
Journal Pre-proof

QOptCraft: A Python package for the design and study of linear optical quantum
systems

Daniel Gómez Aguado, Vicent Gimeno, Julio José Moyano-Fernández and Juan
Carlos Garcia-Escartin

PII: S0010-4655(22)00230-2

DOI: https://doi.org/10.1016/j.cpc.2022.108511

Reference: COMPHY 108511

To appear in: Computer Physics Communications

Received date: 12 August 2021

Revised date: 28 July 2022

Accepted date: 22 August 2022

Please cite this article as: D.G. Aguado, V. Gimeno, J.J. Moyano-Fernández et al., QOptCraft: A Python package for the design and
study of linear optical quantum systems, Computer Physics Communications, 108511, doi: https://doi.org/10.1016/j.cpc.2022.108511.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2022 Published by Elsevier.

https://doi.org/10.1016/j.cpc.2022.108511
https://doi.org/10.1016/j.cpc.2022.108511

QOptCraft : A Python package for the design and study of

linear optical quantum systems

Daniel Gómez Aguadoa, Vicent Gimenob, Julio José Moyano-Fernándezb, Juan
Carlos Garcia-Escartinc

aUniversidad de Valladolid. Valladolid. Spain. E-mail address: gomezaguado99@gmail.com
bUniversitat Jaume I, Campus de Riu Sec, Departament de Matemàtiques & Institut Universitari
de Matemàtiques i Aplicacions de Castelló–IMAC, 12071, Castellón de la Plana, Spain. E-mail

addresses: gimenov@uji.es and moyano@uji.es
cDepartamento de Teoŕıa de la Señal y Comunicaciones e Ingenieŕıa Telemática. ETSI de

Telecomunicación. Universidad de Valladolid. Campus Miguel Delibes. Paseo Belén 15. 47011
Valladolid. Spain. E-mail address: juagar@tel.uva.es

Abstract

The manipulation of the quantum states of light in linear optical systems has
multiple applications in quantum optics and quantum computation. The package
QOptCraft gives a collection of methods to solve some of the most usual problems
when designing quantum experiments with linear interferometers. The methods
include functions that compute the quantum evolution matrix for n photons from
the classical description of the system and inverse methods that, for any desired
quantum evolution, will either give the complete description of the experimental
system that realizes that unitary evolution or, when this is impossible, the com-
plete description of the linear system which approximates the desired unitary with
a locally minimal error. The functions in the package include implementations of
different known decompositions that translate the classical scattering matrix of a
linear system into a list of beam splitters and phase shifters and methods to com-
pute the effective Hamiltonian that describes the quantum evolution of states with
n photons. The package is completed with routines for useful tasks like generating
random linear optical systems, computing matrix logarithms, and quantum state
entanglement measurement via metrics such as the Schmidt rank. The routines are
chosen to avoid usual numerical problems when dealing with the unitary matrices
that appear in the description of linear systems.

Keywords: Linear interferometers; quantum optics; quantum experiment design;
quantum information;

PROGRAM SUMMARY
Program Title: QOptCraft
CPC Library link to program files: https://doi.org/10.17632/r24hszggf4.1

Developer’s repository link: https://github.tel.uva.es/juagar/qoptcraft

Licensing provisions: Apache-2.0

Preprint submitted to Computer Physics Communications August 25, 2022

https://doi.org/10.17632/r24hszggf4.1
https://github.tel.uva.es/juagar/qoptcraft

Programming language: Python 3 v3.9.5:0a7dcbd, May 3 2021 17:27:52
Supplementary material: User’s manual at https://github.tel.uva.es/juagar/qoptcraft/
-/blob/main/QOptCraft_V1.1_user_guide.pdf

Nature of problem: The evolution of the quantum states of light in linear optical devices
can be computed from the scattering matrix of the system using a few alternative points
of view. Apart from being able to compute the evolution through a known optical system,
it is interesting to consider the less studied inverse problem of design: finding the optical
system which gives or approximates a desired evolution. Linear optical systems are limited
and can only provide a small subset of all the physically possible quantum transformations
on multiple photons. Choosing the best approximation for the evolutions that cannot be
achieved with linear optics is not trivial.
This software deals with the analysis of the quantum evolution of multiple photons in lin-
ear optical devices and the design of optical setups that achieve or approximate a desired
quantum evolution.
Solution method: We have automated multiple computation processes regarding quantum
experiments via linear optic devices. The methods rely on the properties of the groups
and algebras that describe the problem of light evolution in linear system.

The library QOptCraft for Python 3 includes known numerical methods for decom-

posing an optical system into beam splitters and phase shifters and methods to give the

quantum evolution of system classically described by a scattering matrix using either

the Heisenberg picture evolution of the states, a description based on the permanents of

certain matrices or the evolution from the effective Hamiltonian of the system. It also

provides methods for the design of achievable evolutions, using the adjoint representation,

and for approximating quantum evolutions outside the reach of linear optics with an it-

erative method using Toponogov’s comparison theorem from differential geometry. The

package is completed with useful functions that deal with systems including losses and

gain, described with quasiunitary matrices, the generation of random matrices and stable

implementations of the matrix logarithm.

Additional comments including restrictions and unusual features: The package is designed

to work with intermediate scale optical systems. Due to the combinatorial growth in the

state space with the number of photons and modes involved, there is an upper limit on

the efficiency of any classical calculation. QOptCraft serves as a design tool to explore

the building blocks of photonic quantum computers, optical systems that generate useful

quantum states of light for their use in metrology or other applications or the design of

quantum optics experiments to probe the foundations of quantum mechanics.

1. Introduction: linear optical quantum systems

The evolution of the quantum states of light inside linear optical systems shows
a rich structure and has applications ranging from fundamental quantum optics
experiments to the preparation of advanced quantum states for quantum information
processing.

The package QOptCraft offers different functions that help to automate the de-

2

https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_V1.1_user_guide.pdf
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_V1.1_user_guide.pdf

sign process for quantum optical experiments. The object under study are linear
optical multiports, or linear interferometers. We consider linear interferometers act-
ing on m separate modes and their action on n input photons.

The main purpose of the package is exploring which evolutions can be realized
with linear optics and which cannot and giving a physical implementation for those
evolutions which are possible. The code is written in Python due to its simplicity, its
compatibility with multiple platforms and the existence of many scientific libraries
which can be combined with our package. The package offers a library of functions
which can be used as a starting point for independent code development as closed,
black-box functions for the users that just need to know the experimental setup for
their desired evolution.

While the code is fully functional and some tweaks for efficiency have been ap-
plied, it is not optimized for computational speed. The combinatorial growth in the
state space in the problem makes any implementation in systems with more than a
few tens of photons and modes impractical for any computer. The package has been
created for exploring medium-scale optical experiments which can be performed be-
fore noise or other imperfections become too problematic. The possible applications
include the design of optical systems for the generation of entangled states of light,
the prediction of the behaviour of medium-sized linear interferometers or to build
simple gates for specific quantum information protocols.

This paper serves as a guide to the package and the theoretical foundations on
which it was built. It is intended to be a brief tour on the mathematical and physical
results that are needed to describe linear interferometers with quantum inputs. The
detailed user guide with a functional description of the software is given with the
package [1].

The paper starts with a brief description of different existing software and com-
puter design methodologies for quantum linear optical systems and a comparison to
our approach (Section 2). The theory behind the calculations in the package is in-
troduced with a review of the matrices that describe linear optical systems (Section
3) and an explanation of all the relevant algebraic objects that appear in the study
(Section 4). Section 5 gives a tour on the different methods offered in the package.
Section 6 gives complete design examples using the package. The paper ends with
a summary (Section 7).

2. Comparison to similar existing libraries and other computer-assisted
design methods for quantum linear optics

There are many complementary ways of stuying the behaviour of the quantum
states of light. In QOptCraft, the point of view is centered on the unitary evolution
matrices that describe the evolution of photon number states with a constant number
of photons and modes.

For certain tasks, our functions sometimes overlap with existing software pack-
ages and, in many cases, provide an alternative way of looking at things. In this

3

Section, we discuss the most relevant software packages and computer design meth-
ods for quantum optical evolutions.

QuTiP is a Python framework for the simulation of open quantum systems [2, 3],
including quantum optical processes. In particular, it offers tools to simulate the
evolution for Hamiltonians involving light-matter interaction. It includes examples
that describe simple linear optical systems, but the focus of the framework tends to
be on time-dependent evolution and the coupling with matter.

Xanadu’s Pennylane has two wrappers that deal with linear optics. Strawberry
fields [4] gives a collection of functions that permit to work with linear optical
circuits, similar to the usual quantum circuit model of quantum computing.

The whole collection has Continuous Variables, CV, quantum computing [5, 6, 7]
in mind and, as such, focus mostly on Gaussian operations, homodyne measurement
and coherent and squeezed states. There is also a wrapper, the Walrus [8], devoted
to the study of Gaussian boson sampling [9, 10, 11]. This library can be combined
with machine learning to design different quantum evolutions [12, 13].

This is more similar to our approach of treating linear optical systems as blocks
with time independent calculations. However QOptCraft works with finite state
spaces generated from a discrete constant number of modes and photons instead of
the continuous variable approach of Strawberry fields with coherent and squeezed
states. These states live in an infinite-dimensional space and are described either by
operators or truncated state spaces.

In addition to the simulation of known optical systems, there are multiple computer-
assisted methods to search for optical setups that produce certain transformations.
In the last few years there has been an explosion in the use of machine learning
to understand and design physical systems. Some of the possible applications are
exploring the foundations of quantum mechanics and the design of nanophotonic
structures (see [14] and [15], respectively, for the corresponding surveys). We will
give a brief description of the results which are closer to our software. The inter-
ested reader can find a complete review of the use of computers to find new quantum
optical experiments in [16].

In most of the cases, the purpose of computer-assisted methods is to produce
certain resource states, such as highly entangled photon states. The usual approach
is starting with simple, easy to generate states and, then, the computer tries different
optical systems with elements that are optimized so that the output state is close
to some desired state or has a good value for a particular objective function.

The AdaQuantum software [17] builds on the work of Knott [18] and searchs
for specific output quantum states exploring the configuration space of the optical
systems either with genetic algorithms alone [19] or combined with neural networks
[20]. These methods are focused on Gaussian states.

The functions in QOptCraft work with photon number states. This is closer to
the work found in the papers from Krenn’s group, which expand the original proposal
of the MELVIN algorithm in [21] to look for new experiments [22, 16] with discrete
photon states. The MELVIN algorithm searches random linear optical transforma-

4

tions produced from simple elements and performs advanced numerical optimization
to tune the devices in order to obtain output states with high scores in an objective
function, like, for instance, a measurement of entanglement. This algorithm and has
led to multiple successful experiments [23, 24, 25]. Interestingly, a second algorithm,
THESEUS, can be used to gain insight into new methods. The representation of the
problem is designed for easy human interpretation and it aids to the conceptual un-
derstanding of the results [26, 27]. The outputs from this algorithm have been later
refined by humans to provide new conceptual frameworks [28, 29]. Both MELVIN
and THESEUS algorithms are available online [30, 31]. These two algorithms take
advantage of topological search, but there are also different refinements and pro-
posals to combine multiple machine learning strategies. These include the use of
neural networks [32] and reinforced learning [33], which also gives good results in
the automated design of quantum communication protocols [34].

Compared to those approaches, our software does not use advanced machine
learning techniques. We provide routines that can give exact numerical solutions
and try to provide building blocks that can be later combined with these methods.

In that respect, the routines in QOptCraft focus on unitary matrices and ana-
lytic methods and they are more similar to the results from Gubarev and coworkers
[35], where they search for heralded entangled states starting from random unitary
transformations and a numerical optimization phase which is then refined analyt-
ically. Similarly, computers can be used to optimize the design of more general
non-linear optical transformations which include losses, like in the quantum cloning
experiments of [36]. Apart from those points of view, a polynomial description of
the optical system also allows a different analytical design method using a Gröbner
basis technique [37].

In most of this previous work, the methods have a desired target state and
the state evolution is computed, like in QOptCraft, from the description of the
classical elements. We use a slightly different, but equivalent, approach centered on
the evolution unitary matrices and their corresponding Hamiltonians. Apart from
that, QOptCraft also offers the ability to solve inverse problems directly from a full
description of the desired evolution (Section 5.3).

For compatibility with other quantum optics design software, QOptCraft includes
a series of functions that deal with states (Section 5.5.5). An example of their use for
entangled state generation, which complements previous automated design methods,
is given in Section 6.3.

3. The scattering matrix S and the unitary evolution U

A linear interferometer acts on m modes, or ports. The modes can be any collec-
tion of orthogonal states of a single photon. For simplicity we usually think of spatial
modes: photons going through separate paths, but the results can be extended to
modes representing orthogonal polarizations, different frequencies, separated time
bins or photons with different values of orbital angular momentum.

5

Classically, for amplitudes ai in the ith mode, the corresponding output mode
amplitude bi can be deduced from the scattering matrix S of the system computing
~b = S~a [38]. The scattering matrix acting on the input amplitudes as

S~a =

S11 S12 . . . S1m

S21 S22 . . . S2m
...

...
. . .

...
Sm1 Sm2 . . . Smm

a1

a2
...

am

 (1)

is unitary, which guarantees the conservation of energy in a passive linear network.
The matrix description can be translated directly to the quantum evolution of a
single photon where the field amplitudes are replaced by probability amplitudes and
the matrix unitaricity guarantees that the probability of finding each state in the
output superposition sums to 1 for unit vectors in the input, where the probabilities
also sum to 1.

These unitary scattering matrices give the complete description of linear optical
systems which preserve the number of photons. Losses and amplification can also
be included using quasiunitary matrices [39] (Section 5.5.1).

The quantum evolution for n photons is described by a unitary evolution
matrix U acting on all the possible photon states of n photons distributed into m
modes. The resulting Hilbert space Hm,n has a dimension M = dimCHm,n =

(m+n−1
n

)
which corresponds to counting all the possible ways to place n “balls” (photons) into
m “boxes” (modes) (the multiset coefficient of n and m [40]).

We use a photon number notation. The state of the system is written as |ψ〉=
|n1n2 . . .nm〉, where ni is the number of photons found in the ith mode and ∑

m
i=1 ni = n.

In the QOptCraft package, we define a basis as an ordered collection of basis
states in this format, which can be thought of as column vectors filled with zeroes
and with a single 1 in the position corresponding to the index of the state.

For instance, for n = 3 photons in m = 2 modes, a basis would be {|30〉 , |21〉 , |12〉 , |03〉}
and we can make the correspondence:

|30〉=

1
0
0
0

 , |21〉=

0
1
0
0

 , |12〉=

0
0
1
0

 , |03〉=

0
0
0
1

 . (2)

For that order, there is a unique U giving the evolution of a linear interferometer
with a scattering matrix S (for which column i gives the action on the ith input
mode).

The functions in QOptCraft return the ordered list with the basis states so that
all the objects are compatible.

Both S and U are unitary matrices and belong to the corresponding unitary
groups: S ∈U(m), the group of unitary m×m matrices, and U ∈U(M), the group
of unitary M×M matrices. Two matrices, U1,U2, which are equal up to a global

6

phase, so that U1 = eiΦU2, are equivalent from a physical point of view. There is no
measurement that can tell them apart.

Notice that all the methods in the package could have been implemented for
the corresponding matrices with determinant 1 in the special unitary groups SU(m)
and SU(M). However, for simplicity and to keep the same framework as previous
results, we have preferred to work with matrices from the unitary group instead of
the special unitary group.

4. Structure of the problems: relation between the objects in a commu-
tative diagram

The functions in QOptCraft allow the user to navigate through the commutative
diagram in Figure 4 which relates various matrices which appear when working
with linear interferometers which preserve the photon number. The map ϕm,M is a
differentiable group homomorphism [9] and it induces an algebra homomorphism,
dϕm,M. In addition, ϕm,M relates the unitary groups U(m) and U(M) containing the
scattering matrix S and the n-photon evolution operator U and dϕm,M relates the
algebras u(m) and u(M) whose elements correspond to antihermitian matrices iHS

and iHU which give an equivalent description of the evolution through exponentiation
of the Hamiltonians HS and HU (S = eiHS and U = eiHU) [41, 42].

U(m) U(M)

u(m) u(M)

ϕm,M

dϕm,M

exp exp

Figure 1: Commutative diagram describing the relationships between the different objects that
define the evolution in linear optical systems.

5. Package overview

We will use the commutative diagram of Figure 4 as a map to show how the
different functions in the package work. Each family of functions is explained in
terms of the theoretical results on which they are based. Many of the functions are
implemented from independent methods for computing the same result, which can
be used to check for consistency and to search for the most computationally efficient
alternative for different input sizes.

5.1. The photonic homomorphism:

The first function StoU returns the quantum unitary evolution U for n photons
under the action of a linear interferometer specified by the user. The inputs are the

7

number of photons, the scattering matrix of the system S and an ordered basis of
the state space so that the matrix U is univocally determined.

The evolution is determined by the homomorphism ϕm,M from the unitary group
U(m) to U(M), in the upper part of the commutative diagram of Figure 5.1 and it
is computed with two different methods in the software.

U(m) U(M)

u(m) u(M)

ϕm,M

dϕm,M

exp exp

Figure 2: Evolution from S (scattering matrix) to U (quantum evolution) with the photonic ho-
momorphism ϕm,M (in red).

5.1.1. Evolution from the Heisenberg picture

The matrix U can be computed from the evolution of the creation operators
that define all the possible input quantum states in the Hm,n Hilbert space. For an

n-photon input state, with â†
k being the creation operation for mode k [43],

|n1n2 . . .nm〉=
m

∏
k=1

(
â†nk

k√
nk!

)
|00 . . .0〉 . (3)

An analysis in the Heisenberg picture [44, 45, 46] shows the quantum evolution can
be expressed as:

U |n1n2 . . .nm〉=
m

∏
k=1

1√
nk!

(
m

∑
j=1

S jkâ†
j

)nk

|00 . . .0〉 . (4)

This method can be chosen in the function StoU with an optional argument.

5.1.2. Computation using permanents

There is also an alternative description related to the permanent of a matrix [45].
The permanent is a matrix function similar to the determinant which is computed
without any position dependent sign correction. For an n× n matrix A, it can be
defined as

PerA = ∑
σn

n

∏
i=1

Ai,σ(i) (5)

for column indices in all the permutations σ in the symmetric group Sn.
The step from S to U depends on the number of photons. If we take the ba-

sis composed of the number states of Eq. (3), the element of U that describes the

8

transition from |Ψin〉= |n1〉1 |n2〉2 . . . |nm〉m to |Ψout〉= |n′1〉1 |n′2〉2 . . . |n′m〉m can be de-
termined from 〈n′1|1 〈n′2|2 . . .〈n′m|mU |n1〉1 |n2〉2 . . . |nm〉m, which has a value

Per(Sin,out)√
n1!′ ·n′2! · · ·n′m! ·n1! ·n2! · · ·nm!

. (6)

In Eq. (6), Per(Sin,out) is the permanent of a matrix Sin,out with elements Si, j from
S such that each row index i appears exactly n′i times and each column index j is
repeated exactly n j times [45, 9].

This method can be chosen in the function StoU in two different implementa-
tions. The first (for the argument method = 1) computes the permanents with a
direct implementation and the second (for the argument method = 2) computes the
permanent using Ryser’s method [47], which tends to be faster for large state spaces
in our experiments.

The direct implementation generates all the possible permutations of n positions
from Python’s itertools.

In Ryser’s algorithm the permanent is computed as a sum of products [48]. For
an n×n matrix A, we use the formula

PerA = (−1)n
∑

X⊆{1,2,...,n}
(−1)|X |R(X) (7)

where X is any non-empty subset of the set of numbers from 1 to n; the formula
sums the products

R(X) =
n

∏
i=1

∑
j∈X

Ai, j (8)

that multiply the sums of the column elements given by the indices in X for each
row. The signs avoid counting the same product twice.

5.1.3. Efficiency

None of the methods we have explained to compute ϕm,M(S) is efficient. In
fact, computing the permanent is known to be a PSPACE problem [49] and this,
combined with other results, shows there is no known classical method to compute
the evolution in a general linear optical interferometer in the boson sampling problem
[9]. Any classical method will face this complexity barrier. Nevertheless, the direct
computation method in the package can be useful in the simulation of intermediate
scale linear optical systems.

5.2. Evolution of the effective Hamiltonian. The differential of the photonic homo-
morphism

The matrix HU gives the effective Hamiltonian corresponding to the evolution
U through the exponential map with U = eiHU [41]. The explicit Hermitian matrix
can be deduced from the effective Hamiltonian HS of the linear multiport acting

9

U(m) U(M)

u(m) u(M)

ϕm,M

dϕm,M

exp exp

Figure 3: Evolution from HS (the single photon Hamiltonian) to HU (the n-photon Hamiltonian)
with the differential of the photonic homomorphism dϕm,M (in red).

on one photon [42]. If we number the basis states, with |q〉 = |n1n2 . . .nm〉 and
|p〉= |n′1n′2 . . .n

′
m〉, the elements of iHU are

〈p| iHU |q〉= 〈p|
m

∑
l=1

m

∑
j=1

iHS jl â
†
j âl |q〉 . (9)

The evolution corresponds to single photon processes from the weighted sum

iHU pq =
m

∑
l=1

m

∑
j=1

i
√

(n j+1)nlHS jl〈p|n1n2 . . .n j+1 . . .nl−1 . . .nm〉. (10)

The function iHStoiHU returns the Hermitian matrix HU corresponding to any
given HS when the system is acting on n photons. It is computed from the differential
of the photonic homomorphism, dϕm,M (Figure 5.2).

5.3. Inverse problems. Design of linear interferometers.

In many cases we know the target evolution U we would like to obtain and we
need to find out the experimental setup that produces that evolution.

In general, linear optics offers only a limited range of all the possible evolutions
in the Hilbert space Hm,n for n photons. For more than one photon or one port, it
is clear that the degrees of freedom in the scattering matrix which gives the experi-
mental implementation are less than the required degrees of freedom to produce any
U ∈U(M) [50, 51, 52].

The image imϕ of ϕm,M is a subgroup of U(M) and, as the number of photons
grows, the evolutions U which can be actually realized with linear optics become a
smaller set of all the possible unitary evolutions.

The package contains two different methods for design, depending on whether
the desired evolution is possible or must be approximated

The function SfromU serves as an initial check. When given a target evolution
U for n photons in m modes, it answers whether there exists a valid linear evolution
or not. If it is possible, the function returns the matrix S which provides the desired
evolution.

10

U(m) U(M)

u(m) u(M)

ϕm,M

ϕ
−1
m,M

dϕm,M

exp exp

Figure 4: Evolution from HS (the single photon Hamiltonian) to HU (the n-photon Hamiltonian)
with the differential of the photonic homomorphism dϕm,M (in red).

The inverse homomorphism ϕ
−1
m,M in Figure 5.3 is computed with the help of the

adjoint representation of U using the projections over the basis of the u(m) and u(M)
algebras [53].

Internally, it generates a basis for the image algebra giving the effective Hamilto-
nian HU ∈ u(M) which corresponds to the evolution throught the differential dϕm,M

(iHStoiHU) of the canonical basis of u(m).
The adjoint representation gives a way to compute the HU corresponding to U .

While the matrix exponential gives an efficient way to go from HS to S or from HU

to U , matrix logarithms are not trivial for this application (see Section 5.5.2). In
particular, we need to restrict to logarithms in the image subalgebra of u(m), which
is smaller than u(M).

The basis of the image algebra allows us to write the inverse problem of going
from U to S as a linear system of equations. If the system is incompatible, we
declare U impossible to produce with linear optics alone. Otherwise, solving the
system gives an S such that U = ϕ(S).

When the system has no solution and U cannot be exactly implemented with
linear optics, there is a second function, Toponogov, which finds the scattering matrix
S providing a quantum evolution Ũ = ϕ(S) that approximates U .

The approximation is designed to minimize
∥∥U−Ũ

∥∥ for the Frobenius norm of
the difference between the desired evolution U and the evolution Ũ what we can
provide with linear optics. The function Toponogov works by an iterative procedure
based on Toponogov’s comparison theorem [54] using an initial guess matrix U0

inside the image of ϕm,M. The results are locally optimal insofar the method finds the
matrix Ũ which can be implemented which is closest to U in the local neighbourhood
of U0. This method can help to refine a random search. At the bare minimum it
will return the original random guess, usually with an improved approximation after
just a few steps.

The initial guesses are generated by the function RandU which produces a random
matrix in the image group, Ur ∈ imϕ (see Section 5.5.3). The function first generates
a random unitary Sr chosen uniformly at random from U(m) and, then, it computes
the evolution for n photons with StoU to produce Ur = ϕ(Sr).

With different random initial guesses, we can explore the solution landscape and

11

avoid staying trapped in a single local minimum.

5.4. Experimental realizations of linear interferometers

The scattering matrix S gives a complete description of a linear interferometer
and can be computed for any experimental setup by taking the product of the
scattering matrices of the corresponding elements.

There are two basic optical elements: beam splitters and phase shifters. Beam
splitters acting on two modes have a scattering matrix

SBS =

(
cosω sinω

sinω −cosω

)
. (11)

Phase shifters introduce a relative phase Φ in one mode with respect to the rest and
have a scattering matrix

SPS =

(
1 0
0 eiΦ

)
(12)

for two modes. For larger systems with m modes, the resulting scattering matrix is
an m×m identity matrix where the elements of SBS or SPS replace the elements in
the rows and columns with indices (k,k), (k, l), (l,k) and (l, l) when acting on the
modes with index k and l.

Any sequence of L elements, with S1 the first element at the input and SL the
last one, is described by the product matrix S = SLSL−1 · · ·S1.

There are a few known constructive methods which, given any valid unitary
S, produce a list of the beam splitters and phase shifters required to give that S
[55, 56, 57].

The package includes the function Selements which, for any input unitary ma-
trix S, returns the list of the required elements for experimental implementation.
The user can choose from the decompositions of Clements, Humphreys, Metcalf,
Kolthammer and Walsmley [56] (default) or the Reck, Zeilinger, Bernstein and
Bertani [55] method.

The output of the function Selements can be used as a list of the elements
needed to obtain the scattering matrix S in an optical table or to choose the param-
eters of programmable integrated photonic chips [58]. Combined with the design
methods in Section 5.3, it gives a complete design path from the desired unitary to
an experimental realization.

5.5. Other methods

The package is completed with some useful intermediate functions and partial
generalizations that help to perform numerical experiments for research.

12

5.5.1. Lossy linear interferometers and squeezing

The decompositions described in Section 5.4 are given for ideal, lossless multi-
ports. The description of linear optical systems in terms of a scattering matrix can
be generalized to introduce losses and squeezing if we replace unitary matrices by
what can be described as quasiunitary matrices S, such that

SGS† = G (13)

where G is a diagonal block matrix with elements I and −I for I the m×m identity
matrix in a system with m modes.

In this framework, we need to work both with creation and destruction operations
and the size of S doubles [41]. Now

S~a =

(
A B
B∗ A∗

)(
~̂a
~̂a†

)
, (14)

where ~̂a and ~̂a† are vectors with the annihilation and creation operators for each mode
and the matrix blocks at the bottom are the (untransposed) complex conjugates of
the first row blocks. For the passive networks discussed in the rest of the paper
B = 0.

The package includes the function QuasiU giving a decomposition of any quasiu-
nitary matrix in terms of simple optical blocks, which now include amplification and
losses. The function follows the decomposition of Tischler, Rockstuhl and S lowik
[39].

This method uses a different underlying description of the optical system and
it works independently from the other functions. The rest of the fuctions involving
matrix operations included in the package assume the inputs are unitary matrices.
Thus, the only scenario these quasiunitary samples would be compatible with them
would be for B = 0, where there is no need for two A, A∗ blocks due to no crossing
between loss and gain. If B = 0, we can simply use A as the unitary input to any
other method in the package.

5.5.2. Matrix logarithms

One particular difficulty when going from the unitary groups to the their corre-
sponding unitary algebras is choosing the right branch of the matrix logarithm.

While the exponential map is injective and there is only one unitary evolution
corresponding to each effective Hamiltonian, the logarithm is a multivalued function
and there exist many possible Hamiltonians for the same evolution.

The package works with the principal branch of the logarithm, logU = iK,
of a unitary matrix U ∈U(m), defined as

K† = K, exp(iK) = U, with the eigenvalues of K in (−π,π]. (15)

There are two slightly different definitions for the principal matrix logarithm. We
choose this definition with a closed interval on one side instead of the definition

13

with a valid interval (−π,π) for the eigenvalues so that there is always a principal
matrix logarithm, even for matrices with real negative eigenvalues (−1). Under our
definition, the matrix logarithm loses some properties, like infinite differentiability,
but they are not needed in any calculation involving linear interferometers. Covering
all the possible input matrices is more important for consistency and the −1 eigen-
value appears in many interesting evolutions, like the Quantum Fourier Transform
(described in Section 5.5.4).

There are efficient and stable numerical methods that can compute the prin-
cipal logarithm of a unitary matrix. The function Matlog uses different iterative
algorithms from Loring’s paper [59] under the user’s choice.

There is one final warning. One might be tempted to use the matrix logarithm
of a matrix U to compute HU and then use the basis of the image algebra, available
with the function AlgBasis, to find a suitable implementation. Unfortunately, the
principal logarithm is not guaranteed to lie inside the unitary image algebra, which
is a subalgebra of u(M). The correct method is given in the function SfromU, which
solves the problem by taking an indirect route in the adjoint representation.

The package can be used to perform numerical experiments that show the branch
of the logarithm inside the image algebra is not predictable in a straightforward
manner.

5.5.3. Random unitaries

Generating unitaries uniformly at random in U(m) and in imϕ ⊂U(M) can be
interesting in numerical experiments where we want to sample random interfer-
ometers and when testing new functions. It is also a fundamental element in the
approximation method in the function Toponogov described in Section 5.3.

The function RandU generates a unitary matrix chosen uniformly with respect to
the Haar measure. The random unitary is generated from a random complex matrix
with elements with normal random real and imaginary parts which is transformed
by a QR decomposition and then normalized [60, 61].

The function RandImU generates a random unitary U ∈ imϕ ⊂U(M) with a ran-
dom m×m matrix SR generated with RandU, which is the taken into U(M) using
StoU. The results is a random matrix in the image.

RandU is valuable for testing. For instance, we have used it to sample randomly
from U(M) and then check the approximations produced by Toponogov.

5.5.4. Quantum Fourier Transform matrices

The package includes the function QFT to generate a Quantum Fourier Transform
of any chosen size. This matrix has many interesting properties and is at the heart of
many successful quantum algorithms, like Shor’s algorithm for integer factorization
[62].

An N×N QFT matrix has elements

QFTx,y =
1√
N

ei 2πxy
N (16)

14

for x,y = 0, . . . ,N−1 in row x + 1 and column y + 1.
The QFT unitary is simply a normalized Discrete Fourier Transform matrix,

which is an entangling operation and has multiply degenerate eigenvalues (which
can only take the values 1,−1, i,−i) [63, 64]. These properties make it a good “hard
case” that can serve as benchmark for our numerical methods. Additionally, it is
the scattering matrix describing symmetric optical networks [65, 66].

5.5.5. State routines and entanglement evaluation

In many applications, individual quantum states are more important than the
whole evolution matrix. QOptCraft also includes some functions that make working
with states easier.

The function leading_terms counts the most relevant elements of a superposi-
tion and state_leading_fidelity returns a clean state taking only the terms of
the superposition that contribute up to a certain fidelity F , i.e. the truncated
state |ψ̃〉 is close to the original one |ψ〉 so that | 〈ψ|ψ̃〉 |2 > F . The function
state_leading_terms returns an approximation that rounds to zero the proba-
bility amplitude of the terms of the superposition that have a probability of being
measured below a given threshold.

The vector representation in the whole state space can be a bit cumbersome.
state_in_basis takes a natural description of a state given as a list of the terms
of the superposition and their complex weights and returns a complex array in the
corresponding basis in the format QOptCraft uses internally.

Finally, in some occasions we need to evaluate whether state presents entangle-
ment or not. There is no single entanglement measure which captures the whole
phenomenon and quantifies it in a clear cut way [67], but they are a useful guide.
We will use as an orientation the Schmidt rank, which assigns a figure to the entan-
glement in bipartite systems [68].

The function schmidt_rank_vector evaluates the entanglement between differ-
ent subsystems of the global state. It returns a vector where each element is the
Schmidt rank for the bipartite system composed of the corresponding subsystem
and the rest of the state. The user can introduce different groupings of the modes
to define each subsystem. Internally, it is computed by taking the state space to a
larger dimension where all the modes can carry up to n photons.

A detailed example of its use for entanglement evaluation can be found in Section
6.3.

5.5.6. Applications to quantum information

Apart from experiments in quantum optics, we might be interested in using a lin-
ear interferometer as the physical implementation for a target unitary quantum gate
Ut which performs a useful operation in quantum information processing. This can
be part of a quantum algorithm or a transformation in a quantum communication
protocol.

15

However, in linear interferometers, certain questions like swapping between two
states |n1 . . .nm〉 and |n′1 . . .n′m〉 are not possible in all the cases. For instance, no
linear operation can take |20〉 into |11〉 deterministically 1.

For that reason, if Ut is a logical quantum operation, the mapping between
the physical and the logical states is not trivial. The function SfromU includes a
parameter perm, enabling (for perm = True) its application for all available ordering
of the basis states in Hm,n, to make sure a logical operator is not possible or give
the scattering matrix which allows its experimental realization.

6. Usage examples

6.1. Computing the unitary evolution U from the scattering matrix S. Comparison
of the methods.

In most applications we will need to compute the evolution for a known linear
optical system. QOptCraft offers four alternative methods to compute U = ϕ(S)
which can be specified when calling StoU. Two of them are based on the state
transformations given from the description of the evolution of the operators in the
Heisenberg picture shown in Equation (4), method=0, or the description in terms
of permanents [45] computed either from the direct definition of the permanent,
method=1 or with an implementation using Ryser’s algorithm [47, 48], method=2.

Internally, these methods build the unitary matrix U column by column by com-
puting how each input state in the state basis evolves in a linear system with the
given scattering matrix S.

For individual state evolution, the functions evolution, evolution_2 and evo-

lution_2_ryser can be called on individual states of the basis to recover the cor-
responding output state without computing the full matrix using methods 0, 1 and
2, respectively.

The fourth method to compute U = ϕ(S), method=3, is indirect. First we take the
matrix logarithm of S and evolve this Hamiltonian for input states with n photons
following Equation (9). Then, U is computed from the matrix exponential of this
Hamiltonian HU .

The function QOCTest runs tests to compare the efficiency of these methods
under different circumstances and can take the output to an Excel table. Table
6.1 compares the time it takes the four different methods to compute U = ϕ(S) for
a scattering matrix S chosen uniformly at random using RandU. QOCTest can also
compare the times starting from S matrices that are the m×m QFT (a symmetric
multiport) with similar results.

The results in the Table are presented in arbitrary time units scaled by the
minimum computation time and shown in logarithmic scale for a better comparison.

1Using Equation (4) we can see U |20〉 = 1√
2
(S2

11â†2
1 + 2S11S21â†

1â†
2 + S2

21â†2
2) |00〉. The output

state can only be |11〉 for a linear interferometer where both S11S21 = 1√
2

and S11 = S21 = 0 are

simultaneously true, which is impossible.

16

m 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
n 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
M 3 4 5 6 6 10 15 21 10 20 35 56 15 35 70 126

Heisenberg (0) 0.00 1.89 3.54 3.80 2.84 4.85 5.44 6.54 4.11 5.44 7.29 9.31 5.03 6.73 9.22 11.75
Permanent (1) 0.31 1.81 3.57 4.50 3.58 2.47 3.92 5.98 3.51 3.84 5.59 7.91 3.10 4.98 7.00 9.55

Ryser (2) 0.34 2.23 3.75 3.03 3.85 2.92 4.22 5.52 3.85 4.29 5.91 7.47 3.41 5.43 7.30 9.10
Hamiltonian (3) 1.49 2.78 2.74 2.82 3.89 4.51 5.19 5.67 5.18 6.10 7.38 8.65 5.90 7.88 9.82 11.52

Table 1: Logarithm of the normalized execution times (arbitrary units) for the four computation
methods and different sizes M of the relevant Hilbert space.

These tests were performed on an AMD Phenom II X6 1055T Processor with 6 cores
of 2.8 GHz where the execution is confined to a single core.

By default, QOptCraft uses the permanent method with Ryser’s algorithm. How-
ever, it is interesting to note that, for a fixed number of modes, we have observed the
Hamiltonian method tends to give a better performance as the number of photons
grow.

Figure 6.1 shows the results of three experiments where, for a random scattering
matrix Sr chosen uniformly at random from the Haar measure, we computed U =
ϕ(Sr) using Ryser’s algorithm and the Hamiltonian method. The experiments were
performed in a single 2.8 GHz core for m = 2, m = 3 and m = 4 and a growing
number of photons n (up to the point where the execution times were reasonable).
The results are presented in logarithmic scale and the time units are normalized by
the maximum execution time. All the times are computed from the average of 5
executions for the same matrix.

We have added for comparison a line with the time for Ryser’s method divided
by the dimension M of the state space. This approximates the time to compute a
single column of the matrix and gives an idea of the work involved in computing the
evolution of a single state as opposed to computing the full matrix. For those tasks,
it might be better to use one of the state by state methods instead of computing
the whole matrix U , but, at least in our examples, there is a threshold at which it
is more efficient just to compute the whole matrix U from its Hamiltonian.

Notice that, in this work, there has been no explicit optimization to reduce the
running time apart from basic tweaks. It would interesting to see in a future work
whether the matrix exponential can be sped up taking advantage that HU is a sparse
matrix and how the Hamiltonian method compares to optimized versions of Ryser’s
algorithm.

6.2. The Quantum Fourier Transform evolution

As an example on the package, we show the design of a Quantum Fourier Trans-
form evolution for a system with 3 ports and 2 photons (n = 2 , m = 3). The state
space has a size M =

(n+m−1
n

)
=
(4

2

)
= 6.

17

10 20

n

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ti
m

e
(a

.u
.)

m = 2

Hamiltonian

Ryser

Ryser
(state)

5 10 15

n

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ti
m

e
(a

.u
.)

m = 3

Hamiltonian

Ryser

Ryser
(state)

5 10

n

10−6

10−5

10−4

10−3

10−2

10−1

100

ti
m

e
(a

.u
.)

m = 4

Hamiltonian

Ryser

Ryser
(state)

Figure 5: Execution time comparison for Ryser’s algorithm (solid line) and the Hamiltonian meth-
ods (dotted line) with an increasing number of photons (x axis). The times are shown in arbitray
units, normalized to the maximum time and presented in logarithmic scale. The line with the point
markers represents the time for Ryser’s method divided by the number of columns M of the matrix
U and gives an approximation to the time needed to compute the evolution of a single state.

In our design example, we first generate the target 6×6 unitary matrix

Ut =
1√
6

1 1 1 1 1 1

1 ei 2π

6 ei 2π2
6 ei 2π3

6 ei 2π4
6 ei 2π5

6

1 ei 2π2
6 ei 2π4

6 ei 2π6
6 ei 2π8

6 ei 2π10
6

1 ei 2π3
6 ei 2π6

6 ei 2π9
6 ei 2π12

6 ei 2π15
6

1 ei 2π4
6 ei 2π8

6 ei 2π12
6 ei 2π16

6 ei 2π20
6

1 ei 2π5
6 ei 2π10

6 ei 2π15
6 ei 2π20

6 ei 2π25
6

. (17)

The function QFT generates the matrix in the output file QFT_matrix_6.txt.

1 from QOptCraft.Main_Code import * # load all functions

2 # We first generate the 6 x 6 QFT matrix:

3 QFT(filename="QFT_matrix_6",N=6)

18

Our first step is to find whether the matrix in Eq. (17) can be obtained exactly
with linear optics or not, for which we use the function SfromU.

4 # Is the original matrix already possible?

5 SfromU(file_input=True,filename="QFT_matrix_6",

6 txt=True,acc_d=2,m=3,n=2)

One of the possible input parameters is an ordered basis for the Hilbert space with
n = 2 photons in m = 3 modes. In this case, we have left it empty and SfromU gener-
ates the default basis, which, in this case, is {|200〉 , |110〉 , |101〉 , |020〉 , |011〉 , |002〉}.
We have

|200〉=

1
0
0
0
0
0

 , |110〉=

0
1
0
0
0
0

 , |101〉=

0
0
1
0
0
0

 , |020〉=

0
0
0
1
0
0

 , |011〉=

0
0
0
0
1
0

 , |002〉=

0
0
0
0
0
1

 . (18)

The code is incapable of finding a valid S which produces the quantum evolution
U of the QFT matrix of Eq. (17). This was bound to be expected, since linear optics
elements can only produce a limited amount of evolutions U ∈U(M).

If we want to continue, we need to turn to the iterative algorithm in Toponogov

(for m = 3 modes, n = 2 photons and the matrix file with the 6×6 QFT).

7 # Getting "QFT_matrix_6.txt"'s closest evolution matrix U.

8 Toponogov(file_input=True,filename="QFT_matrix_6",base_input=False,

file_output=True,m=3,n=2,tries=20)↪→

After 20 attempts, we found 9 different U i
t approximations, with some approxi-

mations appearing more than once. Each approximation has a different distance to
the original Ut in (17). We use as a distance the Frobenius norm of Ut−U i

t defined by
our matrix inner product metric. Toponogov produces a general output file listing
all the found evolution matrices and their distance to the target evolution, as well
as files with each individual matrix.

In our randomized trial, we choose the third one U3
t , with a minimal distance

d(U3
t ,Ut) = 2.29449, and elements:

U3
t =

0.01i −0.08−0.05i −0.03−0.05i 0.71−0.11i 0.62 + 0.11i 0.24 + 0.14i

0.03−0.02i −0.07 + 0.26i −0.16 + 0.19i 0.12 + 0.61i 0.06−0.37i 0.27−0.51i
0.09 + 0.05i −0.77 + 0.18i −0.46−0.04i 0.14−0.09i −0.20 + 0.10i −0.26 + 0.02i
−0.10−0.09i −0.26−0.07i 0.33 + 0.23i −0.26 + 0.06i 0.56 + 0.07i −0.54−0.27i
0.10−0.47i −0.12−0.41i −0.05 + 0.59i 0.06 + 0.08i −0.10−0.27i 0.03 + 0.38i
0.82−0.26i −0.14 + 0.11i 0.41−0.21i 0.01−0.02i −0.05 + 0.05i 0.10−0.07i

 .

(19)

We are guaranteed to find a suitable St matrix which produces the approximate
QFT matrix in Eq. (19) for the evolution of 2 photons in 3 modes and the basis in
Eq. (18). Using Selements, we can decompose St into different linear optic devices.

19

9 # Getting "QFT_matrix_6_toponogov_3.txt"'s S-matrix.

10 SfromU(file_input=True,filename="QFT_matrix_6_toponogov_3",

11 file_output=True,m=3,n=2)

12

13 # Decomposition of "QFT_matrix_6_toponogov_3.txt's S-matrix".

14 Selements(file_input=True,file_output=True,newfile=False,

15 impl=0,filename="QFT_matrix_6_toponogov_3_m_3_n_2_S_recon_main")

SfromU takes the file with the best approximation to the QFT and generates a
file with the scattering matrix St which gives the desired approximated evolution.
The output is then used as the input of Selements to obtain a list of the basic
optical devices needed to build St experimentally.

The resulting St is:

St =

 0.07679 −0.61787 + 0.57579i −0.48484 + 0.21387i
−0.11099−0.34803i −0.36813−0.36367i 0.32869 + 0.70053i
0.63057−0.68047i −0.05348 + 0.12676i 0.19068−0.28992i

 . (20)

By default, Selements gives a list of phase shifters in a diagonal matrix D and
a list of Tmn matrices, following the decomposition in [56] so that:

St = (T even
12)−1(T even

23)−1DT odd
12 . (21)

After running Selements, we obtain the matrices:

D =

0.7024 + 0.7118i 0.0000 0.0000
0.0000 −0.3887 + 0.9214i 0.0000
0.0000 0.0000 0.5495−0.8355i

 , (22)

T odd
12 (θ = 1.7180,φ = 0.3481) =

−0.1379−0.0500i −0.9892 0.0000
0.9298 + 0.3374i −0.1467 0.0000

0.0000 0.0000 1.0000

 , (23)

T even
12 (θ =−2.5368,φ =−1.5941) =

0.0192 + 0.8249i 0.5650 0.0000
0.0131 + 0.5649i −0.8251 0.0000

0.0000 0.0000 1.0000

 , (24)

T even
23 (θ = 1.2164,φ = 1.0205) =

1.0000 0.0000 0.0000
0.0000 0.1815 + 0.2958i −0.9379
0.0000 0.4905 + 0.7994i 0.3470

 . (25)

The output is given in the format Tk,l for a generalized beam splitter acting on modes
k and l. The resulting optical element is defined by two angles φ and θ . φ gives
the phase shift in a phase shifter at the input k and θ gives the splitting ratio of a
general beam splitter so that

Tk,l(θ ,φ) =

(
eiφ cosθ −sinθ

eiφ sinθ cosθ

)
. (26)

20

D is achieved with m phase shifters.
Each Tk,l evolution can be achieved with a phase shifter with a φ phase shift

followed by a beam splitter with a splitting angle θ . The inverse operations (Tk,l)
−1

can be achieved with a beam splitter with a splitting angle −θ followed by a phase
shifter with a −φ shift.

This completes the whole path from the target evolution in Eq. (17) to the
experimental setup which best approximates that evolution for two input photons in
the ordered basis of Eq. (18). Figure 6.2 shows the final optical setup corresponding
to the results in the output of Selements.

1

2

3

1

2

3

0.348

θ = 1.718

T odd
12

−0.989

1.970

0.792

D

θ = −1.216

−1.02

(T even
23)−1 θ = 2.537

1.594

(T even
12)−1

Figure 6: Optical system giving the optimal approximation to a 6× 6 QFT for 2 photons using
unbalanced optical couplers (or beam splitters) and phase shifters (phase indicated inside the box).

Alternatively, the same evolution can be achieved replacing the unbalanced beam
splitter by two balanced, 50 : 50, beam splitters with a phase shift 2θ in the middle
and the phase shifters in D can be avoided if the output is measured immediately
after the device with some transformations on the Tk,l matrices [56].

6.3. Generation of entangled states

6.3.1. Quantifying entanglement

Highly entangled states are a basic resource in multiple quantum optics experi-
ments and quantum information procotols. For instance, the Bell state

|00〉+ |11〉√
2

, (27)

which can be generated with nonlinear crystals, is usually employed as an input to
linear optical systems to provide additional capacities to the system.

Generating these entangled resource states can be complex and there exist differ-
ent proposals to create a variety of these states as efficiently as possible [21, 35]. One
of the applications of QOptCraft is producing and evaluating optical transformations
which produce highly entangled photon states from easy to produce inputs.

The function schmidt_rank_vector returns an orientiative score on how entan-
gled the different subsystems in a state are. A value of 1 means the subsystems

21

are separable. While, as a rule, higher numbers in all the positions mean a higher
available entanglement, the Schmidt rank vector must be used with care.

We can check some basic examples. For instance, in our mode notation, a Bell
state with polarization correlation for photons in a horizontal |H〉 or vertical |V 〉
polarization state can be represented as

|0101〉+ |1010〉√
2

(28)

with |HH〉 ≡ |0101〉 and |VV 〉 ≡ |1010〉.
1 basisn2m4=photon_combs_generator(4,[1,0,1,0])

2 Bell=state_in_basis([[1,0,1,0],[0,1,0,1]],

[1/np.sqrt(2),1/np.sqrt(2)],basisn2m4)↪→

3 print('schmidt_rank_vector(Bell,basisn2m4,[2,2]))

The resulting vector [2,2] suggests it is an entangled state for the two subsys-
tems with two modes each.

The Schmidt rank vector is useful to detect entanglement, but should be used
with care. For instance, the state

√
1− ε |0101〉+√ε |1010〉 for ε � 1 is basically a

separable state |0101〉. However, the code

4 eps=1e-3

5 AlmostSeparable=state_in_basis([[1,0,1,0],[0,1,0,1]],

[np.sqrt(1-eps),np.sqrt(eps)],basisn2m4)↪→

6 print(schmidt_rank_vector(AlmostSeparable,basisn2m4,[2,2]))

returns the same result as the proper Bell state. The state handling functions
can help to clean up the input states. For a threshold fidelity of 0.99, the code

7 fidelity=0.99

8 states,weights=state_leading_fidelity(AlmostSeparable,

basisn2m4,fidelity)↪→

9 cleanstate=state_in_basis(states,weights,basisn2m4)

10 print(schmidt_rank_vector(cleanstate,basisn2m4,[2,2]))

returns [1,1] showing the input was, in essence, a separable state.
Finally, we can use schmidt_rank_vector to study higher order entanglement.

We can see an application to photons carrying Orbital Angular Momentum, OAM,
with the state |ψ422〉 that was found using automated search in [21]. We have a
state

|ψ422〉=
1
2

(|000〉+ |101〉+ |210〉+ |311〉) (29)

where each ket represents the state of a single photon and the numbers give the
mode, which corresponds to the OAM value the photon has. The first photon can
carry OAM values from 0 to 3 and last two photons can only be in states with OAM

22

0 or 1. In the mode notation of QOptCraft, the state becomes

|ψ422〉=
1
2

(|0001〉 |01〉 |01〉+ |0010〉 |01〉 |10〉+ |0100〉 |10〉 |01〉+ |1000〉 |10〉 |10〉)
(30)

where the first four modes give the possible state of the first photon, the following
two modes the state of the second photon and the last two modes the state of the
third photon.

If we generate this state in the corresponding basis and check the Schmidt rank
for the subsystems of each photon with the rest with the commands

11 basisn3m8=photon_combs_generator(8,[1,1,1,0,0,0,0,0])

12 State422=state_in_basis([[0,0,0,1,0,1,0,1],

[0,0,1,0,0,1,1,0],[0,1,0,0,1,0,0,1],[1,0,0,0,1,0,1,0]],

[1/2,1/2,1/2,1/2],basisn3m8)

↪→

↪→

13 print(schmidt_rank_vector(State422,basisn3m8,[4,2,2]))

we obtain, as expected, the [4,2,2] vector.

6.3.2. Creation of advanced entangled states

In practice, we would like to be able to generate highly entangled states from
inputs that can be efficiently generated in the lab. This usually means finding an
optical system which can take a simple separable input with a single photon in a
few selected modes and produce a useful entangled state which can be used in other
protocols.

The output states should be easy to recognize and have a simple description.
A random S matrix with a separable input produces output states that are highly

entangled. We can check this is the case using

1 # Entanglement produced by a random transformation

2 basisn4m5=photon_combs_generator(5,[1,0,1,1,1])

3 Sr=RandU(file_output=False,filename=False,N=5,txt=False) # The

random scattering matrix↪→

4 Ur,bas=StoU(file_input=False,S=Sr,file_output=False,

filename=False,method=2,n=4,vec_base=basisn4m5) # Evolution U↪→

5 input_state=state_in_basis([[1,1,1,1,0]],np.array([1]),basisn4m5)

The state in the Hilbert space basis we use↪→

6 output_state=np.matmul(Ur,input_state.T)

7 print(leading_terms(output_state,0.99))

8 print(schmidt_rank_vector(output_state,basisn4m5,[1,1,1,1,1]))

The output subsystems are highly entangled and, in a typical run of this code,
we obtain a Schmidt rank vector [5,5,5,5,5]. This is similar to what happens in the
random evolutions used in boson sampling [9] and part of the reason why classical
simulations struggle to simulate the output distribution.

However, the resulting states are a superposition of basically all the possible
states in the basis (all the ways to put the n photons in the m modes). From the

23

70 states in the basis of the chosen example, depending on the concrete random
matrix, there are around 40 terms which cumulatively have a probability of 0.9 of
appearing in a measurement and usually more than 50 states are needed to explain
the measurements in 99% of the cases. This kind of output superposition is not very
practical for further use.

In our automated search for entanglement generating linear optical systems we
would like to produce more compact output states. We give an example based on
the heuristic that transformations producing cyclic rotations of the basis states are
usually a prelude for entanglement generation [21].

Instead of searching for perfect cyclic rotations in a subset of all the possible
inputs, we suppose that an approximation to a perfect rotation of all the basis
states using Toponogov will produce an output which is, at the same time, compact
and entangled. This has usually been the case in our experiments.

Notably, when approximating simple entangling unitary evolutions, we have
found that, for simple inputs, the best approximation produces states with a small
number of relevant terms, but the second best approximation or approximations
with a larger matrix distance tend to take the input into a superposition of a larger
number of states.

The presented example produces an state with two photons in three modes

|M〉=
|011〉+ |101〉+ |110〉√

3
(31)

in a superposition where the empty mode is distributed in all the three possible
positions. We have chosen the name M state because the expression reminds of an
inverted version of the W states for three systems in a uniform superposition of only
one system being excited.

The chosen configuration puts n = 4 photons into m = 5 modes. First, we approx-
imate a rotation matrix in the 70×70 Hilbert space of the photons. Experimentally,
we usually prefer states with a single photon in each mode, which are easier to pro-
duce and measure without photon number resolving detectors. We put those states
close in the generated basis so that the rotation matrix we approximate would ideally
move from one to another, at least for the first ones.

1 state_basis=subspace_basis(5,[1,0,1,1,1],[[0,1,1,1,1],

2 Toponogov(file_input=False,U_input=RotMat(70,1),file_output=True,

filename="Rotated",tries=10,m=5,n=4,acc_d=3,txt=False,

acc_t=3,vec_base=state_basis)

↪→

↪→

In order to make the search efficient in time, we have reduced the convergence
criterion of the approximation to 10−3. We tried 10 different initial random matrices,
which took around 1.5 hours of computation in a 2.8 GHz core. We then took the
best approximation, with a trace distance of 9.80 to the original matrix, and checked

24

[1,0,1,1,1],[1,1,0,1,1],[1,1,1,0,1],[1,1,1,1,0]])↪→

the output for the five possible input states where no mode holds more than one
photon. We show the output for the most compact result.

3 U=read_matrix_from_txt('Rotated_toponogov_1') # Closest matrix

4 input_state=state_in_basis([[1,1,1,1,0]],np.array([1]),state_basis)

The state in the Hilbert space basis we use↪→

5 output_state=np.matmul(U,input_state.T)

6 fidelity=0.99

7 shortstate,

weights=state_leading_fidelity(output_state,state_basis,fidelity)↪→

8 short=state_in_basis(shortstate,weights,state_basis)

For an input |1,1,1,1,0〉, the output |ψout〉 can be approximated by the state

|ψM〉= α1 |11011〉+ α2 |11101〉+ α3 |11110〉 , (32)

with α1 =−0.11335+0.11385i, α2 = 0.35403−0.52643i and α3 = 0.61096−0.43433i
and | 〈ψM|ψout〉 |2 > 0.99.

The first two modes always carry a photon. They can be used as ancillary modes
and measure them as a check and then work with the remaining three modes. We
call the resulting state a partial M state.

The output is a partial version with a somewhat large imbalance between terms,
which appear with a probability |α1|2 = 0.0258, |α2|2 = 0.4025 and |α3|2 = 0.5619.
If we introduce two attenuators, one in the first mode (with a total transmission
T1 = 0.046) and one in the second mode (with a total transmission T2 = 0.716), we
obtain a balanced M state with a 3.28% probability. This state can be used in
experiments with postselection where we know that, if two photons are measured,
we had the M state at the beginning. The relative phases between the terms, if
needed, can be corrected by choosing the correct combination of phase shifters for
each of the three modes.

The unbalanced M state in Equation (32) can be created in a setup with 10
beamsplitters and 15 phase shifters. The values of the required elements can be
found using the functions SfromU and Selements . The elements for the matrix we
have found are included with the code in the Examples folder.

6.4. Decomposition of quasiunitary scattering matrices

Since systems with loss are of great interest for further experiments of quantum
computing with linear optics devices, we show two simple examples of the function
QuasiU. They give the classical description of linear systems which can include losses
and amplification.

The first one is the lossy beam splitter given by the T transformation:

T =
1
2

(
1 −1
−1 1

)
, (33)

which has already been analyzed in [39].
The only command required is

25

1 # Obtaining "T_dim2x2.txt"'s S-matrix.

2 QuasiU(file_input=True,filename="T_dim2x2",

newfile=False,file_output=True)↪→

QuasiU gives a lot of information about the experimental implementation of
the transformation in Eq. (33). The algorithm decomposes any arbitrary complex
matrix M by using the Schur decomposition: generally, M = UDW , with U and W
being unitary and D a diagonal matrix.

Combining the latter result with the linear optic devices decompositition for uni-
tary matrices such as U and W (see the use of Selements in the previous example),
QuasiU returns the decomposition of T , which turns out to be a product of

U = UD ·UT1,2 (θ = 0.785,φ = 0.000) =

(
−1.000 0.000
0.000 1.000

)(
0.707 −0.707
0.707 0.707

)
, (34)

D =

(
1.000 0.000
0.000 0.000

)
and (35)

W = WD ·WT1,2 (θ = 0.785,φ = 0.000) =

(
−1.000 0.000
0.000 1.000

)(
0.707 −0.707
0.707 0.707

)
. (36)

Since D contains a value d22 = 0 < 1, there is loss in the second port. In order to
give a complete description, we need a third ancilla mode (and the three matrices
U , D, W are padded with one extra dimension as a result).

This results in a straightforward quasiunitary system with loss in one mode via
a virtual beam splitter incorporating the ancilla mode. The resulting scattering
matrix for T is:

S =

0.500 −0.500 0.707 0.000 0.000 0.000
−0.500 0.500 0.707 0.000 0.000 0.000
−0.707 −0.707 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.500 −0.500 0.707
0.000 0.000 0.000 −0.500 0.500 0.707
0.000 0.000 0.000 −0.707 −0.707 0.000

 . (37)

This reconstructed matrix is stored in an output file when running QuasiU .
Non-diagonal matrix blocks are zero, which means no cross-interaction between

the modes in each block, which are unitary. For such cases where there is no squeez-
ing, the user can take out the first diagonal block and go back to a unitary repre-
sentation of the device where we have needed to add ancillary modes to represent
losses. The resulting scattering matrix is

S =

 0.500 −0.500 0.707
−0.500 0.500 0.707
−0.707 −0.707 0.000

 . (38)

26

As (38) is unitary, it is compatible with the other functions of QOptCraft and
we can also compute its quantum evolution with StoU or find different experimental
realizations of that lossy beam splitter with Selements.

In the second example we show the general method for arbitrary input complex
matrices M. We can create new complex matrices either from the already known
function QuasiU or the generator RandM.

In this example, we use the random matrices produced by RandM.

1 # We first generate the random matrix:

2 RandM(filename="M_dim2x3",N1=2,N2=3)

RandM generates a random N1×N2 complex matrix with elements drawn from
a normal distribution in their real and imaginary parts. For our experiment, we
picked a non-square 2x3 random complex matrix

M =

(
0.77−0.04i −0.07−0.57i 0.21−0.71i
0.53−0.34i 1.08 + 0.16i −0.24−0.05i

)
. (39)

The next command will be QuasiU ’s execution:

3 # Obtains "M_dim2x3.txt"'s quasiunitary representation S.

4 QuasiU(file_input=True,filename="M_dim2x3",

5 newfile=False,file_output=True)

Looking at the output file of QuasiU with the decomposition, we see that, this
time, the three matrices U , D, W given by the Schur decomposition of (39) will
be dimensionally different. All of them need to be expanded to quadratic N x N
matrices, with N being the highest of both N1,N2 (in this case, N = 3).

A quick gaze to the diagonal matrix D allows us to detect gain on the first and

27

second ports.

U = UD ·UT1,2 (θ = 0.93,φ = 0.00)

=

−1.00 0.00 0.00
0.00 −0.79−0.62i 0.00
0.00 0.00 1.00

0.60 −0.80 0.00
0.80 0.60 0.00
0.00 0.00 1.00

 , (40)

D =

1.37 0 0
0 1.12 0
0 0 1

 and (41)

W =
(

WT even
1,2

(θ = 2.76,φ = 0.58)
)−1
·
(

WT even
2,3

(θ = 2.41,φ = 1.07)
)−1

·WD ·WT odd
1,2

(θ = 1.99,φ = 6.03)

=

−0.78−0.51i −0.37 0.00
0.31 + 0.20i −0.93 0.00

0.00 0.00 1.00

−11.00 0.00 0.00
0.00 −0.35−0.65i −0.67
0.00 0.32 + 0.59i −0.74

−1

−0.99 + 0.14i 0.00 0.00
0.00 −0.14 + 0.99i 0.00
0.00 0.00 −1.00 + 0.07i

−0.40 + 0.10i −0.91 0.00
0.88−0.23i −0.41 0.00

0.00 0.00 1.00

 .

(42)

Gain devices, like parametric amplifiers, imply cross-interactions which prevent
a unitary description. The quantum mechanical description of the oscillating EM
field now requires explicit mention to both the creation and annihilation operators
in the corresponding modes. These systems are called active, whereas loss-only cases
akin to the previous example are known as passive.

Active systems do present no-null non-diagonal blocks in the scattering repre-
sentation S of M as a consequence of cross-interaction. QuasiU reconstructs a valid
quasiunitary matrix in an output file.

For our example, the file returns a scattering matrix S which can be expressed
in terms of two blocks A and B. The complete description of the active linear sytem

28

is given by a 10-dimensional quasiunitary matrix.

S =

(
A B∗

B A∗

)
, (43)

A =

0.77−0.04i −0.07−0.57i 0.21−0.71i 0.00 0.00
0.53−0.34i 1.08 + 0.16i −0.24−0.05i 0.00 0.00
−0.07−0.61i −0.04 + 0.27i 0.74−0.05i 0.00 0.00

0.00 0.00 0.00 1.37 0.00
0.00 0.00 0.00 0.00 1.12

 ,

B =

0.00 0.00 0.00 −0.56 0.40
0.00 0.00 0.00 −0.60 + 0.47i −0.23 + 0.18i
0.00 0.00 0.00 0.00 0.00

−0.43 + 0.34i −0.50 + 0.53i 0.03 + 0.23i 0.00 0.00
0.22 + 0.15i −0.28−0.06i 0.13−0.28i 0.00 0.00

 .

7. Summary

We have presented the main functions and the theory behind the Python package
QOptCraft for the automated design and analysis of quantum linear optical systems.
This paper serves as a complement to the guide included with the software [1], where
the reader can find the complete description of the function parameters as well as
additional use examples. Here, we have explained the relationship between the
different procedures and have related all the concepts to the groups and algebras
that appear in the description of linear optical systems in a quantum setting.

The package can be used as a black box for experiment design or as a basic
library to build more complex programs dealing with optical interferometers.

Acknowledgements

The authors thank Alejandro Escorihuela Tomás for serving as a beta tester
of the package. D. Gómez Aguado has been supported by the Spanish Govern-
ment (Ministerio de Educación y Formación Profesional, Beca de Colaboración en
Departamentos Universitarios). V. Gimeno has been partially supported by the Re-
search Program of the University Jaume I–Project UJI-B2018-35, as well as by the
Spanish Government and FEDER grants PID2020-115930GA-I00 (MICINN) and
MTM2017-84851-C2-2 (MINECO). J.J. Moyano-Fernández was partially supported
by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”,
grants PGC2018-096446-B-C22 and RED2018-102583-T, as well as by Universitat
Jaume I, grant UJI-B2021-02. J.C. Garcia-Escartin has been funded by the Spanish
Government and FEDER grant PID2020-119418GB-I00 (MICINN) and Junta de
Castilla y León (project VA296P18).

29

References

References

[1] D. Gómez Aguado, J. Garcia-Escartin, QOptCraft : user guide,
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_

user_guide.pdf (2021).

[2] J. Johansson, P. Nation, F. Nori, QuTiP: An open-source Python framework
for the dynamics of open quantum systems, Computer Physics Communications
183 (8) (2012) 1760–1772.

[3] J. Johansson, P. Nation, F. Nori, QuTiP 2: A Python framework for the dy-
namics of open quantum systems, Computer Physics Communications 184 (4)
(2013) 1234–1240.

[4] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, C. Weedbrook, Straw-
berry Fields: A Software Platform for Photonic Quantum Computing, Quan-
tum 3 (2019) 129.

[5] S. L. Braunstein, P. van Loock, Quantum information with continuous vari-
ables, Reviews of Modern Physics 77 (2005) 513–577.

[6] C. Weedbrook, S. Pirandola, R. Garćıa-Patrón, N. J. Cerf, T. C. Ralph, J. H.
Shapiro, S. Lloyd, Gaussian quantum information, Reviews of Modern Physics
84 (2012) 621–669.

[7] O. Pfister, Continuous-variable quantum computing in the quantum optical
frequency comb, Journal of Physics B: Atomic, Molecular and Optical Physics
53 (1) (2019) 012001.

[8] B. Gupt, J. Izaac, N. Quesada, The Walrus: a library for the calculation of
hafnians, Hermite polynomials and Gaussian boson sampling, Journal of Open
Source Software 4 (44) (2019) 1705.

[9] S. Aaronson, A. Arkhipov, The computational complexity of linear optics, The-
ory of Computing 9 (4) (2013) 143–252.

[10] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O’Brien, T. C.
Ralph, Boson sampling from a gaussian state, Physical Review Letters 113
(2014) 100502.

[11] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex,
Gaussian boson sampling, Physical Review Letters 119 (2017) 170501.

[12] J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Brádler, N. Killoran,
Machine learning method for state preparation and gate synthesis on photonic
quantum computers, Quantum Science and Technology 4 (2) (2019) 024004.

30

https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_user_guide.pdf
https://github.tel.uva.es/juagar/qoptcraft/-/blob/main/QOptCraft_user_guide.pdf

[13] K. K. Sabapathy, H. Qi, J. Izaac, C. Weedbrook, Production of photonic uni-
versal quantum gates enhanced by machine learning, Physical Review A 100
(2019) 012326.

[14] K. Bharti, T. Haug, V. Vedral, L.-C. Kwek, Machine learning meets quantum
foundations: A brief survey, AVS Quantum Science 2 (3) (2020) 034101.

[15] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez, Inverse
design in nanophotonics, Nature Photonics 12 (11) (2018) 659–670.

[16] M. Krenn, M. Erhard, A. Zeilinger, Computer-inspired quantum experiments,
Nature Reviews Physics 2 (11) (2020) 649–661.

[17] P. Knott, R. Nichols, L. Mineh, J. Rubio, L. O’Driscoll, J. Matthews, AdaQuan-
tum – code repository, https://github.com/paulk444/AdaQuantum (2018).

[18] P. Knott, A search algorithm for quantum state engineering and metrology,
New Journal of Physics 18 (7) (2016) 073033.

[19] R. Nichols, L. Mineh, J. Rubio, J. C. F. Matthews, P. A. Knott, Designing quan-
tum experiments with a genetic algorithm, Quantum Science and Technology
4 (4) (2019) 045012.

[20] L. O’Driscoll, R. Nichols, P. A. Knott, A hybrid machine learning algorithm for
designing quantum experiments, Quantum Machine Intelligence 1 (1) (2019)
5–15.

[21] M. Krenn, M. Malik, R. Fickler, R. Lapkiewicz, A. Zeilinger, Automated search
for new quantum experiments, Physical Review Letters 116 (2016) 090405.

[22] X. Gu, L. Chen, A. Zeilinger, M. Krenn, Quantum experiments and graphs.
III. High-dimensional and multiparticle entanglement, Physical Review A 99
(2019) 032338.

[23] F. Schlederer, M. Krenn, R. Fickler, M. Malik, A. Zeilinger, Cyclic transforma-
tion of orbital angular momentum modes, New Journal of Physics 18 (4) (2016)
043019.

[24] A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn,
A. Zeilinger, High-dimensional single-photon quantum gates: Concepts and
experiments, Physical Review Letters 119 (2017) 180510.

[25] M. Erhard, M. Malik, M. Krenn, A. Zeilinger, Experimental Greenberger–
Horne–Zeilinger entanglement beyond qubits, Nature Photonics 12 (12) (2018)
759–764.

31

https://github.com/paulk444/AdaQuantum

[26] X. Gao, M. Erhard, A. Zeilinger, M. Krenn, Computer-inspired concept for
high-dimensional multipartite quantum gates, Physical Review Letters 125
(2020) 050501.

[27] M. Krenn, J. S. Kottmann, N. Tischler, A. Aspuru-Guzik, Conceptual under-
standing through efficient automated design of quantum optical experiments,
Physical Review X 11 (2021) 031044.

[28] M. Krenn, A. Hochrainer, M. Lahiri, A. Zeilinger, Entanglement by path iden-
tity, Physical Review Letters 118 (2017) 080401.

[29] X. Gao, M. Krenn, J. Kysela, A. Zeilinger, Arbitrary d-dimensional Pauli X
gates of a flying qudit, Physical Review A 99 (2019) 023825.

[30] X. Gu, Melvin python, https://github.com/XuemeiGu/MelvinPython/

(2019).

[31] M. Krenn, J. S. Kottmann, N. Tischler, A. Aspuru-Guzik, Theseus code,
hhttps://github.com/aspuru-guzik-group/Theseus (2018).

[32] T. Adler, M. Erhard, M. Krenn, J. Brandstetter, J. Kofler, S. Hochreiter, Quan-
tum optical experiments modeled by long short-term memory, Photonics 8 (12)
(2021).

[33] A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger,
H. J. Briegel, Active learning machine learns to create new quantum experi-
ments, Proceedings of the National Academy of Sciences 115 (6) (2018) 1221–
1226.

[34] J. Wallnöfer, A. A. Melnikov, W. Dür, H. J. Briegel, Machine learning for
long-distance quantum communication, PRX Quantum 1 (2020) 010301.

[35] F. V. Gubarev, I. V. Dyakonov, M. Y. Saygin, G. I. Struchalin, S. S. Straupe,
S. P. Kulik, Improved heralded schemes to generate entangled states from single
photons, Physical Review A 102 (2020) 012604.

[36] X. Zhan, K. Wang, L. Xiao, Z. Bian, Y. Zhang, B. C. Sanders, C. Zhang,
P. Xue, Experimental quantum cloning in a pseudo-unitary system, Physical
Review A 101 (2020) 010302.

[37] N. M. VanMeter, P. Lougovski, D. B. Uskov, K. Kieling, J. Eisert, J. P. Dowl-
ing, General linear-optical quantum state generation scheme: Applications to
maximally path-entangled states, Physical Review A 76 (2007) 063808.

[38] D. Pozar, Microwave Engineering, 4th Edition, Wiley, 2004.

32

https://github.com/XuemeiGu/MelvinPython/
hhttps://github.com/aspuru-guzik-group/Theseus

[39] N. Tischler, C. Rockstuhl, K. S lowik, Quantum optical realization of arbitrary
linear transformations allowing for loss and gain, Physical Review X 8 (2018)
021017.

[40] E. R. Scheinerman, Mathematics: A Discrete Introduction, Brooks/Cole Pub-
lishing Co., USA, 2000.

[41] U. Leonhardt, A. Neumaier, Explicit effective hamiltonians for general linear
quantum-optical networks, Journal of Optics B: Quantum and Semiclassical
Optics 6 (1) (2004) L1.

[42] J. C. Garcia-Escartin, V. Gimeno, J. J. Moyano-Fernández, Multiple photon
effective Hamiltonians in linear quantum optical networks, Optics Communica-
tions 430 (2019) 434 – 439.

[43] R. Loudon, The Quantum Theory of Light, 3rd Edition, Oxford University
Press, Great Clarendon Street, Oxford, UK, 2000.

[44] E. R. Caianiello, On quantum field theory — I: Explicit solution of Dyson’s
equation in electrodynamics without use of Feynman graphs, Il Nuovo Cimento
(1943-1954) 10 (12) (1953) 1634–1652.

[45] S. Scheel, Permanents in linear optical networks, quant-ph/0406127 (2004).

[46] J. Skaar, J. C. Garćıa Escart́ın, H. Landro, Quantum mechanical description of
linear optics, American Journal of Physics 72 (11) (2004) 1385–1391.

[47] H. J. Ryser, Combinatorial Mathematics, no. 14 in Carus Mathematical Mono-
graphs, Mathematical Association of America, 1963.

[48] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press, 1984.

[49] L. Valiant, The complexity of computing the permanent, Theoretical Computer
Science 8 (2) (1979) 189 – 201.

[50] N. J. Cerf, C. Adami, P. G. Kwiat, Optical simulation of quantum logic,
Physical Review A 57 (3) (1998) 1477.

[51] S. D. Bartlett, B. C. Sanders, Universal continuous-variable quantum computa-
tion: Requirement of optical nonlinearity for photon counting, Physical Review
A 65 (2002) 042304.

[52] J. J. Moyano-Fernández, J. C. Garcia-Escartin, Linear optics only allows every
possible quantum operation for one photon or one port, Optics Communications
382 (2017) 237 – 240.

33

[53] J. C. Garcia-Escartin, V. Gimeno, J. J. Moyano-Fernández, Method to de-
termine which quantum operations can be realized with linear optics with a
constructive implementation recipe, Physical Review A 100 (2019) 022301.

[54] J. C. Garcia-Escartin, V. Gimeno, J. J. Moyano-Fernández, Optimal approxi-
mation to unitary quantum operators with linear optics, Quantum Information
Processing 20 (2021) 314.

[55] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani, Experimental realization of
any discrete unitary operator, Physical Review Letters 73 (1) (1994) 58.

[56] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A.
Walmsley, Optimal design for universal multiport interferometers, Optica 3 (12)
(2016) 1460–1465.

[57] H. de Guise, O. Di Matteo, L. L. Sánchez-Soto, Simple factorization of unitary
transformations, Physical Review A 97 (2018) 022328.

[58] J. Carolan, C. Harrold, C. Sparrow, E. Mart́ın-López, N. J. Russell, J. W.
Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall,
M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, A. Laing,
Universal linear optics, Science 349 (6249) (2015) 711–716.

[59] T. A. Loring, Computing a logarithm of a unitary matrix with general spectrum,
Numerical Linear Algebra with Applications 21 (6) (2014) 744–760.

[60] F. Mezzadri, How to generate random matrices from the classical compact
groups, Notices of the American Mathematical Society 54 (5) (2007) 592 – 604.

[61] G. Tóth, QUBIT4MATLAB V3.0: A program package for quantum information
science and quantum optics for MATLAB, Computer Physics Communications
179 (6) (2008) 430 – 437.

[62] P. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, SIAM Journal on Computing 26 (5) (1997)
1484.

[63] B. Dickinson, K. Steiglitz, Eigenvectors and functions of the discrete Fourier
transform, IEEE Transactions on Acoustics, Speech, and Signal Processing
30 (1) (1982) 25–31.

[64] C. Candan, On the eigenstructure of DFT matrices [DSP education], IEEE
Signal Processing Magazine 28 (2) (2011) 105–108.

[65] P. Törmä, S. Stenholm, I. Jex, Hamiltonian theory of symmetric optical network
transforms, Physical Review A 52 (1995) 4853–4860.

34

[66] S. Zhang, C. Lei, A. Vourdas, J. A. Dunningham, Applications and implemen-
tation of Fourier multiport devices, Journal of Physics B: Atomic, Molecular
and Optical Physics 39 (7) (2006) 1625–1637.

[67] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entangle-
ment, Reviews of Modern Physics 81 (2009) 865–942.

[68] M. Huber, M. Perarnau-Llobet, J. I. de Vicente, Entropy vector formalism
and the structure of multidimensional entanglement in multipartite systems,
Physical Review A 88 (2013) 042328.

35

Declaration of interests

X The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Introduction: linear optical quantum systems
	Comparison to similar existing libraries and other computer-assisted design methods for quantum linear optics
	The scattering matrix S and the unitary evolution U
	Structure of the problems: relation between the objects in a commutative diagram
	Package overview
	The photonic homomorphism:
	Evolution from the Heisenberg picture
	Computation using permanents
	Efficiency

	Evolution of the effective Hamiltonian. The differential of the photonic homomorphism
	Inverse problems. Design of linear interferometers.
	Experimental realizations of linear interferometers
	Other methods
	Lossy linear interferometers and squeezing
	Matrix logarithms
	Random unitaries
	Quantum Fourier Transform matrices
	State routines and entanglement evaluation
	Applications to quantum information

	Usage examples
	Computing the unitary evolution U from the scattering matrix S. Comparison of the methods.
	The Quantum Fourier Transform evolution
	Generation of entangled states
	Quantifying entanglement
	Creation of advanced entangled states

	Decomposition of quasiunitary scattering matrices

	Summary

