

Universidad deValladolid

UNIVERSIDAD DE VALLADOLID ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Química

Reducción de CO₂ disuelto en soluciones básicas usando biomasa como reductor.

Autor:

Gómez Guadilla, David

Tutor:

Martín Martínez, Ángel Grupo Alta Presión, Dpto. IQTMA

Co - Tutora:

Chinchilla, Maira Ivette Grupo Alta Presión, Dpto. IQTMA

Valladolid, Julio de 2022.

Resumen

Título: Reducción de CO_2 disuelto en soluciones básicas usando biomasa como reductor.

Autor: David Gómez Guadilla

Palabras clave: CO₂, cambio climático, reducción hidrotermal, metano, ácido fórmico, bicarbonato de sodio, biomasa, reductores metálicos.

En este trabajo se estudió la reducción del CO₂ en condiciones hidrotermales con NaHCO₃ en medio acuoso como fuente de carbono utilizando AI, Zn y Fe como reductores metálicos y glucosa y glicerol como reductores orgánicos en un reactor discontinuo.

En primer lugar, se realizaron una serie de reacciones variando la temperatura, el tiempo de reacción y el agente reductor para determinar las mejores condiciones para la producción de ácido fórmico y metano.

Después, se analizó la influencia de la temperatura de reacción en el rendimiento de los productos de reacción, así como en la conversión de NaHCO₃. Para un tiempo de reacción de 4h, se obtuvieron rendimientos en ácido fórmico del 39% utilizando glicerol a 250°C y de hasta un 38% con Al a 250°C. En cuanto al CH₄, se alcanzó un rendimiento del 27% con Al 350°C.

Por último, se llevó a cabo el diseño del proceso en continuo a nivel industrial para desarrollar un método alternativo de producción de combustibles y productos de alto valor añadido. De esta manera se elimina la dependencia de los combustibles fósiles y se soluciona el gran problema actual del cambio climático.

Abstract

Title: Reduction of dissolved CO₂ in basic solutions using biomass as a reductant. Author: David Gómez Guadilla

Key words: CO₂, climate change, hydrothermal reduction, methane, formic acid, sodium bicarbonate, biomass, metal reductant.

In this work, CO₂ reduction was studied under hydrothermal conditions with NaHCO₃ in aqueous medium as carbon source using AI, Zn and Fe as metal reductants and glucose and glycerol as organic reductants in a batch reactor.

First of all, some reactions were carried out varying temperature, reaction time and reducing agent to determine the best conditions for the production of formic acid and methane.

Then, the influence of the reaction temperature on the yield of the reaction products as well as on the conversion of NaHCO₃ was analysed. For a reaction time of 4h, formic acid yields of up to 38% were obtained using Al at 250°C and up to 39% with glycerol at 250°C. For methane, a yield of 27% was achieved with Al 350°C.

Finally, the design of the continuous process was done at industrial level to develop an alternative method for the production of fuels and high value-added products. In this way, dependence on fossil fuels is eliminated and the current major problem of climate change is solved.

ÍNDICE

List	ta de	Figu	Jras	1		
List	ta de	Tab	las	3		
1.	Intr	oduo	cción	4		
1	.1.	Tra	nsición energética y nuevas tecnologías	4		
1	2.	CO2	2 y efecto invernadero	4		
1	1.3. Influencia del CO ₂ en el calentamiento global					
1.4.		Car	nbio climático	6		
1	.5.	Cic	lo de carbono	7		
1	6.	Ме	didas y métodos para la reducción del CO2	9		
2.	Obj	etivo)S	9		
3.	Ma	rco t	eórico	10		
Э	3.1.	Tra	nsformación del CO2	10		
	3.1	.1.	Métodos de almacenamiento y transformación de CO2	11		
	3.1	.2.	Usos y aplicaciones del CO2 en la industria	13		
Э	3.2.	Des	sarrollo del método: Reducción hidrotermal de CO2	14		
	3.2	.1.	Fundamento químico	15		
3.2.2. Pro			Propiedades del medio de reacción hidrotermal	15		
	3.2	.3.	Materia primas y productos	19		
	3.2	.2.4. Mecanismos y reacciones de interés		20		
Э	3.3.	Eje	mplos de reacciones hidrotermales	22		
4.	Inst	alac	ión de la planta y equipos	23		
5.	Mé	todo	experimental	24		
5	5.1.	Ma	teriales utilizados	24		
5	5.2.	Pro	cedimiento experimental	25		
5	5.3.	Aná	álisis de muestras	27		
5	5.4.	Cál	culo de rendimientos y conversiones	29		
5	5.5. Experimentos preliminares					
5.6. Experimentos finales				31		
6.	Res	ulta	dos y discusión	34		
7.	Imp	lant	ación industrial	48		
8.	Cor	nclus	siones y trabajo futuro	56		

9.	Bibliografía	.57
AN	EXOS	.62
A	Anexo I: Cálculo de cantidades iniciales	.62
A	Anexo II: Patrones y calibrados	.63
A	Anexo III: Datos y resultados obtenidos	.69

Lista de Figuras

Figura 1. Efecto invernadero [6]	5
Figura 2. Relación entre la temperatura media terrestre y la concentración del CO ₂ atmosférico [6].	6
Figura 3. Ciclo de carbono y procesos relacionados [3]	8
Figura 4. Transformaciones de CO ₂ [25]1	0
Figura 5. Síntesis industrial de distintos procesos con CO2 como materia prima [25]. .4
Figura 6. Diagrama de fases del agua [32]1	5
Figura 7. Producto iónico del agua a 250 bar en función de la temperatura [31]1	6
Figura 8. Densidad del agua a 250 bar en función de la temperatura [31]1	7
Figura 9. Constante dieléctrica del agua a 250 bar en función de la temperatura [31]1	.8
Figura 10. Mecanismo propuesto para la conversión de CO2 en ácido fórmico [41].	0
Figura 11. Mecanismos de oxidación de la glucosa [28]2	1
Figura 12. Mecanismos de reacción del glicerol [27]2	1
Figura 13. Recipiente, tapa y conexiones del reactor2	3
Figura 14. Planta de operación2	3
Figura 15. Conexión de N $_2$ y equipos de presión y temperatura2	4
Figura 16. Cámara inerte de N22	5
Figura 17. Cromatógrafo de líquidos de alta presión (HPLC)2	7
Figura 18. Cromatógrafo de gases con detector de conductividad térmica (GC-TCD)	8
Figura 19. Influencia de la temperatura en el rendimiento de CH_4 (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles)3	4
Figura 20. Influencia de la temperatura en el rendimiento de AF (t = 4h; reductor/CO ₂ = 2,5 moles; catalizador/CO ₂ = 2 moles)3	5
Figura 21. Influencia de la temperatura en el rendimiento de AC (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles)	6
Figura 22. Influencia de la temperatura en el rendimiento de AL (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles)	7
Figura 23. Influencia de la temperatura en la conversión de NaHCO ₃ (t = 4h; reductor/CO ₂ = 2,5 moles; catalizador/CO ₂ = 2 moles)3	8

Figura 24. Influencia del tiempo de reacción en el rendimiento de CH ₄ (reductor/CO ₂ = 2,5 moles; catalizador/CO ₂ = 2 moles)	39
Figura 25. Influencia del tiempo de reacción en el rendimiento de AF (reducto = 2,5 moles; catalizador/CO2 = 2 moles).	or/CO ₂ 40
Figura 26. Influencia del tiempo de reacción en la conversión de NaHCO ₃ (reductor/CO ₂ = 2,5 moles; catalizador/CO ₂ = 2 moles)	41
Figura 27. Análisis XRD de la muestra 9 de Zn con Ni-Raney	42
Figura 28. Análisis XRD de la muestra 17 de Al con Ni-Raney	43
Figura 29. Análisis XRD de la muestra 19 de Fe con Ni-Raney	43
Figura 30. Análisis XRD de la muestra 29 de glucosa con Ni-Raney	44
Figura 31. Análisis XRD de la muestra 31 de glicerol y Ni-Raney	44
Figura 32. SEM de la muestra 9 de Zn y Ni-Raney tras la reacción	45
Figura 33. SEM de la muestra 17 de Al y Ni-Raney tras la reacción	45
Figura 34. SEM de la muestra 19 de Fe y Ni-Raney tras la reacción	46
Figura 35. SEM de la muestra 29 de glucosa y Ni-Raney tras la reacción	46
Figura 36. SEM de la muestra 31 de glicerol y Ni-Raney tras la reacción	47
Figura 37. Diagrama de flujo del proceso continuo	49

Lista de Tablas

Tabla 1. Experimentos preliminares	31
Tabla 2. Datos y parámetros de los experimentos realizados	32
Tabla 3. Balance de materia en masa	50
Tabla 4. Balance de materia en moles	51
Tabla 5. Balance de energía	52
Tabla 6. Cantidades iniciales de cada reactivo	62
Tabla 7. Relaciones molares de cada reactivo respecto a la fuente de carbono	62
Tabla 8. Patrones preparados	63
Tabla 9. Datos del calibrado 1 de AF	64
Tabla 10. Datos del calibrado 2 de AF	64
Tabla 11. Datos del calibrado 3 de AF	65
Tabla 12. Datos del calibrado del patrón 1 de NaHCO3	65
Tabla 13. Datos del calibrado del patrón 2 de NaHCO3	66
Tabla 14. Datos del calibrado del patrón 3 de NaHCO3	66
Tabla 15. Datos del calibrado de AC para un tiempo de retención de 20,319 min	n.67
Tabla 16. Datos del calibrado de AL para un tiempo de retención de 17,456 mir	n. 67
Tabla 17. Cálculos y rendimientos de la fase gas	69
Tabla 18. Rendimientos del AF	71
Tabla 19. Conversiones del NaHCO ₃	72
Tabla 20. Rendimientos del AC	72
Tabla 21. Rendimientos del AL	73

1. Introducción

1.1. Transición energética y nuevas tecnologías

El cambio climático es evidente e innegable, ocasionado por el aumento de las emisiones de gases de efecto invernadero procedentes de las actividades antropogénicas, principalmente de la combustión de recursos fósiles como el carbón, el petróleo o el gas natural [1].

Para combatir el cambio climático y minimizar los riesgos sobre los sistemas naturales y la vida en el planeta, es necesario reducir estas emisiones, dando paso a energías renovables libres de CO₂ y respetuosas con el medio ambiente. Es por esto, que ha crecido el interés por la implantación de nuevas tecnologías para producir electricidad y calor.

La transformación del sistema energético hacia una economía descarbonizada basada en energías renovables, mayoritariamente la energía solar y la energía eólica, se denomina transición energética. El uso de estas energías supone la creación de un sistema energético sostenible, limpio, fiable y eficiente [2].

Sin embargo, este cambio supondría un punto de inflexión en los modelos de producción, distribución y consumo energético a nivel mundial. Además, la estructura de poder de muchos países se vería limitada ya que este cambio restringiría el uso de combustibles fósiles, obligando a renunciar a estos recursos tan valiosos actualmente.

Otro aspecto destacable es que las tecnologías renovables todavía no están desarrolladas y requieren de grandes instalaciones capaces de abastecer por completo las necesidades energéticas. Los altos costes de estas inversiones y la baja eficiencia energética se traducen en falta de competitividad frente a las tecnologías convencionales [8].

1.2. CO₂ y efecto invernadero

El carbono es el cuarto elemento más abundante del universo y es el elemento clave de la vida en la Tierra. El ser humano está formado por compuestos que contienen carbono y la alimentación está basada en productos hechos con carbono [3].

El dióxido de carbono (CO₂) es un componente natural del aire esencial para la vida en la Tierra debido a su contribución como gas de efecto invernadero. Además, el CO₂ atmosférico es fundamental en los ciclos biogeoquímicos globales, que controlan las transformaciones de los elementos entre los diferentes componentes de la Tierra (atmósfera, océano, tierra, litosfera) mediante procesos bióticos y abióticos, es decir, constituye la principal fuente de carbono para la vida en la Tierra, usado por organismos fotosintéticos y obteniéndose como producto cuando los organismos aeróbicos realizan la respiración [4].

El efecto invernadero se refiere al fenómeno natural que comienza con el paso de la radiación del Sol a través de la atmósfera para ser absorbida por la superficie y calentarla. El enfriamiento de la tierra por la radiación emitida es inhibido por los gases presentes en la atmósfera que absorben la radiación y esencialmente atrapan el calor para que no escape al espacio [5].

Este proceso, representado en la Figura 1, mantiene la temperatura de la Tierra, haciéndola apta para la vida.

Figura 1. Efecto invernadero [6].

El CO₂ en la atmósfera ha atrapado suficiente energía del sol para mantener el planeta lo suficientemente caliente para albergar vida, con una temperatura promedio de la tierra de 15°C. Sin algunos gases de efecto invernadero que ocurren naturalmente, la temperatura promedio de la tierra sería de -18°C [7].

Los gases presentes en la atmósfera responsables de este efecto son conocidos como gases de efecto invernadero (GEI). Estos gases son:

- Dióxido de carbono (CO₂)
- Metano (CH₄)
- Ozono (O₃)
- Dióxido de azufre (SO₂)
- Clorofluorocarbono (CFC)
- Dióxido de nitrógeno (NO₂)

1.3. Influencia del CO₂ en el calentamiento global

La concentración de CO_2 en la atmósfera ha sufrido un notable aumento causado por la quema de combustibles fósiles, junto con el aumento de la población mundial. El aumento de la población no sólo ha incrementado el uso de combustibles, sino que también ha provocado una considerable deforestación que ha liberado CO_2 y ha reducido un importante sumidero de CO_2 [6].

El aumento del CO₂ atmosférico se ha convertido en un tema de gran preocupación debido a la relación directa entre los niveles de CO₂ atmosférico y el aumento de la temperatura media terrestre conocido como calentamiento global [8].

La Figura 2 muestra que la concentración de CO₂ en la atmósfera no superó las 280 ppm hasta el comienzo de la Revolución Industrial. En mayo de 2022, la concentración máxima de CO₂ en la atmósfera alcanzó las 421 ppm, aproximadamente un 50 % más, y sigue en aumento. Además, la temperatura media de la Tierra ha aumentado 1,0°C desde aproximadamente 1850 [7].

Figura 2. Relación entre la temperatura media terrestre y la concentración del CO₂ atmosférico [6].

Esto se debe a que el aumento de las concentraciones atmosféricas de gases de efecto invernadero aumenta la cantidad de calor atrapado (o disminuye el calor irradiado desde la superficie de la tierra), elevando así la temperatura de la superficie de la tierra [9].

Si el consumo de combustibles fósiles sigue mostrando un aumento anual del 0,5-2,0%, la concentración atmosférica de CO₂ alcanzará el doble del nivel actual en algún momento del próximo siglo, lo que se traduce en un aumento cada vez mayor de la temperatura de la Tierra [8].

Estas predicciones han causado suficiente preocupación como para que muchos gobiernos estén estudiando formas de reducir las emisiones de CO₂ [10].

1.4. Cambio climático

Este aumento ha convertido al CO₂ en el gas de efecto invernadero de origen antropogénico más preocupante y en uno de los principales precursores del cambio climático.

Si las emisiones de GEI continúan al ritmo actual, la temperatura de la superficie de la Tierra podría superar el umbral de 2°C de calentamiento global, que el Panel Intergubernamental del Cambio Climático (IPCC) de las Naciones Unidas designó como el límite superior para evitar un calentamiento global peligroso para 2036, con efectos nocivos, consecuencias devastadoras y alteraciones irreversibles para el ecosistema, la biodiversidad y la vida de los seres humanos en todo el mundo [11], tales como: [12]

- Deshielo y aumento del nivel del mar: Los casquetes polares y los glaciares se están derritiendo debido al aumento de la temperatura, provocando un aumento del nivel del mar que podría sumergir zonas costeras.
- Condiciones meteorológicas extremas y aumento de las precipitaciones: Fenómenos climatológicos extremos o catástrofes naturales como fuertes Iluvias o inundaciones. También son más frecuentes las sequías, las olas de calor y los incendios forestales.
- Riesgos para la naturaleza: Muchas especies de plantas y animales no son capaces de adaptarse y sobrevivir.

Como consecuencia de la preocupación a nivel mundial sobre el cambio climático, se han establecido diferentes protocolos de actuación, acuerdos y esfuerzos internacionales, como son: [13,14]

- Protocolo de Montreal (1987): El objetivo fue restringir el uso de productos químicos que pudieran dañar la capa de ozono, como son los clorofluorocarbonos (CFC).
- Protocolo de Kyoto (1997): Los países desarrollados se comprometieron a disminuir las emisiones en un 5% desde el 2008 hasta el 2012.
- Acuerdo de París (2015): 195 países firmaron un acuerdo en el que se estableció un plan de acción mundial para evitar que la temperatura media de la tierra aumente más de 2°C.

1.5. Ciclo de carbono

Hoy en día, la mayoría de los combustibles y la energía utilizada se derivan de los recursos fósiles, y la energía fósil seguirá siendo la fuente de energía dominante en el futuro previsible, lo que conducirá a una mayor emisión neta de CO₂.

Por un lado, no se puede obtener suficientes recursos alternativos para sustituir los recursos fósiles en un futuro próximo. Por otro lado, las reservas existentes de combustibles fósiles son limitadas y se están agotando gradualmente, mientras que la demanda de energía aumenta continuamente [3].

Por lo tanto, la humanidad se enfrenta al gran desafío del carbono: los efectos perjudiciales para el medio ambiente causados por la formación excesiva de CO₂ en la atmósfera y la dependencia de los recursos limitados de combustibles fósiles [15].

Uno de los retos científicos y tecnológicos a los que se enfrenta la humanidad es la reducción de la concentración de CO_2 y es por esto por lo que se necesitan urgentemente métodos de reducción y utilización del CO_2 para minimizar el calentamiento global [16].

La solución no solo consiste en reducir las emisiones de CO₂ reduciendo el consumo de combustibles fósiles, sino incrementar el consumo de CO₂ para producir combustibles y productos químicos como fuentes de energía y materia prima en la industria química [17]. Con este enfoque, se consume más CO₂ del que se emite, haciendo que la huella de carbono sea negativa. Los métodos capaces de realizar este proceso son los métodos de captura y conversión de CO₂, que se detallarán más adelante.

En la Figura 3 se muestra el ciclo del carbono simplificado que relaciona la utilización de los recursos fósiles, la conversión de la biomasa y la transformación y el reciclaje del CO₂. De esta manera, se complementa el ciclo del carbono.

Figura 3. Ciclo de carbono y procesos relacionados [3].

La materia prima fósil se convierte en diversos combustibles y productos químicos, y se libera CO_2 , que puede ser capturado y transformado químicamente de nuevo en combustibles o productos químicos. El CO_2 se libera de nuevo en los procesos de transformación.

Mientras tanto, las plantas convierten el CO_2 en biomasa mediante la fotosíntesis, y la biomasa renovable puede convertirse en combustibles y productos químicos, y también se emite CO_2 en el proceso [3]. El uso de la biomasa puede ahorrar recursos fósiles y reducir así el aumento neto de CO_2 en la atmósfera.

Sin embargo, las actividades antropogénicas rompen el equilibrio del carbono, ya que para lograr el equilibrio de la formación de combustibles fósiles a partir de residuos orgánicos en la tierra se necesitan cientos de millones de años, mientras que los humanos utilizan los combustibles fósiles en un plazo de 200 a 300 años y liberan una gran cantidad de CO₂ [18].

Al simular estas condiciones subterráneas, no sólo los residuos orgánicos o las materias primas, sino también el CO₂, podrían convertirse rápidamente en combustibles y productos químicos de forma artificial [19].

Las reacciones hidrotermales desempeñan un papel importante en la formación de los combustibles fósiles, y tienen un excelente potencial para la rápida conversión en productos químicos de valor añadido, con altas eficiencias energéticas y rendimientos [20]. Por lo tanto, si la formación geológica de los combustibles fósiles en la naturaleza pudiera combinarse con los métodos hidrotérmicos que se

están estudiando para las conversiones de materiales, se podría realizar una química eficiente para reciclar el carbono y producir sustancias químicas [3].

En este documento, se presenta un estudio sobre la conversión hidrotérmica del CO₂ en productos químicos con biomasa y metales como reductores.

Estos resultados proporcionan una comprensión fundamental que abre una nueva vía para la utilización del CO₂ como materia prima química, acelerando así el ciclo global del carbono.

1.6. Medidas y métodos para la reducción del CO₂

A continuación, se describen las soluciones más viables y eficaces para llevar a cabo tanto la reducción de las emisiones de CO_2 , como del contenido del CO_2 atmosférico.

- Fuentes alternativas de energía: Implantación de tecnologías basadas en energías renovables como la energía solar y la eólica, principalmente. Son tecnologías libres de emisiones de CO₂. Sin embargo, el mayor inconveniente que presentan es que no proporcionan la energía necesaria para el consumo actual y su poco abastecimiento supone una falta de competencia frente a las tecnologías actuales.
- Mejora de la eficiencia energética: Basado en el uso de la energía de manera más eficiente y en menor intensidad, reduciendo así las emisiones de CO₂.
- Reducción de la deforestación: Se favorece así el consumo de CO₂ por parte de árboles y plantas, y por lo tanto la reducción del CO₂ atmosférico.
- Reducción de CO₂: Consiste en la implantación de métodos de captura y almacenamiento CO₂ para reducir el contenido del CO₂ atmosférico y métodos de conversión y reducción de CO₂ para producir productos químicos de alto valor añadido mediante la transformación de CO₂. El desarrollo de estos métodos se presenta en el apartado 3.1.1.

2. Objetivos

El objetivo de este trabajo es el estudio de la reducción hidrotermal de NaHCO₃ como fuente de CO₂ en un reactor discontinuo agitado en presencia de Ni-Raney como catalizador y utilizando diferentes metales y compuestos orgánicos derivados de la biomasa como agentes reductores, concretamente Zn, Al, Fe, glucosa y glicerol.

Para ello, se realizan diferentes experimentos variando la temperatura y el tiempo de reacción para estudiar la influencia de estos en la reacción. Después, se analizan las muestras líquidas, gaseosas y sólidas para determinar el rendimiento de los productos obtenidos, principalmente ácido fórmico (AF) en la fase líquida y metano (CH₄) en la fase gas y establecer las condiciones más favorables.

Por último, se lleva a cabo el diseño del proceso en continuo incluyendo un diagrama de flujo con los principales equipos necesarios para la transformación del NaHCO3, así como los correspondientes balances de materia y energía.

3. Marco teórico

3.1. Transformación del CO₂.

El dióxido de carbono (CO₂) es un recurso de carbono renovable fácilmente disponible, que tiene las ventajas de ser un gas no tóxico, no inflamable, abundante y económico. El CO₂ posee una gran estabilidad termodinámica y baja capacidad energética dado que es el estado más oxidado del carbono [16,28].

Debido al bajo nivel energético del CO₂, establecer procesos industriales basados en el CO₂ como materia prima es un verdadero reto, ya que requiere un gran aporte de energía para poder transformarlo [16]. Los principales usos del CO₂ en la industria y los procesos químicos implantados actualmente aparecen en el apartado 3.1.2.

Existen varias estrategias para resolver este problema, como:

- Utilizar materiales de alta energías como hidrógeno (reducción con H₂), compuestos insaturados, compuestos de anillos pequeños o compuestos organometálicos.
- Elegir objetivos sintéticos oxidados de baja energía, como los carbonatos orgánicos (captura con absorción de aminas).
- Suministrar energía física como electricidad o luz (Reducción electroquímica o fotoquímica).
- Utilizar la reacción en medios hidrotermales.

En el siguiente esquema representado en la Figura 4, aparecen las diferentes categorías en las que se dividen las reacciones de transformación de CO₂, así como algunos ejemplos de los productos que se obtienen. Algunos de estos métodos, se desarrollan a continuación.

	ſ	(1) Chemical	Non-hydrogenative	Carbonates, carbamates, etc.		
			Hydrogenative	Hydrocarbons, MeOH, EtOH, etc.		
		(2) Photochemical		CO, HCO ₂ H, CH ₄		
CO ₂ transformations	\prec	(3) Electrochemical		CO, HCO ₂ H, MeOH		
		(4) Biological		EtOH, Sugar, CH ₃ CO ₂ H		
		(5) Reforming		CO + H ₂		
		(6) Inorganic		Carbonates: M ₂ CO ₃		

Figura 4. Transformaciones de CO₂ [25].

3.1.1. Métodos de almacenamiento y transformación de CO₂.

• Captura y almacenamiento de CO₂

Según el quinto informe del IPCC, las técnicas de captura y almacenamiento (CCS) de carbono se plantean como una de las principales medidas de mitigación en el sector industrial [1].

El propósito de la captura es producir una corriente concentrada de CO_2 a alta presión que pueda transportarse fácilmente a un sitio de almacenamiento. La captura de CO_2 a partir de los gases de combustión de las centrales eléctricas alimentadas con carbón, petróleo o gas es una tecnología madura que está comercialmente disponible. Hay tres procesos disponibles para la captura de CO_2 de grandes fuentes puntuales: captura posterior a la combustión , captura previa a la combustión y combustión alimentada con oxígeno [21].

Existen métodos de captura de CO₂ como la absorción empleando una disolución acuosa de aminas o NaOH, por adsorción, separación criogénica y procesos de membrana o amoniaco. Actualmente, la más usada es la absorción con aminas para la eliminación del CO₂ del gas natural [22]. El mayor inconveniente que presenta es que es necesario regenerar las aminas y la energía necesaria para este proceso es muy elevada, lo que se traduce en grandes costes de energía.

En contacto con una disolución de aminas, el CO_2 reacciona según la Ec.1 y la Ec.2 para dar carbamato y bicarbonato, respectivamente. En la formación de carbamato se consumen dos moles de amina frente el consumo de uno del bicarbonato. Debido a esto la formación de bicarbonato es de mayor interés que la formación de carbamato ya que tiene una capacidad de absorción de CO_2 del doble [24].

$$2RNH_2 + CO_2 \rightleftharpoons RNHCOO^- + RNH_3^+ \qquad \qquad Ec.1$$

$$RNH_2 + CO_2 + H_2O \rightleftharpoons HCO_3^- + RNH_3^+ \qquad \qquad Ec.2$$

Después del proceso de captura y transporte, el CO_2 debe almacenarse. El CO_2 se puede desechar en sitios naturales como cavidades geológicas profundas, acuíferos salinos, yacimientos de petróleo o gas, minas de carbón o en el fondo del océano, o se puede fijar químicamente en sustancias sólidas, por ejemplo, carbonatos inorgánicos [23]. El almacenamiento geológico a gran escala ya ha demostrado su viabilidad, mientras que otras tecnologías, como el almacenamiento de CO_2 en los océanos y en carbonatos, aún se encuentran en la fase de investigación [21, 23].

• Conversión y reducción de CO₂

Los métodos predominantes propuestos para transformar el dióxido de carbono en productos químicos y combustibles son:

Reducción con H₂

El hidrógeno es una sustancia altamente energética capaz de reducir el CO₂ a otros compuestos de mayor interés.

La hidrogenación del CO₂ con hidrógeno gaseoso se considera actualmente la ruta sintética más viable desde el punto de vista comercial. Sin embargo, este método requiere catalizadores complejos y caros (Ir, Ru, Rh, etc.), o hidrógeno de gran pureza y alta presión [18].

Existen algunas variantes atendiendo al producto obtenido y a si el proceso de hidrogenación es heterogéneo o homogéneo [25].

Hidrogenación a ácido fórmico [18,25]

El producto obtenido es ácido fórmico de acuerdo con la Ec.3:

$$CO_2 + H_2 \rightleftharpoons HCOOH$$

 $\Delta H_{298K} = -31,8 \, kJ/mol$

La reacción es exotérmica pero el equilibrio está fuertemente desplazado hacia la izquierda debido a la participación de dos sustancias gaseosas y una líquida con fuertes fuerzas intermoleculares (puentes de hidrógeno).

Hidrogenación a hidrocarburos y alcoholes [25]

Los productos obtenidos, son materias primas con gran importancia en la industria química orgánica, por ejemplo, el metanol [24].

El proceso actualmente no es eficiente debido elevado consumo de H_2 , la mitad del cual se consume en la producción de agua. El mayor inconveniente de estos métodos es la necesidad de H_2 que es obtenido principalmente a partir de combustibles fósiles por lo que la ventaja medioambiental se pierde, aspirando idealmente a un proceso de carbono neutro de reciclaje del CO₂.

La Ec.4 y la Ec.5 son algunos ejemplos de estas hidrogenaciones:

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + H_2O$$
 Ec. 4

$$\Delta H_{298K} = -259,9 \ kJ/mol$$

 $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$

 $\Delta H_{298K} = -197,8 \, KJ/mol$

• Reducción electroquímica o electrocatalítica [18,25]

La reducción electrocatalítica y electroquímica del CO₂ ha sido extensamente estudiada. El CO₂ se reduce en un proceso electroquímico pudiendo obtenerse formato, fórmico, CO, metanol o metano. La electrólisis en presencia de un catalizador es posible a menores voltajes, pero aun así requiere un consumo elevado de energía eléctrica.

Ec.5

Ec.3

o Reducción fotoquímica [18,25]

Entre estos métodos, la reducción fotoquímica del CO₂ se considera más prometedora, pero su eficiencia es muy baja y se necesitan catalizadores caros o complejos.

Consiste en la reducción del CO_2 por acción de la luz. Sin embargo, debido a su alta estabilidad su reducción es difícil por medio fotoquímico. La reducción fotoquímica compite con la formación de H₂ debido a la descomposición del agua, generando a problemas de selectividad.

o Reducción hidrotermal

Consiste en el uso de agua a alta temperatura (High Temperature Water, HTW) como solvente en el que llevar a cabo la reducción. El HTW presenta propiedades muy distintas a las del agua líquida a temperatura ambiente que lo hacen muy atractivo como medio de reacción [26]. Este es el método estudiado y que se desarrollará en profundidad a continuación.

3.1.2. Usos y aplicaciones del CO2 en la industria

Debido al cambio climático, recientemente se ha acelerado la investigación de la utilización del CO₂ como bloque C1 para la producción de combustibles y productos químicos, para cerrar el ciclo del carbono [27].

El CO₂ es atractivo como materia prima para la industria porque es barato, tiene muy baja toxicidad, está disponible en gran cantidad y puede utilizarse como materia prima para diferentes procesos [28].

El uso puede dividirse en dos grupos: los que utilizan sus aspectos físicos y los que utilizan sus aspectos químicos. Las propiedades físicas del CO₂ se utilizan en la industria de las bebidas, para el tratamiento de aguas, en la recuperación mejorada de petróleo y en su estado supercrítico como fluido tecnológico para aplicaciones en reacciones como disolventes y en la producción de nanopartículas o compuestos [29,30]. Como gas inerte y seguro, también se utiliza como gas protector (en la industria química o siderúrgica, en la conservación de alimentos, en la soldadura, etc.) y como extintor de incendios. El CO₂ también se utiliza en estado sólido para la refrigeración, especialmente en vagones y remolques refrigerados, para sustituir el uso de CFC, que son perjudiciales para la atmósfera [30]. El CO₂ también puede utilizarse químicamente como reactivo y puede convertirse en productos químicos valiosos como urea, DME, ácido salicílico, carbonatos inorgánicos, pigmentos, carbonatos orgánicos cíclicos o utilizarse como aditivo en la síntesis de metanol [28].

Actualmente solo existen unos pocos procesos industriales implementados a gran escala, como la síntesis de ácidos carboxílicos o carboxilación de reactivos de Grignard (proceso de Kolbe-Schmitt para la síntesis de ácido salicílico), la síntesis de carbonatos y carbamatos orgánicos o la producción de urea y metanol [25]. Las reacciones de transformación de estos procesos se presentan la Figura 5.

Figura 5. Síntesis industrial de distintos procesos con CO₂ como materia prima [25].

Los grandes proyectos de investigación y desarrollo de la utilización del CO₂ se centran en el uso del CO₂ relacionado con [29]:

- Usos tecnológicos o usos directos: Recuperación mejorada de petróleo, CO₂ supercrítico o carbonatación de residuos.
- Usos químicos: Productos químicos inorgánicos como carbamatos metálicos para la producción de fertilizantes, producción de productos químicos (carbonatos, polímeros y combustibles sintéticos)
- Usos biológicos: Crecimiento de algas para la síntesis de combustibles, fertirrigación o fotosíntesis artificial.

El establecimiento de una industria química basada en una materia prima renovable como el CO₂ es un reto de larga duración, así como un sueño fascinante para los químicos sintéticos. Una cosa que hay que tener en cuenta es que las reacciones que utilizan CO₂ como materia prima no contribuyen necesariamente a mitigar el efecto invernadero, aunque el CO₂ sea un reactivo químico ecológico en muchos casos [16]. Debido a:

(1) La fijación química del CO_2 no reduce necesariamente la cantidad total de CO_2 porque la transformación del CO_2 requiere energía y produce CO_2 .

(2) La cantidad de CO_2 fijada por las industrias químicas sería mucho menor en comparación con la emisión de CO_2 a través de la combustión de combustibles.

(3) Los productos químicos orgánicos en los que se fija el CO_2 emitirán CO_2 en la fase de eliminación.

La importancia de la transformación del CO₂ en productos químicos útiles debe atribuirse a la importancia de utilizar una materia prima renovable.

3.2. Desarrollo del método: Reducción hidrotermal de CO2

A continuación, se expone el fundamento químico en el que se basa este método, las distintas materias primas que se pueden utilizar para llevar a cabo esta reacción y los posibles productos que se obtienen, así como los mecanismos y las reacciones más importantes.

3.2.1. Fundamento químico

De todos los métodos propuestos para la reducción de CO₂, la reducción en medio hidrotermal de CO₂ resulta uno de los métodos más prometedores debido a las numerosas ventajas que presenta el HTW como medio de reacción. Actúa como donante de hidrógeno en lugar del H₂, que es inflamable y complejo de almacenar, para la obtención de productos de alto valor añadido y está considerado un disolvente limpio, seguro y respetuoso con el medio ambiente en comparación con los disolventes orgánicos, que resulta una característica a tener muy en cuenta [33,34].

Además, permitiría desarrollar sistemas integrados de captura y utilización de CO₂ y evitar así las costosas etapas de purificación y compresión del CO₂ [3].

La reducción hidrotermal consiste en el empleo de agua a alta temperatura (High Temperature Water, HTW) como disolvente en el proceso de reducción. El agua a alta temperatura se define como agua líquida a más de 200°C y puede dividirse en agua subcrítica (por debajo de su punto crítico) y agua supercrítica (por encima de su punto crítico) en función de su punto crítico (Tc = 373°C, Pc = 22,1 MPa) [26], como se muestra en la Figura 6 [32].

Figura 6. Diagrama de fases del agua [32].

3.2.2. Propiedades del medio de reacción hidrotermal

Cuando el agua alcanza puntos cercanos a su punto crítico a una presión lo suficientemente alta como para mantenerse en estado líquido, se observan variaciones drásticas en las propiedades físicas respecto al agua líquida en condiciones ambientales que hacen que el agua en condiciones hidrotérmicas actúe como disolvente y como catalizador y sea un reactivo único con unas propiedades extraordinarias como medio de reacción [31,35].

Por lo tanto, algunas reacciones que difícilmente se pueden llevar a cabo a bajas temperaturas pueden ocurrir en el HTW o condiciones hidrotermales.

Estas propiedades se han aplicado en diversos procesos industriales, por ejemplo, en el proceso de oxidación de residuos industriales con agua supercrítica (SCWO), donde el agua se comporta como un disolvente orgánico de baja polaridad [36]. También se ha empleado para la descomposición de polímeros en sus monómeros y materiales poliméricos lignocelulósicos naturales en azúcares y compuestos fenólicos [35].

Algunas de las propiedades son:

Producto iónico

Se denomina producto iónico (Kw) al producto de las concentraciones de H+ y OHen el agua, también conocido como constante de autoionización.

El producto iónico del agua aumenta con el incremento de presión, sin embargo, la temperatura muestra un efecto más complicado. A medida que aumenta la temperatura a la presión constante de 250 bar, el producto iónico del agua aumenta hasta alcanzar un valor máximo de aproximadamente $Kw = 10^{-11}$ cerca de los 250-300°C como se muestra en la Figura 7. A partir de esta temperatura disminuye ligeramente hasta la temperatura crítica y luego se produce un descenso brusco por encima de la temperatura crítica, hasta aproximadamente $Kw = 10^{-24}$ a 600°C [26,32,35].

El valor de Kw es hasta tres órdenes de magnitud mayor que a temperatura ambiente. Esto significa que, en esas condiciones, las concentraciones de H+ y OHson también mayores y, por lo tanto, se considera un medio eficaz para las reacciones orgánicas catalizadas por ácidos y bases [26,31].

Figura 7. Producto iónico del agua a 250 bar en función de la temperatura [31].

Densidad

Se puede observar en la Figura 8 que la densidad disminuye de unos 0,8 g/cm3 a unos 0,2 g/cm3 sin cambio de fase al aumentar la temperatura de 200°C a 450°C [26].

En las cercanías del punto crítico del agua, la densidad es función de la presión, ya que el fluido es altamente compresible. Esto implica que las propiedades dependientes de la densidad, tales como la solubilidad, la constante dieléctrica del disolvente o el volumen molar parcial del soluto grandes cambios al producirse pequeñas variaciones en la presión y la temperatura [31,32].

Estos cambios indican que la estructura del HTW se aproxima a la de un gas simple al disminuir la densidad [31].

Figura 8. Densidad del agua a 250 bar en función de la temperatura [31].

Constante dieléctrica

La relación entre la permitividad de una sustancia y la del espacio libre se denomina constante dieléctrica (ε). La constante dieléctrica del agua a 25°C y 1 atm tiene un valor de 80 y es consecuencia de las uniones entre distintas moléculas por puentes de hidrógeno [26,32].

Como se muestra en la Figura 9, la constante dieléctrica del agua disminuye rápidamente con el aumento de la temperatura, desde un valor de 78,5 aproximadamente en condiciones normales hasta 6 cerca del punto crítico, y hasta 1-2 a 450°C, lo que corresponde a un disolvente no polar [35].

Figura 9. Constante dieléctrica del agua a 250 bar en función de la temperatura [31].

Por lo tanto, en estas condiciones, el HTW se comporta como muchos disolventes orgánicos que pueden disolver completamente los compuestos orgánicos y es completamente miscible con gran cantidad de gases, incluido el oxígeno.

Puentes de hidrógeno [26]

A medida que se incrementa la temperatura, lo que conlleva una disminución de la densidad del agua, los enlaces por puentes de hidrógeno se hacen más débiles. De este modo, el número de enlaces es menor y, por tanto, existen más interacciones moleculares entre compuestos. Esto significa que, a altos valores de presión y temperatura, el agua puede actuar con más facilidad en muchas reacciones como fuente de hidrógeno o catalizador.

Viscosidad [36]

El agua en condiciones hidrotermales presenta una viscosidad menor que la del agua líquida en condiciones normales.

Calor específico [31,32]

El calor específico a valores de presión y temperatura cercanos al punto crítico tiende a infinito, como consecuencia de la extensión de la entalpía de vaporización hacia el punto crítico.

Conductividad térmica [31,32]

Con el aumento de la temperatura a presión constante, la conductividad térmica aumenta hasta un valor máximo a los 250°C aproximadamente. Posteriormente, disminuye lentamente en el punto crítico como consecuencia de la ruptura de los puentes de hidrógeno.

3.2.3. Materia primas y productos

En el presente trabajo de investigación, se abordará la reducción del CO₂ en condiciones hidrotermales utilizando bicarbonato de sodio (NaHCO₃) en medio acuoso como fuente de CO₂ y Ni-Raney como catalizador. Se utilizan diferentes reductores orgánicos como la glucosa o el glicerol y reductores metálicos como Zn, Al y Fe.

En función de las materias primas empleadas en este trabajo, se han sintetizado diferentes productos:

- Con los reductores metálicos (Zn, Al y Fe), se obtiene principalmente ácido fórmico en la fase líquida y metano en la fase gas. Como subproductos se forman H₂ y CO₂.
- Con los reductores orgánicos (Glucosa y Glicerol), se ha comprobado que también se forma ácido acético y ácido láctico en la fase líquida.

El ácido fórmico posee numerosas aplicaciones industriales. Se emplea en la industria textil, del cuero y tintorera ya que, a diferencia de los ácidos inorgánicos, el ácido fórmico se evapora sin dejar restos.

Asimismo, el ácido fórmico se emplea también en la elaboración de caucho, como preservativo y antibacteriano, en la elaboración de fármacos y como alternativa ecológica a otros ácidos en pesticidas. Una aplicación novedosa es su empleo como sistema de almacenaje de hidrógeno para su consumo en pilas de hidrógeno como fuente de energía alternativa [37].

Con el uso de metales cero-valentes como reductores se alcanzan altos rendimientos en tiempos cortos; por el contrario, son reactivos costosos, se oxidan durante la reacción [38] y requieren regeneración para hacer que el proceso sea económicamente viable [39].

En cambio, los reductores orgánicos son baratos y renovables pero el proceso es más complicado [33].

En el caso de la biomasa lignocelulósica su fraccionamiento no es fácil debido a que es una mezcla compleja, sin embargo, se han desarrollado tecnologías como la hidrólisis, el fraccionamiento en condiciones hidrotérmicas y la gasificación. En particular, el fraccionamiento de la biomasa lignocelulósica en condiciones hidrotermales presenta buenas perspectivas de integración con el proceso de reducción hidrotermal porque produce compuestos con propiedades reductoras, como los azúcares y poque sería posible utilizar directamente el efluente del fraccionamiento hidrotérmico en el proceso de reducción, sin ninguna etapa intermedia de purificación [35]. Estas sustancias incluyen la glucosa y el glicerol, empleadas como reductores en este trabajo.

3.2.4. Mecanismos y reacciones de interés

Según el tipo de reductor empleado, se dan las siguientes reacciones:

- → Zn
- Primera etapa: Producción de H₂

$$H_2 O_{(l)} + Z n_{(s)} \to H_{2(g)} + Z n O_{(s)}$$
 Ec. 6

• Segunda etapa: Formación de formato

$$H_{2(g)} + HCO_{3(aq)}^{-} \to HCOO_{(aq)}^{-} + H_{2}O_{(l)}$$
 Ec.7

 \rightarrow AI

Primera etapa: Producción de H₂

$$2 H_2 O_{(l)} + A l_{(s)} \to 3/2 H_{2(g)} + A l O(OH)_{(s)}$$
 Ec.8

• Segunda etapa: Formación de formato

$$H_{2(g)} + HCO_{3(aq)}^{-} \to HCOO_{(aq)}^{-} + H_2O_{(l)}$$
 Ec.9

→ Fe

Primera etapa: Producción de H₂

$$4 H_2 O_{(l)} + 3 Fe_{(s)} \to 4 H_{2(g)} + Fe_3 O_{4(s)}$$
 Ec. 10

• Segunda etapa: Formación de formato

$$H_{2(g)} + HCO_{3(aq)}^{-} \to HCOO_{(aq)}^{-} + H_2O_{(l)}$$
 Ec.11

El mecanismo de reacción propuesto se presenta en la Figura 10 [41], con la particularidad de que:

- Para cada reductor, se forma su óxido metálico correspondiente.
- En este caso, se emplea Ni-Raney como catalizador.

Figura 10. Mecanismo propuesto para la conversión de CO₂ en ácido fórmico [41].

Además, a altas temperaturas, se produce la siguiente reacción de descomposición:

$$HCOO^{-}_{(aq)} + H_2O_{(l)} \to H_{2(g)} + HCO^{-}_{3(aq)}$$
 Ec. 12

El formato reacciona con el agua y se descompone en bicarbonato (CO_2 en disolución) y H₂.

→ Glucosa

En la Figura 11, se muestra de forma esquemática las principales reacciones de la glucosa en medio hidrotermal.

Figura 11. Mecanismos de oxidación de la glucosa [28].

→ Glicerol

Del mismo modo, se presenta en la Figura 12 las reacciones del glicerol en medio hidrotermal.

Figura 12. Mecanismos de reacción del glicerol [27].

Aunque existen numerosas investigaciones, los mecanismos de reacción que se detallan para la glucosa y para el glicerol siguen siendo inciertos debido a que en medio hidrotermal se produce un gran número de reacciones de oxidación y descomposición, obteniéndose una serie de productos y subproductos.

3.3. Ejemplos de reacciones hidrotermales

Se demostró que la reacción autocatalítica en presencia de Zn como reductor y $NaHCO_3$ como fuente de carbono alcanzaba un rendimiento del 78% en ácido fórmico a 325°C y 90 min de tiempo de reacción, con una selectividad aproximadamente del 100% [39].

En cambio, a 300°C y 60 min de tiempo de reacción, [40] alcanzó un rendimiento del 50% en ácido fórmico con una selectividad del 99% utilizando Zn como reductor y Ni en polvo como catalizador. Se utilizó N_2H_4 · H_2 como fuente de H_2 y NaHCO₃ como fuente de carbono.

Con glucosa como reductor se realizaron varios experimentos junto con una serie de metales como catalizadores (Cu, Ni, Pd/C, Ru/C, C, Fe₂O3 y Fe₂O₄) [28]. Además, como fuente de carbono se empleó bicarbonato de sodio y carbamato de amonio. El mayor rendimiento en ácido fórmico fue del 53% con NaHCO₃ como fuente de carbono, C como catalizador y en un tiempo de reacción de 30 min a 200°C. Se obtuvo un 45% en ácido acético con bicarbonato y Ni a 30 min y 250°C y un 43% en ácido láctico con NaHCO₃ y Fe₃O₄ a 250°C y 30 min. Se demostró que las reacciones en presencia de NaHCO₃ alcanzaban mejores rendimientos que en presencia de carbamato.

También se han logrado otros productos de reacción como el fenol, el metanol o el metano.

En presencia de Fe en polvo como reductor y CO_2 gas como fuente de carbono se demostró un rendimiento del 1,2% en fenol a 200°C y 120 h [10].

Por otra parte, en presencia de Cu y Zn como catalizador y reductor respectivamente y con NaHCO₃ como fuente de carbono, se obtuvo un rendimiento del 11,4% en metanol a 350°C y 3h [19].

Por último, se confirmó que en presencia de Ni como catalizador, Zn y Fe como reductores metálicos, y CO₂ gas y NaHCO₃ como fuentes de carbono, el rendimiento del metano era del 98% a 300°C y 6h [42].

4. Instalación de la planta y equipos

A continuación, se presenta en la Figura 13, Figura 14 y Figura 15 la planta de operación en la que se ha trabajado para llevar a cabo reacción de reducción de CO₂, que se compone de:

Figura 13. Recipiente, tapa y conexiones del reactor.

- 1. Reactor Parr de acero inoxidable de 25 mL de capacidad.
- 2. Tapa o parte superior.
- 3. Válvula de venteo.
- 4. Válvula de entrada y salida de gas.
- 5. Disco de ruptura de presión.
- 6. Conexión de la sonda de temperatura.
- 7. Conexión de la sonda de presión.
- 8. Soportes de cierre.
- 9. Sistema de calefacción.
- 10. Sistema de agitación.
- 11. Encamisado.
- 12. Baño de agua para el enfriamiento del reactor tras la reacción.

Figura 14. Planta de operación.

Figura 15. Conexión de N₂ y equipos de presión y temperatura.

- 13. Válvula de alimentación de N₂.
- 14. Válvula de salida de N₂.
- 15. Indicador de presión
- 16.Controlador de temperatura Parr 4838.

5. Método experimental

5.1. Materiales utilizados

NaHCO₃ (100%) fue adquirido de COFARCAS (España). Zinc (\geq 98%), Fe (polvo) (\geq 99%), y Ni-Raney (slurry) fueron proporcionados por Sigma Aldrich (España). D-(+)-Glucosa (99%) y Glicerol (99%) se obtuvieron por Panreac (España). Al (polvo) (99%) proviene de GoodFellow (Reino Unido). Por último, el N₂ empleado es suministrado por Linde. Estos reactivos se manipularon sin ningún tipo de tratamiento o purificación.

Adicionalmente, se usó Ácido Fórmico (98%) procedente de Fluka (Alemania), Ácido Acético (≥99,7%) y Ácido Láctico (88-92%) de Sigma Aldrich (España) para la preparación de las soluciones patrón para el calibrado de los productos en agua ultrapura tipo I (MilliQ).

5.2. Procedimiento experimental

El primer paso es pesar la cantidad necesaria de cada reductor, así como del bicarbonato de sodio mediante una balanza analítica de laboratorio. La cantidad específica de cada uno de los reductores se detalla en el Anexo I, teniendo en cuenta que la concentración de NaHCO₃ a emplear es de 1 M. Posteriormente se vierten 10 mL de agua MilliQ mediante una pipeta automática.

Ambos compuestos químicos se introducen en el reactor, previamente limpio y seco, que ya debe contener un agitador magnético rodeado de un anillo de acero inoxidable para evitar el choque de éste con las paredes de reactor.

A continuación, se pesa la cantidad de catalizador (Ni-Raney). Este valor también se presenta en el Anexo I. Debe realizarse bajo una atmósfera inerte con nitrógeno gaseoso debido a que el Ni-Raney es un agente pirofórico y en contacto con el oxígeno del aire puede quemarse de forma espontánea. En la Figura 16 se puede observar la cámara de N₂ que proporciona una atmósfera inerte para cuantificar el Ni-Raney necesario para la reacción.

Figura 16. Cámara inerte de N₂.

Una vez finalizado el paso anterior, con la parte superior del reactor (n°2 Figura 13) y garantizando que las válvulas permanecen totalmente cerradas se tapa la parte inferior cilíndrica del reactor (n°1 Figura 13). Después, ambas piezas se fijan y se aprietan con ayuda de dos soportes semicirculares unidos por dos cierres de seguridad y tornillos.

El siguiente paso consiste en el montaje de la planta. Primero se conectan las conexiones del reactor: venteo (válvula nº3 Figura 13 y Figura 14) y entrada/salida de gas (válvula nº4 Figura 13 y Figura 14). Después, se ensamblan las sondas de presión (nº7 Figura 13 y Figura 14) y temperatura (nº6 Figura 13 y Figura 14) y se ajusta el encamisado del reactor (nº11 Figura 14). Se aprieta el soporte (nº8 Figura 14) en el que se encuentra el reactor mediante una llave Allen para favorecer el calentamiento.

Ahora, se introduce una pequeña cantidad de N₂ abriendo la válvula de alimentación de N₂ (válvula n°13 Figura 15) y la válvula de conexión entrada/salida de gas (válvula n°4 Figura 13 y Figura 14) y cerrando la válvula de salida de N₂ (válvula n°14 Figura 15) hasta que el reactor alcance la presión de aproximadamente 2 bar, luego se libera abriendo la válvula de venteo (válvula n°3 Figura 13 y Figura 14). Esta operación se realiza un mínimo de 2 veces para que el oxígeno que haya podido quedarse retenido en el reactor se elimine. Cuando se haya terminado se cierra la línea de N₂ y se desconectan las conexiones de entrada/salida y venteo.

Se inicia el proceso fijando el setpoint del control de temperatura (n°16 Figura 15) en el valor deseado y se enciende la agitación (n°10 Figura 14), fijando un valor de 700 rpm.

En este momento, con todo el montaje de la planta acabado, se anota la temperatura y presión correspondiente al instante inicial de la reacción y se enciende el cronómetro. Para monitorizar el buen funcionamiento de la reacción, es necesario tomar valores de presión y temperatura a lo largo del tiempo de reacción, especialmente hasta que se alcanza la temperatura deseada. De este modo, se dispone de información sobre de las condiciones de P y T para que en caso de observar algún dato que se aleje de lo esperado, se pueda tomar una decisión para solucionar el problema o conocer la razón de dicha perturbación. Por ejemplo, en la reacción con Al a 250°C se observó que alrededor del minuto 6-7 de reacción, la temperatura alcanzaba valores superiores a 300°C. Se llegó a la conclusión que este hecho era debido a que la reacción al ser exotérmica desprende calor haciendo que suba la temperatura bruscamente y, por lo tanto, el control de temperatura no es capaz de regular este cambio tan rápido. Es importante señalar, que este comportamiento solo se observó bajo estas condiciones, es decir, con el Al a 250°C.

Al finalizar el tiempo de reacción, se apaga la agitación y el sistema de calentamiento. Para llevar a cabo el enfriamiento de manera más rápida se introduce el reactor en un baño de agua (n°12 Figura 14) hasta que la temperatura alcance valores cercanos a la temperatura de 18-23°C. En este instante, se anota el valor de presión y temperatura que corresponde a las condiciones en las que se encuentra la muestra que se cogerá a continuación.

Mediante la conexión de gas del reactor, se recoge la muestra gaseosa en una bolsa de muestreo de gas de lámina inerte multicapa proporcionada por SUPELCO (USA), compuesta por: 0,002 in. Polietileno, 0,0003 in. Aluminio, Polietileno, Aluminio metalizado y Nylon calibre 60, con un volumen máximo de 0,6 L.

La muestra de líquido se recoge mediante una jeringuilla y se vierte en un frasco pasando antes por un filtro de partículas para retener los sólidos. El filtro es de nylon, tiene un diámetro de 30 mm y el tamaño de poro es de 0,22 µm.

Los sólidos que aún quedan presentes en el fondo del reactor se filtran a vacío con agua MilliQ y posteriormente se secan en una estufa universal de laboratorio MEMMERT UFE 400 a 105°C durante toda la noche.

Para finalizar, es necesario limpiar el reactor, todos sus elementos y los utensilios utilizados con agua y jabón y posteriormente, se aclaran con agua destilada.

5.3. Análisis de muestras

Muestras líquidas

Las muestras líquidas se analizaron por HPLC (Waters, módulo de separación Alliancee 2695) con detector RI (Waters, módulo 2414) y una columna Rezex ROA-Organic Acid H+ (8%). Como fase móvil se utilizó H_2SO_4 25 mM a 0,5 mL/min de caudal. Las temperaturas de la columna y del detector fueron de 40 y 30 °C, respectivamente.

Figura 17. Cromatógrafo de líquidos de alta presión (HPLC).

Muestras gaseosas

La fase gaseosa (CH₄, CO₂ e H₂) fue analizada con un cromatógrafo de gases (Varian CP-3800, USA) acoplado a un detector de conductividad térmica (GC-TCD) y que consta de dos columnas capilares: CP-Molsieve 5A (15 m × 0.53 mm × 15 µm) y CP-PoraBOND Q (25 m × 0.53 mm × 15 µm). El gas portador empleado fue He con un flujo de 13 mL/min y las temperaturas del inyector y el detector fueron respectivamente de 150 y 175°C.

Figura 18. Cromatógrafo de gases con detector de conductividad térmica (GC-TCD).

Tras el análisis de las muestras líquidas y gaseosas en cada equipo, se obtienen datos de las áreas de los picos proporcionados por cada compuesto para un tiempo de retención determinado. Dichas áreas se relacionan con la concentración mediante el correspondiente calibrado de cada compuesto en los equipos para conocer la composición de cada reactivo y producto de reacción y luego calcular el rendimiento.

La preparación de patrones, los datos de las áreas, los tiempos de retención y los resultados obtenidos de cada calibrado tanto para el HPLC como para el GC-TD se presentan en el Anexo II.

Muestras sólidas

El análisis XRD de las muestras sólidas se realizó mediante un difractómetro Bruker D8 Discover A25 acoplado a un detector LynxEye operando a un voltaje de 40 kV y una corriente de 30 mA. Los datos se recolectaron a temperatura ambiente en el rango de 20 de 5 a 70° con un tamaño de paso de 0.020° utilizando radiación Cu K α (λ = 1.5418 Å).

La caracterización SEM se efectuó con un microscopio electrónico de barrido ambiental (SEM). En concreto, el modelo FEI-Quanta 200FEG. Con un voltaje de 5keV, con el detector ETD (Everhardt-Thornley) y una distancia de trabajo (Working Distance) de 10,5mm.

5.4. Cálculo de rendimientos y conversiones

Fase gas

Se parte de la ecuación de los gases ideales, expresada como:

$$P \cdot V = n_T \cdot R \cdot T$$
 Ec. 13

Donde,

- P: Presión final de la reacción
- V: Volumen de gas

Para disponer de una aproximación más exacta del volumen de gas, se midieron los volúmenes del anillo, agitador y los sólidos presentes en el reactor (NaHCO₃ y reductor) antes de la reacción y el volumen adicional de la tapa del reactor, sin tener en cuenta la contribución del Ni-Raney. Se obtuvieron resultados del orden de 1-2 mL. Además, la influencia de este volumen no varía en gran medida los resultados finales, por lo tanto, se ha optado por considerar el volumen de gas como:

$$(V = V_{REACTOR} - V_{RECUP}) Ec. 14$$

Siendo V_{REACTOR} = 25 mL y V_{RECUP} el volumen de líquido obtenido tras la reacción.

- n_T : Moles totales de gas
- R: Constante universal de los gases ideales
- T: Temperatura final de la reacción

Se obtiene n_T y mediante la recta de calibrado (Área vs %) se calcula el porcentaje de cada componente, de manera que:

$n_{CH_4} = \% CH_4 \cdot n_T$	<i>Ec</i> . 15
0/ 11	

$$n_{H_2} = \% H_2 \cdot n_T \tag{Ec. 16}$$

$$n_{CO_2} = \% CO_4 \cdot n_T \qquad \qquad Ec. 17$$

Conocido este valor, el rendimiento se define como:

$$\% CH_4 = \frac{n_{CH_4}}{n_{CO_2,i}} \cdot 100$$
 Ec. 18

$$\% H_2 = \frac{n_{H_2}}{n_{H_2,max}} \cdot 100$$
 Ec. 19

$$\% CO_2 = \frac{n_{CO_2}}{n_{CO_2,i}} \cdot 100$$
 Ec.20

Donde:

 $n_{CO_2,i}$ son los moles iniciales de NaHCO₃.

 $n_{H_2,max}$ es el número máximo de moles calculados por estequiometría a partir del reactivo limitante.

Fase líquida

Suponiendo volumen constante, el rendimiento de cada componente se expresa como:

$$\% AF = \frac{C_{AF}}{C_{CO_2,i}} \cdot 100 \qquad \qquad Ec. 21$$

$$\% AF = \frac{C_{AF}}{C_{glucosa,i}} \cdot 100 \qquad Ec.22$$

$$\% AF = \frac{C_{AF}}{C_{glicerol,i}} \cdot 100 \qquad Ec.23$$

$$\% AC = \frac{C_{AC}}{C_{glucosa,i}} \cdot 100 \qquad Ec.24$$

$$\% AL = \frac{C_{AL}}{C_{glucosa,i}} \cdot 100 \qquad \qquad Ec. 25$$

$$\% AC = \frac{C_{AC}}{C_{glicerol,i}} \cdot 100 \qquad Ec.26$$

$$\% AL = \frac{C_{AL}}{C_{glicerol,i}} \cdot 100 \qquad \qquad Ec. 27$$

Donde:

 C_{AF} , C_{AC} , C_{AL} se obtienen mediante la correspondiente recta de calibrado.

 $n_{CO_2,i}$ es la concentración inicial de NaHCO₃.

 $C_{glucosa,i}$ es la concentración de glucosa inicial.

C_{glicerol,i} es la concentración de glucosa inicial.

A diferencia del ácido fórmico que se forma a partir del NaHCO₃, el ácido acético y el ácido láctico se forman a partir de la glucosa o glicerol, que actúan como fuentes de carbono en la reacción [28].

La conversión de NaHCO₃, se calcula como:

$$X_{NaHCO_3}(\%) = \frac{\left(C_{CO_2,i} - C_{CO_2,f}\right)}{C_{CO_2,i}} \cdot 100 \qquad Ec.28$$

Donde:

 $C_{CO_2,f}$ es la concentración final de NaHCO₃ obtenida a partir de la recta de calibrado del bicarbonato de sodio (Área vs Concentración).

Todos los valores de los cálculos de los rendimientos y conversiones se recogen en el Anexo III.

5.5. Experimentos preliminares

Se realizaron unos experimentos previos en el reactor variando algunos parámetros para hacerse una idea del funcionamiento, conocer la capacidad del reactor y optimizar las condiciones de reacción.

En la Tabla 1 se pueden observar los distintos experimentos llevados a cabo, con variaciones en la temperatura, el tiempo de reacción, la presión inicial o la cantidad de catalizador y fuente de carbono.

Como agente reductor se utilizó Zn, Ni-Raney como catalizador y NaHCO $_3$ 0,5 M como fuente de carbono.

La relación reductor/ CO_2 es de 5 y la relación catalizador/ CO_2 es de 1.

Experimento	1	2	3	4	5	6
T (≌C)	100	200	275	300	300	300
t (h)	1	1	1	1	2	2
Reductor: Zn (g)	1,6338	1,637	1,6342	1,6357	1,6340	1,6351
Catalizador: Ni-Raney (g)	0,257	0,298	0,311	0,239	0,586	0,309
Fuente C: NaHCO ₃	10 mL	10 mL	10 mL	10 mL	20 mL	10 mL
	0,5M	0,5M	0,5M	0,5M	0,5M	0,5M
Moles NaHCO ₃	0,005	0,005	0,005	0,005	0,0025	0,005
P ₀ (bar)	0,2	0,3	0,3	0,4	0,3	11,9
T₀ (ºC)	21	23	21	23	21	22
P (bar)	0,6	4,2	4,4	6,5	3,4	20,5
T (≌C)	22	20	22	19	18	18
V _{RECUP} (mL)	8,5	8	8	7,5	10	8

Tabla 1. Experimentos preliminares.

Los resultados de estos experimentos proporcionaron bajos rendimientos en metano y ácido fórmico y elevado contenido en H_2 , debido principalmente a la excesiva relación reductor/ CO_2 y a la baja relación catalizador/ CO_2 .

5.6. Experimentos finales

En base a los resultados de los experimentos preliminares, se decidió duplicar la concentración de NaHCO₃, resultando una relación reductor/CO₂ de 2,5 en el caso de los reductores metálicos y de 0,1 para los reductores orgánicos. La relación catalizador/CO₂ se fijó en 2.

La temperatura y el tiempo de reacción también son variables muy importantes que afectan al rendimiento y a la conversión de la reacción. Por consiguiente, se adoptó un tiempo de reacción de 4 h y temperaturas de 250, 300 y 350°C.

Finalizado este proceso de optimización, se comenzaron a realizar los experimentos con estas condiciones para cada reductor y de forma duplicada, para asegurar que los resultados son fiables y representativos, evitando así cualquier error experimental.
De esta manera, se comparan los dos resultados del mismo experimento y la media de ambos se corresponde con el valor final.

En la Tabla 2, aparecen todos los experimentos realizados, con los diferentes datos y valores obtenidos.

Tabla 2. Datos y parámetros de los experimentos realizados.

Experimento	Т (≌С)	t (h)	Reductor	Cantidad (g)	Catalizador:	Fuente C:	Moles	P₀ (bar)	T₀ (ºC)	P (bar)	T (ºC)	V _{RECUP} (mL)
					Ni-Raney (g)	NaHCO₃ (g)	NaHCO ₃					
7	300	4	Zn	1,6350	1,174	0,8430	0,01	0,3	21	12,9	20	7,5
8	300	4	Zn	1,6342	1,186	0,8437	0,01	0,2	22	11,8	21	7,0
9	250	4	Zn	1,6360	1,184	0,8470	0,01	0,3	20	9,3	22	8,0
10	250	4	Zn	1,6317	1,175	0,8414	0,01	0,4	23	9,6	21	8,5
11	350	4	Zn	1,6337	1,173	0,8408	0,01	0,3	22	15,2	21	6,5
12	350	4	Zn	1,6336	1,174	0,8419	0,01	0,2	23	15,5	22	7,0
13	350	4	Al	0,6777	1,184	0,8419	0,01	0,4	24	21,8	24	4,0
14	350	4	Al	0,6733	1,178	0,8413	0,01	0,3	22	22,0	22	3,5
15	300	4	Al	0,6727	1,186	0,8455	0,01	0,3	24	24,6	23	4,0
16	300	4	Al	0,6730	1,167	0,8438	0,01	0,2	22	23,1	21	3,0
17	250	4	Al	0,6702	1,176	0,8432	0,01	0,4	24	26,0	18	3,0
18	250	4	Al	0,6787	1,175	0,8409	0,01	0,4	22	26,9	18	3,0
19	250	4	Fe	1,3978	1,177	0,8440	0,01	0,3	24	8,7	22	7,0
20	250	4	Fe	1,3971	1,178	0,8432	0,01	0,3	23	7,8	20	7,5
21	300	4	Fe	1,3966	1,178	0,8402	0,01	0,2	22	8,7	17	8,0
22	300	4	Fe	1,3980	1,183	0,8450	0,01	0,3	25	6,1	19	7,0
23	350	4	Fe	1,3962	1,174	0,8401	0,01	0,3	23	10,3	21	5,0
24	350	4	Fe	1,3967	1,177	0,8421	0,01	0,3	26	9,9	20	4,5
25	350	4	Glucosa	0,1805	1,182	0,8424	0,01	0,3	24	7,7	22	5,0
26	350	4	Glucosa	0,1809	1,174	0,8427	0,01	0,3	23	9,5	22	8,5

27	300	4	Glucosa	0,1804	1,171	0,8426	0,01	0,3	24	6,6	20	8
28	300	4	Glucosa	0,1819	1,174	0,8453	0,01	0,3	23	6,5	18	8
29	250	4	Glucosa	0,1806	1,173	0,8446	0,01	0,3	23	3,9	18	8,5
30	250	4	Glucosa	0,1817	1,172	0,8405	0,01	0,4	24	4,3	21	8
31	250	4	Glicerol	0,1077	1,178	0,8409	0,01	0,3	24	5,5	23	5,5
32	250	4	Glicerol	0,112	1,177	0,8407	0,01	0,3	25	4,6	23	6
33	300	4	Glicerol	0,0911	1,172	0,841	0,01	0,3	23	6,1	24	7
34	300	4	Glicerol	0,105	1,171	0,843	0,01	0,3	24	6	18	6
35	350	4	Glicerol	0,1062	1,171	0,8424	0,01	0,2	23	9	21	7
36	350	4	Glicerol	0,1226	1,177	0,8407	0,01	0,3	26	10,2	20	8
41	250	2	Al	0,674	1,175	0,8433	0,01	0,2	19	28,3	22	4
42	250	2	Al	0,6738	1,173	0,8401	0,01	0,5	23	29,5	20	3

6. Resultados y discusión

A continuación, se expone la influencia de la temperatura en el rendimiento de cada producto de reacción (CH₄, AF, AC y AL) para cada reductor y en la conversión de NaHCO₃.

Fase gas

Figura 19. Influencia de la temperatura en el rendimiento de CH_4 (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

El mayor rendimiento (27%) de CH₄ se alcanza utilizando Al como reductor a 350°C. Aunque las barras de error muestren una desviación amplia, se observa que el límite inferior del punto para Al a 350°C es muy próximo al límite superior del punto para Zn a 350°C, cuyo rango de valores oscila entre 14-18%.

Con Al a 300°C, el rendimiento alcanzado (21%) también es un valor para tener muy en cuenta

Se puede observar que, en el caso de la glucosa y el glicerol, los rendimientos obtenidos están muy por debajo de los valores que se alcanzan utilizando reductores metálicos, los cuales se incrementan a medida que se incrementa la temperatura.

Fase líquida

Ácido Fórmico

Figura 20. Influencia de la temperatura en el rendimiento de AF (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

El rendimiento más alto en AF (39%) se obtiene con glicerol a 250°C en base glicerol.

A 250°C, con Al como reductor se alcanza un rendimiento del 38% en ácido fórmico respecto al bicarbonato.

Con glucosa a 250°C, el rendimiento es del 22%, siendo el tercer resultado más favorable. Además, es el reductor con el rendimiento más alto a 350°C, con un valor del 9%.

A 300°C, el Al y la glucosa muestran rendimientos muy similares.

Los rendimientos más bajos se corresponden con el Fe.

En general, a medida que se incrementa la temperatura, los rendimientos van disminuyendo, al contrario de lo que ocurría para el rendimiento de CH₄ en la fase gas. Esto podría ser debido a la descomposición que sufre el ácido fórmico a temperaturas elevadas.

Ácido Acético

Figura 21. Influencia de la temperatura en el rendimiento de AC (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

Se obtiene un rendimiento máximo del 29% en ácido acético a 350°C con glucosa como agente reductor.

No obstante, con glucosa a 200°C y 250°C, se logran rendimientos entre 20-27% que no difieren mucho de máximo valor obtenido con glucosa a 350°C.

Es evidente la diferencia que existe entre un reductor y otro, en el caso del glicerol, los rendimientos alcanzados son muy bajos.

Ácido Láctico

Figura 22. Influencia de la temperatura en el rendimiento de AL (t = 4h; reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

El rendimiento más alto en ácido láctico (15%) se da con glucosa a 250°C y 300°C, 15% y 12%, respectivamente.

Para el glicerol, el rendimiento más alto fue del 9% a 250°C.

A diferencia que para el ácido acético y del mismo modo que para el AF, según se incrementa la temperatura, el rendimiento es menor.

Conversión del bicarbonato de sodio (NaHCO₃)

Figura 23. Influencia de la temperatura en la conversión de NaHCO₃ (t = 4h; reductor/CO₂ = 2,5 moles; catalizador/CO₂ = 2 moles).

El experimento en el que se obtiene la mayor conversión de bicarbonato es Al a 250°C, con un valor del 58%.

Este resultado coincide con el mayor rendimiento en AF en base bicarbonato, lo que indica que estas condiciones son las más favorables para producir AF a partir de NaHCO₃.

A 250°C con Zn o Al, la conversión es prácticamente la misma, a 300°C es ligeramente superior con Fe y a 350°C, resulta mayor con Zn.

Para el caso de la glucosa y del glicerol, no se puede hablar de conversión de NaHCO₃ porque estos reductores también actúan como fuente de carbono, por lo tanto, no es posible conocer el origen del contenido de NaHCO₃ tras la reacción con este procedimiento. Para determinarlo, sería preciso realizar experimentos con carbono marcado (C¹³), que no se han contemplado en este trabajo.

Adicionalmente, se presenta la influencia del tiempo de reacción en el rendimiento de CH₄ y AF y conversión de NaHCO₃ con las condiciones del experimento con mayor rendimiento en ácido fórmico en base bicarbonato, se trata de Al a 250°C.

Para ello, se realizaron dos experimentos a 250°C con Al como reductor durante 2h. Los resultados son:

Metano (CH₄)

Figura 24. Influencia del tiempo de reacción en el rendimiento de CH_4 (reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

Según lo esperado, se observa que a 2h, el rendimiento de CH_4 es más bajo (2,1%<5.7%).

Ácido fórmico (AF)

Figura 25. Influencia del tiempo de reacción en el rendimiento de AF (reductor/ CO_2 = 2,5 moles; catalizador/ CO_2 = 2 moles).

En el rendimiento de ácido fórmico ocurre lo mismo, para un tiempo de reacción menor, el rendimiento también resulta más bajo (31%<38%).

Se concluye que el tiempo de reacción es directamente proporcional al rendimiento de CH₄ y AF, a mayor tiempo de reacción, el rendimiento que se obtiene es mayor.

Conversión del bicarbonato de sodio (NaHCO₃)

Figura 26. Influencia del tiempo de reacción en la conversión de NaHCO₃ (reductor/CO₂ = 2,5 moles; catalizador/CO₂ = 2 moles).

Por el contrario, el tiempo de reacción es inversamente proporcional a la conversión de NaHCO₃ ya que a 2h, la conversión resultó mayor que a 4h (64%>58%).

Fase sólida

Para finalizar, se muestran los resultados del análisis XRD y de la caracterización SEM:

XRD

El análisis XRD proporciona información acerca del sistema cristalino de la muestra analizada. Sirve para identificar los minerales y las fases de oxidación de los reductores. [42,43]. Se obtuvieron las siguientes imágenes:

Commander Sample ID (Coupled TwoTheta/Theta)

Figura 27. Análisis XRD de la muestra 9 de Zn con Ni-Raney.

Se puede observar que los picos de color rojo se corresponden con el óxido de zinc (ZnO).

También se forma una aleación compuesta por Al-Ni, identificada por los picos de color verde. La presencia de esta aleación en la muestra sólida puede ser debida a la descomposición del catalizador, ya que para la obtención del Ni-Raney se utiliza una aleación de Al-Ni.

El Zn y el Ni en estado puro se representan a través de los picos de color azul y rosa, respectivamente.

Figura 28. Análisis XRD de la muestra 17 de Al con Ni-Raney.

El oxihidróxido de aluminio o bohemita cuya fórmula molecular es AlO(OH) que se ha formado se identifica mediante los picos de color rojo.

Además, aparece otro mineral, la dawsonita (NaAICO₃(OH)₂) aunque en menor medida, que se corresponde con los picos de color azul.

Commander Sample ID (Coupled TwoTheta/Theta)

Figura 29. Análisis XRD de la muestra 19 de Fe con Ni-Raney.

En esta muestra se puede ver que se forma Fe_3O_4 (óxido ferroso-diférrico), componente principal de la magnetita, en los picos de color azul

El Fe y el Ni del catalizador, se identifican en la muestra mediante los picos de color rojo y verde, respectivamente.

Figura 30. Análisis XRD de la muestra 29 de glucosa con Ni-Raney

Commander Sample ID (Coupled TwoTheta/Theta)

Figura 31. Análisis XRD de la muestra 31 de glicerol y Ni-Raney.

En las Figuras 30 y 31, proporcionadas por las muestras de los reductores orgánicos (glucosa y glicerol), se obtiene el mismo resultado.

Se forma dawsonita (NaAICO₃(OH)₂) según indican los picos de color azul, y se identifica el catalizador (Ni) en los picos de color rojo.

SEM

La caracterización SEM permite obtener imágenes de la morfología y composición química de un material [44]. Los resultados fueron:

Figura 32. SEM de la muestra 9 de Zn y Ni-Raney tras la reacción.

Figura 33. SEM de la muestra 17 de Al y Ni-Raney tras la reacción.

Figura 34. SEM de la muestra 19 de Fe y Ni-Raney tras la reacción.

Figura 35. SEM de la muestra 29 de glucosa y Ni-Raney tras la reacción

Figura 36. SEM de la muestra 31 de glicerol y Ni-Raney tras la reacción

En la Figura 32 se puede apreciar el óxido de zinc en forma de filamentos que se ha formado tras la oxidación del Zn en la reacción.

En la Figura 33, mayoritariamente se ha formado el compuesto oxidado del Al (AlO(OH)), que se puede observar en forma de glóbulos.

En el caso del Fe, los glóbulos que se pueden apreciar en la Figura 34 se corresponden con el óxido de hierro (II-III) (Fe_3O_4).

Aunque en el análisis XRD se han obtenido los mismos compuestos en las muestras de glucosa y glicerol, la caracterización SEM muestra en la Figura 35 y Figura 36, que la forma de la dawsonita en contacto con la glucosa y con el glicerol es diferente. En la Figura 35 se puede apreciar que la estructura adquiere forma de cristales, mientras que en la Figura 36, la oxidación produce una estructura de filamentos muy finos.

7. Implantación industrial

En este apartado se propone la implementación industrial de un proceso continuo de reducción de CO₂ contenido en forma de bicarbonato de sodio en ácido fórmico. Este proceso está diseñado en base al mejor rendimiento obtenido en la experimentación en el proceso en discontinuo, de manera que se utiliza Al como reductor a 250°C de temperatura. Se ha demostrado que, usando glicerol como reductor, el lugar de Al, el rendimiento en ácido fórmico es mayor, pero debido a que la implementación industrial es más complicada y el mecanismo de reacción aún sigue en investigación se ha optado por diseñar el proceso con Al.

El diagrama de flujo del proceso se presenta en la Figura 37. Las condiciones de operación de cada corriente, así como los flujos masicos, molar y de energía calculados siguiendo la Figura 37 se muestran en la Tabla 3, Tabla 4 y Tabla 5.

El funcionamiento de cada equipo consiste en:

- P-101: Bomba que impulsa el CO₂ absorbido como solución de NaHCO₃ con una concentración 1M en condiciones ambientales hasta la presión de 20 bares.
- HX-101: Intercambiador de calor que calienta la corriente 3 una temperatura de 250°C.
- M-101: Mezclador, donde se mezclan los sólidos con la disolución de bicarbonato de sodio.
- R-101: Reactor continuo de tanque agitado, donde ocurre la reacción de producción de ácido fórmico a una temperatura constante de 250°C y una presión de 20 bar. El reactor tiene una válvula de seguridad PSV-01 que permite que la presión del reactor no excede un determinado valor. La presión del reactor se regula a través de la válvula de control PV-101.
- HX-102: Intercambiador de calor que enfría la corriente de salida del reactor de 250°C a 20°C.
- V-101: Válvula de descompresión, que se utiliza para bajar la presión de la corriente 8 hasta la presión atmosférica.
- F-101: Separador flash G-L, se utiliza para separar la corriente gaseosa (corriente 10) de la corriente líquida en equilibrio (corriente 11).
- C-101: Ciclón en el que se separan los sólidos de la corriente 13 de la corriente liquida (corriente 12), sin embargo, arrastran un 5% de la disolución por lo que la corriente 13 también contiene agua, bicarbonato de sodio y ácido fórmico.

Figura 37. Diagrama de flujo del proceso continuo.

Se obtuvieron 37,74 Kg/h de ácido fórmico junto con 1964,77 Kg/h de agua y 76,17 Kg/h de NaHCO₃ en la corriente 12, correspondiente a la fase líquida. La temperatura de operación del proceso son 250°C, y la presión de operación de 20 bar, controlada por la válvula de control PV-101. Por la corriente 10 salen 6,28 Kg/h de hidrógeno gas y también se libera CO₂, aunque no se ha incluido en el diseño del proceso debido a su bajo contenido. Por último, los sólidos (Ni, Al y AlO(OH)) salen por la corriente 13, que arrastran una pequeña fracción de la corriente líquida con un flujo total de 598,76 Kg/h.

Tabla 3. Balance de materia en masa.

Corriente	1	2	3	4	5	6	7	8	9	10	11	12	13
Р	1	1	20	20	20	20	20	20	1	1	1	1	1
т	20	20	20	250	250	250	250	25	25	25	25	25	25
Flujo másico (Kg/h)	2463,64	420,23	2463,64	2463,64	2883,86	2683,73	2683,73	2683,73	2683,73	6,28	2677,44	2078,69	598,76
NaHCO ₃	190,91	0,00	190,91	190,91	190,91	80,18	80,18	80,18	80,18	0,00	80,18	76,17	4,01
H₂O	2272,73	0,00	2272,73	2272,73	2272,73	2068,18	2068,18	2068,18	2068,18	0,00	2068,18	1964,77	103,41
H ₂	0,00	0,00	0,00	0,00	0,00	6,28	6,28	6,28	6,28	6,28	0,00	0,00	0,00
нсоон	0,00	0,00	0,00	0,00	0,00	39,73	39,73	39,73	39,73	0,00	39,73	37,74	1,99
Ni-Raney	0,00	266,82	0,00	0,00	266,82	266,82	266,82	266,82	266,82	0,00	266,82	0,00	266,82
AI	0,00	153,41	0,00	0,00	153,41	96,85	96,85	96,85	96,85	0,00	96,85	0,00	96,85
AIO(OH)	0,00	0,00	0,00	0,00	0,00	125,68	125,68	125,68	125,68	0,00	125,68	0,00	125,68

Tabla 4. Balance de materia en moles.

Corriente	1	2	3	4	5	6	7	8	9	10	11	12	13
Р	1	1	20	20	20	20	20	20	1	1	1	1	1
т	20	20	20	250	250	250	250	25	25	25	25	25	25
Flujo molar (Kmol/h)	128,54	10,23	128,54	128,54	138,76	130,09	130,09	130,09	130,09	3,14	126,94	110,88	16,06
NaHCO ₃	2,27	0,00	2,27	2,27	2,27	0,95	0,95	0,95	0,95	0,00	0,95	0,91	0,05
H ₂ O	126,26	0,00	126,26	126,26	126,26	114,90	114,90	114,90	114,90	0,00	114,90	109,15	5,74
H ₂	0,00	0,00	0,00	0,00	0,00	3,14	3,14	3,14	3,14	3,14	0,00	0,00	0,00
нсоон	0,00	0,00	0,00	0,00	0,00	0,86	0,86	0,86	0,86	0,00	0,86	0,82	0,04
Ni-Raney	0,00	4,55	0,00	0,00	4,55	4,55	4,55	4,55	4,55	0,00	4,55	0,00	4,55
AI	0,00	5,68	0,00	0,00	5,68	3,59	3,59	3,59	3,59	0,00	3,59	0,00	3,59
AIO(OH)	0,00	0,00	0,00	0,00	0,00	2,09	2,09	2,09	2,09	0,00	2,09	0,00	2,09

Tabla	5.	Balance	de	energía.
-------	----	---------	----	----------

Corriente	1	2	3	4	5	6	7	8	9	10	11	12	13
Р	1,00	1,00	20,00	20,00	20,00	20,00	20,00	20,00	1,00	1,00	1,00	1,00	1,00
т	20,00	20,00	20,00	250,00	250,00	250,00	250,00	25,00	25,00	25,00	25,00	25,00	25,00
Flujo de energía (KJ/h)	0,00	0,00	4138,84	6524218,5	6408860,8	5990119,9	94492,5	69601,2	50304,3	452,77	49851,6	47290,1	2561,4
NaHCO ₃	0,00	0,00	73,18	115357,7	0,00	48450,3	48,45	359,10	359,58	0,00	359,58	341,60	17,98
H₂O	0,00	0,00	4065,66	6408860,8	6408762,6	5831973,9	5831,97	43225,0	43282,5	0,00	43282,5	41118,3	2164,1
H ₂	0,00	0,00	0,00	0,00	0,00	21104,8	21,10	454,34	452,77	452,77	0,00	0,00	0,00
НСООН	0,00	0,00	0,00	0,00	0,00	88492,8	88492,8	25490,4	6137,07	0,00	6137,1	5830,2	306,85
Ni-Raney	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
AI	0,00	0,00	0,00	0,00	98,15	61,97	61,97	45,75	45,75	0,00	45,75	0,00	45,75
AIO(OH)	0,00	0,00	0,00	0,00	0,00	36,19	36,19	26,72	26,72	0,00	26,72	0,00	26,72

Adicionalmente, se exponen las consideraciones establecidas y los pasos seguidos para el cálculo de los balances de materia y energía.

Consideraciones

- Las entalpías específicas para el agua, el hidrógeno, el aluminio y el ácido fórmico, así como el diseño del proceso, se han obtenido de la bibliografía [46,47,48].
- Se supone una alimentación de 100 Kg/h de CO₂ equivalente a 2464 kg/h de disolución 1 M de NaHCO₃.
- La presión y temperatura de referencia se establece en 1 bar y 20°C.
- Se supone que, al estar en disolución, la entalpía específica del bicarbonato de sodio se puede considerar despreciable respecto a la del agua.
- Se considera que el aporte de energía por parte del catalizador es despreciable.
- Se asume que el aluminio y el AlO(OH) tienen la misma entalpía específica.
- Se supone que la temperatura final de la mezcla (corriente 5) es igual a la temperatura de salida del intercambiador (corriente 4), despreciando el efecto del enfriamiento provocado por la corriente 2 a 25°C.
- Se supone que la separación de sólidos es perfecta por lo que la corriente 12 no arrastra ningún sólido procedente de la corriente 11.
- Se supone que la corriente 13 arrastra un 5% en masa de los compuestos de la fase líquida de la corriente 12.
- Se supone no hay perdidas de calor con los alrededores en las corrientes y que el reactor es isotérmico y adiabático.

Pasos

- <u>Corriente 1</u>: La capacidad de tratamiento inicial fijada en 100 Kg/h de CO₂ equivale a 2464 Kg/h de disolución NaHCO₃ 1M. Conociendo la concentración y las masas moleculares se halla el flujo másico y molar de cada compuesto. Esta corriente se encuentra en las condiciones de referencia y, por lo tanto, su contribución en la balance de energía es nulo.
- <u>Corriente 2</u>: Aplicando las relaciones molares establecidas para el reductor y para el catalizador respecto al CO₂, se calcula el flujo de cada compuesto. Para el balance de energía ocurre lo mismo que en la corriente 1, es 0.
- <u>Corriente 3</u>: La composición de esta corriente es la misma que la corriente 1, los flujos no varían al atravesar la bomba. El flujo de energía de cada compuesto se calcula como el producto del flujo molar por la diferencia de entalpía del agua entre 1 y 20 bar a 20°C [47].
- <u>Corriente 4</u>: Los flujos másicos y molares son los mismos que en la corriente 1 y 3, puesto que es la corriente de salida del intercambiador. El flujo de energía se corresponde con el flujo molar multiplicado por la diferencia de entalpía del agua al pasar de 20 a 250°C [47].

 <u>Corriente 5</u>: Los flujos son el resultado de la suma de las corrientes 2 y 4. El flujo de energía es el mismo que en la corriente 4 pero adicionalmente hay que incluir la energía que aporta el Al, calculada según la Ec.29 y la Ec.30 [48]:

$$C_{p,Al} = 4,8 + 0,0322 \cdot T Ec.29$$

Donde $C_{p,Al}$ es la capacidad calorífica del aluminio en Kcal/mol·K y T es la temperatura en K.

$$\Delta h_{Al} = 4,186 \cdot \int_{293,15}^{523,15} C_{p,Al} \cdot dT \qquad Ec.30$$

Donde Δh_{Al} es la entalpía específica del aluminio en KJ/mol.

Para conocer el flujo de energía basta con multiplicar el flujo molar por el resultado de la ecuación anterior, integrada entre la temperatura de operación y la temperatura de referencia.

 <u>Corriente 6</u>: El balance de materia se calcula primero en moles debido a que esta corriente se corresponde con la salida del reactor. Las expresiones empleadas según la Ec.8 y la Ec.9 son:

$$n_{HCOOH} = Y_{HCOOH} \cdot \frac{n_{NaHCO3,0}}{100} \qquad \qquad Ec.31$$

Donde n_{HCOOH} son los moles de ácido fórmico que se producen, Y_{HCOOH} el rendimiento obtenido experimentalmente y $n_{NaHCO3,0}$ los moles de bicarbonato de sodio iniciales.

$$n_{H2} = Y_{H2} \cdot 1.5 \cdot \frac{n_{Al,0}}{100} - n_{HCOOH}$$
 Ec. 32

Donde n_{H2} son los moles de hidrógeno que se producen, Y_{H2} el rendimiento del hidrógeno obtenido experimentalmente y $n_{Al,0}$ los moles de aluminio iniciales.

$$n_{Al} = n_{Al,0} - (\frac{n_{H2}}{1,5})$$
 Ec.33

Donde n_{Al} son los moles de aluminio finales.

$$n_{AlO(OH)} = n_{Al,0} - n_{Al} Ec. 34$$

Donde $n_{AlO(OH)}$ son los moles de AlO(OH) finales.

$$n_{NaHCO3} = n_{NaHCO3,0} - n_{NaHCO3,0} \cdot X_{NaHCO3} / 100$$
 Ec. 35

Donde n_{NaHCO3} son los moles de bicarbonato de sodio finales y X_{NaHCO3} la conversión de NaHCO₃ obtenida experimentalmente.

$$n_{agua} = n_{agua,0} - 2 \cdot n_{Al,0} \qquad \qquad Ec.36$$

Donde n_{agua} son los moles de agua finales y $n_{agua,0}$ los moles de agua iniciales

Por último, el balance de energía se calcula multiplicando el flujo molar de cada compuesto por la diferencia de entalpía correspondiente entre 20 y 250°C a 20 bar.

En el caso del ácido fórmico, el flujo de energía se calcula mediante la Ec.37 y Ec.38, del mismo modo que para el aluminio.

$$C_{p,HCOOH} = 78060 + 71,54 \cdot T$$
 Ec. 37

Donde $C_{p,HCOOH}$ es la capacidad calorífica del ácido fórmico en J/Kmol·K y T es la temperatura en K.

$$\Delta h_{HCOOH} = \int_{293,15}^{523,15} C_{p,HCOOH} \cdot dT$$
 Ec. 38

Donde Δh_{HCOOH} es la entalpía específica del aluminio en J/Kmol.

- <u>Corrientes 7, 8 y 9</u>: Los flujos másicos y molares de estas corrientes son idénticos a los de la corriente 6. Entre ellas se encuentra la válvula de control de presión del reactor (PV-101)., el intercambiador de calor (HX-102) y la válvula de descompresión (V-101). El balance de energía de la corriente 7 es igual que la corriente 6, para la corriente 8 se usa la entalpía de cada compuesto a 20 bar y 25°C y en la corriente 9 la entalpía a 1 bar y 25°C [47].
- <u>Corriente 10</u>: Se corresponde con la salida de la corriente gas del separador flash (F-101), de modo que los flujos másicos, molares y de energía son los flujos de H₂ de la corriente 9.
- <u>Corriente 11</u>: Es la salida de la fase líquida del separador flash (F-101), los flujos másicos, molares y de energía son los flujos de bicarbonato de sodio, agua, ácido fórmico, Ni-Raney, Al y AlO(OH).
- <u>Corriente 12</u>: Esta es la corriente líquida de salida del ciclón (C-101) en la que están presentes el bicarbonato de sodio, agua y ácido fórmico.
- <u>Corriente 13</u>: Es la corriente de salida de sólidos del ciclón (C-101) compuesta por los sólidos (Ni-Raney, Al y AlO(OH)) y un 5% en masa de la corriente 12.

8. Conclusiones y trabajo futuro

En el presente trabajo se ha logrado la reducción hidrotermal de CO_2 capturado en forma de NaHCO₃ y Ni-Raney como catalizador en una planta en discontinuo.

En condiciones de alta presión y temperatura esta reacción produce ácido fórmico, que se consiguió con un rendimiento del 39% usando glicerol como agente reductor a 250°C y metano, con un rendimiento del 27% empleando Al a 350°C. Por lo tanto, los mejores reductores para la producción de ácido fórmico y metano, han resultado ser el Al y el glicerol.

Cabe destacar que se hubieran alcanzado mayores rendimientos si el reactor en vez de estar compuesto por una agitación magnética hubiera tenido una agitación más eficaz, como la agitación mecánica compuesta por palas, que favorece la reacción al proporcionar una mejor mezcla de los reactivos.

La variación de la temperatura entre 250°C y 350°C indicó que este rango de operación es el óptimo ya que a temperaturas por debajo de 250°C, los productos de reacción deseados alcanzan contenidos y rendimientos muy bajos. Por el contrario, a temperaturas mayores de 350°C, el ácido fórmico sufre una reacción de descomposición. Evidentemente, ambas situaciones no son deseables.

El tiempo es un parámetro importante que habría que estudiar, pero por limitaciones no se pudo realizar. Como trabajo futuro, se propone la realización de experimentos a más tiempos para la optimización de cada reductor. Lo más coherente sería escoger los experimentos con mayores rendimientos obtenidos e implementarlos a un tiempo de reacción mayor de 4h, ya que se ha demostrado que el tiempo de reacción es directamente proporcional al rendimiento. Sin embargo, la conversión de NaHCO₃, disminuye al aumentar el tiempo de reacción, por lo tanto, el tiempo de reacción no puede ser muy alto porque se perdería la eficiencia y viabilidad del proceso.

Estos productos tienen diversas aplicaciones industriales y su uso como combustibles supone una solución para eliminar los combustibles fósiles como recursos para la producción de electricidad y calor. Se ha demostrado que la implantación de este proceso de reducción hidrotermal de CO₂ integrado con la captura del CO₂ atmosférico es una tecnología sostenible, respetuosa con el medio ambiente, y eficiente energética y económicamente.

9. Bibliografía

- IPCC. Quinto informe de evaluación del cambio climático, 3-20 (2014). https://www.ipcc.ch/report/ar5/index_es.shtml. Consultado el 20 de junio de 2022.
- [2] IBERDROLA. Cambio climático (2022).
 https://www.iberdrola.com/sostenibilidad/ciencia-del-cambio-climatico.
 Consultado el 18 de junio de 2022.
- M. He, Y. Sun, and B. Han, "Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling," *Angewandte Chemie - International Edition*, vol. 52, no. 37. pp. 9620–9633, Sep. 09, 2013. doi: 10.1002/anie.201209384.
- [4] IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2013.
- [5] G. R. North, "CLIMATE AND CLIMATE CHANGE | Greenhouse Effect," Encyclopedia of Atmospheric Sciences: Second Edition, pp. 80–86, Jan. 2015. doi: 10.1016/B978-0-12-382225-3.00470-9.
- [6] D. E. Reichle, "Anthropogenic alterations to the global carbon cycle and climate change," in *The Global Carbon Cycle and Climate Change*, Elsevier, 2020, pp. 209–251. doi: 10.1016/b978-0-12-820244-9.00011-1.
- [7] W. D. Fletcher and C. B. Smith, "The earth as a system," in *Reaching Net Zero*, Elsevier, 2020, pp. 21-30. doi: 10.1016/b978-0-12-823366-5.00003-8.
- [8] I. Karube, T. Takeuchi, and D. J. Barnes, "Biotechnological Reduction of CO2 Emissions."
- S. A. Kalogirou, "Solar Thermal Systems: Components and Applications Introduction," *Comprehensive Renewable Energy*, vol. 3, pp. 1–25, Jan. 2012. doi: 10.1016/B978-0-08-087872-0.00301-2.
- [10] G. Tian et al., "Hydrothermal reactions from carbon dioxide to phenol," ChemSusChem, vol. 3, no. 3, pp. 323–324, 2010. doi: 10.1002/cssc.200900274.
- [11] M. A. Ahove and S. I. Bankole, "Petroleum Industry Activities and Climate Change: Global to National Perspective," *The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem*, pp. 277–292, Jan. 2018. doi: 10.1016/B978-0-12-809399-3.00018-5.
- [12] EUROPEAN COMISSION. Climate change. https://ec.europa.eu/clima/climate-change_en. Consultado el 2 de julio de 2022.

- [13] CONCIENCIA ECO. La historia del cambio climático (2015). https://www.concienciaeco.com/2015/08/21/la-historia-del-cambioclimatico/. Consultado el 15 de junio de 2022.
- [14] EUROPEAN COMISSION. EU Action. https://ec.europa.eu/clima/eu-action/international-action-climatechange/climate-negotiations_es. Consultado el 2 julio de 2022.
- F. Jin, Z. Huo, X. Zeng, and H. Enomoto, "Hydrothermal Conversion of CO 2 into Value-Added Products: A Potential Technology for Improving Global Carbon Cycle," 2010. [Online].
 Available: https://pubs.acs.org/sharingguidelines
- [16] T. Sakakura, J. C. Choi, and H. Yasuda, "Transformation of carbon dioxide," *Chemical Reviews*, vol. 107, no. 6. pp. 2365–2387, Jun. 2007. doi: 10.1021/cr068357u.
- [17] C. Sabine et al., "Carbon and Other Biogeochemical Cycles. In: Cli-mate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Coordinating Lead Authors: Lead Authors: Contributing Authors," Peter, 2013.
- [18] A. D. N. Kamkeng, M. Wang, J. Hu, W. Du, and F. Qian, "Transformation technologies for CO2 utilisation: Current status, challenges and future prospects," *Chemical Engineering Journal*, vol. 409. Elsevier B.V., Apr. 01, 2021. doi: 10.1016/j.cej.2020.128138.
- [19] Z. Huo, M. Hu, X. Zeng, J. Yun, and F. Jin, "Catalytic reduction of carbon dioxide into methanol over copper under hydrothermal conditions," in *Catalysis Today*, Oct. 2012, vol. 194, no. 1, pp. 25–29. doi: 10.1016/j.cattod.2012.06.013.
- [20] J. Duo et al., "NaHCO3-enhanced hydrogen production from water with Fe and in situ highly efficient and autocatalytic NaHCO3 reduction into formic acid," *Chemical Communications*, vol. 52, no. 16, pp. 3316–3319, 2016. doi: 10.1039/c5cc09611a.
- [21] S. Vaz, A. P. Rodrigues de Souza, and B. E. Lobo Baeta, "Technologies for carbon dioxide capture: A review applied to energy sectors," *Cleaner Engineering and Technology*, vol. 8. Elsevier Ltd, Jun. 01, 2022. doi: 10.1016/j.clet.2022.100456.
- [22] J. I. del Río, E. Pérez, D. León, Á. Martín, and M. D. Bermejo, "Catalytic hydrothermal conversion of CO2 captured by ammonia into formate using aluminum-sourced hydrogen at mild reaction conditions," *Journal of Industrial and Engineering Chemistry*, vol. 97, pp. 539–548, May 2021. doi: 10.1016/j.jiec.2021.03.015.

- [23] A. Shahbazi and B. Rezaei Nasab, "Carbon Capture and Storage (CCS) and its Impacts on Climate Change and Global Warming," *Journal of Petroleum & Environmental Biotechnology*, vol. 7, no. 4, 2016. doi: 10.4172/2157-7463.1000291.
- [24] A. Goeppert, M. Czaun, J. P. Jones, G. K. Surya Prakash, and G. A. Olah, "Recycling of carbon dioxide to methanol and derived products-closing the loop," *Chemical Society Reviews*, vol. 43, no. 23. Royal Society of Chemistry, pp. 7995–8048, Dec. 07, 2014. doi: 10.1039/c4cs00122b.
- [25] M. Mikkelsen, M. Jørgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3 (2010) 43–81. doi:10.1039/b912904a.
- [26] F. Jin, Water under High-Temperature and High-Pressure Conditions and Some Special Reactions under Hydrothermal Conditions, en: Hydrothermal Reduct. Carbon Dioxide to Low-Carbon Fuels, 2017: pp. 1–21. doi:10.1201/9781351262842.
- [27] Y. Wang, F. Wang, C. Li, and F. Jin, "Kinetics and mechanism of reduction of CO2 by glycerol under alkaline hydrothermal conditions," *International Journal of Hydrogen Energy*, vol. 41, no. 21, pp. 9128–9134, Jun. 2016. doi: 10.1016/j.ijhydene.2016.02.009.
- [28] M. I. Chinchilla, F. A. Mato, Á. Martín, and M. D. Bermejo, "Hydrothermal CO2 Reduction by Glucose as Reducing Agent and Metals and Metal Oxides as Catalysts," *Molecules*, vol. 27, no. 5, Mar. 2022. doi: 10.3390/molecules27051652.
- [29] "Usos del CO2: Un camino hacia la sostenibilidad," Plataforma tecnológica española del CO2, ed. 1, Abril. 2013. doi: https://www.pteco2.es/es/publicaciones/usos-del-co2:-un-camino-haciala-sostenibilidad
- [30] S. Dabral and T. Schaub, "The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective," Advanced Synthesis and Catalysis, vol. 361, no. 2, pp. 223–246, Jan. 2019. doi: 10.1002/ADSC.201801215.
- [31] N. Akiya, P.E. Savage, Roles of Water for Chemical Reactions in High-Temperature Water, Chem. Rev. 102 (2002) 2725–2750. doi:10.1021/cr000668w.
- [32] O. Yakaboylu, J. Harinck, K. G. Smit, and W. de Jong, "Supercritical water gasification of biomass: A literature and technology overview," *Energies*, vol. 8, no. 2. MDPI AG, pp. 859–894, 2015. doi: 10.3390/en8020859.

- [33] M. Andérez-Fernández, E. Pérez, A. Martín, and M. D. Bermejo, "Hydrothermal CO2 reduction using biomass derivatives as reductants," *Journal of Supercritical Fluids*, vol. 133, pp. 658–664, Mar. 2018. doi: 10.1016/j.supflu.2017.10.010.
- [34] Y. Chen, Z. Jing, J. Miao, Y. Zhang, and J. Fan, "Reduction of CO2 with water splitting hydrogen under subcritical and supercritical hydrothermal conditions," *International Journal of Hydrogen Energy*, vol. 41, no. 21, pp. 9123–9127, Jun. 2016. doi: 10.1016/j.ijhydene.2015.11.157.
- [35] A. Martín, M.D. Bermejo, E. Pérez, J. Queiroz, M. Andérez, J. I del Río and M. Chinchilla, "Reducción hidrotermal del CO2 utilizando metales y derivados de la biomasa como reductores," Royal Society of Chemistry, Chapter 29.
- [36] M. D. Bermejo and M. J. Cocero, "Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor," *Journal of Hazardous Materials*, vol. 137, no. 2, pp. 965–971, Sep. 2006. doi: 10.1016/j.jhazmat.2006.03.033.
- [37] J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, and H. Kieczka, "Formic Acid," in Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 1–22. doi: 10.1002/14356007.a12_013.pub3.
- [38] F. Jin *et al.*, "High-yield reduction of carbon dioxide into formic acid by zerovalent metal/metal oxide redox cycles," *Energy and Environmental Science*, vol. 4, no. 3, pp. 881–884, Mar. 2011. doi: 10.1039/c0ee00661k.
- [39] F. Jin et al., "Highly efficient and autocatalytic H 2 O dissociation for CO 2 reduction into formic acid with zinc," Scientific Reports, vol. 4, Mar. 2014. doi: 10.1038/srep04503.
- [40] F. Chen, G. Yao, Z. Huo, and F. Jin, "A novel method of NaHCO3 reduction into formic acid with N2H4H2O over Ni catalyst," *RSC Advances*, vol. 5, no. 15, pp. 11257–11260, 2015. doi: 10.1039/c4ra14326d.
- [41] Y. Le, H. Zhong, Y. Yang, R. He, G. Yao, and F. Jin, "Mechanism study of reduction of CO2 into formic acid by in-situ hydrogen produced from water splitting with Zn: Zn/ZnO interface autocatalytic role," *Journal of Energy Chemistry*, vol. 26, no. 5, pp. 936–941, Nov. 2017. doi: 10.1016/j.jechem.2017.03.013.
- [42] H. Zhong, G. Yao, X. Cui, P. Yan, X. Wang, and F. Jin, "Selective conversion of carbon dioxide into methane with a 98% yield on an in situ formed Ni nanoparticle catalyst in water," *Chemical Engineering Journal*, vol. 357, pp. 421–427, Feb. 2019. doi: 10.1016/j.cej.2018.09.155.
- [43] SGS. DIFRACCIÓN DE RAYOS X (XRD) (2022). https://www.sgs.es/es-es/mining/metallurgy-and-process-design/highdefinition-mineralogy/x-ray-diffraction-xrd. Consultado el 7 de julio de 2022.

- [44] LINAN IPICYT. Difractómetro de Rayos-X (XRD) (2017). http://www.linan-ipicyt.mx/XRD_Bruker_D8_Advance.html. Consultado el 7 de julio de 2022.
- [45] LINAN IPICYT. Microscopios Electrónicos de Barrido (SEM) (2017). http://www.linan-ipicyt.mx/Microscopio_de_Barrido.html. Consultado el 7 de julio de 2022.
- [46] L. Quintana-Gómez, L. Martínez, D. Román-González, J. J. Segovia, Á. Martín, and M. D. Bermejo, "Energy and Economic Analysis of the Hydrothermal Reduction of CO2into Formate," *Industrial and Engineering Chemistry Research*, vol. 60, no. 39, pp. 14038–14050, Oct. 2021. doi: 10.1021/acs.iecr.1c01961.
- [47] "Propiedades termofísicas de sistemas fluidos."
 https://webbook.nist.gov/chemistry/fluid/. Consultado el 10 de julio de 2022
- [48] R. H. Perry, D. W. Green, and J. O. Maloney, Perry's chemical engineers' handbook, 7th ed. New York, San Francisco, Washington, D.C., Auckland, Bogotá, Caracas, Lisbon, London, Madrid, Mexico City, Milan, Montreal, New Delhi, San Juan, Singapore, Sydney, Tokyo, Toronto: Mc-Graw Hill, 1997.

ANEXOS Anexo I: Cálculo de cantidades iniciales

Reductor	Masa (g/mol)	Cantidad a pesar (g)	Moles
Zn	65,380	1,6344	0,025
AI	26,982	0,6745	0,025
Fe	55,845	1,3960	0,025
NaHCO ₃	84,007	0,8400	0,010
Glucosa	180,156	0,1801	0,001
Glicerol	92,100	0,0921	0,001
Ni-Raney	58,690	1,1737	0,020

Tabla 6. Cantidades iniciales de cada reactivo.

Tabla 7. Relaciones molares de cada reactivo respecto a la fuente de carbono.

Relación molar	CO ₂
Zn	2,5
Al	2,5
Fe	2,5
Glucosa	0,1
Glicerol	0,1
Ni-Raney	2

Anexo II: Patrones y calibrados

Patrón (10 mL)	Masa (g/mol)	Concentración (M)	Cantidad a pesar (g)	Pureza	Cantidad pesada (g)	Cantidad (ajustada (g)	Concentración real (M)
Bicarbonato	84,007	1	0,8401	1	0,8406	0,8406	1,0006
Ac. Fórmico	46,030	1	0,4603	0,98	0,4817	0,4721	1,0256
Ac. Acético	60,052	0,5	0,3003	0,997	0,3010	0,3001	0,4997
Bicarbonato	84,007	1	0,8401	1	0,8404	0,8404	1,0004
Ac. Láctico	90,080	0,5	0,4504	0,9	0,5120	0,4608	0,5115
Bicarbonato	84,007	1	0,8401	1	0,8420	0,8420	1,0023

Tabla 8. Patrones preparados.

Gráfica 1. Recta de calibrado de CH4.

Gráfica 2. Recta de calibrado de CO₂.

HPLC

Tabla 9. Datos del calibrado 1 de AF.

Volumen (mL)	Concentración	Área	t retención (min)
5	0,2564	1209831	19,653
10	0,5128	2485672	18,782
15	0,7692	3755610	18,772
20	1,0256	4955350	18,772

Gráfica 3. Recta de calibrado 1 de AF.

Tabla 10. Datos del calibrado 2 de AF.

Volumen (mL)	Concentración	Área	t retención (min)
5	0,2564	1218674	18,966
10	0,5128	2474134	18,991
15	0,7692	3754190	18,985
20	1,0256	4924920	18,988

Gráfica 4. Recta de calibrado 2 de AF.

Gráfica 5. Recta de calibrado 3 de AF.

Tabla 12. Datos del calibrado del patrón 1 de NaHCO₃.

Volumen (mL)	Concentración	Área	t retención (min)
5	0,2501	391474	24,966
10	0,5003	811996	24,975
15	0,7504	1230329	24,989
20	1,0006	1634221	25,002

Gráfica 6. Recta de calibrado del patrón 1 de NaHCO₃.

Tabla 13. Datos del calibrado del patrón 2 de NaHCO₃.

Volumen (mL)	Concentración	Área	t retención (min)
5	0,2501	387507	25,209
15	0,7503	1246432	24,989
20	1,0004	1603182	25,147

Gráfica 7. Recta de calibrado del patrón 2 de NaHCO₃.

Tahla 14	Datos del	calibrado	del	natrón	3	de	NaHCO ₂
1 auia 14.	. Dalos uei	canorado	uei	pauon	J	ue	Maricos.

Volumen (mL)	Concentración	Área	t retención (min)
5	0,2505	390764	25,165
10	0,5011	807262	25,199
15	0,7517	1248430	27,089
20	1,0023	1620244	25,221

Gráfica 8. Recta de calibrado del patrón 3 de NaHCO₃.

Tabla 15. Datos del calibrado de AC para un tiempo de retención de 20,319 min.

Volumen (mL)	Concentración	Área
5	0,125	1049685
10	0,250	2095851
15	0,375	3285741
20	0,500	4333997

Gráfica 9. Recta de calibrado de AC.

Tabla 16. Datos del calibrado de AL para un tiempo de retención de 17,456 min.

Volumen (mL)	Concentración	Área
5	0,125	1902942
10	0,25	3756418
15	0,375	5746756
20	0,5	7929556

Gráfica 10. Recta de calibrado de AL.

Anexo III: Datos y resultados obtenidos

Experimento	Área CH₄	Área H₂	Área CO₂	%CH₄	%H ₂	%CO₂	nCH₄	nH ₂	nCO ₂	nH ₂ max	RtoCH₄ (%)	RtoH₂ (%)	RtoCO ₂ (%)
7	6774	2009	4213,5	6,097	65,895	2,124	6E-04	6E-03	2E-04	0,025	5,649	24,417	1,968
8	6437	1778,5	4781	5,793	58,335	2,408	5E-04	5E-03	2E-04	0,025	5,034	20,278	2,092
9	3728,5	1993	4627,5	3,356	65,370	2,331	2E-04	4E-03	2E-04	0,025	2,163	16,839	1,502
10	4394,5	2059	4078	3,955	67,535	2,056	3E-04	4E-03	1E-04	0,025	2,563	17,535	1,332
11	17488	1981,5	4745	15,739	64,993	2,390	2E-03	7E-03	3E-04	0,025	18,105	29,920	2,749
12	13460,5	2011	5076	12,114	65,961	2,555	1E-03	8E-03	3E-04	0,025	13,780	30,027	2,906
13	13233,5	1956	954	11,910	64,157	0,494	2E-03	1E-02	9E-05	0,038	22,079	31,568	0,916
14	18897,5	2042	814	17,008	66,978	0,424	3E-03	1E-02	8E-05	0,037	32,797	34,505	0,818
15	10004,5	2187	831,5	9,004	71,734	0,433	2E-03	2E-02	9E-05	0,037	18,900	40,262	0,909
16	13111	2111	985,5	11,800	69,241	0,510	2E-03	1E-02	1E-04	0,037	24,531	38,473	1,060
17	3823	2263,5	845,5	3,441	74,243	0,440	8E-04	2E-02	1E-04	0,037	8,134	47,106	1,040
18	1543,5	2209	902	1,389	72,455	0,468	3E-04	2E-02	1E-04	0,038	3,398	46,968	1,145
19	2818	2121	1219,5	2,536	69,569	0,627	2E-04	4E-03	4E-05	0,033	1,619	13,309	0,400
20	1952,5	2091	1172,5	1,757	68,585	0,603	1E-04	4E-03	3E-05	0,033	0,985	11,520	0,338
21	1111,5	2011	11106,5	1,000	65,961	5,570	6E-05	4E-03	3E-04	0,033	0,614	12,133	3,417
22	847	1683	7115	0,762	55,202	3,575	3E-05	2E-03	2E-04	0,033	0,345	7,479	1,617
23	90	1946	49541	0,081	63,829	24,788	7E-06	5E-03	2E-03	0,033	0,068	16,136	20,888
24	43	1990,5	24614,5	0,039	65,288	12,324	3E-06	5E-03	1E-03	0,033	0,032	16,310	10,267
25	3151	1152	46695	2,836	37,786	23,365	2E-04	2E-03	1E-03	0,012	1,780	19,732	14,669
26	3421,5	1148	58319,5	3,079	37,654	29,177	2E-04	2E-03	2E-03	0,012	1,968	19,970	18,646
27	7756,5	1164	65190,5	6,981	38,179	32,612	3E-04	2E-03	2E-03	0,012	3,215	14,633	15,020

Tabla 17. Cálculos y rendimientos de la fase gas.

28	3378,5	1083,5	66225	3,041	35,539	33,130	1E-04	2E-03	2E-03	0,012	1,389	13,395	15,130
29	3635,5	833,5	63908	3,272	27,339	31,971	9E-05	7E-04	9E-04	0,012	0,870	6,044	8,503
30	3955,333	770,5	65990,33	3,560	25,272	33,012	1E-04	8E-04	1E-03	0,012	1,065	6,244	9,872
31	4940	1155,5	32341	4,446	37,900	16,188	2E-04	2E-03	7E-04	0,008	1,937	20,175	7,054
32	4792,5	1208	33411,5	4,313	39,622	16,723	2E-04	1E-03	6E-04	0,009	1,532	16,528	5,939
33	3030,5	1347	51274,5	2,727	44,182	25,654	0,000	0,002	0,001	0,007	1,213	28,401	11,407
34	1479,5	1532,5	47655,5	1,332	50,266	23,845	0,000	0,002	0,001	0,008	0,627	29,674	11,235
35	550	1647,5	47861,5	0,495	54,038	23,948	0,000	0,004	0,002	0,008	0,328	44,364	15,870
36	1449	1666,5	49425	1,304	54,661	24,730	0,000	0,004	0,002	0,009	0,928	41,750	17,602
41	969	2255,5	1864	0,872	73,980	0,949	0,000	0,018	0,000	0,037	2,113	47,837	2,300
42	920,5	2256,5	3251	0,828	74,013	1,643	0,000	0,020	0,000	0,037	2,207	52,636	4,376

Experimento	Concentración	Área	Rto AF (%)	t retención
7	0,105	521395	10,522	18,798
8	0,083	409495	8,264	18,800
9	0,120	592525	11,957	18,804
10	0,129	638781	12,891	18,804
11	0,043	211368	4,265	18,796
12	0,041	202750	4,091	18,811
13	0,068	336167	6,784	18,802
14	0,055	273269	5,515	18,797
15	0,128	634782	12,810	18,802
16	0,171	845319	17,059	18,794
17	0,403	1994962	40,258	18,799
18	0,356	1763745	35,592	18,781
19	0,061	300543	6,065	18,789
20	0,057	281674	5,684	18,791
21	0,051	247790	5,133	19,140
22	0,048	238922	4,790	18,962
23	0,011	52882	1,096	19,104
24	0,011	53722	1,113	19,088
25	0,009	45951	9,212	18,958
26	0,009	44721	9,265	19,060
27	0,016	75597	15,661	19,064
28	0,012	59726	12,373	19,070
29	0,024	117096	24,259	19,129
30	0,020	95438	19,772	19,058
31	0,041	197251	40,864	18,966
32	0,037	183489	36,787	18,958
33	0,010	49046	10,161	18,970
34	0,009	41060	8,506	18,968
35	0,004	19276	3,993	18,958
36	0,005	25368	5,086	18,962
41	0,294	1465790	29,387	18,943
42	0,338	1688132	33,845	18,943

Experimento	Concentración	Área	Conversión (%)	t retención
7	0,705	1149477	29,545	25,029
8	0,656	1070618	34,378	25,022
9	0,598	975138	40,231	25,023
10	0,623	1016381	37,703	25,02
11	0,673	1097976	32,701	24,999
12	0,606	988940	39,385	25,012
13	0,437	712252	56,344	24,999
14	0,470	766213	53,036	24,976
15	0,627	1023402	37,272	24,985
16	0,585	953728	41,543	24,972
17	0,467	761769	53,309	24,991
18	0,372	606662	62,816	24,988
19	0,621	1012945	37,913	24,989
20	0,589	960529	41,126	24,993
21	0,689	1117302	31,065	25,477
22	0,637	1036546	36,295	25,196
23	0,788	1276823	21,223	25,412
24	0,803	1302222	19,656	25,381
41	0,373	607069	62,690	25,186
42	0,343	557655	65,727	25,185

Tabla 19. Conversiones del NaHCO₃.

Tabla 20. Rendimientos del AC.

Experimento	Concentración	Área	Rto AC (%)	t retención
25	0,035	304303	35,183	20,526
26	0,023	196784	22,752	20,518
27	0,025	217271	25,120	20,519
28	0,028	244763	28,299	20,525
29	0,020	171874	19,872	20,584
30	0,021	184362	21,315	20,514
31	0,002	18801	2,174	20,406
32	0,002	19711	2,279	20,428
33	0,004	34596	4,000	20,426
34	0,003	29958	3,464	20,425
35	0,003	29035	3,357	20,415
36	0,002	20504	2,371	20,408

Tabla 21. Rendimientos del AL.

Experimento	Concentración	Área	Rto AL (%)	t retención
27	0,012	187825	12,066	17,601
28	0,012	186672	11,992	17,602
29	0,014	224637	14,431	17,586
30	0,016	243412	15,637	17,593
31	0,009	134204	8,622	17,530
32	0,010	148094	9,514	17,530
33	0,001	22108	1,420	17,520
34	0,001	20755	1,333	17,517