, producing a significant increase in performance compared with no-oversampling. Even 

considering this new over-sampling technique, the results obtained with AR-RL outperform the performance metrics (Accuracy 

and F1) obtained with VGM for all classifiers. Section IV provides a complete comparison between the results obtained in [34] 

and the results of AE-RL. 

 

III. WORK DESCRIPTION 

In this Section, (1) we describe  the datasets chosen to compare the detection capacity of the different models, and (2) provide a 

comprehensive review of our proposed model (AE-RL). 

The datasets employed are described in Section III.A. The proposed model is presented in detail in Section III.B.  
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A. Selected datasets 

To verify the capabilities of the proposed model for intrusion detection under different conditions, we have chosen two well-

known datasets in the field of intrusion detection: NSL-KDD [12] and AWID [13]. 

Each one offers the opportunity to evaluate the performance of the model under different number of intrusions and attacks 

distribution.   

 

1) NSL-KDD dataset 

The NSL-KDD [12] dataset is a classic well-known IDS dataset. NSL-KDD dataset is an evolution of the KDD-99, solving the 

redundant records problems of the original dataset. The NSL-KDD dataset has 125973 training samples and 22544 test samples, 

containing 41 features: 38 continuous and 3 categorical (discrete valued). These features have been additionally transformed: 

scaling all continuous features to the range [0–1] and one-hot encoding all categorical features. This provides a final dataset with 

122 features: 38 continuous and 84 with binary values ({0, 1}) associated to the three one-hot encoded categorical features. This 

is a very unbalanced dataset with a frequency of 43.1% and 1.7% for the most and least frequent labels.  

Each training sample has a label output from 23 possible labels (normal plus 22 labels associated to different types of anomaly). 

The test data has the same number of features (41) and output labels from 38 possible values. That implies that the test data has 

anomalies not presented at training time. The 23 training and 38 testing labels have 21 labels in common; 2 labels only appear in 

training and 17 labels are unique to the test dataset. Up to 16,6% of the samples in the test dataset correspond to labels unique to 

the test dataset, and which were not present at training time. The existence of new labels at testing introduces an additional 

challenge to the learning methods.  

To facilitate interpretation of results the 23 labels have been aggregated into meaningful categories. As presented in [12], the 

training/testing labels can be associated to one of five possible categories: NORMAL, PROBE, R2L, U2R and DoS. All the above 

categories correspond to an intrusion except the category: NORMAL, which implies that no intrusion is present. We have 

considered these five categories as the final labels driving our results (Section IV). These new labels are useful for characterizing 

intrusions, maintaining a fairly unbalanced distribution (an important feature of intrusion data) and with a number of samples, in 

each category, large enough to provide significant results.  

To visualize the unbalanced nature of the NSL-KDD dataset, Fig. 1 shows the frequency distribution of the intrusion classes (on 

the left) and the types of attacks (on the right) for the NSL-KDD training dataset. In the analysis performed here, we have 5 possible 

intrusion classes and 23 possible attack types 

 

 

 
Fig. 1. Frequency distribution of intrusion classes (left) and types of attacks (right) for the NSL-KDD dataset 

 

 

2) AWID dataset 

The publicly available Aegean WiFi Intrusion Dataset (AWID)[13] contains a rich blend of normal and attack traffic against 

IEEE 802.11 networks. AWID is larger and more recent than NSL-KDD. 

AWID offers two different groups of data. We have chosen the AWID-CLS-R that includes a separated training and test datasets. 

The dataset provides a class label with 4 values: normal, flooding, injection and impersonation; the first corresponds to a non-

attack situation and the rest to different types of attacks. The dataset contains 154 features (continuous and categorical) with 

1.795,574 and 575,642 samples for the training and test datasets, respectively. After discarding the features with null values, 
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constant values and network addresses we reduced their number to 24 features (continuous and categorical). The continuous 

features have been scaled to the [0–1] range and all categorical features are one-hot encoded. 

This is also a very unbalanced dataset with 91% of normal samples and 9% associated with anomalies: 2.7% flooding, 2.7% 

impersonation and 3.6% injection. Fig. 2 clearly shows the imbalance in the class distribution of the AWID dataset. 

 

 
Fig. 2. Frequency distribution of intrusion classes for the AWID dataset 

 

 

B. Model description 

We propose a novel model called AE-RL that implements a classifier based on the theory of RL [8]. In an RL framework, an 

environment informs an agent of the state of the environment and the agent responds with an action within the environment. This 

action eventually produces a change in the state of the environment. The environment responds to the action of the agent with a 

reward that is associated with how good/bad the action is in terms of some final goal. Considering this framework of an agent that 

interacts with a live environment, our proposed model provides the following modifications: 

- We provide a simulated environment whose states correspond to random samples taken from a dataset of labeled attacks 

(network intrusions). 

- The agent implements a classifier which tries to predict the intrusion label from the states provided by the simulated 

environment 

- The simulated environment produces rewards according to the correct/incorrect predictions of the agent 

The new framework obtained by the previous modifications allows applying a well-known RL algorithm (Q-learning algorithm) 

[8] to classify intrusions using a dataset of pre-recorded intrusion data. 

 

The Q-learning algorithm is based on finding the best Q-function for the agent (the classifier in our case). A Q-function estimates 

a value for each state-action pair, this value corresponds with the sum of the rewards for the given state considering that we take a 

certain action and then move forward with the current policy. An important result is that the Q-function can be calculated iteratively 

by the following expression [8]: 

  𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + α [𝑅𝑡+1 + 𝛾 max
𝐴

𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 . 𝐴𝑡)]     (1) 

Where 𝑆𝑡  is the current state, 𝐴𝑡 is the current action, 𝐴𝑡+1 is the next action, 𝑅𝑡+1 is the next reward value, 𝛼 is the learning 

rate and  𝛾 is the discount factor, which in this case is set close to zero because the states are not correlated with each other (they 

are obtained by sampling the dataset, not in a sequential order), and therefore there is no need for the algorithm to remember 

previous states. Values of 1.0 and 0.001 for 𝛼 and 𝛾 have been used, respectively.  

 

In order to approximate the Q-function, a fully connected neural network (NN) is used, following [35]. The input to this NN is 

the current state, which corresponds to the features extracted from the labeled dataset. The output of the NN represents the Q-

function for the set of available actions. As mentioned earlier, the Q-function corresponds to how good is taking some action in 

the current state. In [35] the Deep Q-Network (DQN) algorithm followed by the AE-RL algorithm (see Table I) is described. The 

DQN model does not apply the expression in (1) to update the Q function, but a related one based on a quadratic loss function:    

(𝑅𝑡+1 + 𝛾 max
𝐴

𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡 . 𝐴𝑡))2 (Table I). 

 

The framework that results from the above premises, based on the Deep Q-Network algorithm, provides good detection results 

(Section IV: Fig 7; results for the DDQN model). However, considering the unbalanced nature of the dataset, where normal traffic 

is highly over-represented, we have changed this original framework to provide the environment with an intelligent behavior 

beyond the random sampling of the dataset. This change allows us to address the problem of the unbalanced dataset with a new 
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model that performs a dynamic and intelligent resampling of the dataset during training. 

 

In this new model (AE-RL), we associate a new reinforcement learning agent to the environment. Both agents, the environment 

agent and the classifier (main) agent, are trained in parallel (both using DQN).  The action (output) of the classifier agent will be 

the intrusion type prediction for a sample of the dataset (input), and the action of the environment agent will be the class of attack 

that will be used to generate new samples in the training process. Therefore, even when both agents have a similar structure, the 

main agent acts as a classifier and the environment agent acts as a selector of the attacks that will be used in the next round of 

training. The two agents work in an adversarial model based of the rewards offered to the (main) agent which are inverted for the 

environment agent. In this way, the environment agent will try to direct the generation of samples to increase the errors produced 

by the classifier agent (reduce its rewards), forcing the classifier to focus on the most difficult samples.  

 

With this framework, the new model generates a more balanced data sampling by producing samples in which the classifier fails 

more frequently. This may be due to the low frequency of occurrence in the training set or to the difficulty of prediction for some 

states. All positive rewards for the main agent will be negative for the environment. In this way, the environment learns which are 

the classes in which the main agent fails most frequently and with a certain probability increases the frequency of these samples. 

To do this, we use two different Q-functions: a 𝑄𝑐(𝑠, 𝑎) function responsible of the optimization of the classifier and another 

𝑄𝑒(𝑠, 𝑎) function for optimizing the environment. Both functions refer to the same principle of how good it is to take an action at 

a certain state, but the number of actions considered can be different. In this case, for the NSL-KDD dataset, the Q-function for 

optimizing the classifier has a set of actions (𝐴𝑐 ∈ [0 − 4]) corresponding to the number of classes of the classifier. On the other 

hand, the Q-function responsible for optimizing the environment has a set of actions (𝐴𝑒𝑡𝑟𝑎𝑖𝑛
∈ [0 − 22] 𝑜𝑟 𝐴𝑒𝑡𝑒𝑠𝑡

∈  [0 − 37]) 

corresponding to each of the possible attacks in the training/test data set.  

 

The policy followed throughout the training corresponds to a decreasing epsilon-greedy so that the exploration is initially high, 

reducing its value along the episodes. We consider an episode as a training round throughout the entire dataset, in this case another 

usual denomination for episode is epoch. Both the agent and the environment choose their actions considering their policy, being 

the lower bound of epsilon different for each case. In order to maximize detection, the lower bound of epsilon for the classifier 

policy will be low, while the lower bound of the environment policy will be set as a hyperparameter. 

 

The method followed throughout the training corresponds to the following sequence (Table I): (1) The Q functions of the 

environment and the classifier agents are initialized to a random value. In addition, an initial 𝑠0 state is randomly chosen among 

all the states in the dataset in order to feed the 𝑄 function and obtain the action values for this state. It is important to keep in mind 

that a state is a sample from the dataset. (2) Next, the environment chooses an action 𝑎𝑒𝑡
 (intrusion label) based on its policy and 

the current state. (3) The environment selects the current state randomly from the dataset 𝑠𝑡 , whose action corresponds to the one 

chosen by the environment, shown as 𝑆(𝑎𝑒t
) in Table I, which provides the feature-label pair (𝑠𝑡 , 𝑎𝑒𝑡

) (4) Given the state selected 

by the environment, the agent tries to classify this state based on its own policy and assigns it to an action (𝑎𝑐𝑡
) being this step the 

same as a normal DQN algorithm. (5) This action: 𝑎𝑐𝑡
 (intrusion label) is sent to the environment and compared with the ground-

truth label, if both are the same, the correct classification provides a positive reward to the agent and if they are different the 

positive reward will be for the environment. (6) The new state is given by the environment as in a typical DQN algorithm, based 

again on its action value function and following its policy, providing the next feature-label pair (𝑠𝑡+1, 𝑎𝑒𝑡+1
). (7) With the reward 

values obtained and the next states inferred, the policy functions of both the classifier and the environment agents are updated 

according to the DQN update rule [35]. 

 

The reward function applied has been a simple 1/0 reward, with a value of +1 for a positive reward and 0 for a negative reward. 

In addition to the 1/0 reward, other reward functions were tested, in particular, the functions cross-entropy and categorical hinge 

were used to evaluate the distance between the predicted and ground-truth actions (labels), associating that distance with a reward 

(shorter distance equals greater reward). Another reward function that was examined was to provide a different reward according 

to the type of attack. The simplest 1/0 reward was finally selected due to better performance. 

 

Table I shows with a gray background the steps of the algorithm that deviate from a normal DQN algorithm. These additional 

steps make it possible to train the environment agent (with an adversarial strategy). 

  



 8 

 

 

Algorithm for AE-RL: 

Initialize 𝑄𝑐(𝑠, 𝑎𝑐 t
) arbitrarily 

Initialize 𝑄𝑒(𝑠, 𝑎𝑒 t
) arbitrarily 

Repeat (for each episode): 

 Initialize the state value: s0 = random sampling (dataset) 

 Choose environment’s initial action 𝑎𝑒𝑡
 using policy derived from 𝑄𝑒(𝑠𝑡 , 𝑎𝑒𝑡

) 

 Replace 𝑠𝑡 using  𝑠𝑡 = random sampling (𝑆(𝑎𝑒𝑡
)), where 𝑆(𝑎𝑒𝑡

) are all samples whose label is 𝑎𝑒𝑡
 

 Repeat (for each time step, t→ 0 to N): 

  Choose agent’s action 𝑎𝑐𝑡
 using policy derived from 𝑄𝑐(𝑠𝑡 , 𝑎𝑐𝑡

) 

  Take RL step obtaining ( 𝑟𝑐 𝑡
, 𝑟𝑒𝑡

,𝑠𝑡+1): 

    Obtain rewards for the agent and the environment: 𝑟𝑐 𝑡
, 𝑟𝑒𝑡

 

    Obtain next state: 

     Choose next environment’s action 𝑎𝑒𝑡+1
 using policy derived from 𝑄𝑒(𝑠𝑡 , 𝑎𝑒𝑡

) 

     Replace 𝑠𝑡+1 using: 𝑠𝑡+1 = random sampling (𝑆(𝑎𝑒𝑡+1
)), where 𝑆(𝑎𝑒𝑡+1

) are all samples whose label is 𝑎𝑒𝑡+1
 

  Q function update: 

  Apply gradient descent on the loss function given by:   (𝑟𝑒𝑡
+ 𝛾 max

𝑎𝑒𝑡+1

𝑄𝑒(st+1, aet+1
) − 𝑄𝑒(𝑠𝑡 , 𝑎𝑒 𝑡

))2 

Apply gradient descent on the loss function given by:  (𝑟𝑐𝑡
+ 𝛾 max

𝑎𝑐𝑡+1

𝑄𝑐(st+1, act+1
) − 𝑄𝑐(𝑠𝑡 , 𝑎𝑐𝑡

))2 

Table I. Algorithm for the new model AE-RL. 

 

 

In the definitive algorithm implemented by AE-RL we added three additional refinements to the one presented for simplicity in 

Table I: a) The final algorithm implemented by AE-RL is based on DDQN [36], which is a variant of DQN using two separate 

networks to select and to evaluate an action. b) The actual loss function used to train the agents is based on a Huber loss, which is 

similar to a quadratic loss up to a threshold and linear beyond that value. The objective of the Huber loss is to reduce the values of 

the gradients that could experience explosive behavior. c) Since we have two agents implemented by two different neural networks, 

we apply two epsilon-greedy strategies. We start both networks with a high epsilon value that is reduced during training to a final 

value of 0.8 for the environment network and 0.01 for the classifier network. We have empirically learned that having a high value 

of epsilon for the environment (active exploration) is important to achieve good results. 

 

Fig. 3 shows the elements that integrate the algorithm and how the environment is acting as a pseudo-agent that works in an 

adversarial mode in relation to the main agent (lower part of the diagram) that constitutes the classifier. 

 

 

Fig 3. Reinforcement learning interaction between the agent and its intelligent environment. 

 

Fig. 3 presents a high-level view of the AE-RL algorithm, more detail is provided in Fig. 4 that graphically depicts the functional 

blocks and steps enumerated in Table I. Fig 4 separates the operation of the algorithm in the training and prediction stages. The 
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upper part of Fig. 4 represents the training stage, where the blocks with the slightly yellow background are associated to the 

operation of the environment. The diagram shows the ongoing operation, and 𝑠0 represents the initial conditions where the initial 

state is taken randomly from the dataset. The prediction stage (lower part) is exclusively based on the already trained classifier 

agent . Both the environment and classifier agents are based on very simple neural networks, as shown in Fig. 5. 

 

 
Fig. 4. Details of the AE-RL algorithm for the training and prediction phases. 

 

Fig. 5 shows graphically the architecture on which both the attacking agent (environment) and the defending agent (classifier) 

are based. In both cases, the architecture is composed of a simple shallow neural network with 1 or 3 layers and 100 units per layer. 

The simplicity of this architecture provides a competing response time while the reinforcement learning training optimally adjusts 

weights and biases. In this figure it is possible to appreciate that both the attacker and defender have the features of the current 

sample as their input, but producing different outputs depending on the network. For the defender, the output is a prediction of the 

intrusion class (one of 5). For the attacker, the output is one of the 23 possible attacks that will be used to choose a random sample 

that corresponds to this output attack (one of 23). Therefore, the neural network for the defending agent implements a classifier, 

but the neural network for the attacking agent cannot be seen as a classifier but as a generator of attack classes. 

 

 

    
Fig. 5. Neural network architecture for the attacking agent (environment) on the left and the defending agent (classifier) on the right. 

 

 

Fig. 6 shows the evolution of the distribution (histograms) of attacks generated by the attacking agent during training throughout 

different epochs (training iterations), for the NSL-KDD dataset. The histograms only show the 23 possible attacks for the training 
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dataset. Initially (0 epoch), the environment provides attacks randomly. As the training continues, the environment agent learns 

and sends attacks that maximize its reward, which varies over time. We can observe that the frequency of the different classes of 

attacks changes in a stochastic way, but it shows a tendency to increase the importance of several attacks: satan, ipsweep and 

warezclient, reducing at the same time the importance of normal traffic. This is exactly the behavior we want to observe in a 

dynamic (intelligent) algorithm that tries to compensate for the bias training produced by an unbalanced data set.  

We have chosen the NSL-KDD dataset for Fig. 6 because it provides more types of attacks than AWID, which makes it easier 

to appreciate the redistribution of attack frequencies that the environment performs. 

 

 

 
Fig. 6. Evolution of the distribution of attacks generated by the attacking agent (environment) during training (NSL-KDD dataset). 

 

 

It is interesting to compare the frequency of attack types (right part of Fig. 1) that are present in the training dataset with the 

distribution of attacks generated by the environment agent of AE-RL (bottom-right of Fig. 6). This comparison provides a clear 

view of how the intelligent environment actively modifies the unbalanced distribution of samples to improve the classification 

results. 
 

IV. RESULTS 

In this section, we compare the results of applying our proposed algorithm (AE-RL) with different machine learning models to 

the chosen IDS datasets: NSL-KDD and AWID. We have selected some of the most common machine learning, deep learning and 

deep reinforcement learning techniques to perform the comparison, including: Logistic Regression, Support Vector Machine 

(SVM) with linear kernel and Radial Basis Function (RBF) kernel, Random Forest (RF), Gradient Boosting Machine (GBM), 

AdaBoost with simple trees as weak learners, MLP, Convolutional Neural Network (CNN), and several well-known DRL 

algorithms: DDQN[35][36], dueling [37] and A3C [38]. 

 

All the results presented in this paper are based on the test sets defined in Section III.A. To analyze the prediction performance 

for the different models, and considering the highly unbalanced distribution of labels, we provide the following performance 

metrics: accuracy, F1 score, precision and recall. We base our definition of these performance metrics on the usually accepted ones 

[1]. Regarding highly unbalanced datasets, F1 is considered a better metric for prediction performance than accuracy, precision 
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and recall. This metric (F1) will be used to rank the different algorithms applied to the two datasets. 

 

When facing a multi-class classification problem, results can be presented in two ways: ‘aggregated’ and ‘one vs. rest’. 

Considering the one vs. rest approach, we focus on a particular class (label) and consider the other classes as a single alternative 

class, simplifying the problem to a binary classification task for each particular class (one by one). In the case of aggregated results, 

we try to give a summary result for all classes. There are different alternatives to perform the aggregation (micro, macro, samples, 

weighted), varying in how the averaging process is done [39]. For the results presented in this paper, we have used the weighted 

average provided by scikit-learn [39], to calculate the aggregated F1, precision and recall scores. 

 

Aggregated performance metrics are summarized in Fig. 7 for the NSL-KDD dataset. In addition, prediction and training times 

are essential for IDS, since traffic is permanently changing. Good prediction metrics by themselves are not enough for deciding 

the best model. In Fig. 10 the computing times required for the training and prediction phase for all models are shown. 

 

The best results for the F1 aggregated metric (for the NSL-KDD) are obtained by SVM-RBF, followed closely by AE-RL and 

the rest of the models notably behind (Fig. 7). Accuracy scores follow a similar pattern. We can observe that AE-RL provides an 

F1 score very similar to SVM-RBF (Fig. 7), but its main advantage comes from requiring much less time resources to perform 

prediction, as becomes evident from the prediction times for all models shown in Fig. 10.  

 

Fig. 8 provides one vs. rest scores for the different labels, for the AE-RL model applied to the NSL-KDD dataset. We can 

observe how the AE-RL algorithm performs in a way that maximizes the detections of the less frequent labels. It can be seen that 

the accuracy for all labels is high, however the results are bounded by the false positives of these labels as shown by the F1 score. 

This model provides better results by slightly increasing the number of false positives while greatly reducing false negatives which 

is preferred in an IDS scenario. We can see in Fig. 8 the high values of the metrics F1 (> 0.83) and accuracy (> 0.88) for the labels 

that are not extremely unbalanced. 

 

 

 

 
 

Fig. 7. Aggregated performance scores for all models (NSL-KDD dataset) 
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Fig. 8 One vs. Rest performance scores for the AE-RL model applied to the NSL-KDD dataset 

 

 

Fig. 9 presents the performance metrics of AE-RL (for the NSL-KDD dataset) compared to the performance metrics of other 

ML algorithms combined with an over-sampling method. The values for this figure were obtained from [34], which provides a 

thorough analysis of the improvements obtained by different ML algorithms (Logistic Regression, Linear SVM, RF and MLP) 

when an over-sampling method is applied to the less frequent categories of the dataset. The over-sampling methods considered in 

[34] are: VGM, SMOTE, SMOTE Borderline, SMOTE+ENN, SMOTE+Tomek, SMOTE SVM, Easy Ensemble and ADASYN. 

We have chosen the performance metrics obtained with the best possible over-sampling method when used in conjunction with 

each of the ML algorithms. The over-sampling methods have been used to increase the number of samples of the minority classes 

used for training. We can observe, in Fig. 9, that AE-RL outperforms the rest of ML algorithms even when they are used in 

combination with the best over-sampling method.  

 

 

 
Fig. 9. Performance metrics of AE-RL compared to the performance metrics of other ML algorithms + over-sampling method (NSL-KDD) 

 

 

Fig. 10 provides the prediction and training times for all models for the NSL-KDD dataset. Considering prediction times, as 

expected, Linear-SVM and Logistic regression present the best prediction times, with models based on DRL and AE-RL with 

similar levels. Linear-SVM and Logistic Regression have been implemented using a simple shallow neural network with linear 

activation functions, hence their low prediction times. Likewise, all DRL models including AE-RL, are implemented with a simple 

non-linear neural network that also produces low prediction times. We can see that AE-RL has a prediction performance similar 

to SVM-RBF (Fig. 7), but in contrast it requires much shorter prediction times, and also shorter training times. An algorithm with 

short training and prediction times may be critical in deploying an IDS in the new highly demanding data networks. Moreover, 

short prediction times is essential for online prediction, hence the relevance of AE-RL in such real-time scenarios. 
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Fig. 10. Prediction times (upper chart) and training times (lower chart) for all learning models in logarithmic scale (NSL-KDD dataset) 

 

 

 

Fig. 11 provides an interesting chart that shows the evolution of the final F1 metric for the classifier, for different lower bounds 

of the environment agent’s epsilon. The lower bound of epsilon is reached during training, starting from a high value (close to 1). 

As we can observe in Fig. 11, the best F1 value is obtained for a lower bound of the environment agent’s epsilon of around 0.8, 

which means that we must keep a high exploration rate for the environment agent throughout the training in order to obtain better 

classification results. 
 

 

 
Fig. 11. Evolution of the final F1 metric for different lower bounds of the environment agent’s epsilon (NSL-KDD) 
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Fig. 12. shows the confusion matrix of the AE-RL model for the AWID dataset, compared to two well-known algorithms: (a) 

an MLP with a structure similar to the one that implemented the policy network in AE-RL, and (b) the J48 algorithm with the 

results presented in [13], where J48 achieved the best classification results. The confusion matrix for AE-RL is shown on the left 

in Fig. 12 (chart A), while the middle and right positions are occupied by MLP and J48 (charts B and C, respectively). We can see 

that AE-RL has the least false negatives for the impersonation and flooding attacks. It is interesting to analyze the results of J48 

that, regardless of its excellent aggregate results (Fig. 13), has 93% false negatives for the impersonation attack, which is an 

undesirable behavior for a detection system where a false negative is critical, since it implies an intrusion that has not been detected. 

AE-RL tries to improve the classification of the less frequent classes. This can be visualized in Fig. 12, where AE-RL is able to 

reduce the false negatives for these less frequent classes, at the expense of a higher value of false positives for the normal class. 

 

 

 
 

Fig. 12. Confusion matrix for the AE-RL algorithm compared to two other well-known algorithms (AWID dataset) 

 

 

Fig. 13 presents the aggregated performance metrics of AE-RL for the AWID dataset. It also presents the aggregate results for 

the MLP, J48 and the rest of the models studied in [13]. The configuration of the models used for Fig 12 remains the same as for 

Fig. 13.  

We can see that considering the accuracy metric, J48 presents the best results. This is congruent with Fig 12 since J48 presents 

zero false positives for the normal class, which is by far the most frequent class. However, we know this does not imply better 

performance: in fact, the F1 metric is greater for AE-RL since this metric is more adequate for unbalanced datasets, like the AWID. 

 

 

 
Fig. 13. Aggregated performance scores of AE-RL compared to other ML algorithms (AWID dataset). 
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The following points can be considered as a summary of the results obtained by AE-RL: 

- AE-RL provides classification results similar to state-of-the-art classifiers. 

- AE-RL requires less training time and much less prediction time than similar algorithms, which makes AE-RL ideally 

suitable for online prediction. 

- AE-RL is especially suitable for unbalanced datasets, since it is specifically designed to avoid classification errors for 

under-represented classes. 

- AE-RL is especially important in scenarios where false negatives are critical. False negatives are usual within the less 

frequent classes, since the algorithms try to obtain the best global prediction performance, which is more easily achieved 

by increasing the prediction of the most frequent classes, which implies more false negatives in the least frequent ones. 

This is actually the scenario for intrusion detection problems, where attacks correspond to the least frequent classes. 

 

It is important to mention several details about the different models applied in the study. For SVM with linear kernel, we have 

used the primal solution which provides a much faster implementation in our specific case (high number of samples and small 

number of features). For the SVM with RBF, we used the dual implementation instead. We have implemented the MLP with 

several hidden layers (3 layers with 1024, 512 and 128 nodes). Considering the CNN model [40], we have applied the one-

dimensional CNN due to the one-dimensional nature of the features. 

 

We have implemented all the models in python using the scikit-learn package [39], except all linear models (including linear-

SVM and Multinomial Logistic Regression), MLP, CNN and all DRL models for which we have used Tensorflow.  To implement 

AE-RL, we have also used Tensorflow and Keras with custom code to sample the dataset. All computations have been performed 

in a PC with an Intel i7 CPU and 16GB RAM. 

 

The code for the different models, as well as the hyperparameters values, can be found in the GitHub repository cited in [41].   

 

V. CONCLUSION 

IDS is a critical service for modern data networks. Network security attacks are complex, cannot be easily assigned to network 

patterns and are constantly changing. The special nature of network intrusion detection makes it necessary to investigate new 

models that can address some of the difficulties imposed by IDS on a machine learning algorithm, such as: noisy, unbalanced and 

complex datasets under changing conditions. This work tries to provide a new alternative, in the form of a model that brings the 

RL framework to the IDS problematic. The RL algorithms have been particularly successful in other areas (e.g. robotic, finance, 

videogames, business operations…) and we are able to prove that they may also be available for IDS.  

 

The proposed new model (AE-RL) integrates the reinforcement and supervised frameworks, providing a simulated environment 

that follows the guidelines of an RL environment. The resulting environment is able to: 1) interact with a dataset of pre-recorded 

samples formed by network features and associated intrusion labels, and 2) select samples with an optimized policy to achieve the 

best possible classification results. The specific learning mechanism provided to the environment is based on an adversarial 

strategy.  

 

This work presents the first application of adversarial RL for intrusion detection and provides a novel technique that incorporates 

the environment’s behavior into the learning process of a modified RL algorithm. It also proposes a new oversampling mechanism 

for the categories with worst performance, which has proven to be beneficial for training the RL algorithm. 

 

As a summary, the contributions of this paper are: (1) Present a novel architecture based on a combination of supervised and 

adversarial RL models, making it a perfect alternative for prediction problems in highly demanding networks (e.g. IoT networks) 

[42]. (2) Demonstrate that the proposed new model has a prediction performance similar to highly non-linear models (e.g. SVM-

RBF), but with the remarkable advantage of requiring much less computation time for prediction. (3) Propose a model that can be 

trained with a differentiable loss function in modern high-performance platforms (e.g. Tensorflow), even when the training is 

performed using a reward function that is not required to be differentiable, hence providing higher flexibility to the resulting 

classifier. (4) Provide a thorough comparison of our proposed model with several Machine Learning (ML) models for the problem 

of intrusion detection in networking (IDS), with a focus on prediction performance, prediction times and model flexibility. (5) 

Present a model that is particularly suitable for highly unbalanced datasets since the samples corresponding to incorrectly classified 

labels are more often presented for training. 

 

As future lines of work, we plan the possible use of the intelligent environment in other classification tasks. Similarly, an 
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interesting variant of the environment can be its implementation as a prioritized experience replay application [43], where sampling 

prioritization would be optimized using another agent, trained with the same reinforcement learning algorithms. 

 

 

REFERENCES 

[1] M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita, “Network Anomaly Detection: Methods, Systems and Tools”, IEEE Communications Survey & 

Tutorials, Vol. 16, No. 1, First Quarter 2014, 2014 

[2] M. Wang et al., “Machine learning for networking: workflow, advances and opportunities”, IEEE Network, vol.32, no.2, pp. 92-99, March-April 2018. 
[3] S. Kim et al., “Building Resilient and Autonomous Systems for IoT Network Management - Advantages and Difficulties in adopting Machine Learning 

Techniques”, Internet Engineering Task Force (IETF), 6Lo Working Group, Internet-Draft: draft-kim-ml-iot-00, Seoul National University, 2018 

[4] K.A.P. da Costa, J. P. Papa, C.O. Lisboa, R. Munoz, V. H. C. de Albuquerque, “Internet of Things: A survey on machine learning-based intrusion detection 
approaches”, Computer Networks, vol. 151, pp. 147-157, 2019. https://doi.org/10.1016/j.comnet.2019.01.023 

[5]  M.M.E. Mahmoud, J.J.P.C. Rodrigues, S.H. Ahmed, S. C. Shah , J. F. Al-Muhtadi, V. Korotaev, and V.H.C. de Albuquerque., "Enabling Technologies on 

Cloud of Things for Smart Healthcare," in IEEE Access, vol. 6, pp. 31950-31967, 2018. doi: 10.1109/ACCESS.2018.2845399 
[6] J.J.P.C. Rodrigues, D.B De Rezende Segundo ; H.A. Junqueira ; M.H. Sabino ; R.M. Prince ; J. Al-Muhtadi ; V.H. C. De Albuquerque, "Enabling 

Technologies for the Internet of Health Things," in IEEE Access, vol. 6, pp. 13129-13141, 2018. doi: 10.1109/ACCESS.2017.2789329 

[7] K. Arulkumaran et al., "Deep Reinforcement Learning: A Brief Survey," in IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, Nov. 2017. 
[8] R. S. Sutton and A. G Barto.,” Reinforcement Learning: An Introduction”, A Bradford Book; 1st Edition edition (March 1, 1998). 

[9] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. Journal of Artificial Intelligence Research, 16:321–357. 2002. 

[10] H., Bai et al “ADASYN: adaptive synthetic sampling approach for imbalanced learning”. IEEE International joint conference on neural networks (IEEE 
world congress on computational intelligence), pp 1322–1328. 2008. 

[11] Z. Zhou, “Ensemble Methods: Foundations and Algorithms”. Book. Chapman & Hall/CRC.2012. 

[12] M. Tavallaee et al, “A Detailed Analysis of the KDD CUP 99 Data Set”, Proceedings of the 2009 IEEE Symposium on Computational Intelligence in 
Security and Defense Applications (CISDA 2009), pages 53-58 

[13] C. Kolias et al. “Intrusion Detection in 802.11 Networks”, IEEE communication surveys & tutorials, vol. 18, no. 1, first quarter 2016 
[14] R.R. Guimaraes, L. A. Passos ; R.H. Filho ; V.H.C. de Albuquerque, J.J.P.C. Rodrigues, M.M. Komarov, J.P. Papa, "Intelligent Network Security Monitoring 

Based on Optimum-Path Forest Clustering," in IEEE Network. 2018. doi: 10.1109/MNET.2018.1800151 

[15] B. Ingre and A. Yadav., “Performance Analysis of NSL-KDD dataset using ANN”, SPACES-2015, Dept of ECE, K L University, 2015.  
[16] Y. Wahb et al, “Improving the Performance of Multi-class Intrusion Detection Systems using Feature Reduction”, IJCSI International Journal of Computer 

Science Issues, Volume 12, Issue 3, May 201, 2015 

[17] M. Lopez-Martin et al., “Conditional Variational Autoencoder for Prediction and Feature Recovery Applied to Intrusion Detection in IoT”, Sensors 17 (9), 
1967, 2017. 

[18] A.Servin, “Towards Traffic Anomaly Detection via Reinforcement Learning and Data Flow”. Department of Computer Science, University of York, United 

Kingdom. 2007. 
[19] X. Xu, “Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies”, Applied Soft Computing, Volume 10, 

Issue 3, 2010, Pages 859-867. 

[20] A.V.Sukhanov, S.M Kovalev and V. Stýskala, “Advanced Temporal-Difference Learning for Intrusion Detection”, IFAC-PapersOnLine, Volume 48, Issue 
4, 2015, Pages 43-48. 

[21] X. Xu and T. Xie,” A Reinforcement Learning Approach for Host-Based Intrusion Detection Using Sequences of System Calls”. Advances in Intelligent 

Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin. 
[22] R.S Sutton, “Learning to Predict by the Methods of Temporal Differences”, Machine Learning 3:9 44, 1988.  

[23] A. Servin, “Multi-Agent Reinforcement Learning for Intrusion Detection”. PhD thesis, University of York. 2009. 

[24] K. Malialis, “Distributed Reinforcement Learning for Network Intrusion Response”, PhD thesis, University of York. 2014. 
[25] M. A. Wiering et al., "Reinforcement learning algorithms for solving classification problems,” IEEE Symposium on Adaptive Dynamic Programming and 

Reinforcement Learning (ADPRL), Paris, 2011, pp. 91-96 

[26] M. G. Lagoudakis and R. Parr, “Reinforcement Learning as Classification: Leveraging Modern Classifiers” InPro-ceedings of the 20th International 
Conference on MachineLearning (ICML-03), 424–431, 2003, Washington, DC, USA 

[27] K. H. Quah, C. Quek and G. Leedham, "Pattern classification using fuzzy adaptive learning control network and reinforcement learning," Proceedings of 

the 9th International Conference on Neural Information Processing. ICONIP '02., Singapore, 2002, pp. 1439-1443 vol.3. 2002. 
[28] L. Pinto et al.,” Robust Adversarial Reinforcement Learning”, arXiv:1703.02702v1 [cs.LG] ,2017 

[29] P. Hernandez-Leal et al.,” A Survey of Learning in Multiagent Environments: Dealing with Non-Stationarity”, arXiv:1707.09183v1 [cs.MA],2017. 

[30] L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent reinforcement learning: An overview,” Chapter 7 in Innovations in Multi-Agent Systems and 
Applications – 1 (D. Srinivasan and L.C. Jain, eds.), vol. 310 of Studies in Computational Intelligence, Berlin, Germany: Springer, pp. 183–221, 2010.  

[31] S. Huang et al., “Adversarial Attacks on Neural Network Policies”, arXiv:1702.02284 [cs.LG],2017 

[32] R. Elderman et al., “Adversarial Reinforcement Learning in a Cyber Security Simulation” International Conference on Agents and Artificial Intelligence 

(ICAART 2017) 

[33] M. Zhu,  Z. Hu and P. Liu, “Reinforcement Learning Algorithms for Adaptive Cyber Defense against Heartbleed” Proceedings of the First ACM Workshop 

on Moving Target Defense, Pages 51-58, 2014 
[34] M Lopez-Martin, B. Carro and A Sanchez-Esguevillas, “Variational data generative model for intrusion detection”. Knowledge and Information Systems 

(2018). https://doi.org/10.1007/s10115-018-1306-7 

[35] V. Mnih et al. “Playing Atari with Deep Reinforcement Learning”, arXiv:1312.5602 [cs.LG], 2013 
[36] H. Van Hasselt et al., “Deep Reinforcement Learning with Double Q-learning”, arXiv:1509.06461 [cs.LG], 2015 

[37] Z. Wang et al., “Dueling Network Architectures for Deep Reinforcement Learning”, arXiv:1511.06581v3 [cs.LG], 2016 

[38] I. Grondman et al., "A Survey of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gradients," in IEEE Transactions on Systems, Man, 
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1291-1307, Nov. 2012. 

[39] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, JMLR 12, pp. 2825-2830, 2011. 

[40] I. Goodfellow.  Y. Bengio and A. Courville, “Deep Learning”. Book. MIT Press, Ch 9. 2016 
[41] G. Caminero. “Anomaly-ReactionRL”. GitHub.  2019. https://github.com/gcamfer/Anomaly-ReactionRL   

[42] M.A.A. da Cruz, J.J.P.C. Rodrigues, J. Al-Muhtadi, V.V. Korotaev and V.H.C. de Albuquerque, "A Reference Model for Internet of Things Middleware," 

in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 871-883, 2018. doi: 10.1109/JIOT.2018.2796561 
[43] T. Schaul et al. “Prioritized Experience Replay”, arXiv:1511.05952v4 [cs.LG], 2016 

https://doi.org/10.1016/j.comnet.2019.01.023
https://ieeexplore.ieee.org/author/37086350275
https://ieeexplore.ieee.org/author/37086351675
https://ieeexplore.ieee.org/author/37086351882
https://ieeexplore.ieee.org/author/37086350099
https://ieeexplore.ieee.org/author/38272605000
https://ieeexplore.ieee.org/author/37086329226
javascript:void(0)
https://arxiv.org/abs/1702.02284
https://scholar.google.es/scholar?oi=bibs&cluster=14265334102893710533&btnI=1&hl=es
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1509.06461
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://github.com/gcamfer/Anomaly-ReactionRL
https://github.com/gcamfer/Anomaly-ReactionRL


 17 

 
 

 

GUILLERMO CAMINERO received its M.Sc. in Telecommunications Engineering at Universidad de Valladolid, Spain in 2018. 

He is a collaborator of the research team of the Communications Systems and Networks (SRC) Laboratory at Universidad de 

Valladolid, working on the application of machine learning to intrusion detection in data networks. 

 

   
MANUEL LOPEZ-MARTIN is a research associate and Ph.D. candidate at Universidad de Valladolid (Spain). His research 

activities involve applying machine learning to intrusion detection in data networks and time-series forecasting. He received his 

M.Sc. in Telecommunications Engineering in 1985 from UPM-Madrid and his M.Sc. in Computer Sciences in 2013 from UAM-

Madrid. He has worked as a data scientist at Telefonica and has more than 25 years of experience in the development of IT software 

projects 

 

 

  
BELEN CARRO received a Ph.D. degree in the field of broadband access networks from the Universidad de Valladolid, Spain, in 

2001. She is Professor and Director of the Communications Systems and Networks (SRC) laboratory at Universidad de Valladolid, 

working as Research Manager in NGN communications and services, VoIP/QoS and machine learning. She has supervised a dozen 

Ph.D. students and has extensive research publications experience, as author, reviewer and editor. 
 

View publication statsView publication stats

https://www.researchgate.net/publication/333169283



