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Abstract 

A Network Intrusion Detection System (NIDS) is a system which detects intrusive, malicious 

activities or policy violations in a host or hosts network. It is very important for any detection system the 

ability to access balanced and diversified data to train the system. Intrusion data rarely have these 

characteristics, since samples of network traffic are strongly biased to normal traffic, being difficult to 

access traffic associated with intrusion events.  

Therefore, it is important to have a method to synthesize intrusion data with a probabilistic and 

behavioral structure similar to the original one.  In this work we provide such a method.  

Intrusion data have continuous and categorical features, with a strongly unbalanced distribution of 

intrusion labels. That is the reason why we generate synthetic samples conditioned to the distribution of 

labels. That is, from a particular set of labels, we generate training samples associated with that set of 

labels, replicating the probabilistic structure of the original data that comes from those labels. 

We use a generative model based on a customized Variational Autoencoder (VAE), using the labels 

of the intrusion class as an additional input to the network. This modification provides an advantage, as 

we can readily generate new data using only the labels, without having to rely on training samples as 

canonical representatives for each label, which makes the generation process more reliable, less complex 

and faster. We show that the synthetic data are similar to the real data, and that the new synthesized data 

can be used to improve the performance scores of common machine learning classifiers. 
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Networks. 
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1. Introduction 

The objective of a Network Intrusion Detection System (NIDS) is to automate the detection of 

policy and security violations and malicious activities against a host that is part of a network. As the 

importance and volume of data exchange increases, it is more relevant to increase the performance of 

NIDS. Most current NIDS are based on supervised machine learning models which require labeled data to 

perform model training. 

It is fundamental for any detection system the possibility of accessing balanced and diversified data 

to train the system. Intrusion data rarely have these characteristics, as the network traffic samples are 

strongly biased to the normal type of traffic, being difficult to access traffic associated to anomalous 

intrusion events. Therefore, it would be very interesting to be able to synthesize intrusion data with a 

structure similar to the real data.  In this way, we avoid investing significant resources in tasks such as 

obtaining additional intrusion data or manually simulating attacks. 

The generation of synthetic data that resemble real data, being similar (in a probabilistic sense) but 

not identical, has long been an objective in the area of image processing [1][2]. In this area the features 

used to train the models are all continuous (pixel intensities) and, additionally,  it is relatively easy to 

appreciate if a generative model is working well, as we (humans) are quite good at identifying whether 

the images generated corresponds to the class of images we want. Similar works have been carried out 

more recently in the generation of text/sentences [3][4]. In this case the features are all discrete, and we 

can appreciate directly, in a similar way, if the generated text corresponds to a particular topic. 

In the intrusion detection area the generative data process has its own difficulties, due to several 

reasons: (1) the features used to identify an intrusion type (label) are both continuous and categorical, (2) 

the class labels are highly unbalanced, and (3) we cannot directly appreciate whether a new synthetic 

sample of a particular class really correspond to that class (intrusion label). The first and second imply 

that we need to synthesize, at the same time, discrete and continuous features, each having its own 

problematic. The third requires developing alternative techniques to show the similarity of original and 

synthetic data. We need to identify if two populations of samples (real and synthetic) belong to the same 

class. Taking into account that the samples represent multivariate high-dimensional vectors, with 

continuous and discrete values, complex joint probability distribution and with non-Gaussian marginals 
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(or another easily parameterized distribution), it is very difficult to apply methods based on information 

theory (e.g. KL divergence) or multivariate extensions of goodness-of-fit tests to identify the similarity 

between the probability distributions of the two populations (Section 4.1). That is why we have applied 

other alternative and original approaches to evaluate similarity: (1) Extended histograms of the original 

and synthesized features, and, (2) demonstrate that classification results are similar when using either the 

original or synthesized data as training or testing data for several classifiers (e.g. Random Forest, 

Multinomial Logistic Regression…).  

The problem mentioned above is not found when generating synthetic images or text, since, as 

already discussed, we can discriminate samples that belong to specific objects (images) or topics (text). In 

the case of samples related to intrusion detection, there is not such good discriminator. To appreciate the 

complex and unclear relationship between the distributions of values of a high-dimensional sample with 

the label associated to that sample, we could consider the difficulties imposed by adversarial examples [5] 

to a neural network and how the addition of small perturbations to images can mislead a perfectly tuned 

neural network, resulting in misclassified images, even when these perturbations do not affect the 

discrimination capacity of humans. 

In this work we provide a method to generate data of similar probabilistic structure to intrusion 

detection data, having both continuous and categorical features and being strongly unbalanced to some of 

their associated labels. We generate the data conditioned to the specific class (label) to which we want the 

data to belong. That is, from a particular set of labels we generate training samples associated to that set 

of labels, reflecting real data that comes from those labels. 

We call the method Variational Generative Model (VGM). We use a generative model based on a 

Conditional Variational Autoencoder (VAE), using the intrusion class labels as input. This modification 

provides an advantage, as we can readily generate new data using only the labels, without having to rely 

on specific training samples that represent or are associated to specific labels. Furthermore, the new 

synthesized data can be used as new additional training data to improve classification results for common 

machine learning classifiers. These results also confirm that the synthesized data have similar structure to 

the original but not been identical which allows to improve the performance of a classifier.   

The problem presented here can be considered similar to the one faced by classification with an 

imbalanced dataset, which is mainly addressed with four strategies [6][7][8]: resampling, cost-sensitive, 

algorithmic and ensemble. To compare VGM with equivalent approaches, we focus on resampling. 
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Resampling can be achieved creating new minority class samples (over-sampling) or reducing the number 

of majority class samples (under-sampling). An effective way to perform over-sampling is by creating 

new synthetic data that resembles the original data. The state-of-the-art (SOTA) algorithms in synthetic 

over-sampling are based on SMOTE [9] and its numerous variants [10][11]; being its main idea to create 

new samples close in ‘distance’ to existing samples that belongs to some specific minority class. The 

different variants consider alternative approaches to calculate the distance function and the proximity to 

majority class samples (borderline). To avoid possible over-fitting due to synthetic data, there is the 

possibility to combine over-sampling and under-sampling methods [12][13]. Another interesting method 

is ADASYN[14], which is similar to SMOTE, but giving more weight to samples that are harder to learn 

(closer to other majority class samples). Finally, there is the possibility to perform ensemble sampling 

with methods similar to EasyEnsemble [15]. 

Our method (VGM) is a generative method to synthesize new data belonging to any class label. The 

main difference between VGM and SMOTE (and its variants) is that VGM is based in a latent probability 

distribution learned from data, instead of being based in a predefined ‘distance’ function. VGM does not 

need to assume any ‘distance’ function, or to impose rules on the importance of proximity to majority 

class samples, which would be additional hyper-parameters to explore. 

We provide a comparison of the proposed model with seven SOTA synthetic data generation 

algorithms (SMOTE, ADASYN…), showing that synthetic data generated by VGM provides better 

performance metrics (average accuracy and F1) when several common classifiers are trained with this 

data instead of data from other alternative generation algorithms. To train the VGM model, we need 

original data from a well-known intrusion detection dataset, for which we have chosen the NSL-KDD 

data set [16]. We have explored several architectures for VGM, considering different number of layers, 

nodes, regularization, loss functions and probability distribution for the output layer. We present the 

different options and the results obtained. 

As a summary, the contributions of this paper are: (1) It is the first application of a conditional variational 

autoencoder to generate synthetic data in the intrusion detection field. (2) We present original methods to 

show similarity of real and synthetic data. (3) VGM provides more useful synthetic samples than 

comparable SOTA over-sampling algorithms, corroborated by better performance (accuracy, F1) 

produced by various classifiers when using synthetic data generated by VGM.  
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The paper is organized as follows: Section 2 presents related works. Section 3 describes the work 

performed. Section 4 describes the results obtained and finally, Section 5 provides discussion and 

conclusions. 

2. Related works 

As far as we know, there is no previous application of a variational generative model based on 

neural networks to generate data of similar probabilistic structure to intrusion detection data. Therefore, 

the work presented in this paper is original in essence. There are a number of works for the application of 

variational generative models to generate images [1][2][17] and text [3][4], but there is none in the area of 

intrusion detection. 

There is no work, similar to the present one, generating both continuous and categorical features. In 

[18] is presented a model that handles a discrete distribution for the “latent” layer, but it is applied to 

images with continuous features. In [19] the authors provide a solution using a VAE in the intrusion 

detection field, but it is used exclusively to implement a classifier, not to generate synthetic data 

according with the intrusion class as in the present work 

There is a vast number of works applying classification algorithms to NIDS [20][21]. This paper is 

not related specifically with any classification technique, but we will show (Section 4.2) that the synthetic 

data generated with our model improves results obtained with different classifiers. Therefore, it is 

interesting to provide a summary of results on classification using the NSL-KDD dataset, which will help 

to put into perspective the results presented in this work. It is important to mention that comparison of 

results in this field is difficult due to: (1) diversity of reported performance metrics; (2) the aggregation of 

classification labels in different sets (e.g. 23 labels can be grouped hierarchically in different subsets or 

categories: 23, 5 or 2 final labels) making it difficult to compare results for different subsets; (3) reporting 

results on unclear test datasets. This last point is important to mention, because for example, for the NSL-

KDD dataset, 16.6% of samples in the test dataset correspond to labels not present at the training dataset. 

This is an important property of this dataset and creates an additional difficulty to the classifier. These 

difficulties are shown in detail in [16].  

Classification results for NSL-KDD are provided in several works. In [22] is achieved an accuracy 

of 79.9% for test data, for the 5-labels intrusion scenario. In [23] they provide, for the 2-labels scenario a 

recall of 75.49% on test data. Authors in [20] explain the reasons to create the NSL-KDD data set, 
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providing results for several algorithms, being 82.02% the best accuracy reported when using the full 

NSL_KDD dataset for training and testing, for the 2-labels scenario.  

There is large literature related to algorithms dealing with imbalanced datasets [6][7][8], and in 

particular presenting algorithms for synthetic over-sampling [9][10][11], adaptive over-sampling [14], 

over-sampling followed by under-sampling [12], ensemble sampling [15] and specific combinations of 

methods [13].  

3. Work description  

In this section we present the dataset used for this work, a description of the variational method 

employed and details on different variants of the method. 

3.1. Selected dataset 

We have chosen the NSL-KDD [16] dataset as our reference dataset. NSL-KDD is an enhanced 

version of the original KDD-99 dataset, solving the problem of redundant records present in KDD-99. We 

consider that this dataset is useful for this work, as we are mainly interested in generation of synthetic 

data, for which NSDL-KDD provides a sufficient number of samples. Additionally, the distribution of 

samples among intrusion classes (labels) is quite unbalanced, and provides enough variability between 

training and test data to challenge any method that tries to reproduce the structure of the data.  

The NSL-KDD dataset provides 125973 training samples and 22544 test samples, with 41 features, 

being 38 continuous and 3 categorical (discrete valued). Each training sample has a label output from 23 

possible labels (normal plus 22 labels associated to different types of anomaly). The test data has the 

same number of features (41) and output labels from 38 possible values. That means that the test data has 

anomalies not presented at training time. The 23 training and 38 testing labels have 21 labels in common; 

2 labels only appear in training and 17 labels are unique to the testing data.  

Around 16% of the samples in the test dataset correspond to labels unique to the test dataset, and 

which were not present at training time. The existence of new labels at testing introduces an additional 

challenge to the learning methods, which is important to verify the robustness of the classifiers, but not 

for the purpose of this study, which is to synthesize samples associated to existing labels. Therefore, it 

seems more practical and useful to aggregate labels by categories. As presented in [16], the original labels 
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are associated to 5 categories: NORMAL, PROBE, R2L, U2R and DoS, with the latter four 

corresponding to an anomaly. The meaning of the 5 categories is as follows:  

- NORMAL: There is no attack  

- Denial of Service (DoS): The intention of these attacks is to interrupt some service.  

- PROBE: They intend to gain information about the target host.  

- User to Root (U2R): U2R attacks try to obtain root access to the system.  

- Remote to Local (R2L): Unauthorized access from a remote machine.  

For this work we have used these 5 categories as the labels driving our data generation model.  

We have performed an additional data transformation: scaling all NSL-KDD continuous features to 

the range [0,1] and one-hot encoding all categorical features. This provides a final dataset with 116 

features: 32 continuous and 84 with values in {0,1} associated to the three one-hot encoded categorical 

features. 

It is important to note that the 3 categorical features: protocol, flag and service have respectively 3, 

11 and 70 distinct values. We will show later the accuracy obtained when synthesizing these features 

(having as reference the original ones), and how the different number of values impact on the results. 

Working with the NSL-KDD dataset, we provide all results using the full training dataset of 125973 

samples and the full test dataset of 22544 samples. It is also important to mention that we do not use a 

previously customized training or test datasets, neither a subset of them, what may provide better alleged 

results but being less objective and also missing the point to have a common reference to compare. 

3.2. Method explained 

In Figure 1 we present a diagram comparing VGM and VAE architectures. In a VAE architecture 

[1] we model the internal structure of data with an initial neural network (encoder) that approximates the 

parameters of a probability distribution. This probability distribution is used to draw samples that are the 

input to a second neural network (decoder) that approximates the parameters of a second probability 

distribution from which the samples drawn are the final output of the VAE. 

To train a VAE we use the same data for input and output, trying to implement the identity function 

but with an intermediate layer with a lower dimension. Contrary to an Autoencoder [24] that is used as a 

dimensionality reduction mechanism, with a VAE we will not obtain a deterministic lower dimension 

representation of the data, but a set of parameters that define an associated set of probability distributions 
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that represent the data. In other words, instead of mapping an input sample in 𝓡𝒎 to a deterministic 

output (latent variable) in 𝓡𝒏, where usually 𝑛 < 𝑚, what we do in a VAE is to map samples in 𝓡𝒎 to 𝑛 

probability distributions. The samples drawn from these 𝑛 probability distributions form a new stochastic 

feature vector in 𝓡𝒏. The new latent variable is not deterministic but stochastic (variable 𝒁 in Figure 1).  

 

Figure 1. Comparison of VGM with a typical VAE architecture 

 

The interest of a VAE is that, after the model is trained, it is sufficient to sample the intermediate 

layer (latent variables) to generate new data that resembles the data used for training.   

The left part of the diagram of VAE in Figure 1 corresponds to the encoder which depends on the 

input data (𝑿) and some model parameters (𝜽) and produces the “latent” probability distributions 

(𝒒(𝒁/𝑿)) and stochastic latent variable (𝒁).  To the right of the diagram we have the decoder which 

depends both on the latent variable (𝒁) and some other model parameters (𝝓) and produces a new set of 

output probability distributions (𝒑(�̂�/𝒁)) from which we sample the final output (�̂�).   

The model parameters: 𝜽 and 𝝓, are used as a brief way to represent the architecture and weights of 

the neural network used. These parameters are tuned as part of the VAE training process and are 

considered constant later on. 
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The probability distributions 𝒑(�̂�/𝒁) and 𝒒(𝒁/𝑿) are conditional probability distributions, and they 

are parameterized, which means that they are completely defined by a set of parameters (e.g. the mean 

and variance for a normal distribution).  

The final objective is to produce an output �̂� with a minimum difference to the input 𝑿.  There are 

different ways to achieve this objective, one is to use sampling methods as Markov Chain Monte Carlo 

(MCMC), but the path taken by VAE is different. VAE uses a variational approach that tries to maximize 

the log likelihood of X by maximizing a quantity known as the Evidence Lower Bound (ELBO) [1]. The 

ELBO is formed by two parts: (1) a measure of the distance between the probability distribution 𝒒(𝒁/𝑿) 

and a reference probability distribution of the same nature (actually a prior distribution for Z), where the 

distance usually employed is the Kullback-Leibler (KL) divergence, and (2) the log likelihood of 𝒑(𝑿) 

under the probability distribution 𝒑(�̂�/𝒁), which is the probability to obtain the desired data (𝑿) with the 

probability distribution that produces �̂�.  

Using the ELBO, we reduce the problem to an optimization problem based on a maximization of the 

ELBO, which allows using neural networks with stochastic gradient descent (SGD) as the optimizer.  The 

only problem remains on how to incorporate the sampling process, required by the model, with the way 

SGD operates. To do this, the innovation of VAE is to use what is called the “reparameterization trick” 

[1].  Using this trick, all the variables involved are connected through differentiable layers on which SGD 

can operate. 

Based on the VAE model, our proposed method (VGM) is similar to a VAE but instead of using the 

same vector of features for the input and output of the network, we add more flexibility allowing to have 

a different input to the network and to add an optional additional input on the decoder block (Figure 1, 

lower diagram). We represent this generic input in Figure 1 with the letter 𝑰. The input 𝑰 can be 

instantiated in two possible ways: as the vector of sample features, as in VAE, or as the vector of labels 

associated to the samples. That is, the input 𝑰 can be either X or L, where L is the vector of labels. 

In the VGM architecture, in case we use the vector of features as input to the encoder (as in VAE) 

then we will employ an additional input to the decoder formed by the vector of labels. In this way we will 

always have the vector of labels as an input to the network, either as input to the encoder or decoder 

blocks. 

To use the labels as input of the generative process is an important difference as it allows generating 

new synthesized samples using exclusively the labels assigned to these samples. As already pointed out, 
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for intrusion detection data, the generative data process is more difficult, as the features are both 

continuous and categorical, and we cannot appreciate directly if the synthesized data samples have 

features with a similar structure to the original ones, that is the reason why using directly the labels is 

important to be sure we are using meaningful information to characterize the generated samples. 

In Section 3.3 we will present different variants to the generic architecture for VGM shown in 

Figure 1. In Figure 2 we present the elements of the loss function to be minimized by SGD for the VGM 

model. We can see that, as mentioned before, the loss function is made up of two parts: a KL divergence 

and a log likelihood part. The second part takes into account how probable is to generate 𝐗 by using the 

distribution 𝒑(�̂�/𝐙), that is, it is a distance between 𝑿 and �̂�. The KL divergence part can be understood 

as a distance between the distribution 𝒒(𝒁/𝑰) and a prior distribution for 𝒁 , that we identify as 

𝑞 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  in Figure 2. By minimizing this distance, we are really avoiding that 𝒒(𝒁/𝑰)  departs too much 

from its prior, acting finally as a regularization term. The nice feature about this regularization term is that 

it is automatically adjusted, and it is not necessary to perform cross-validation to adjust a hyper-parameter 

associated to the regularization, as it is needed in other models (e.g. ridge regression, soft-margin support 

vector machines…). 

 

Figure 2. Details on the loss function elements for the VGM model. 

 

3.3. Variants of the model 
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We have explored three options for the general VGM model discussed in the previous section. 

3.3.1. Option A. Model with Gaussian and Bernoulli distributions 

In this option we have the vector of labels as input to the network and the vector of features as 

output. Figure 3 presents option A.  

We use a multivariate Gaussian as the distribution for  𝒒(𝒁/𝑳), with a mean 𝝁(𝑳) and a diagonal 

covariance matrix:  𝜮(𝑳) →   𝝈𝒊
𝟐(𝑳), with different values along the diagonal. We have a standard normal 

𝑵(𝟎, 𝑰) as the prior distribution for Z. 

For the distribution  𝐩(�̂�/𝐙) we use a multivariate Bernoulli distribution. The nice property about 

the Bernoulli distribution is that we do not require doing sampling on it, as the output parameter that 

characterizes the distribution is the mean that is the same as the probability of success. Then, in this case, 

the output of the last layer is taken as our final output �̂�. 

The selection of distributions for 𝒒(𝒁/𝑳) and 𝐩(�̂�/𝐙) is similar to the distributions selected in [1], 

since they are simple and provide good results. 

In Figure 3 we show also (in squared boxes) the elements of the loss function to be minimized for 

this option.  

 

Figure 3. Option A. VGM model with Gaussian and Bernoulli distributions. 
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3.3.2. Option B. Model with Gaussian and Bernoulli distributions plus RMSE for 

continuous features 

Option B is presented in Figure 4. This option is similar to option A, but we have divided the output 

layer according to the separation between discrete and continuous features. We treat the discrete features 

as in Option A, and for the continuous features we change the loss function to the root mean square error 

(RMSE) between original and generated continuous features, instead of the log-likelihood, as in option A. 

We have tried this change in the loss function to see whether we could obtain an improvement by 

separating the behavior of continuous and discrete features. The change can be also justified by 

considering that minimizing an RMSE loss function is equivalent to minimizing the negative log-

likelihood of an implicit Gaussian distribution for the last decoder layer (in accordance with ELBO 

theory). 

In Figure 4, in squared boxes are the elements of the loss function to be minimized for this option.  

 

Figure 4. Option B. VGM model with Gaussian and Bernoulli distributions plus RMSE for continuous 

features. 

 

 



13 

 

3.3.3. Option C. Model based on Conditional VAE with Gaussian and Bernoulli 

distributions 

The last option is presented in Figure 5. This option is similar to option A, but with an important 

difference. Instead of using the labels as the input for the encoder we use it as an additional input to the 

decoder. We leave the features vector (𝑿) as input to the encoder. The architecture is similar to a normal 

VAE except for the inclusion of the label vector as a supplementary input to the decoder. 

In order to get the label vector inside the decoder network we just concatenate it with the values of 

the first layer of the decoder block (Figure 5). The one-hot encoded label vector has a length of 5 that is 

too short to have a significative impact in the output, which is why we replicate the label vector 40 times 

before we concatenate it with the first decoder layer. Then, what is represented in Figure 5 as the vector L 

is really a vector of length 200 (the label vector replicated 40 times). The number of times we replicate 

the label vector can be considered as a hyperparameter of the model: this number modifies the results but 

not in a very significant way; it can be considered as a part of the fine tuning of the model. 

In Figure 5, in squared boxes are the elements of the loss function to be minimized for this option.  

This option has produced the best results. 

 

Figure 5. Option C.  VGM model including the labels in the decoder with Gaussian and Bernoulli 

distributions. Training phase. 
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The process of training and data generation is different for this model when compared with previous 

models. In previous models, both the training and generation phases are done with the labels as input and 

the feature vectors as outputs, using the encoder and decoder blocks for the two phases.  

For this model, after the training phase is done, we will employ only the decoder block of the trained 

model to generate new samples (Figure 6). To achieve that, we will provide two inputs to the decoder 

block: a vector of selected labels and a vector of random values sampled from a standard normal 

distribution with zero mean and unit variance. The output of the decoder block will be the desired 

generated samples. These samples are constructed using the probability distributions of the features 

associated to the labels given as input. 

All the models presented, for all options, have the same objective: to be able to generate new data 

relying exclusively on the labels at the generation phase. This objective is also maintained in this option, 

because at generation phase we need only the labels and a vector of standard normal random values which 

are independent of everything else. 

 
Figure 6 Option C.  VGM model including the labels in the decoder with Gaussian and Bernoulli 

distributions. Generation phase. 

 

4. Results 

The objective of this section is first to prove that the synthetic data is similar but not identical to the 

original data (Section 4.1), and, this similarity is maintained when the data is conditionally partitioned by 

its class label. And, secondly, to show that the new synthetic data can be used as new training data, 

improving the results obtained with several prediction algorithms (Section 4.2) 

4.1. Structure of generated data 
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In this section we will show that the synthetic generated data have similar probabilistic structure to 

the original data. Verifying this similarity is a hard problem since it involves comparing the probability 

distributions of multivariate vectors (116 features) with non-Gaussian marginals (discrete and continuous 

features) and complex joint probability distributions. The challenge is twofold: obtain the joint probability 

distributions and compare them. Methods based on information theory (eg Kullback-Leibler (KL) 

divergence) require an estimate of joint probabilities that is very difficult for high-dimensional variables 

[25], and many of them are not practically applicable for multivariate distributions (e.g mutual 

information and KL divergence) [26]. Other methods based in multivariate extensions of goodness-of-fit 

tests are also difficult to apply considering the high dimensionality and non-Gaussian marginal 

distributions [27][28][29]      

Considering the difficulties mentioned above, we have developed several approaches to verify the 

similarity: (1) extended histograms of the original and synthesized features; and (2) classification results 

obtained from the application of original and synthesized data to several classification algorithms. 

Considering the first approach, Figure 7 presents extended histograms for the original NSL-KDD 

training dataset (upper diagram) and a synthesized dataset created with the same labels as the original one 

(lower diagram). To visualize the data in Figure 7, we use [30] which makes possible to visualize and 

compare the distributions of large datasets. The columns of the diagrams correspond to features. The 

rightmost 4 columns are the categorical variables, respectively: protocol (3 values), service (70 values), 

flag (11 values) and label (5 values). All features values are ordered in accordance with the alphabetical 

order of the label. The rows are divided in 100 slots associated to 100 bins where the continuous features 

have been mapped. The colors in the slots represent where the mean value is for that slot, with a different 

color to show the dispersion (similar to a box-plot) 

We can observe, in Figure 7, that both diagrams present a similar distribution over the features. The 

intention of the diagram is to show the general similarity of distributions, providing an overall impression 

of similarity when comparing feature to feature from original and synthetic data. This is the reason why 

we do not give the names of the features in the diagram, since we are not interested here in a comparison 

of particular features. 

It is important to note that the synthesized data corresponds to data generated from a forward pass of 

the model (Option C, Section 3.3.3), and each time we generate a new set of synthesized data this dataset 

will be different, due to the stochastic nature of the layer of latent variables.  
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Figure 7. Extended histogram for original NSL-KDD training dataset and a synthesized one 

generated from the same labels as the original. 

 

Regarding the second approach to check the similarity between original and synthesized features, in 

Table 1 we present the accuracy obtained in reproducing the three discrete features when using the NSL-

KDD Training and Test dataset as original data. In each case, we compare the accuracy between the 

original dataset and a synthesized dataset composed of the same labels as the original. We see that the 

accuracy depends on the number of different values of the feature, and, in general, it is quite high. Option 

C offers the best results, providing a reconstruction accuracy for discrete features that is greater than 90% 

for most features. We can see that even when the much smaller NSL-KDD test dataset is used to train 

VGM, we still get very good accuracy results (the three columns on the right in Table 1). The values in 

Table 1 are color-coded; where the greenest is better and the redder is worse (comparison of values is 

applied column-wise). We base our definition of accuracy in the usually accepted one [20]. 
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Table 1. Accuracy when reproducing discrete features 

 

We can see in Table 1 that the results differ for the column: flags. This is due to the fact that NSL-

KDD has differences between the training and test datasets, as presented in Section 3.1. This difference 

provides an additional challenge to the data generation process. 

Following the same strategy, in Table 2, we present the classification results applying original and 

synthesized data to several classifiers. We have tested four different classifiers: Random Forest, Logistic 

Regression, Linear SVM and Multilayer Perceptron (MLP). In all cases, we used the NSL-KDD Training 

dataset as real data and several synthesized datasets created from a similar labels distribution, as synthetic 

data. 

The objective here is to show that we have similar accuracies when doing prediction with either the 

original or the synthetic datasets, that is, referring to Table 2, the objective is to have similar values on 

columns with the same color for each particular option and classifier (see Table 2). We see that this is the 

case for most tests with all options; the results are quite similar when using either the original or 

synthesized data as training or prediction data, what provides additional arguments on their similarity. It 

is also interesting to note the poor results of almost all the options when using Linear SVM and training 

with synthetic data; the only option that behaves well in this case is Option C, which performs well and 

robustly in all tests. Option C presents the best results in Table 2, since the accuracy values remain very 

similar for each classifier.  

The classifiers are set-up with their defaults parameters (no tuning), since we are not using the 

classifiers to show best performance, but to show if they provide similar performance when using the 

original and generated data, and we do not want to modify the results by tuning the parameters. 
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Table 2. Prediction accuracy with different classifiers and datasets (original and synthetic) 

 

To expand the data provided in Table 2, we present, in Table 3, the prediction details using a 

contingency table for the 5 predicted labels, when we use Option C with MLP as a classifier. We can see 

that the predicted and actual percentages of labels are very similar for the three most frequent labels, the 

least frequent being the most prone to errors, as expected. 

 

 Table 3. Contingency table for predictions when employing different training and test data sets. 

 

Finally, to prove that synthetic and original data are similar, but not identical, we subtract (element-

wise) the original and synthetic datasets, calling the resulting dataset as difference-dataset. If the 

similarity between the datasets is true, the values of the difference-dataset should have zero mean (no 
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reproduction bias) and a relatively small standard deviation (not too small to make both datasets 

indistinguishable or too large to make them completely unrelated). Table 4 shows the mean and standard 

deviation for 20 continuous and discrete features of the above mentioned difference-dataset. We can 

observe, in both cases, that the behavior is the expected one. The synthetic features exhibit variability (no 

exact copy) and are centered on expected values (no bias). Similarly, Figure 8 gives the distribution of 

values for several continuous and discrete features (upper and lower diagrams, respectively) of the 

difference-dataset. The Y-axis of the histograms corresponds to the number of repetitions of a given 

value, and the X-axis represents the values of the difference-dataset. These values are, in all cases, in the 

interval [-1,1], due to the [0,1] scaling and one-hot encoding of the continuous and discrete features, 

respectively (Section 3.1). 

 

Table 4. Mean and standard deviation of difference between values (original vs. synthetic) for 

several features. 

 



20 

 

Figure 8. Distribution of value difference between original and synthetic datasets for several 

continuous and discrete features (upper and lower diagrams, respectively). 

 

4.2. Improvement in classification results 

The purpose of this section is to show that the new synthesized data can be used to improve 

classification results for common machine learning classifiers. That means that the synthetic data can be 

used as new training data. These results additionally confirm that the synthesized data have similar 

structure to the original but including enough variability to improve the performance of a classifier. 

In Table 5, we present the accuracy obtained with four different classifiers: Random Forest, Logistic 

Regression, Linear SVM and Multilayer Perceptron (MLP); where for training data we use the NSL-KDD 

Training dataset alone or with additional synthesized samples, and for test data we use, in all cases, the 

NSL-KDD Test dataset.  

It is important to see the difference between the results of Tables 2 and 5, as they try to prove two 

different things. Table 2 presents the results when the NSL-KDD training dataset (original or synthesized) 

is used both for training and prediction, differentiating only if the data set used is original or synthesized. 

In contrast, Table 5 shows the results when the NSL-KDD test dataset is used exclusively for prediction 

(without synthetic data), while a combination of original training data and synthetic data is used for the 

training. For each particular classifier, the six columns in Table 5 correspond to accuracy results in 

different scenarios: (1) using only the original NSL-KDD training dataset, (2) using the original NSL-

KDD dataset repeated twice, (3) using the original NSL-KDD dataset repeated three times,  (4) using the 

original NSL-KDD training dataset plus an additional synthetic dataset made up from the same labels as 
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the original one, (5) using the original NSL-KDD training dataset plus two additional synthetic datasets 

made up from the same labels as the original one, and (6) using the original NSL-KDD training dataset 

plus a synthetic dataset made up from a proportion of labels such that the final proportion of labels is 

balanced in the complete dataset.  

 

Table 5. Classification results when increasing the number of training samples with synthetic 

samples. Predictions are done with NSL-KDD Test dataset. 

 

The values in Table 5 are color coded (same code as Table 1). We can appreciate that the increase in 

performance is clear when increasing the number of synthetic samples.  It is also clear the difference 

between the first three columns and the next three, for almost all options and classifiers. This difference 

provides evidence that employing synthetic data increases classifiers performance, while simply repeating 

the original data does not provide any significative advantage. It is important to realize that this happens 

when using very different classifiers.  

We can see in Table 5 that for Option C there is always an increase in performance for all classifiers 

when employing additional synthetic data. Moreover, using a balanced dataset (last columns) provides 

best results, at least for Option C, which is the Option we have chosen as our best model. 

Finally, we compare VGM with seven SOTA synthetic over-sampling algorithms: (1) SMOTE [9], 

(2) SMOTE Borderline [10], (3) SMOTE+ENN [12][7] , (4) SMOTE+Tomek [12][7], (5) ADASYN 

[14], (6) SMOTE-SVM [11] and (7) EasyEnsemble [15][7].  

Table 6 presents a comparison of several classification performance metrics: accuracy and F1 score 

[20], when different well known classifiers are trained with synthetic data generated by the 

aforementioned over-sampling algorithms. To avoid bias due to specific effectiveness of synthetic data 

with some particular classifier, we repeat the experiment with four classifiers: random forest, multinomial 
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logistic regression, linear SVM and MLP. In all cases, the classifiers are trained with a balanced dataset 

that is constructed using the different synthetic data generation algorithms. The base dataset used to 

generate the synthetic data has been the NSL-KDD Training dataset. All the prediction metrics (accuracy 

and F1) are obtained with the NSL-KDD Test dataset. 

We can observe (Table 6) that VGM exhibits a better average performance than the other 

algorithms; some give better results for a specific classifier but in average VGM gives the best results. 

The results depend on both the classifier and the oversampling method. The intention here is to show that 

VGM provides average results as good as any SOTA oversampling method and in many cases better. 

We used the weighted average provided by scikit-learn [31] to calculate F1 score. The values in 

Table 6 are color-coded in a manner similar to previous tables. 

 

Table 6. Classification metrics when using training data generated by several over-sampling 

algorithms. 

 

4.3. Model training 

As part of the different experiments performed we have learned that the inclusion of regularization 

by using drop-out provides worse results, similarly to increasing the number of layers for the encoder and 

decoder beyond 2 or 3 layers. We have seen also that results are sensitive to the number of training 

epochs, having better results when this number is over 50. All the models converged easily.  

Table 7 presents the parameters used for the training of the different models.  

We have used Tensorflow to implement all the VAE models, and the python package scikit-learn to 

implement the different classifiers. All computations have been performed in a commercial PC (i7-4720-

HQ, 16GB RAM). 
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Table 7. Parameters used to train the models 

 

5. Discussion and conclusion 

This work is unique in presenting the application of a VAE as a generative model for intrusion 

detection. The model is able to synthesize data with both continuous and categorical features. We have 

demonstrated that the data generated is similar to the original data, and, at the same time, have enough 

variability to be effective in improving the detection performance of several classifiers when used 

together with the original data. 

Other aspect unique to this work is the ability to synthesize the new samples from the intrusion 

labels to which the synthetic data should belong, with the advantage of not relying on particular samples 

associated with the labels. This association is usually noisy and identifying a canonical set of samples 

associated with each label can be complex. Therefore, the proposed model streamlines the data generation 

process based on the intrusion label. 

We have analyzed different VAE architecture variants for the proposed model, providing an 

extensive study on the alternatives. When considering all experiments carried out to determine the 

similarity of synthetic data to real intrusion detection data, and its capacity to be used as new training data 

we can conclude that the model based on conditional VAE with Gaussian and Bernoulli distributions 

presents the best results. 

Also, we provide a comparison of our best model with seven common SOTA over-sampling 

algorithms (SMOTE, ADASYN…), showing that the synthetic data generated by our proposed model 

offer better metrics of average performance (accuracy, F1) when four common classifiers are trained with 

this data, compared to the results obtained with the data generated by the alternative algorithms. This 

indicates that the data generated with the proposed model is closer to the original data and can better 

reproduce the probability distribution of its features. 
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