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A B S T R A C T   

The waste formed during sugar- and wine-making activities has attracted our attention given its 
ability to inhibit corrosion in the presence of brine in a de-icing formulation. Herein the addition 
of amines to de-sugared beet molasses and winery lees is found to improve their anti-corrosive 
properties. Thus, weight-loss experiments clearly show that the addition of a small amount of 
amines to molasses or lees results in marked corrosion inhibition on carbon and galvanized steel. 
Subsequent electrochemical experiments and microscopy studies supported this finding. In 
addition, microscopy images indicated that triethanolamine was the best candidate amongst the 
amines tested for use in the final de-icing formulation. Ice-melting experiments demonstrated that 
the presence of molasses/lees together with triethanolamine does not alter the properties of the 
de-icing agent. When corrosion on galvanized and carbon steel probes was measured under 
environmental conditions, a decrease of 88% for galvanized steel and 65% for carbon steel was 
achieved due to the inhibiting action of the molasses/triethanolamine mixture. These results 
suggest that the addition of molasses/lees and triethanolamine to brine-based de-icing agents is 
recommended.   

1. Introduction 

Winter road maintenance is essential for public transportation while ensuring population safety and minimizing risks. The use of 
chemicals (mainly chloride salts) plays a critical role in de-icing formulations. However, these salts are also claimed to be responsible 
for detrimental effects, such as the corrosion of road elements and environmental contamination. As such, there is a need to minimize 
the adverse effects of these de-icing formulations while maintaining their de-icing properties. De-sugared beet molasses (Garcia 
Serrada and Vara Pazos, 2017; Ossian and Behrens, 2008; Bloomer, 2000; Higgin-Botham et al., 2014; Petkuviene and Paliulis, 2009; 
Augsburger and Darlington, 1985; Maslow et al., 2013; Mertz and Gall, 2000; Chandler et al., 2002) and winery lees (Janke George and 
Johnson, 1998), when combined with brine, are considered to be good materials for road maintenance as the main components of 
anti-freezing and de-icing formulations. Brine solutions mainly comprise chlorides as counteranions in salts that are used worldwide in 
winter to improve road safety. Anti-freezers mitigate the possibility of snow and ice formation on the pavement surface, while de-icers 
increase the grip between vehicle tires and the pavement in snowy and icy conditions (Terry et al., 2020; Shi and Jungwirth, 2018). 
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Nevertheless, the use of chloride salts has some negative effects on the environment, such as roadside vegetation, soils and ground 
water on the surrounding land (Baltrenas et al., 2006; Ratkevičius et al., 2014; Vignisdottir et al., 2019; Honarvar Nazari et al., 2021), 
as well as on road infrastructure, including vehicles. Man-made road elements such as bridges, pavements, traffic signs, sidewalks, 
reinforced concrete structures, electrical elements and sub-terrestrial means of transportation are also damaged by the corrosion 
provoked by these salts over the years (Sajid et al., 2022; Petkuviene and Paliulis, 2009). Among the different salts available (e.g. NaCl, 
CaCl2, NaCl:CaCl2), sodium chloride is by far the most widely used given its low price and ease of application. The use of NaCl also 
influences the presence of lead leached from paints, pigments and generated by the automotive industry in soil samples (Wu and Kim, 
2017). Current efforts are therefore aimed at accurately determining the amount of salt required to avoid any excess (Hatamzad et al., 
2022) and performing lifecycle assessments of these materials (Saxe and Kasraian, 2020; Vignisdottir et al., 2020). 

Sugar-derived molasses (beet or sugar cane) (Garcia Serrada and Vara Pazos, 2017; Ossian and Behrens, 2008; Garcia Serrada and 
Parrado Nuñez, 2015; Bloomer, 2000; Higgin-Botham et al., 2014; Petkuviene and Paliulis, 2009; Augsburger and Darlington, 1985; 
Maslow et al., 2013; Mertz and Gall, 2000; Chandler et al., 2002), lees (Janke George and Johnson, 1998), both of which are rich in 
carbohydrates (Hartley and Wood, 2001; Bytnar, 2007; Toth et al., 1987) as well as other plant extracts (Umoren and Solomon, 2015; Y 
and Rao, 2019; Amitha Rani and Basu, 2012; Xhanari et al., 2017; Abd-El-Nabey et al., 2020; Khan et al., 2015; Lebrini et al., 2020), 
nanocomposite coatings (Honarvar Nazari et al., 2022) and even expired drugs (Sundaram et al., 2021) have all been studied as 
cost-effective, easily attainable and easy to extract green corrosion inhibitors. These materials are often treated as residues and all these 
studies consider them to be smart waste in terms of the circular economy. The use of beet molasses has already led to a commercial 
product known as Safecote, which is mixed with NaCl or CaCl2 solutions to form a highly efficient de-icing agent (Higgin-Botham et al., 
2014; Petkuviene and Paliulis, 2009). The use of Safecote reduces the amount of salt used to around 30%–50% and results in an almost 
40% lower corrosive effect than when using neat brine (23% wt NaCl) (Burtwell et al., 2002; Burtwell and Transportation Research, 
2004). A previous study (Garcia Serrada and Parrado Nuñez, 2015) also proved that the addition of molasses to brine formulations 
resulted in a decrease in the nucleation temperature of ice crystals (− 4.06 ◦C) compared to neat brine (23% wt NaCl) (− 3.61 ◦C) as well 
as an increase in the ice melting capacity. 

The addition of a small amount of ammonium cations (1–2 wt%) to these de-icing agents increased their ability to act as corrosion 
inhibitors, leading to a decrease in corrosion of close to 70% (Garcia Serrada and Vara Pazos, 2017). There is much circumstantial 
evidence suggesting that the presence of amines in corrosion inhibitor mixtures is beneficial (Garcia Serrada and Vara Pazos, 2017; 
Kucinskas and Sviklas Alfredas, 2015; Luo et al., 1998; Sathiyanarayanan et al., 2005; de Damborenea et al., 1997). Indeed, het-
eroatoms in organic compounds containing lone electron pairs are known to interact with metallic surfaces, thereby potentially 
functioning as corrosion inhibitors (Abd El-Maksoud, 2008). These heteroatoms contribute by donating electron density to Fe2+

cations released from the steel surface, thereby leading to the development of a passive film that can protect the steel surface against 
corrosive species such as chloride ions and oxygen (Umoren and Solomon, 2015; Luo et al., 1998). 

Herein we describe the benefits of amine addition to de-sugared beet molasses ; ; and wine-derived lees as part of anti-freezing and 
de-icing formulations in terms of corrosion inhibition. In our search for environmentally benign substances to mitigate corrosion while 
maintaining the anti-freezing and de-icing properties, two materials related to byproducts from industrial activity in the Castilla y León 
region in the northern part of Spain were selected. Thus, de-sugared beet molasses and winery lees are undervalued byproducts that 
contain a high percentage of carbohydrates which, when combined with brine (aqueous solution with 20–23% wt. sodium chloride), 
do not alter the anti-freezing and de-icing properties of brine but decrease undesired corrosion phenomena. As such, the goal of this 
work was to find amine candidates that will enhance the de-icing properties of brine and molasses/lees mixtures while minimizing the 
corrosion process triggered by brine that weakens metallic structures. The key findings are as follows. First, amines such as trie-
thylamine, triethanolamine, mono- and diisopropanolamine and mono- and diisopropylamine improve the corrosion inhibition 
behavior in mixtures based on molasses and lees. Second, the ice-melting capacity when using amine-containing molasses or lees as 
part of the de-icing formulation is similar to that for neat brine (23% wt NaCl), thus allowing us to conclude that these formulations are 
advantageous as environmentally friendly corrosion inhibitors as well as good de-icing agents. 

2. Materials and methods 

2.1. Materials 

Chemicals were purchased from Sigma-Aldrich, Inc. and Acros Organics and used without purification. Amines such as diGluEDA 
(N,N′-di-β-D-glucopyranosylethylenediamine) (Tabassum et al., 2014; Liao et al., 2011) and BBPA (N-benzyl-N,N-bis[(3,5-dime-
thyl-1H-pyrazol-1-yl)methyl]amine) (Tebbji et al., 2007) were synthesized according to literature procedures. Steel probes were 
donated by COLLOSA, which purchased them from Thyssenkrupp Materials Ibérica. According to the Certificate of Analysis, the 
carbon steel composition (not including iron) is C (0.48%), Si (0.20%), Mn (0.65%); P (0.011%); S (0.004%); Cr (0.040%); Cu 
(0.040%); Ni (0.030%); Mo (<0.005%); Ti (<0.005%); Al (0.026%) and N (0.0080%). Galvanized steel consists of the aforementioned 
carbon steel with a zinc layer deposited on the metal surface (see scanning electron microscopy (SEM) image and electron dispersive 
X-Ray (EDS) experiments in Fig. S1). Molasses was provided by Azucarera (Toro, Valladolid) while the lees were generated at the 
Emilio Moro vineyards (Ribera del Duero, Peñafiel, Valladolid). 1H and 13C NMR experiments were performed using a 500 MHz DD2 
Three Channel Console equipped with a cryoprobe from Agilent Technologies. The spectrometer operates at 499.81 MHz for 1H and at 
125.69 MHz for 13C. All NMR experiments were performed at 25 ◦C in the Laboratory of Instrumental Techniques (LTI) Research 
Facilities, University of Valladolid. 
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2.2. Characterization of molasses and lees 

Molasses (Fig. S2): ion exchange chromatography, amperometric detector 850 Professional IC 1. Hamilton RCX-30 250 × 4.6 mm 
column. Recording time 30.0 min. Eluent composition NaOH 150 mM. Flow 1.1 mL/min. Pressure 11.81 MPa. Temperature 30 ◦C. Lees 
(Fig. S2): ion exchange chromatography, amperometric detector 850 Professional IC 1. Hamilton RCX-30 250 × 4.6 mm column. 
Recording time 60.0 min. Eluent composition, NaOH 150 mM. Flow 1 mL/min. Pressure 9.90 MPa. Temperature 30 ◦C. 

2.3. Weight loss experiments 

(a) Indoor experiments. Metal plates of galvanized steel and carbon steel with dimensions 5.5 × 3.0 × 0.2 cm were used. These 
plates were initially washed with distilled water and 95% ethanol, scrubbed to remove possible impurities from the turning process, 
then allowed to dry overnight between two sheets of absorbent paper. The following day, they were weighed three times using an 
analytical balance (4 decimal places). Each plate was then placed in a Petri dish with an internal diameter of 7 cm and the test solution 
was added. The Petri dish was covered with the lid and, after 96 h, the test solution was removed, the metal plates were washed with 
distilled water and 95% ethanol, scrubbed to remove any impurities, and allowed to dry between two sheets of absorbent paper 
overnight. A second weighing (in triplicate) was performed the following day. (b) Outdoor experiments performed at COLLOSA 
(Dueñas, Palencia, Spain). This study involved selecting three groups of steel plates (12 × 6 cm). The first group comprised six carbon 
steel and six galvanized steel plates, which were treated with conventional brine (23% wt NaCl solution). A second group consisted of 
an identical number of plates that were treated with test solution. In this case, the test solution comprised 91.5% v/v brine (23% wt 
NaCl), 7.5% v/v molasses and the equimolar amount of triethanolamine equivalent to 1% v/v triethylamine. This amount of amine was 
used based on the optimized results reported previously (Garcia Serrada and Vara Pazos, 2017). Triethanolamine was chosen based on 
its affordability, lack of toxicity, low vapor pressure and high boiling point (335 ◦C) as well as the results reported in this work. The 
third group also comprised six carbon steel and six galvanized steel plates, which were left unaltered to act as control experiment and 
test oxidation outdoors under similar atmospheric conditions. The experiment began by placing the plates outdoors and applying the 
aforementioned procedures to them each time it was necessary to add brine to the road due to adverse cold conditions and/or ice. 

2.4. Surface morphology studies 

Microscopy experiments were performed at the Advanced Microscopy Unit of the Scientific Park at University of Valladolid. SEM 
images were obtained using an FEI Quanta 200 FEG SEM instrument. AFM images were obtained using an AFM Asylum Research, 
model MFP-3D Bio, model tip AC160TS-R3 Asylum Research (OTESPA) at a frequency of 300 Hz and stiffness of 26 N/m. Samples for 
both instruments were prepared by following the washing and immersion methodologies explained in the weight loss section. 

2.5. Electrochemical measurements 

Electrochemical studies were carried out using a conventional three electrode pyrex cell with a double external wall for the 
thermostatic circuit. The cell has a hermetic lid adapted to insert the electrodes, a nitrogen cannula and a glass thermometer to verify 
the actual temperature of the cell. Galvanized steel and carbon steel probes were used as working electrodes, a cylindrical platinum 
(Pt) bar (1 mm diameter, submerged approximately 5 cm) was used as counter-electrode and silver/silver chloride (Ag/AgCl) as 
reference electrode (Bard and Faulkner, 2001). The potentiostat was a PAR EG&G Model 273A from Princeton Applied Research. This 
unit was connected to a computer by means of a GPIB card, which allows control of the potential switching using ECHEM in PAR EG&G 
M270 software, version 4.23, and RUN352 software (Potentiodynamic, Tafel curves and Linear Polarization). Polarization studies 
were performed after the specimen had reached a steady-state potential. Open-circuit potential experiments were performed as a 
control experiment and showed that the OCP values remain stable for a minimum of 5 days (Fig. S3a). Cyclic voltammograms were 
recorded to check the difference in electroactivity between carbon steel and galvanized steel electrodes as well as the residual current 
for both systems (Fig. S3b). Polarization was carried out from a cathodic potential of − 0.2 V to an anodic potential of +0.2 V with 
respect to the corrosion potential, at a sweep rate of 0.1–0.5 mV/s. E versus log I curves were plotted (Fig. S4). The linear TAFEL 
segments of the anodic and cathodic curves were extrapolated to corrosion potential to obtain the corrosion current densities. For 
linear polarization measurements, a sweep from − 0.02 to +0.02 V versus open circuit potential at a sweep rate of 0.5 mV/s was used. 
The polarization resistance, Rp, is obtained as the slope of the I versus E curve in the vicinity of the corrosion potential Ecorr. 

2.6. Melting capacity measurements 

Experiments were performed at the CARTIF Technology Center, Parque Tecnológico de Boecillo (Valladolid, Spain). SHRP Ice 
Melting Test (H-205.1 for solid deicers and H-205.2 for liquid deicers) methods (Chappelow et al., 1992) were chosen based on two 
standard procedures: ASTM (C702-87 Standard Practice for Reducing Field Samples of Aggregate to Testing Size) and (E440-90 
Method for Analysis of Calcium Chloride). The experimental procedure was as follows: two petri dishes (closed lid) containing 25 mL of 
ultrapure water were frozen 24 h prior to the experiment. The different instrumentation was allowed to cool for 4 h at the target 
temperature in a climate chamber. The two frozen petri dishes with their ice content were then introduced and 2 additional hours were 
allowed to reach the desired temperature. A known volume of neat brine (0.9 mL) or test solution (0.9 mL) was then added to the ice 
samples in the petri dishes. The melting volume was measured at different times. This test was repeated in triplicate at different 
temperatures. Two sets of experiments were performed with two test solutions: test solution 1 was prepared with brine (23% wt NaCl 
aqueous solution) 91.5% v/v, molasses 7.5% v/v and the equimolar amount of triethanolamine equivalent to triethylamine 1% v/v, 
whereas in test solution 2, lees replaced the molasses in similar amounts. 
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2.7. Differential scanning calorimetry (DSC) experiments 

Samples were frozen in a closed aluminum pan in a DSC Q20 equipment (TA instruments, calibrated with indium). Nitrogen gas 
(flow rate, 50 mL/min) was used for the cell purge. Specimens were cooled to a temperature of between − 30 and − 50 ◦C followed by 
an isotherm lasting 30 min. A heating step was finally performed at a rate of 5 ◦C/min to obtain the DSC thermogram. 

3. Results and discussion 

3.1. Characterization of molasses and lees 

De-sugared beet molasses and lees are byproducts of the sugar and wine industries, respectively. Beet molasses contain 45–55% wt. 
carbohydrates, 3–5% wt. proteins and 10–15% wt. of different mineral salts. These constitute the dry material of the molasses, which 
accounts for 72–78% of the total (Garcia Serrada and Vara Pazos, 2017). Lees is a low density matrix mainly comprising microor-
ganisms (yeasts and bacteria) related to the winemaking process and is currently an undervalued byproduct. This material is also rich 
in carbohydrates, therefore its sugar content was analyzed by chromatographic methods, as was the corresponding carbohydrate 
content in beet molasses (chromatograms in Fig. S2 and Table S1). The main difference is the much higher percentage of sucrose in 
molasses (74.86%) compared with lees (16.98%). Sucrose is a non-reducing disaccharide whereas the remaining components are 
reducing mono- or disaccharides. The term reducing sugar means that the substance gives a positive test with Fehling’s solution. The 
amount of reducing sugar is thought to be an important parameter as a high concentration of complex non-reducing sugars may have a 
negative effect on the extent of the freezing point depression caused by the de-icing agent (Montgomery and Yang Byung, 2003). 

3.2. Weight loss method 

Corrosion studies were performed with galvanized and carbon steels by immersing each metal plate in the test solution for 96 h. The 
initial test solution contained brine (23% wt NaCl aqueous solution) 91.5% v/v, molasses 7.5% v/v and triethylamine 1% v/v. This 
formulation was chosen based on optimized results obtained in a previous study (Garcia Serrada and Vara Pazos, 2017). The subse-
quent experiments aiming at optimizing the amine used involved replacing triethylamine with an equimolar amount of the new amine 
and substituting molasses for lees when necessary. The steel plates were weighed before and after the experiment. All experiments 
were performed at least in triplicate to study the reproducibility of the results, reporting the mean value and the corresponding 
standard deviation. The corrosion rate was determined using the following equation (Tebbji et al., 2007): 

Norm. Weight Loss %=
W0 − Wf

W0blank − Wf blank
x 100  

where W0 and Wf are the weight of the steel plates before and after the corrosion experiment, respectively, and W0-blank and Wf-blank are 
the mass of the steel plates before and after being treated with neat brine (23% wt), respectively. As such, our control experiments were 
the different steel plates immersed in a solution of pure brine in the absence of inhibitor. A histogram was elaborated using these data 
to determine the most efficient amine in the deicing formulations for both steels. 

Fig. 1 shows a histogram of the normalized corrosion rates for each amine used. The 100% value refers to the weight loss that took 
place in neat brine after 96 h (an average of 3.00 mg for a 25.713 g carbon steel plate and 2.97 mg for a 24.895 g galvanized steel 
probe). Various amines, ranging from simple primary, secondary and tertiary amines to more complex amines containing hydroxyl 
groups, were studied. Two main conclusions can be derived from the above figure. Firstly, galvanized steel is more sensitive to 
corrosion than carbon steel when immersed in neat brine (23% wt NaCl) solution. This unexpected result is due to an insufficient 
thickness of the zinc coating (Denison and Romanoff, 1952) as well as the aggressive experimental conditions (Karthick et al., 2020; 
Padilla et al., 2013). Dissolution of the zinc coating increased the corrosion of the metal underneath. After washing the steel probes, it 

Fig. 1. Normalized weight loss histogram using molasses and different amines as additives in de-icing formulations. Abbreviations: TEA (triethylamine), TEOA 
(triethanolamine), DEEA (diethylethanolamine), MIPOA (isopropanolamine); DIPOA (diisopropanolamine); MIPA (isopropylamine); DIPA (diisopropylamine); 
diGluEDA (N,N′-di-β-D-glucopyranosylethylenediamine) and BBPA (N-benzyl-N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine). 
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was noticed that, for some amines, the galvanizing coating had completely vanished, with the plate losing its distinguishing metallic 
luster and the base metal being fully exposed to the action of NaCl. Fig. S5 shows how the amine can lead to a marked and visible 
difference in the anti-corrosive effect. This is especially relevant when working with primary amines with a structure capable of 
chelating Zn2+ ions. The presence of these amines may inhibit the formation of simonkolleite (Zn5Cl2(OH)8⋅H2O), the product formed 
upon corrosion of galvanized steel in the presence of chlorides. This insoluble compound is thought to be responsible for preventing the 
permeation and retention of oxygen and water (Ikeda et al., 1991; Hosking et al., 2007). Secondly, amines such as triethylamine, 
triethanolamine, mono- and diisopropanolamine and mono- and diisopropylamine showed good corrosion inhibition behavior. Some 
of these amines contain chromophores with luminescent properties that may be used as markers (Hatamzad et al., 2022), such as 
safranine (Ebenso and Oguzie, 2005). BBPA (N-benzyl-N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]amine) was synthesized as re-
ported (Tebbji et al., 2007) and was expected to exhibit an efficient behavior based on the presence of three aromatic rings that could 
interact with the metal surface. However, under our conditions, the corrosion inhibition displayed by BBPA was quite poor. Another 
interesting compound is diGluEDA (N,N′-di-β-D-glucopyranosylethylenediamine) (Tabassum et al., 2014; Liao et al., 2011), which 
contains a high number of heteroatoms with lone electron pairs. When an equimolar amount of this compound related to triethylamine 
(1% v/v) was used, the result with galvanized steel showed a higher corrosion rate (three times higher, data not shown) than with just 
brine. However, decreasing the amount of this compound to 0.33 equivalents gave a better corrosion inhibition. This suggests that 
comparing amines with very different numbers of donor atoms may be risky. For this reason, far less than one equivalent of organic 
molecules containing several donor groups was employed (calculated in relation to the moles of TEA used in a previous study) (Garcia 
Serrada and Vara Pazos, 2017). The negative effect when working with ethylenediamine (EDA) as additive is also remarkable, with a 
much higher corrosion rate (15 times, data not shown) compared to conventional brine being observed. This result agrees with a 
previous observation (Garcia Serrada and Vara Pazos, 2017) and may be related to the ability of EDA to act as a good chelating agent 
that can extract Fe2+ ions from the surface (Maxwell, 2004; Micskei, 1987). 

Fig. 2 shows the corrosion rate when lees was used in the de-icing compositions instead of molasses. The test solutions contained 
brine (23% wt NaCl aqueous solution) 91.5% v/v, lees 7.5% v/v and the equimolar amount of amine equivalent to triethylamine 1% v/ 
v. Thiazole was also tested and found to lead to an even higher corrosion rate (10 times more than brine, data not shown). The fact that 
lees was previously milled until a homogeneous and viscous material similar to molasses was obtained should be noted. An absence of 
milling led to a lack of reproducibility. Among the amines tested, triethanolamine gave the most promising results. Unexpectedly, 
triethylamine did not work as a good corrosion inhibitor. The previous observations, together with the interesting features of trie-
thanolamine, especially its affordability, lack of toxicity, low vapor pressure and high boiling point, led us to choose this amine for 
electrochemical measurements, open-field weight loss experiments as well as assessment of the ice-melting properties. 

3.3. Electrochemical experiments 

These assays were performed using brine (23% wt NaCl aqueous solution) 91.5% v/v, de-sugared beet molasses 7.5% v/v and the 
equimolar amount of triethanolamine with respect to triethylamine 1% v/v as test solution. This amine was chosen in view of the 
promising results obtained in the weight loss corrosion experiments. The potentiodynamic polarization curves allowed us to discern 
the associated electrochemical parameters such as corrosion potential (Ecorr), corrosion current density (Icorr), and the anodic and 
cathodic Tafel slopes (ba and bc), which were obtained from the intersection of the anodic and cathodic Tafel lines (see plots in Fig. S4). 
The criterion for performing the experiments requires a steady-state potential to be achieved. Indeed, OCP vs time experiments showed 
that the open-circuit potential was stable for several days (Fig. S3a). The polarization resistances, Rp, were obtained as the slope of the I 
versus E curves in the vicinity of the corrosion potential (Ecorr). Corrosion inhibition efficiencies IE(%) were calculated using the 
following equation (Mourya et al., 2016): 

IE %=
Rp − R0

p

Rp
x 100  

where R0
p and Rp (k Ω) are the polarization resistance values for uninhibited and inhibited solutions, respectively. The corrosion current 

Fig. 2. Normalized weight loss histogram using lees and different amines as additives in brine-based de-icing compositions.  
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density (μA⋅cm− 2) is derived from the Stern-Geary equation (Stern and Geary, 1957) as follows: 

Icorr = k/Rp  

k=
− ba ⋅ bc

2.303(ba − bc)

Table 1 shows the electrochemical data obtained under our conditions (electrodes submerged in neat brine solution or in brine and 
molasses containing TEOA). The inhibiting action of the molasses and TEOA is reflected in the less negative corrosion potential, which 
implies a higher resistance to oxidation. The galvanized specimen is easily oxidized under our conditions, thus concurring with the 
results obtained in the weight loss experiment. The zinc coating is fully oxidized, very likely leading to zinc corrosion products on the 
coating surface and preventing the zinc from acting as a sacrificial anode. The presence of inhibitor gives rise to a displacement in the 
corrosion potential of 123 mV when using TEOA with carbon steel electrodes (a 75 mV displacement was observed when working with 
galvanized steel probes). 

3.4. Surface topology experiments 

The scanning electron microscopy (SEM) images (Fig. 3) show that specimens dipped in the neat NaCl solution were severely 
corroded (for comparison, see pristine galvanized and carbon steel samples, Fig. S6), whereas the corrosion of specimens immersed in 
solutions containing brine, molasses and TEOA was inhibited to some extent despite the fact that the immersion methodology implies 
an enormous excess of NaCl on the metal surface, as confirmed from the SEM images (Fig. S7). For the sample immersed in brine 
solution, holes are abundant as a result of severe corrosion attacks, particularly for the galvanized steel specimen. This is because 
dissolution of the zinc layer leads to micro voids and micro cracks on the metal surface (Karthick et al., 2020). Of the inhibitors tested, 
it is surprising that the samples protected with molasses and triethylamine did not show efficient protection (Fig. S8) compared to the 
results obtained with triethanolamine. Moreover, the corrosion experienced by the galvanized steel specimens was higher than the 
corrosion observed for carbon steel in every case, in agreement with the weight loss experiments. The protection against corrosion 
arising due to the presence of molasses and triethanolamine was studied in more detail using atomic force microscopy (AFM). Grooves 
and irregularities are noticeable in the specimens treated with neat NaCl solution, whereas the surface topology is highly preserved in 
samples containing molasses and triethanolamine (Fig. S9). This trend is also observed with carbon steel samples (Fig. S10), although 
to a lesser extent, as these samples are less readily corroded by brine under our conditions. 

Table 1 
Electrochemical data obtained using brine or brine with molasses and TEOA as additive.  

Solution Working electrode E (V) Rp/kΩ Icorr/μAcm− 2 ba mV⋅dec− 1 bc mV⋅dec− 1 B IE% 

Neat brine Carbon Steel − 0.587 7.91 2.71 78.19 180.1 22.30  
Galvanized Steel − 1.052 0.78 19.88 21.35 255.3 8.69  

Molasses and TEOA Carbon Steel − 0.464 8.79 3.31 103.27 156.3 25.66 10.0 
Galvanized Steel − 0.977 2.40 14.23 19.84 206.3 7.60 67.5  

Fig. 3. Top. SEM images (1500x magnification) for carbon steel after incubation for 96 h with brine (a); with brine, molasses and TEOA (b); with brine, lees and TEOA 
(c). Bottom. SEM images (1500x magnification) for galvanized steel after incubation for 96 h with brine (d); with brine, molasses and TEOA (e); with brine, lees and 
TEOA (f). 
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3.5. Open-field corrosion test 

The results obtained with molasses and triethanolamine encouraged us to perform outdoor tests (Fig. 4). These experiments were 
based on the aforementioned gravimetric weight loss method. Three groups of steel probes (six samples each) were tested in 
collaboration with COLLOSA (a Spanish company responsible for road maintenance and winter de-icing treatments). Two control 
groups of galvanized and carbon steel samples were prepared, one of which was left untreated under the environmental conditions and 
the second of which was treated with conventional brine solutions (23% wt. NaCl). A third group was treated with a solution con-
taining 91.5% v/v brine (23% wt. NaCl), 7.5% v/v de-sugared beet molasses and an equimolar amount of triethanolamine that cor-
responds to 1% v/v triethylamine. The samples were treated each time the weather conditions required a winter de-icing treatment on 
the surrounding roads. This treatment consists of spraying the brine composition on the surface of the steel probes, thereby simulating 
truck performance when spreading the brine on the road surface. Samples were removed at different intervals, then washed and 
weighed. The samples removed to date (Pictures in Fig. S11) were obtained after: (a) 231 days and 9 winter treatments; (b) 339 days 
and 36 treatments; (c) 357 days and 44 treatments and (d) 453 days and 59 treatments, leaving behind two samples for the next winter 
season. The two plots in Fig. 5 were elaborated using these samples. 

Fig. 5 shows the percentage weight loss for the steel samples after exposure to environmental conditions for a prolonged time and a 
finite number of winter treatments. In both samples (carbon and galvanized steel), use of the test solution (brine, molasses and TEOA) 
resulted in a marked decrease in the corrosion rate (88% for galvanized steel and 65% for carbon steel). Spraying the test solutions on 
the surface of the metals is a softer methodology than the immersion procedure performed previously, thereby possibly explaining why 
the inhibition phenomenon displayed by molasses/TEOA is enhanced under these conditions. The results achieved with galvanized 
steel are remarkable as they indicate that corrosion of the samples treated with the composition brine/molasses/TEOA was lower than 
for the control specimen subjected to no treatment. In this case, the zinc coating and the use of a green inhibitor minimized the 
corrosion to a marked extent. Indeed, the damage is minimum and the steel probes preserve their metallic luster (Fig. S11). 

Fig. 4. Open-field experiments with carbon and galvanized steel probes.  
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3.6. Ice-melting assessment 

Once the corrosion inhibition had been ascertained, the ice-melting capacity of the test solution was measured. To that end, the 
SHRP Ice Melting Test (H-205.1 and H-205.2) was employed at the CARTIF Technology Center (Fig. S12). This methodology is based 
on ASTM C702-87 (Standard Practice for Reducing Field Samples of Aggregate to Testing size) and E440-90 (Method for Analysis of 
Calcium Chloride) (Chappelow et al., 1992). In brief, it consists of freezing known volumes of water under controlled conditions in a 
climate chamber and allowing the different instrumentation to be used to reach the same temperature (Fig. 6). A known volume of neat 
brine and the test solution are then added to different ice samples. The melting volume is measured at different times. This test was 
repeated in triplicate at different temperatures. 

Two sets of experiments were performed, one with molasses (test solution 1) and the other with lees (test solution 2), both being 
present in 7.5% v/v of the formulation and containing TEOA (1 equiv) in both cases (Table 2). 

The results of these experiments clearly show that the ice-melting capacity of the brine solution was not altered by the addition of a 
known amount of molasses or lees together with triethanolamine. The volume of ice melted by our test solutions was comparable with 
that achieved using brine alone. In addition, DSC experiments were performed to record thermograms of frozen samples, which were 
slowly heated to determine the melting point. This temperature was defined as the sharpest tangent to the left-hand side of the 
endothermic event. The results are reported in Table S2. Formulations containing molasses/lees and TEOA provoked a drop in the 
melting point of 11% (− 25.12 ◦C) and 5% (− 23.73 ◦C), respectively, compared to neat 23% wt brine (− 22.59 ◦C). 

Fig. 5. Top. Plot of weight loss for carbon steel samples. Bottom. Plot of weight loss for galvanized steel samples.  

Fig. 6. Cooling the instrumentation and samples in the chamber before the experiment.  
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4. Summary and conclusions 

This work adds value to industrial byproducts such as molasses and lees as part of the formulation for ecofriendly de-icing agents. 
The interaction of molasses or lees with different aliphatic amines inhibits corrosion in galvanized and carbon steel in the presence of 
brine. We have shown by means of gravimetric methods, electrochemical studies and surface topology experiments that some modest 
amines exert an important inhibiting effect in terms of metal corrosion when mixed with molasses or lees and added to neat brine. 
Among the nitrogen-containing molecules, triethanolamine attracted our attention given its inhibiting properties as well as its physical 
features, namely that it is a liquid at room temperature and is fully miscible with water. The anti-corrosion properties that the mixture 
molasses/TEA conferred on a de-icing brine-based formulation was previously reported by some of us. (Garcia Serrada and Vara Pazos, 
2017) The results reported herein represent an addition to our previous understanding by suggesting that molasses and lees containing 
an affordable, non-toxic and widely available amine such as triethanolamine are very useful green corrosion inhibitors. Indeed, the 
mixtures containing molasses/lees and triethanolamine exhibited better corrosion inhibition for carbon and galvanized steels than 
those containing triethylamine. More importantly, the addition of molasses/lees and triethanolamine to a de-icing agent such as brine 
solution (23% wt NaCl) does not alter the de-icing properties of the original neat brine solution. In light of the above, these solutions 
may be suitable as an environmentally friendly alternative to the brine solutions commonly used in road maintenance, thereby 
lowering the detrimental effects caused by sodium chloride and other common salts on roads and the surrounding vegetation and 
bodies of water. 
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Table 2 
Ice-melting volumes under temperature-controlled conditions using brine or spiked brine (molasses or lees plus triethanolamine).     

Temperature (◦C) 

Additive Time Samples − 1 − 5 − 10 

Molasses 
V(mL) melted 

20 min Brine 3.7 ± 0.6 2.0 ± 0.0 1.5 ± 0.0 
Test Sol.1 4.0 ± 0.5 2.0 ± 0.0 1.5 ± 0.0 

60 min Brine 6.8 ± 0.3 2.2 ± 0.3 0.3 ± 0.3 
Test Sol.1 7.8 ± 0.6 2.2 ± 0.3 0.5 ± 0.0 

Lees 
V(mL) melted 

20 min Brine 4.3 ± 0.3 3.2 ± 0.8 2.7 ± 0.3 
Test Sol.2 4.5 ± 0.0 3.2 ± 0.8 2.5 ± 0.0 

60 min Brine 8.8 ± 2.4 8.0 ± 2.0 9.0 ± 2.2 
Test Sol.2 9.0 ± 2.2 7.8 ± 2.3 8.0 ± 2.0  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scp.2022.100789. 
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