

MÁSTER EN INGENIERÍA INDUSTRIAL

ESCUELA DE INGENIERÍAS INDUSTRIALES UNIVERSIDAD DE VALLADOLID

TRABAJO FIN DE MÁSTER

INSTALACIÓN ELÉCTRICA DE UNA INDUSTRIA DE FABRICACIÓN DE CONFORMADOS METÁLICOS

Autor: D. José María Pérez Hernández

Tutor: D. Manuel Vicente Riesco Sanz

Valladolid, julio, 2022

MÁSTER EN INGENIERÍA INDUSTRIAL

ESCUELA DE INGENIERÍAS INDUSTRIALES UNIVERSIDAD DE VALLADOLID

TRABAJO FIN DE MÁSTER

INSTALACIÓN ELÉCTRICA DE UNA INDUSTRIA DE FABRICACIÓN DE CONFORMADOS METÁLICOS

Autor: D. José María Pérez Hernández

Tutor: D. Manuel Vicente Riesco Sanz

Valladolid, julio, 2022

RESUMEN

El presente trabajo se ha redactado con el objetivo de planificar la instalación eléctrica de una industria dedicada a la fabricación de conformados metálicos. La planta está especializada en la fabricación de canalones, armarios industriales, rejas y escaleras. En un primer momento se ha investigado el proceso de fabricación y, en consecuencia, se han dispuesto las líneas necesarias para su fabricación.

Una vez diseñadas las líneas de fabricación y siendo conocidas sus demandas de potencia, se ha abordado el diseño y el cálculo de la red de alimentación de media tensión, el centro de transformación y la red de distribución de baja tensión.

Durante el diseño de la planta y de la instalación eléctrica se ha priorizado la eficiencia energética y el ahorro económico, por lo que se han tomado diversas medidas para potenciar estos dos aspectos.

Los proyectos se han calculado usando el software *DMELECT*.

ABSTRACT

The present project has been written to plan the electrical installation of an industry dedicated to the manufacture of metal shapes. The plant is specialized in the manufacture of gutters, industrial cabinets, grills, and stairs. At first, the manufacturing process has been investigated and, consequently, the necessary lines for its manufacture have been arranged.

Following the design of the manufacturing lines and once their power demands are known, the design and calculation of the medium voltage power supply network, the transformation center and the low voltage distribution network have been addressed.

Energy efficiency and thriftiness has been a priority during the design of the industry and the electrical installation. Various measures have been taken to enhance these two aspects.

The projects have been calculated using the *DMELECT* software.

ÍNDICE

1. MEMORIA DESCRIPTIVA	2
1.1. ANTECEDENTES	2
1.2. OBJETO DEL TRABAJO	
1.3. ALCANCE	2
1.4. NORMATIVA	2
1.5. EMPLAZAMIENTO	3
1.6. DESCRIPCIÓN DEL COMPLEJO INDUSTRIAL	
1.6.1. Condiciones para tener en cuenta en el diseño de complejo industrial	4
1.6.2. Zona de fabricación.	6
1.6.3. Almacén de materias primas.	
1.6.4. Almacén de productos terminados.	
1.6.5. Oficinas.	
1.6.6. Servicios generales.	
1.6.6.1. Aseos y vestuarios.	
1.6.6.2. Taller de mantenimiento	
1.6.6.3. Almacén de recambios.	
1.6.6.4. Centro de transformación.	
1.6.6.5. Grupo electrógeno	
1.6.6.6. Central de aire comprimido	8
1.6.6.7. Central de producción de calor	
1.6.6.8. Central de bombeo de aguas	
1.6.6.9. Zona de carga de baterías.	
1.6.7. Zona de galvanizado	
1.6.8. Superficie disponible	
1.7.1. Materias primas.	
1.7.1.1 Acero galvanizado.	
1.7.1.2. Aluminio lacado.	
1.7.1.3. Zinc	
1.7.1.4. Cobre.	
1.7.1.5. Acero.	
1.7.1.6. Aluminio	
1.7.1.7. Tubos de acero.	
1.7.1.8. Chapa de acero estriado.	
1.7.1.9. Accesorios	
1.7.1.10. Consumibles.	
1.7.2. Productos terminados.	11
1.7.2.1. Canalones	11
1.7.2.2. Armarios industriales.	11
1.7.2.3. Rejas	11
1.7.2.4. Escaleras industriales.	11
1.7.2.5. Galvanizado	11
1.8. DESCRIPCIÓN DE LA ACTIVIDAD	13
1.8.1. Canalones.	
1.8.2. Armarios industriales.	14
1.8.3. Rejas	
1.8.4. Escaleras industriales.	
1.9. LÍNEAS DE PRODUCCIÓN	18

1.10. CARGAS PRESENTES EN LA PLANTA	20
1.10.1. Cargas del proceso productivo	20
1.10.1.1. Galvanizado	
1.10.1.2. Líneas de corte	20
1.10.1.3. Centros láser	20
1.10.1.4. Plegado	21
1.10.1.5. Curvado	
1.10.1.6. Otros	21
1.10.1.7. Soldadura	
1.10.1.8. Pintura	22
1.10.1.9. Montaje	
1.10.1.10. Embalaje	
1.10.2. Cargas de los servicios generales	
1.10.2.1. Servicios generales de la nave	
1.10.2.2. Servicios generales centrales	
1.10.3. Cargas de los almacenes	
1.10.4. Cargas de las oficinas	
1.10.5. Cargas de fuerza de emergencia.	
1.10.6. Cargas de iluminación de emergencia	
1.11. CONSIDERACIONES TÉCNICAS PREVIAS AL DISEÑO DE LA INST	ΓALACIÓN
ELÉCTRICA	
1.11.1. Calidad de la energía eléctrica	24
1.11.2. Red eléctrica de alimentación	
1.11.3. Centro de transformación	25
1.11.4. Red de distribución de energía eléctrica en baja tensión	26
1.11.4.1. Sección de los conductores	
1.11.4.2. Caídas de tensión	28
1.11.4.3. Puestas a tierra	28
1.11.4.4. Esquema de distribución	28
1.11.4.5. Dispositivos de mando y protección	
1.11.4.6. Receptores	
1.11.4.6.1. Iluminación	29
1.11.4.6.2. Motores	30
1.11.4.6.3. Otros usos	31
1.11.4.6.4. Compensación de energía reactiva	31
1.11.4.6.5. Alimentación de cargas críticas	32
1.11.5. Mantenimiento	33
1.11.6. Repuestos	33
1.12. DISEÑO DE LA INSTALACIÓN ELÉCTRICA	34
1.12.1. Red de baja tensión	34
1.12.1.1. Alimentación del suministro normal	34
1.12.1.2. Alimentación del suministro complementario	34
1.12.1.3. Red eléctrica de distribución en baja tensión	35
1.12.1.3.1. Cuadro General de Distribución	
1.12.1.3.2. Subcuadros de nivel 1	38
1.12.1.3.3. Subcuadros de nivel 2	
1.12.1.3.4. Subcuadros de nivel 3	
1.12.1.4. Demanda de potencia	
1.12.2. Diseño del centro de transformación	
1.12.3. Diseño de la red eléctrica de alimentación	67

2. CÁLCULOS JUSTIFICATIVOS	69
2.1. RED DE DISTRIBUCIÓN EN BAJA TENSIÓN	69
2.1.1. Fórmulas empleadas	
2.1.1.1. Intensidad de caída de tensión	
2.1.1.2. Conductividad eléctrica	70
2.1.1.3. Sobrecargas	70
2.1.1.4. Compensación de la energía reactiva	
2.1.1.5. Cortocircuito.	
2.1.1.6. Embarrado	
2.1.1.7. Resistencia de tierra	
2.1.2. Resultados obtenidos	
2.1.2.1. Cuadro General de Mando y Protección	
2.1.2.2. Subcuadro S1 - Galvanizado.	
2.1.2.3. Subcuadro S2 - Líneas de corte	
2.1.2.3.1. Subcuadro S2.1 - Linea de corte de acero galvanizado	
2.1.2.3.2. Subcuadro S2.2 - Linea de corte de aluminio lacado	
2.1.2.3.3. Subcuadro S2.3 - Linea de corte de zinc	
2.1.2.3.4. Subcuadro S2.4 - Linea de corte de cobre	
2.1.2.3.5. Subcuadro S2.5 - Linea de corte de acero	
2.1.2.3.6. Subcuadro S2.6 - Linea de corte de aluminio.	
2.1.2.4. Subcuadro S3 – Centros de corte láser	
2.1.2.4.1. Agrupación de centros de corte láser 1	
2.1.2.4.2. Agrupación de centros de corte láser 2	
2.1.2.5. Subcuadro S4 – Plegado.	
2.1.2.5.1. Subcuadro S4.1 - Plegado de acero galvanizado	
2.1.2.5.2. Subcuadro S4.2 - Plegado de aluminio lacado	
2.1.2.5.3. Subcuadro S4.3 - Plegado de zinc	
2.1.2.5.4. Subcuadro S4.4 - Plegado de cobre	
2.1.2.5.5. Subcuadro S4.5 - Plegado de acero	
2.1.2.5.6. Subcuadro S4.6 - Plegado de aluminio.	
2.1.2.5.7. Subcuadro S4.7 - Plegado de acero diamantado	
2.1.2.6. Subcuadro S5 – Curvado	
2.1.2.6.1. Subcuadro S5.1 - Curvado de chapa	
2.1.2.6.2. Subcuadro S5.2 - Curvado de tubos	
2.1.2.7. Subcuadro S6 – Otros	
2.1.2.7.1 Subcuadro S6.1 - Cizallado	
2.1.2.7.2. Subcuadro S6.2 - Satinado	
2.1.2.7.3. Subcuadro S6.3 - Serrado	
2.1.2.8. Subcuadro S7 – Soldadura	
2.1.2.8.1. Subcuadro S7.1 - Soldadura TIG	
2.1.2.8.2. Subcuadro S7.2 - Soldadura MIG/MAG	
2.1.2.8.3. Subcuadro S7.3 - Soldadura MMA	
2.1.2.8.4. Subcuadro S7.4 - Soldadura por puntos	
2.1.2.8.5. Subcuadro S7.5 - Soldadura oxiacetilénica	
2.1.2.9. Subcuadro S8 – Pintura	
2.1.2.9.1. Subcuadro S8.1 - Linea de pintura 1	
2.1.2.9.1. Subcuadro S8.1 - Linea de pintura 1	
2.1.2.9.2. Subcuadro S8.2 - Linea de pintura 2	
2.1.2.9.4. Subcuadro S8.4 - Linea de pintura 4	
2.1.2.10. Subcuadro S9 – Montaje	
2.1.2.10. 540044410 57 11101141Je	

2.1.2.10.1. Carlo and disc. CO.1. Add we'll also	00
2.1.2.10.1. Subcuadro S9.1 - Atornillado	
2.1.2.10.2. Subcuadro S9.2 – Punzonado	
2.1.2.11. Subcuadro S10 – Embalaje	91
2.1.2.12. Subcuadro S11a – Almacenes de materias primas	92
2.1.2.12.1. Subcuadro S11a.1 - Almacén de acero	
2.1.2.12.2. Subcuadro S11a.2 - Almacén de aluminio	
2.1.2.12.3. Subcuadro S11a.3 - Almacén de zinc	
2.1.2.12.4. Subcuadro S11a.4 - Almacén de cobre	
2.1.2.12.5. Subcuadro S11a.5 - Puentes grúa	
2.1.2.13. Subcuadro S11b – Almacenes de productos terminados	
2.1.2.13.1. Subcuadro S11b.1 - Almacén de canalones	
2.1.2.13.2. Subcuadro S11b.2 - Almacén de armarios	95
2.1.2.13.3. Subcuadro S11b.3 - Almacén de rejas	
2.1.2.13.4. Subcuadro S11b.4 - Almacén de escaleras	96
2.1.2.14. Subcuadro S12 – Servicios generales centrales	96
2.1.2.14.1. Subcuadro S12.1 - Centro de transformación	
2.1.2.14.2. Subcuadro S12.2 - Grupo electrógeno	97
2.1.2.14.3. Subcuadro S12.3 - Central de producción de calor	
2.1.2.14.4. Subcuadro S12.4 - Central de compresores	
2.1.2.14.5. Subcuadro S12.5 - Central de bombeo de aguas	
2.1.2.14.6. Subcuadro S12.6 – Central de tratamiento de aguas residuales	
2.1.2.14.7. Subcuadro S12.7 - Taller de mantenimiento	
2.1.2.14.8. Subcuadro S12.8 - Almacén de recambios	
2.1.2.14.9. Subcuadro S12.9 - Carga de baterías de las carretillas	
2.1.2.15. Subcuadro S13 – Servicios generales de la nave	
2.1.2.15.1 Subcuadro S13 Servicios generales de la nave	
2.1.2.15.1. Subcuadro S13.1 - Authorado de la nave	
2.1.2.15.3. Subcuadro S13.3 - Tomas de corriente de la nave	
2.1.2.15.3. Subcuadro \$13.3 - Tomas de corrente de la nave	
2.1.2.15.4. Subcuadro S13.4 - Chinatizacion de la nave	
2.1.2.16. Subcuadro S14 – Edificio de oficinas	
2.1.2.16.1.1. Subcuadro S14.1.1 - Alumbrado del edificio de oficinas – Zona 1	
2.1.2.16.1.2. Subcuadro S14.1.2 - Alumbrado del edificio de oficinas – Zona 2	
2.1.2.16.2. Subcuadro S14.2 -Fuerza del edificio de oficinas	
2.1.2.16.2.1. Subcuadro S14.2.1 - Fuerza del edificio de oficinas – Zona 1	
2.1.2.16.2.2. Subcuadro S14.2.2 - Fuerza del edificio de oficinas – Zona 2	
2.1.2.17. Subcuadro S16 – Alumbrado de emergencia	
2.1.2.18. Subcuadro S17 – Fuerza de emergencia	
2.2. CÁLCULO DEL CENTRO DE TRANSFORMACIÓN	
2.2.1. Intensidad en alta tensión	
2.2.2. Intensidad en baja tensión	
2.2.3. Cortocircuito	
2.2.4. Embarrado	
2.2.4.1. Comprobación por densidad de corriente	
2.2.4.2. Comprobación por solicitación electrodinámica	
2.2.4.3. Comprobación por solicitación térmica a cortocircuito	
2.2.5. Protecciones	
2.2.5.1. Protección general en AT.	111
2.2.5.2. Protección en Baja Tensión.	112
2.2.6. Ventilación del Centro de Transformación	
2.2.7. Pozo apagafuegos	112

2.2.8. Instalación de puesta a tierra	112
2.2.8.1. Características del suelo	112
2.2.8.2. Corrientes máximas de puesta a tierra y tiempo máximo correspondiente a	a la
eliminación del defecto.	
2.2.8.3. Diseño de la instalación de tierra	113
2.2.8.4. Resistencia del sistema de tierra.	
2.2.8.5. Tensiones en el exterior de la instalación	
2.2.8.6. Tensiones en el interior de la instalación.	
2.2.8.7. Tensiones aplicadas	
2.2.8.8. Tensiones transferibles al exterior.	
2.2.8.8. Tensiones transferibles ai exterior	
2.3.1. Formulas empleadas	
2.3.2. Características generales de la red	
2.3.3. Resultados obtenidos	118
3. MEDICIONES Y PRESUPUESTO	121
3.1. MEDICIONES Y PRESUPUESTO DE LA RED DE MEDIA TENSIÓN	
3.1.1. Cables	121
3.1.2. Tubos	121
3.1.3. Protecciones	121
3.1.4. Presupuesto total de la red de media tensión	121
3.2. MEDICIONES Y PRESUPUESTO DEL CENTRO DE TRANSFORMACIÓN	122
3.2.1. Celdas de alta tensión	
3.2.2. Interconexión celdas de alta tensión y transformadores	
3.2.3. Transformadores.	
3.2.4. Interconexión celdas de transformadores y cuadros de baja tensión	
3.2.5. Equipos de baja tensión	
3.2.6. Red de tierras	
3.2.7. Varios	
3.2.8. Presupuesto total del centro de transformación	
3.3.1. Cables	
3.3.2. Tubos	-
3.3.3. Bandejas	
3.3.4. Interruptores automáticos	
3.3.5. Interruptores de corte en carga	
3.3.6. Interruptores y transformadores diferenciales	127
3.3.7. Elementos de control – maniobra	
3.3.8. Presupuesto total de la red de baja tensión	127
3.4. PRESUPUESTO TOTAL	128
4. CONCLUSIONES	120
5. BIBLIOGRAFÍA	. 131
 ANEXO I: Cálculos completos de la red de Baja Tensión 	
ANEXO II: Calidad de la energía eléctrica	
ANEXO III: Pliego de condiciones	
ANEXO IV: Estudio básico de seguridad y salud	
- 711 1270 1 v. Estudio basico de seguindad y saind	

ÍNDICE DE FIGURAS

Figura 1. Imagen por satélite de la parcela	3
Figura 2. Mapa catastral.	3
Figura 3. Esquema del complejo industrial.	4
Figura 4. Esquema de las divisiones internas de la planta.	6
Figura 5. Esquema de los servicios generales.	7
Figura 6. Ejemplo de conductores aislados unipolares y multipolares	27
Figura 7. Ejemplo de canalización eléctrica prefabricada	27
Figura 8. Ejemplo de principio de distribución eléctrica en baja tensión	28
Figura 9. Ejemplos de luminarias	29
Figura 10. Ejemplo de motor eléctrico y variador de frecuencia trifásico	30
Figura 11. Otros consumidores	31
Figura 12. Batería de condensadores	31
Figura 13. Grupo electrógeno y SAI	
Figura 14. Esquema del Cuadro General de Distribución	

ÍNDICE DE TABLAS

Tabla 1. Materias primas	10
Tabla 2. Productos terminados	
Tabla 3. Linea de galvanizado	
Tabla 4. Líneas de corte	
Tabla 5. Líneas de centros láser de corte	
Tabla 6. Líneas de plegado	
Tabla 7. Líneas de curvado	
Tabla 8. Líneas de otros	
Tabla 9. Líneas de soldadura	
Tabla 10. Líneas de pintura	
Tabla 11. Líneas de montaje	
Tabla 12. Líneas de embalaje	
Tabla 13. Cargas del proceso productivo	
Tabla 15. Alimentación del grupo electrógeno	33
Tabla 16. Interruptores del Cuadro General de Distribución	
Tabla 17. Salidas del Cuadro General de Distribución	
Tabla 18. Salidas del grupo electrógeno	
Tabla 19. Subcuadros de Nivel 1	
Tabla 20. Subcuadros de Nivel 2	
Tabla 21. Consumos en ruta	
Tabla 22. Subcuadros de Nivel 3	
Tabla 23. Demandas de cada linea y total	
Tabla 24. Resultados del Cuadro General de Mando y Protección	74
Tabla 25. Resultados de cortocircuito del Cuadro General de Mando y Protección	75
Tabla 26. Resultados del subcuadro 1 de galvanizado	75
Tabla 27. Resultados de cortocircuito del subcuadro 1 de galvanizado	
Tabla 28. Resultados del subcuadro S2 de líneas de corte	
Tabla 29. Resultados de cortocircuito del subcuadro S2 de líneas de corte	76
Tabla 30. Resultados del subcuadro S2.1 de linea de corte de acero galvanizado	76
Tabla 31. Resultados de cortocircuito del subcuadro S2.1 de linea de corte de	
galvanizado	
Tabla 32. Resultados del subcuadro S2.2 de linea de corte de aluminio lacado	
Tabla 33. Resultados de cortocircuito del subcuadro S2.2 de linea de corte de aluminio la	
Tabla 34. Resultados del subcuadro S2.3 de linea de corte de zinc	
Tabla 35. Resultados de cortocircuito del subcuadro S2.3 de linea de corte de zinc	
Tabla 36. Resultados del subcuadro S2.4 de linea de corte de cobre	
Tabla 37. Resultados de cortocircuito del subcuadro S2.4 de linea de corte de cobre	
Tabla 38. Resultados del subcuadro S2.5 de linea de corte de acero	
Tabla 39. Resultados de cortocircuito del subcuadro S2.5 de linea de corte de acero	
Tabla 40. Resultados del subcuadro S2.6 de linea de corte de aluminio	
Tabla 41. Resultados de cortocircuito del subcuadro S2.6 de linea de corte de aluminio	
Tabla 42. Resultados del subcuadro S3 de centros de corte láser	
Tabla 43. Resultados de cortocircuito del subcuadro S3 de centros de corte láser	
Tabla 44. Resultados de la agrupación de centros de corte láser 1	
Tabla 45. Resultados de cortocircuito de la agrupación de centros de corte láser 1	
Tabla 46. Resultados de la agrupación de centros de corte láser 2	
Tabla 47. Resultados de cortocircuito de la agrupación de centros de corte láser 2	79

Tabla 48. Resultados del subcuadro S4 de plegado	79
Tabla 49. Resultados de cortocircuito del subcuadro S4 de plegado	80
Tabla 50. Resultados del subcuadro S4.1 de plegado de acero galvanizado	
Tabla 51. Resultados de cortocircuito del subcuadro S4.1 de plegado de acero galvanizado	
Tabla 52. Resultados del subcuadro S4.2 de plegado de aluminio lacado	80
Tabla 53. Resultados de cortocircuito del subcuadro S4.2 de plegado de aluminio lacado	80
Tabla 54. Resultados del subcuadro S4.3 de plegado de zinc	
Tabla 55. Resultados de cortocircuito del subcuadro S4.3 de plegado de zinc	
Tabla 56. Resultados del subcuadro S4.4 de plegado de cobre	
Tabla 57. Resultados de cortocircuito del subcuadro S4.4 de plegado de cobre	
Tabla 58. Resultados del subcuadro S4.5 de plegado de acero	
Tabla 59. Resultados de cortocircuito del subcuadro S4.5 de plegado de acero	81
Tabla 60. Resultados del subcuadro S4.6 de plegado de aluminio	82
Tabla 61. Resultados de cortocircuito del subcuadro S4.6 de plegado de aluminio	
Tabla 62. Resultados del subcuadro S4.7 de plegado de acero diamantado	
Tabla 63. Resultados de cortocircuito del subcuadro S4.7 de plegado de acero diamantado	
Tabla 64. Resultados del subcuadro S5 de curvado	
Tabla 65. Resultados de cortocircuito del subcuadro S5 de curvado	
Tabla 66. Resultados del subcuadro S5.1 de curvado de chapa	
Tabla 67. Resultados de cortocircuito del subcuadro S5.1 de curvado de chapa	
Tabla 68. Resultados del subcuadro S5.2 de curvado de tubos	
Tabla 69. Resultados de cortocircuito del subcuadro S5.2 de curvado de tubos	
Tabla 70. Resultados del subcuadro S6 de otros	
Tabla 71. Resultados de cortocircuito del subcuadro S6 de otros	
Tabla 72. Resultados del subcuadro S6.1 de cizallado	
Tabla 73. Resultados de cortocircuito del subcuadro S6.1 de cizallado	
Tabla 74. Los resultados del subcuadro S6.2 de satinado	
Tabla 75. Resultados de cortocircuito del subcuadro S6.2 de satinado	
Tabla 76. Resultados del subcuadro S6.3 de serrado	
Tabla 77. Resultados de cortocircuito del subcuadro S6.3 de serrado	
Tabla 78. Resultados del subcuadro S7 de soldadura	
Tabla 79. Resultados de cortocircuito del subcuadro S7 de soldadura	
Tabla 80. Resultados del subcuadro S7.1 de soldadura TIG	
Tabla 81. Resultados de cortocircuito del subcuadro S7.1 de soldadura TIG	
Tabla 82. Resultados del subcuadro S7.2 de soldadura MIG/MAG	
Tabla 83. Resultados de cortocircuito del subcuadro S7.2 de soldadura MIG/MAG	
Tabla 84. Resultados del subcuadro S7.3 de soldadura MMA	
Tabla 85. Resultados de cortocircuito del subcuadro S7.3 de soldadura MMA	
Tabla 86. Resultados del subcuadro S7.4 de soldadura por puntos	
Tabla 87. Resultados de cortocircuito del subcuadro S7.4 de soldadura por puntos	
Tabla 88. Resultados del subcuadro S7.5 de soldadura oxiacetilénica	
Tabla 89. Resultados de cortocircuito del subcuadro S7.5 de soldadura oxiacetilénica	
Tabla 90. Resultados del subcuadro S8 de pintura	
Tabla 91. Resultados de cortocircuito del subcuadro S8 de pintura	
Tabla 92. Resultados del subcuadro S8.1 de la linea de pintura 1	
Tabla 93. Resultados de cortocircuito del subcuadro S8.1 de la linea de pintura 1	
Tabla 94. Resultados del subcuadro S8.2 de la linea de pintura 2	
Tabla 95. Resultados de cortocircuito del subcuadro S8.2 de la linea de pintura 2	
Tabla 96. Resultados del subcuadro S8.3 de la linea de pintura 3	
Tabla 97. Resultados de cortocircuito del subcuadro S8.3 de la linea de pintura 3	
Tabla 98. Resultados del subcuadro S8.4 de la linea de pintura 4	
	> 0
Instalación eléctrica de una industria de fabricación de conformados metálicos	

Tabla 99. Resultados de cortocircuito del subcuadro S8.4 de la linea de pintura 4	. 90
Tabla 100. Resultados del subcuadro S9 de montaje	. 90
Tabla 101. Resultados de cortocircuito del subcuadro S9 de montaje	. 90
Tabla 102. Resultados del subcuadro S9.1 de atornillado	
Tabla 103. Resultados de cortocircuito del subcuadro S9.1 de atornillado	.91
Tabla 104. Resultados del subcuadro S9.2 de punzonado	
Tabla 105. Resultados de cortocircuito del subcuadro S9.2 de punzonado	
Tabla 106. Resultados del subcuadro S10 de embalaje	
Tabla 107. Resultados de cortocircuito del subcuadro S10 de embalaje	
Tabla 108. Resultados del subcuadro S11a del almacén de materias primas	. 92
Tabla 109. Resultados de cortocircuito del subcuadro S11a del almacén de materias primas	
Tabla 110. Resultados del subcuadro S11a.1 del almacén de acero	
Tabla 111. Resultados de cortocircuito del subcuadro S11a.1 del almacén de acero	. 92
Tabla 112. Resultados del subcuadro S11a.2 del almacén de aluminio	
Tabla 113. Resultados de cortocircuito del subcuadro S11a.2 del almacén de aluminio	
Tabla 114. Resultados del subcuadro S11a.3 del almacén de zinc	
Tabla 115. Resultados de cortocircuito del subcuadro S11a.3 del almacén de zinc	
Tabla 116. Resultados del subcuadro S11a.4 del almacén de cobre	
Tabla 117. Resultados de cortocircuito del subcuadro S11a.4 del almacén de cobre	
Tabla 118. Resultados del subcuadro S11a.5 de los puentes grúa	
Tabla 119. Resultados de cortocircuito del subcuadro S11a.5 de los puentes grúa	
Tabla 120. Resultados del subcuadro S11b del almacén de productos terminados	
Tabla 121. Resultados de cortocircuito del subcuadro S11b del almacén de produc	
terminados	
Tabla 122. Resultados del subcuadro S11b.1 del almacén de canalones	
Tabla 123. Resultados de cortocircuito del subcuadro S11b.1 del almacén de canalones	
Tabla 124. Resultados del subcuadro S11b.2 del almacén de armarios	
Tabla 125. Resultados de cortocircuito del subcuadro S11b.2 del almacén de armarios	
Tabla 126. Resultados del subcuadro S11b.3 del almacén de rejas	
Tabla 127. Resultados de cortocircuito del subcuadro S11b.3 del almacén de rejas	
Tabla 128. Resultados del subcuadro S11b.4 del almacén de escaleras	
Tabla 129. Resultados de cortocircuito del subcuadro S11b.4 del almacén de escaleras	
Tabla 130. Resultados del subcuadro S12 de los servicios generales centrales	
Tabla 131. Resultados de cortocircuito del subcuadro S12 de los servicios generales centra	
Tabla 132. Resultados del subcuadro S12.1 del centro de transformación	
Tabla 133. Resultados de cortocircuito del subcuadro S12.1 del centro de transformación	
Tabla 134. Resultados del subcuadro S12.2 del centro de transformación	
Tabla 135. Resultados de cortocircuito del subcuadro S12.2 del centro de transformación	
Tabla 136. Resultados del subcuadro S12.3 de la central de producción de calor	
Tabla 137. Resultados de cortocircuito del subcuadro S12.3 de la central de producción	
calor	
Tabla 138. Resultados del subcuadro S12.4 de la central de compresores	
Tabla 139. Resultados de cortocircuito del subcuadro S12.4 de la central de compresores	
Tabla 140. Resultados del subcuadro S12.5 de la central de bombeo de aguas	
Tabla 141. Resultados de cortocircuito del subcuadro S12.5 de la central de bombeo de ag	
Tabla 142. Resultados del subcuadro S12.6 de la central de tratamiento de aguas residuales	
Tabla 143. Resultados de cortocircuito del subcuadro S12.6 de la central de tratamiento de aguas residuales Tabla 143. Resultados de cortocircuito del subcuadro S12.6 de la central de tratamiento	
aguas residuales	
Tabla 144. Resultados del subcuadro S12.7 del taller de mantenimiento	
	. 50
Instalación eléctrica de una industria de fabricación de conformados metálicos	

Tabla 145. Resultados de cortocircuito del subcuadro S12.7 del taller de mantenimiento 100
Tabla 146. Resultados del subcuadro S12.8 del almacén de recambios
Tabla 147. Resultados de cortocircuito del subcuadro S12.8 del almacén de recambios 100
Tabla 148. Resultados del subcuadro S12.9 de la carga de baterías
Tabla 149. Resultados de cortocircuito del subcuadro S12.9 de la carga de baterías 100
Tabla 150. Resultados del subcuadro S13 de los servicios generales de la nave
Tabla 151. Resultados de cortocircuito del subcuadro S13 de los servicios generales de la
nave
Tabla 152. Resultados del subcuadro S13.1 del alumbrado de la nave
Tabla 153. Resultados de cortocircuito del subcuadro S13.1 del alumbrado de la nave 101
Tabla 154. Resultados del subcuadro S13.2 de la fuerza de la nave
Tabla 155. Resultados de cortocircuito del subcuadro S13.2 de la fuerza de la nave
Tabla 156. Resultados del subcuadro S13.3 de las tomas de corriente de la nave
Tabla 157. Resultados de cortocircuito del subcuadro S13.3 de las tomas de corriente de la
nave
Tabla 158. Resultados del subcuadro S13.4 de la climatización de la nave
Tabla 159. Resultados de climatización del subcuadro S13.4 de la climatización de la nave103
Tabla 160. Resultados del subcuadro S14 del edificio de oficinas
Tabla 161. Resultados de cortocircuito del subcuadro S14 del edificio de oficinas
Tabla 162. Resultados del subcuadro S14.1 del alumbrado del edificio de oficinas
Tabla 163. Resultados de cortocircuito del subcuadro S14.1 del alumbrado del edificio de
oficinas
Tabla 164. Resultados del subcuadro S14.1.1 del alumbrado del edificio de oficinas – Zona 1
Tabla 165. Resultados de cortocircuito del subcuadro S14.1.1 del alumbrado del edificio de
oficinas – Zona 1
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2
Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2

Tabla 186. Resultados de la linea de media tensión	118
Tabla 187. Resultados de caídas de tensión en la linea de media tensión	118
Tabla 188. Resultados de pérdidas de potencia activa en la linea de media tensión	118
Tabla 189. Resultados de protecciones en la linea de media tensión	
Tabla 190. Resultados de cortocircuito en la linea de media tensión	119
Tabla 191. Presupuesto de cables	121
Tabla 192. Presupuesto de tubos	121
Tabla 193. Presupuesto de protecciones	121
Tabla 194. Presupuesto de celdas de alta tensión	122
Tabla 195. Presupuesto de interconexión AT-Trafo	122
Tabla 196. Presupuesto de transformadores	
Tabla 197. Presupuesto de interconexión Trafo-BT	122
Tabla 198. Presupuesto de cuadros de BT	122
Tabla 199. Presupuesto de toma de tierra	
Tabla 200. Presupuesto de elementos varios	123
Tabla 201. Presupuesto de cables	124
Tabla 202. Presupuesto de tubos	125
Tabla 203. Presupuesto de bandejas	125
Tabla 204. Presupuesto de interruptores automáticos	125
Tabla 205. Presupuesto de interruptores c/c	127
Tabla 206. Presupuesto de interruptores diferenciales	
Tabla 207. Presupuesto de elementos de control - maniobra	127
Tabla 208 Presupuesto total del provecto	128

1. MEMORIA DESCRIPTIVA

1.1. ANTECEDENTES

La redacción del presente trabajo de "Instalación eléctrica de una industria de fabricación de conformados metálicos" ha sido solicitada por una empresa dedicada a la fabricación de conformados metálicos en vistas de una futura expansión a otro municipio. Se ha solicitado el diseño de una instalación eléctrica que suministre energía a las máquinas de la fábrica y al resto de equipos de la nave.

1.2. OBJETO DEL TRABAJO

El objeto de este Trabajo Fin de Máster consiste en diseñar la instalación eléctrica de una industria destinada a la fabricación de diversos conformados metálicos. En el trabajo se establecerán los datos constructivos de la instalación, los elementos que la forman y la justificación de las decisiones tomadas y las soluciones adoptadas para la ejecución y el correcto funcionamiento de la instalación.

El trabajo se ajustará a la normativa vigente relativa a instalaciones de baja y media tensión. También debe cumplirá la normativa establecida por la compañía suministradora de electricidad.

1.3. ALCANCE

En un primer momento de definirán los procesos productivos de fabricación de conformados metálicos y la maquinaria y equipos presentes en la fábrica. Se estudiarán las fases de cada proceso y se establecerá la disposición en planta de los equipos.

Una vez conocida la organización interna de la fábrica de procederá al diseño de la instalación eléctrica. Se partirá de punto de enganche de media tensión, perteneciente a la compañía suministradora, hasta los consumidores finales en la fábrica.

Este trabajo incluye los siguientes proyectos:

- Proyecto de la Red de Distribución de Baja Tensión.
- Proyecto del Centro de Transformación.
- Proyecto de la Linea Media Tensión.

1.4. NORMATIVA

El presente trabajo se ciñe a la siguiente normativa vigente:

- Reglamento Electrotécnico para Baja Tensión, según Real Decreto 842/2002 de 2 de agosto, Instrucciones Técnicas Complementarias y normas UNE de aplicación.
- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, según Real Decreto 337/2014 de 9 de mayo.
- Normas UNE y recomendaciones UNESA que sean de aplicación.
- Normas particulares de la Compañía distribuidora.
- Reglamento de seguridad contra incendios en los establecimientos industriales, según Real Decreto 2267/2004 de 3 de diciembre.
- Código Técnico de la Edificación, según Real Decreto 314/2006 de 17 de marzo.
- Reglamento de Seguridad e Higiene en el Trabajo, según orden Ministerial del 9 de marzo de 1971.
- Ley de prevención de riesgos laborales, según Real Decreto 31/1995 de 8 de noviembre.
- Disposiciones mínimas de seguridad y salud en los lugares de trabajo, según Real Decreto 486/1997 de 14 de abril.

• Disposiciones mínimas de seguridad y de salud en las obras de construcción, según Real Decreto 1627/1997 de 24 de octubre.

1.5. EMPLAZAMIENTO

El complejo en el que se pretende llevar a cabo la actividad industrial se encuentra en el municipio de Villares de la Reina (Salamanca), en el polígono industrial "Los Villares", Calle Bélgica 4, con referencia catastral 8319001TL7481N0001OB. La parcela cuenta con una superficie total de 5.227 m².

El polígono industrial "Los Villares" está situado en la carretera nacional N-620, en la frontera entre los términos municipales de Villares de la Reina y Salamanca. Dispone de una conexión con la Autovía de Castilla A-62, en su salida 235B. El aeropuerto más cercano es el Aeropuerto de Salamanca (Matacán), dista 25 km del polígono.

Figura 1. Imagen por satélite de la parcela.

Figura 2. Mapa catastral.

1.6. DESCRIPCIÓN DEL COMPLEJO INDUSTRIAL.

La actividad se va a desarrollar en un complejo industrial formado por dos naves colindantes, unidas con un mismo espacio interior. La planta está situada en una parcela de dimensiones 156x70 metros, ocupada prácticamente en su totalidad, excepto la zona que rodea a las oficinas, que es usado como zona de aparcamiento. La superficie total es de 10.570 m², mientras que el aparcamiento es de 350 m².

Los procesos industriales son un conjunto de operaciones, que se llevan a cabo para la elaboración de productos que, a partir de las diferentes materias primas, nos permiten crear, fabricar o transformar un gran número de productos para satisfacer las necesidades de los usuarios.

A través de estos procesos, se pretende aprovechar al máximo los recursos naturales que se utilizan para la creación de dichos productos con el menor coste posible.

Existen cuatro tipos de procesos industriales:

- Operaciones continuas: El proceso de transformación se realiza durante un periodo de tiempo concreto y siempre de manera continuada.
- Operaciones discontinuas: El proceso de transformación se realiza en un menor tiempo, ya que se cambia de producto con frecuencia y facilidad.
- Operaciones por lotes: Se lleva a cabo a través de una secuencia claramente definida.
- Operaciones discretas: Crean un solo producto a la vez.

En nuestro caso el proceso industrial se desarrolla por lotes según la demanda requerida en el pedido del cliente.

Dentro de la planta se pueden distinguir zonas: la zona de fabricación, los almacenes de materias primas y de productos terminados, las oficinas, los servicios generales, la zona de galvanizado, y una superficie disponible.

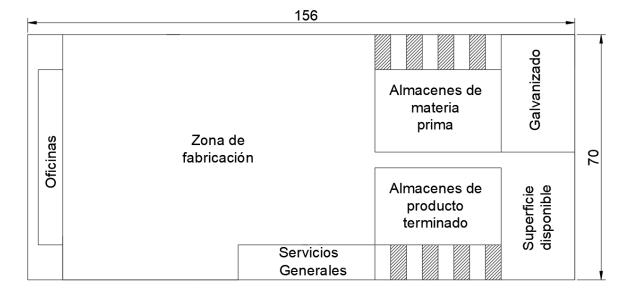


Figura 3. Esquema del complejo industrial.

1.6.1. Condiciones para tener en cuenta en el diseño de complejo industrial.

El principal objetivo durante el diseño de este complejo industrial ha sido diseñar una planta moderna, que se ajuste a unos principios de ahorro y eficiencia, tanto energético como de dinero y de tiempo. En consecuencia, se han tomado las siguientes decisiones:

- Los edificios e instalaciones industriales se diseñarán siguiendo criterios de eficiencia energética que repercutirá en un menor consumo de energía:
 - Aprovechamiento de la luz diurna para la iluminación interior debida a una buena orientación de los edificios. En las fachadas que den al exterior se dejarán zonas que permitan la entrada de la luz diurna.
 - Los edificios se aislarán térmicamente tanto en cubierta como en fachada para evitar pérdidas.
 - O La zona de hornos constará de un aislamiento especial respecto al resto de la planta con el objetivo de aislarlo lo máximo posible del resto de la instalación y reducir las fluctuaciones de temperatura. Al reducir las fluctuaciones se conseguirá un funcionamiento más regular y ahorrar energía al minimizar las pérdidas.
 - Los edificios tendrán una altura muy por encima para mejorar la atmósfera de trabajo, favoreciendo una mayor productividad de los operarios y de máquinas y equipos.
 - Los almacenes de han diseñado pensando en apilar las mercancías en altura, optimizando la superficie disponible en la planta.
 - La estructura de la cubierta y del edificio admitirán la sobrecarga y el anclaje de equipos y para la implantación de futuros paneles solares térmicos y fotovoltaicos, coordinados con zonas traslúcidas que reduzcan las necesidades de iluminación artificial durante el día.
- La distribución de la maquinaria en la planta industrial:
 - Los equipos de mayor potencia eléctrica se situarán lo más cerca posible del Centro de Transformación.
 - o En Centro de Transformación se situará en el centro de gravedad de las cargas, reduciendo las pérdidas en los conductores y su coste al reducir las secciones.
 - La distribución de las máquinas en la planta se ha diseñado siguiendo el proceso productivo, en forma de U. De esta forma se fomenta una producción continua, evitando almacenes intermedios, minimizando tiempos de espera entre fases del proceso y reduciendo al mínimo las distancias de transporte. Esto mejora los tiempos de producción y ahorra energía de transporte.
 - Las líneas de pintura constan de un sistema de transporte en cadena elevado sobre raíles en el que se cuelgan las piezas a pintar. Una vez pintadas, el sistema de transporte introduce las piezas en el horno, permanecen dentro y posteriormente salen siguiendo los rieles. Este sistema permite reducir los tiempos de transporte y ahorrar energía, ya que optimiza el tiempo que el horno permanece encendido, con el objetivo de que se desperdicie el mínimo de energía térmica.

• Equipos industriales:

- o Los equipos industriales utilizados en las instalaciones estarán diseñados y desarrollados atendiendo a la eficiencia y ahorro energético de los mismos.
- o En cada cuadro del proceso productivo se instalará un sistema automatizado de contadores que sean capaces de registrarla energía consumida por cada máquina en cada fase del proceso. Esto permitirá a la empresa tener datos muy detallados sobre el consumo eléctrico, pudiendo utilizarlos para optimizar el gasto de energía y poder imputar el coste energético con precisión en los artículos fabricados.
- Aplicación de fuentes de energías renovables y recuperación de calor:
 - Se contemplará la posibilidad de instalación de fuentes de energía renovables para producir energía eléctrica mediante paneles solares térmicos o aerogeneradores y de paneles solares térmicos para producción de calor.

 Los hornos de secado de las líneas de pintura son grandes focos de calor, por lo que el calor presente en los gases generados puede derivarse a otras zonas de la planta, mediante intercambiadores de calor.

• Servicios a clientes:

O Aparte de los productos que se fabrican habitualmente, esta empresa ofrece servicios puntuales a clientes y otras empresas de la zona. La empresa ofrece servicios de galvanizado y pintura personalizados con la intención de aprovechar sus instalaciones de galvanizado y líneas de pintura el máximo tiempo posible. Estos servicios reportarán unos ingresos extra a la empresa y mejorarán su eficiencia energética, al disminuir el tiempo que las instalaciones puedan no estar utilizadas.

El desarrollo y la implementación de las fuentes de energía renovables no formará parte de este trabajo, ya que su propio estudio sobrepasa el alcance de este.

1.6.2. Zona de fabricación.

La zona de fabricación es la zona en la que se llevan a cabo los trabajos que convierten la materia prima en el producto terminado. Ocupa 5840 m² y está dividida en tres zonas, según el tipo de trabajo que se lleva en cada una:

- Zona de chapa: En la zona de chapa se reciben la materia prima y se trabaja directamente sobre ella. Aquí se llevan a cabo los procesos de corte, plegado, satinado, curvado y soldadura. Tiene una superficie de 2.985 m².
- Zona de pintura: En esta zona se pintan las piezas que componen los productos terminados. Las piezas metálicas se colocan en una linea automatizada mientras son pintadas y posteriormente son llevadas al horno para su secado. Tiene una superficie de 1.600 m².
- <u>Zona de montaje y embalado</u>: En esta zona se montan las piezas para formar los productos terminados. Aquellos productos que lo requieran se montarán usando tornillos, tuercas, arandelas y otros elementos auxiliares. Finalmente, los productos se empaquetarán y envolverán. Tiene una superficie de 858 m².

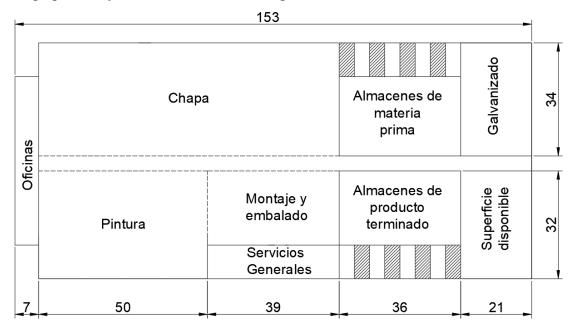


Figura 4. Esquema de las divisiones internas de la planta.

1.6.3. Almacén de materias primas.

La zona de almacén de materias primas está dividida en cuatro almacenes, según el tipo de metal que se vaya a almacenar en cada uno, además, el almacén de acero tiene un apartado para chapas de acero estriado. Según el tipo de metal y el grosor puede venir en chapas planas o en fleje, enrollado en una bobina. Se apilará en altura con el objetivo de almacenar el máximo de materia prima optimizando la superficie ocupada. Tiene una superficie de 1.207 m².

1.6.4. Almacén de productos terminados.

En este almacén se guardan los productos terminados, una vez empaquetados y envueltos, a la espera de ser recogidos o enviados. Al igual que en el almacén de materias primas, está dividido en cuatro zonas según el tipo de producto y se apilará en altura. Tiene una superficie de 1.207 m².

1.6.5. Oficinas.

En la zona de oficinas se sitúa la oficina técnica de la fábrica, así como la dirección, la recepción, una pequeña zona de exposición y unos aseos. Tiene una superficie de 350 m².

1.6.6. Servicios generales.

El edificio de servicios generales alberga varias instalaciones que suministran y acondicionan al complejo industrial. Tiene una superficie de 390 m².

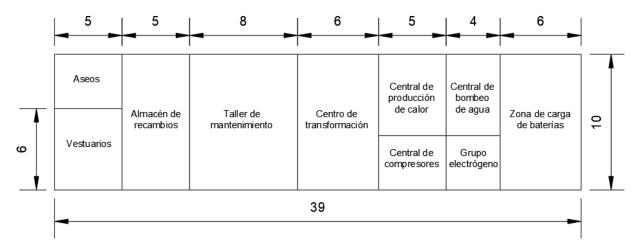


Figura 5. Esquema de los servicios generales.

1.6.6.1. Aseos y vestuarios.

En los vestuarios los trabajadores podrán cambiarse y guardar su ropa de trabajo. Los aseos tendrán las instalaciones suficientes para cubrir sus necesidades.

1.6.6.2. Taller de mantenimiento.

En el taller de mantenimiento se realizan labores de mantenimiento preventivo y reparaciones de la maquinaria presente en la fábrica.

1.6.6.3. Almacén de recambios.

En el almacén de recambios se almacenan piezas de recambio para sustituirlas en las máquinas cuando sea necesario. También se almacenan materiales auxiliares como tornillos, tuercas y electrodos de soldadura.

1.6.6.4. Centro de transformación.

En el centro de transformación se sitúan las cabinas de media tensión, los dos transformadores y el cuadro general de distribución. Se ha dejado espacio para la instalación de un tercer transformador en previsión de una posible futura expansión.

1.6.6.5. Grupo electrógeno

El grupo electrógeno es un generador de energía eléctrica unido a un motor de combustión interna. En caso de corte del suministro eléctrico el motor se pondrá en marcha y generará la suficiente energía para alimentar las líneas de emergencia. En caso de emergencia se deberá suministrar energía al alumbrado de vigilancia, evacuación y antipánico y a las cubas de pintura, para impedir que se seque.

1.6.6.6. Central de aire comprimido

La central de aire comprimido suministra aire a presión a la linea de pintura. Consta de compresores y las instalaciones de refrigeración y mando necesarias para su funcionamiento.

1.6.6.7. Central de producción de calor

La central de producción de calor se encarga de climatizar la fábrica a las condiciones deseadas y a renovar el aire interior. Consta de la caldera, bombas de agua de alimentación y pupitres de fuerza y mando.

1.6.6.8. Central de bombeo de aguas

La central de bombeo se encarga de la distribución de agua a los aseos y a los procesos que lo requieran. Consta de las bombas de agua para alimentar a la planta.

1.6.6.9. Zona de carga de baterías.

En esa zona están las instalaciones necesarias para cargar las baterías de las carretillas elevadoras. Se mantendrá un ritmo de carga adecuado para que en todo momento haya baterías cargadas para sustituir las agotadas, con el objetivo de mantener las carretillas disponibles para usarlas en todo momento.

1.6.7. Zona de galvanizado

La industria tiene una zona dedicada al galvanizado de acero. En esta zona se galvanizará el acero con el que posteriormente se fabricarán los canalones. Además, la empresa ofrecerá el servicio de galvanizado a clientes que necesiten galvanizar sus propias piezas. Tiene una superficie de 705 m².

1.6.8. Superficie disponible

Una parte de la nave se ha dejado vacía como zona reservada para una futura expansión de la fábrica. En la actualidad no se va a realizar actividad industrial alguna allí. Tiene una superficie de 672 m².

Aquí tan solo se va a situar la central de tratamiento de aguas residuales se encargará de tratar los vertidos industriales y las aguas fecales antes de que salgan de la industria.

1.7. PRODUCTOS IMPLICADOS EN LA FABRICACIÓN.

1.7.1. Materias primas.

Las materias primas empleadas consisten principalmente en elementos metálicos. Además, se emplean varios accesorios que se añaden al producto terminado, como cerraduras, manillas y ruedas. Evidentemente también son necesarios otros elementos para llevar a cabo el proceso productico, tales como tornillos, tuercas, arandelas, remates, electrodos de soldadura, embalaje y pintura.

1.7.1.1. Acero galvanizado.

El acero galvanizado se usará para fabricar canalones. Es el material para canalones más usado, gracias a su versatilidad y a la gran variedad de accesorios. El acero galvanizado lo fabrica la propia empresa en sus instalaciones.

El acero galvanizado es un material óptimo para la fabricación de canalones debido a que van a estar situados a la intemperie y en contacto con el agua. Al existir una capa de zinc sobre el acero se evita que el oxígeno alcance el hierro, lo que evita la oxidación. Esta protección se incrementará con el tiempo a medida que la capa de zinc se oxide y forme una pátina.

Otras propiedades que hacen al acero galvanizado adecuado para la fabricación de canalones son su resistencia a la rayadura, su aspecto satinado, su bajo coste y su alta capacidad para ser reciclado.

1.7.1.2. Aluminio lacado.

El aluminio lacado se usará para fabricar canalones. Es un material cada vez más utilizado debido a su aspecto decorativo, ya que se pueden adaptar al color de la fachada. Viene en fleje de 0,8 mm de grosor enrollado en bobinas.

El aluminio es un material ligero, económico y muy maleable, lo cual permite gran variedad de formas y diseños. Es un material completamente reciclable y con un mantenimiento muy simple. Aunque es un material de elevada durabilidad, para instalaciones en lugares con climatología agresiva es recomendable usar otro metal aún más resistente.

1.7.1.3. Zinc.

El zinc se usará para fabricar canalones. Es un material ideal para lugares húmedos y agresivos, ya que es muy resistente y duradero. Viene en fleje de 0,6 mm de grosor enrollado en bobinas.

El zinc es un material bastante maleable, aunque es más difícil de manipular que otros metales como el acero o el cobre. También requiere diferentes uniones a lo largo de la instalación, mediante soldadura, por lo que su instalación es más complicada que la del aluminio.

Su mayor punto a favor es su gran durabilidad, ya que mantiene su forma correcta a lo largo del tiempo y tiene una vida útil entre los 80 y los 100 años. Es un metal más caro que el resto, pero asegura una instalación de gran duración.

1.7.1.4. Cobre.

El zinc se usará para fabricar canalones. Es un material que destaca por su sobriedad y estética tradicional, por lo que es muy demandado en edificios y conjuntos históricos.

Es un material perdurable a lo largo del tiempo, reciclable y resistente a todo tipo de temperaturas, pero conlleva el mayor de los costes de instalación, así como un gran número de soldaduras a lo largo de la fachada.

1.7.1.5. Acero.

El acero se utilizará para fabricar armarios y puertas. Es un metal idóneo debido a sus propiedades: alta resistencia mecánica, durabilidad, alta capacidad de ser reciclado y bajo coste. Se puede pintar en una alta variedad de colores de la gama RAL.

Viene en bobinas y en chapas de 1 mm de grosor.

1.7.1.6. Aluminio.

El aluminio se utilizará para fabricar armarios. Es más ligero que el acero y debido a su acabado no necesita pintura.

Viene en bobinas y en chapas de 1 mm de grosor.

1.7.1.7. **Tubos de acero.**

Los tubos de acero se utilizarán para la fabricación de rejas, puertas y escaleras. Vienen en sección cuadrada y rectangular, con variedad de dimensiones.

1.7.1.8. Chapa de acero estriado.

La chapa de acero estriado se utilizará para fabricar el suelo de las escaleras. Este tipo de chapa, también conocida como estriada, presenta un patrón regular de líneas en relieve que permiten un mejor agarre al caminar sobre ellas.

1.7.1.9. Accesorios.

El resto de los materiales que se incorporan a los productos terminados son elementos prefabricados, tales como tornillos, tuercas, arandelas, cerraduras, bisagras, separadores, ruedas.

1.7.1.10. Consumibles.

Los materiales consumibles con aquellos que se consumen durante el proceso productivo y no se pueden reutilizar, como la pintura, los electrodos de soldadura, etc.

Tabla 1. Materias primas

1.7.2. Productos terminados.

Esta industria de conformados metálicos puede fabricar una gran variedad de productos, ya que consta de una oficina técnica capaz de adaptarse a las demandas de los clientes y maquinaria apta para llevar a cabo proyectos con una amplia flexibilidad.

En todo caso, los productos que ocupan la mayor parte de su actividad y en los que están especializados son los siguientes:

1.7.2.1. Canalones.

Los canalones con canalizaciones destinadas a recoger el agua de lluvia de los tejados y evacuarla hacia el suelo. La empresa fabricará todas las partes de la instalación.

El cliente elegirá el metal (acero galvanizado, aluminio lacado, zinc o cobre), la forma de la sección y la longitud.

1.7.2.2. Armarios industriales.

Los armarios industriales son espacios de almacenamiento metálicos destinados a entornos profesionales. Dependiendo de las medidas solicitadas por el cliente también pueden usarse como taquillas.

Se fabricarán de acero o de aluminio, pudiendo el cliente elegir el color de la pintura. En el caso del aluminio, puede dejarse sin pintar, debido al acabado decorativo del aluminio satinado.

1.7.2.3. Rejas.

Las rejas en las ventanas sirven para proteger al edificio de posibles accesos no deseados. En una entrada de personas y/o vehículos, sirve para abrir y cerrar el paso.

Se fabricarán mediante la soldadura de tubos, ya sean de sección circular o cuadrada, y chapas de acero, para cerrar superficies. Algunas puertas constarán de bisagras y cerradura. Tras fabricarlas se pintarán según los deseos del cliente.

1.7.2.4. Escaleras industriales.

Las escaleras industriales son escaleras destinadas a formar parte de fábricas. Por esta razón deben ser resistentes, duraderas y facilitar la actividad industrial lo máximo posible.

Estarán fabricadas de tubos soldados y placas de acero estriado en las zonas en las que se va a pisar. Las placas de acero estriado tienen relieve con el objetivo de ofrecer un mayor agarre cuando se circula por ellas. Las barandillas pueden ser de sección circular o rectangular.

1.7.2.5. Galvanizado.

La nave consta de una planta de galvanizado que la empresa utilizará para sus propios productos. La empresa también ofrecerá el servicio de galvanizado como un servicio individual a clientes específicos o a otras empresas, por lo que los productos galvanizados pueden considerarse como un producto más de la empresa.

El proceso de galvanizado en caliente comienza con un desengrase ácido para eliminar los restos de grasas y aceites con los que llega el material. Posteriormente se realiza un decapado con ácido clorhídrico diluido en agua para eliminar escorias, cascarillas y óxido. Tras el decapado se lava con agua a presión.

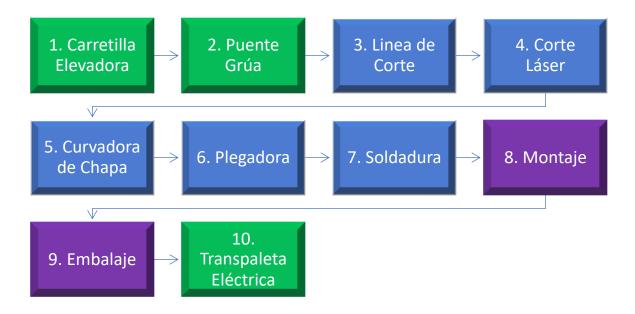
Una vez la pieza está preparada para galvanizar se produce el fluxado, en el que se sumerge la pieza en una solución de sales de cloruro de zinc y cloruro de amonio con las que se consigue una activación de la superficie metálica. Tras el fluxado las piezas se secan y se sumergen en un crisol con zinc fundido a 450°C en el que se produce la reacción Fe-Zn con la consiguiente

formación de capas de aleación y recubrimiento de zinc puro. Para finalizar las piezas se dejan secar al aire. Durante todo el proceso las piezas se cuelgan de polipastos que circulan por una linea de transporte aérea para facilitar el movimiento.

Tabla 2. Productos terminados

1.8. DESCRIPCIÓN DE LA ACTIVIDAD.

La actividad que se desarrolla en la industria se divide en un conjunto de subprocesos divididos según la naturaleza del proceso. Gracias a esto la fábrica se puede organizar de una manera que facilite al máximo la actividad.


En los diagramas se han usado colores para identificar la naturaleza de cada etapa del proceso:

- <u>Verde</u>: Etapa de transporte
- Azul: Etapa de transformación de la chapa
- Rojo: Etapa de pintura
- Morado: Etapa de montaje y embalado

1.8.1. Canalones.

Los canalones se pueden fabricar en cuatro metales diferentes: acero galvanizado, aluminio lacado, zinc y cobre. Los metales vienen en bobinas, se someterán a procesos de corte, curvado, plegado y soldadura. Este producto no se pinta.

- 1) <u>Carretilla elevadora</u>: Transporta los palés sobre los que se cargan las bobinas desde el almacén de la materia prima hasta la zona de corte de la nave.
- 2) <u>Puente grúa</u>: Los trabajadores se apoyan en un puente grúa para situar las bobinas en la linea de corte.
- 3) <u>Linea de corte</u>: La linea de corte consta de una sucesión de rodillos encargados de desenrollar y enderezar el fleje de la bobina. Al final de la linea se sitúan cuchillas que cortan la chapa con el ancho y la profundidad adecuados. Las partes simples del canalón, como el perfil del canalón, la bajante o el codo, requieren chapas de formato rectangular. Estos cortes sencillos se pueden llevar a cabo directamente en la linea de corte.
- 4) <u>Corte láser</u>: La mayoría de los elementos del canalón requieren una geometría compleja. Para conseguir esta precisión se corta la chapa a través de una máquina de corte láser de fibra óptica. La geometría se diseña en la oficina técnica a través de un programa de dibujo CAD (Computer-Aided Design) y se importa en la máquina de corte mediante un programa CAM (Computer-Aided Manufacturing).
- 5) <u>Curvadora de chapa</u>: Las piezas del canalón que tienen formas curvas se curvan aquí. Incluidas las bajantes, las cuales son chapas curvadas por completo hasta formar un tubo cilíndrico. También se incluyen los perfiles de canalones de acero galvanizado, zinc y cobre, los cuales son curvos.
- 6) <u>Plegadora</u>: El resto de las piezas se pliegan linealmente según la forma requerida. Se incluyen los perfiles de canalones de aluminio, que tienen pliegues complejos.
- 7) <u>Soldadura</u>: En la soldadura se cierran los tubos de las bajantes y se unen. El resto de las uniones se realizan in situ en la obra, durante la instalación.
- 8) <u>Montaje</u>: Se unen el máximo número de piezas posibles para disminuir al máximo el trabajo en obra.
- 9) <u>Embalaje</u>: Se envuelven las piezas en plástico para evitar daños durante el transporte y el almacenamiento.
- 10) <u>Transpaleta eléctrico</u>: Transporta las piezas de los canalones hasta el almacén de productos terminados.



1.8.2. Armarios industriales.

Los armarios industriales se pueden fabricar con acero o con aluminio. En el caso de los armarios de acero, se pintarán del color deseado por el cliente; los armarios de aluminio no se pintarán, se les aplicará un satinado para lograr un buen acabado superficial.

- 1) <u>Carretilla elevadora</u>: Transporta los palés sobre los que se cargan las bobinas desde el almacén de la materia prima hasta la zona de corte de la nave.
- 2) <u>Puente grúa</u>: Los trabajadores se apoyan en un puente grúa para situar las bobinas en la linea de corte.
- 3) <u>Linea de corte</u>: La linea de corte consta de una sucesión de rodillos encargados de desenrollar y enderezar el fleje de la bobina. Al final de la linea se sitúan cuchillas que cortan la chapa con el ancho y la profundidad adecuados.
- 4) Corte láser: La totalidad de las chapas que forman parte de los armarios se cortan con láser, ya que su geometría es muy compleja. Para conseguir esta precisión se corta la chapa a través de una máquina de corte láser de fibra óptica. La geometría se diseña en la oficina técnica a través de un programa de dibujo CAD (Computer-Aided Design) y se importa en la máquina de corte mediante un programa CAM (Computer-Aided Manufacturing).
 - En el diseño se incluyen todos aquellos agujeros en los que se vayan a introducir tornillos y otros elementos de unión, con el objetivo de facilitar el montaje y evitar operaciones de taladrado que retrasarían la producción.
- 5) <u>Satinadora</u>: A las piezas de aluminio se les aplica un satinado para conseguir un acabado superficial atractivo para el cliente.
- 6) <u>Plegadora</u>: Las piezas se pliegan según las dimensiones requeridas para montar posteriormente el armario.
- 7) <u>Soldadura</u>: Se suelda el mayor número de uniones posibles para ahorrar trabajo de montaje.
- 8) <u>Pintura</u>: Las piezas de acero se pintan según el color deseado por el cliente.

- 9) <u>Horno</u>: Las piezas recién pintadas se cuelgan en un carril elevado que las introduce en un horno de secado, donde permanecerán hasta que la pintura esté seca.
- 10) Montaje: Una vez que todas las piezas estén acabadas se procederá a montar el armario, usando tornillos, tuercas y remaches. También se colocarán otros elementos, como la cerradura, las bisagras, las ruedas y otros elementos opcionales que el cliente pueda haber pedido.
- 11) <u>Embalaje</u>: Se envuelve el armario con plástico y planchas de poliespán para protegerlo de golpes.
- 12) <u>Transpaleta eléctrica</u>: Para finalizar el proceso, el armario se transportará al almacén de productos terminados para su almacenaje y posterior expedición.

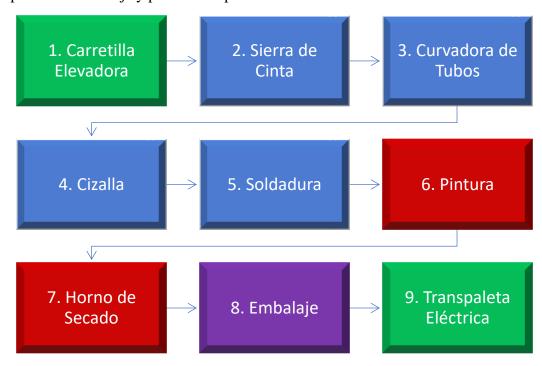


1.8.3. Rejas

Las rejas se fabricarán con tubos de acero. Por lo general se usarán tubos de sección cuadrada, aunque, según las demandas del cliente, también se pueden incluir tubos circulares. Las rejas para puertas incluirán planchas de acero para tapar huecos grandes.

- 1) <u>Carretilla elevadora</u>: Transporta los palés sobre los que se cargan los tubos y las planchas desde el almacén de la materia prima hasta la zona de corte de la nave.
- 2) Sierra de cinta: Se cortan los tubos a la longitud indicada por el diseño.
- 3) <u>Curvadora de tubos</u>: Aquí se curvarán los tubos si el diseño de la reja a fabricar incluye formas curvas.
- 4) Cizalla: Se cortan en bruto las planchas de acero.
- 5) <u>Corte laser</u>: Se cortan en detalle las planchas que se van a utilizar para las puertas. El diseño CAD debe incluir pestañas que posteriormente serán dobladas para poder incorporar la chapa a la estructura de tubos.
- 6) <u>Plegadora</u>: Se pliegan las pestañas de las chapas para puertas.
- 7) <u>Soldadura</u>: Se sueldan los tubos entre sí para formar el armazón de la reja. En el caso de las puertas también se añaden las chapas.

- 8) <u>Pintura</u>: Las rejas se pintan según el color solicitado por el cliente. Al ser elementos que van a estar en el exterior se usa pintura especializada para proteger a las rejas de la intemperie.
- 9) <u>Horno de secado</u>: Las rejas recién pintadas se cuelgan en un carril elevado que las introduce en un horno de secado, donde permanecerán hasta que la pintura esté seca.
- 10) <u>Montaje</u>: Una vez que todas las rejas estén secas se procederá montar cerraduras, bisagras y elementos decorativos en los diseños que lo requieran. Por último, se empaquetará.
- 11) Embalaje: Se envuelve en plástico para protegerlas de golpes y arañazos.
- 12) <u>Transpaleta eléctrica</u>: Para finalizar el proceso, las rejas se transportarán al almacén de productos terminados para su almacenaje y posterior expedición.



1.8.4. Escaleras industriales.

Las escaleras industriales consisten en planchas de acero estriado sobre un armazón de tubos de acero. El objetivo de usar acero estriado es aumentar el agarre al caminar sobre ellas y evitar deslizamientos. El armazón de tubos consta de la estructura que soporta los pasos, el pasamanos y las barras que lo soportan. El pasamanos puede ser de perfiles rectos o curvados en sus extremos.

- 1) <u>Carretilla elevadora</u>: Transporta los palés sobre los que se cargan los tubos y las planchas desde el almacén de la materia prima hasta la zona de corte de la nave.
- 2) <u>Sierra de cinta</u>: Se cortan los tubos a la longitud indicada por el diseño.
- 3) <u>Curvadora de tubos</u>: En el caso de que la escalera tenga tubos curvos, se curvarán aquí.
- 4) <u>Cizalla</u>: Se cortan las chapas de acero estriado en formato rectangular. Estas chapas serán la superficie de los pasos.
- 5) <u>Soldadura</u>: Se sueldan los tubos de armazón y posteriormente, los pasos y el pasamanos.

- 6) <u>Pintura</u>: Las escaleras se pintan según el color solicitado por el cliente. Si la escalera va a estar situada en el exterior se le aplica una pintura especializada que la proteja de la intemperie.
- 7) <u>Horno de secado</u>: Las escaleras se introducen en un horno de secado hasta que la pintura se seque.
- 8) <u>Embalaje</u>: Una vez la escalera esté terminada, se protege con embalaje para evitar daños durante el transporte y el almacenamiento.
- 9) <u>Transpaleta eléctrica</u>: Transporta la escalera hasta el almacén de productos terminados para su almacenaje y posterior expedición.

1.9. LÍNEAS DE PRODUCCIÓN

Las líneas de producción de la fábrica serán:

Tabla 3. Linea de galvanizado

GALVANIZADO
Máquina de desengrasado
Máquina de decapado
Limpiadora a presión
Crisol

Tabla 4. Líneas de corte

LINEAS DE CORTE					
Acero Aluminio Zinc Cobre Acero Aluminio				Aluminio	
Devanadora	Devanadora	Devanadora	Devanadora	Devanadora	Devanadora
Cortadora	Cortadora	Cortadora	Cortadora	Cortadora	Cortadora
Apiladora	Apiladora	Apiladora	Apiladora	Apiladora	Apiladora

Tabla 5. Líneas de centros láser de corte

CENTROS LÁSER		
Agrupación de centros 1	Agrupación de centros 2	
Centro láser de acero galvanizado	Centro láser de acero 1	
Centro láser de aluminio	Centro láser de acero 2	
Centro láser de zinc	Centro láser de aluminio 1	
Centro láser de cobre	Centro láser de aluminio 2	

Tabla 6. Líneas de plegado

Tabia 0. Lineus de piegudo						
PLEGADO						
Acero Galvanizado	Aluminio Lacado	Zinc	Cobre	Acero	Aluminio	Acero estriado
Plegadora 6 m	Plegadora 6 m	Plegadora 6 m	Plegadora 6 m	Plegadora 6 m	Plegadora 6 m	Plegadora 3 m
Plegadora 3 m	Plegadora 3 m	Plegadora 3 m	Plegadora 3 m	Plegadora 3 m	Plegadora 3 m	Plegadora 1,5 m
Plegadora 1,5 m	Plegadora 1,5 m					

Tabla 7. Líneas de curvado

CURVADO		
Curvado de chapa	Curvado de tubos	
Curvadora de acero galvanizado	Curvadora de tubos circulares	
Curvadora de aluminio lacado	Curvadora de tubos rectangulares	
Curvadora de zinc		
Curvadora de cobre		

Tabla 8. Líneas de otros

OTROS			
Cizallado	Satinado	Serrado	
Cizalla para acero	Satinadora para aluminio 1	Sierra de banda para tubos 1	
Cizalla para acero estriado	Satinadora para aluminio 2	Sierra de banda para tubos 2	

Tabla 9. Líneas de soldadura

SOLDADURA				
Soldadura	Soldadura	Soldadura	Soldadura por	Soldadura
TIG	MIG/MAG	MMA	puntos	oxiacetilénica
TIG 1	MIG/MAG 1	MMA 1	Por Puntos 1	Oxiacetilénica 1
TIG 2	MIG/MAG 2	MMA 2	Por Puntos 2	Oxiacetilénica 2
TIG 3	MIG/MAG 3			
TIG 4	MIG/MAG 4			

Tabla 10. Líneas de pintura

PINTURA			
Linea 1 Linea 2 Linea 3		Linea 4	
Lijado	Lijado	Lijado	Lijado
Centro de pintado	Centro de pintado	Centro de pintado	Centro de pintado
Linea automatizada	Linea automatizada	Linea automatizada	Linea automatizada
Lavado de pistolas	Lavado de pistolas	Lavado de pistolas	Lavado de pistolas
Horno	Horno	Horno	Horno

Tabla 11. Líneas de montaje

MONTAJE		
Punzonado	Atornillado	
Punzonadora 1	Atornilladora 1	
Punzonadora 2	Atornilladora 2	
Punzonadora 3	Atornilladora 3	
Punzonadora 4	Atornilladora 4	
Punzonadora 5	Atornilladora 5	
Punzonadora 6	Atornilladora 6	

Tabla 12. Líneas de embalaje

•	121 Birteels de ente
	EMBALAJE
	Embaladora 1
	Embaladora 2
	Embaladora 3
	Embaladora 4

1.10. CARGAS PRESENTES EN LA PLANTA

1.10.1. Cargas del proceso productivo

A continuación, se enumeran las maquinas que intervienen en el proceso productivo de la planta, indicando su función, su potencia unitaria y su cantidad.

Tabla 13. Cargas del proceso productivo

1.10.1.1. Galvanizado			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
	Limpiadora a presión	1	1,8
	Máquina de desengrasado	1	5,0
Instalación de	Máquina de decapado	1	3,0
galvanizado	Línea automatizada	1	5,0
	Crisol	1	50,0
	Polipasto	2	2,0
1.10.1.2. Líneas de corte			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
	Devanadora 1	1	4,0
Acero galvanizado	Cortadora 1	1	3,0,0
	Apiladora 1	1	15,0
	Devanadora 2	1	4,0
Aluminio lacado	Cortadora 2	1	3,0
	Apiladora 2	1	15,0
	Devanadora 3	1	4,0
Zinc	Cortadora 3	1	3,0
	Apiladora 3	1	15,0
	Devanadora 4	1	4,0
Cobre	Cortadora 4	1	3,0
	Apiladora 4	1	15,0
	Devanadora 5	1	4,0
Acero	Cortadora 5	1	3,0
	Apiladora 5	1	15,0
	Devanadora 6	1	4,0
Aluminio	Cortadora 6	1	3,0
	Apiladora 6	1	15,0
1.10.1.3. Centros láser			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
Centros láser 1	Centro de corte láser 1	4	10,0
Centros láser 2	Centro de corte láser 2	4	10,0

1.10.1.4. Plegado			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit.
Elifed de lacricación		Cantidad	(kW)
	Plegadora 6 m 1	1	15,0
Plegado acero galvanizado	Plegadora 3 m 1	1	15,0
	Plegadora 1,5 m 1	1	5,0
	Plegadora 6 m 2	1	15,0
Plegado aluminio lacado	Plegadora 3 m 2	1	15,0
	Plegadora 1,5 m 2	1	5,0
	Plegadora 6 m 3	1	15,0
Plegado zinc	Plegadora 3 m 3	1	15,0
	Plegadora 1,5 m 3	1	5,0
	Plegadora 6 m 4	1	15,0
Plegado cobre	Plegadora 3 m 4	1	15,0
	Plegadora 1,5 m 4	1	5,0
	Plegadora 6 m 5	1	15,0
Plegado acero	Plegadora 3 m 5	1	15,0
8	Plegadora 1,5 m 5	1	5,0
	Plegadora 6 m 6	1	15,0
Plegado aluminio	Plegadora 3 m 6	1	15,0
S	Plegadora 1,5 m 6	1	5,0
	Plegadora 3 m 7	1	15,0
Plegado acero estriado	Plegadora 1,5 m 7	1	5,0
1.10.1.5. Curvado			·
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
Curvado de chapa	Curvadora de chapa	4	5,0
Curvado de tubos	Curvadora de tubos	2	3,5
1.10.1.6. Otros			
I (man de febrier ei (m	Nambra da la méanina	Cantidad	P. Unit.
Línea de fabricación	Nombre de la máquina	Cantidad	(kW)
Cizallado	Cizalla	2	7,5
Satinado	Satinadora	2	5,0
Serrado	Sierra de banda	2	1,8
1.10.1.7. Soldadura			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
	TIG	4	8,3
Soldadura TIG	Amoladora	4	3,0
	Extractor	4	5,0
	MIG/MAG	4	15,0
Soldadura MIG/MAG	Amoladora	4	3,0
	Extractor	4	5,0
	MMA	2	8,0
Soldadura MMA	Amoladora	2	3,0
Soldadara Iviivii	Extractor	2	5,0
	Soldadura por puntos	2	100,0
Soldadura por puntos	Amoladora	2	3,0
Soldadura por puntos	Extractor	2	5,0
	Extractor	<i>L</i>	3,0

Soldadura oxiacetilénica	Amoladora	2	3,0
Soldadura Oxfacettienica	Extractor	2	5,0
1.10.1.8. Pintura			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
	Lijadora de banda 1	1	1,2
	Lijadora de rotorbital 1	1	0,6
Pintura línea 1	Centro de pintado 1	1	2,2
Filitura lillea 1	Línea automatizada 1	1	5,5
	Lavado de pistolas 1	1	1,0
	Horno 1	1	52,5
	Lijadora de banda 2	1	1,2
	Lijadora de rotorbital 2	1	0,6
Pintura línea 2	Centro de pintado 2	1	2,2
Fintura finea 2	Línea automatizada 2	1	5,5
	Lavado de pistolas 2	1	1,0
	Horno 2	1	52,5
	Lijadora de banda 3	1	1,2
	Lijadora de rotorbital 3	1	0,6
Pintura línea 3	Centro de pintado 3	1	2,2
Filitura filiea 5	Línea automatizada 3	1	5,5
	Lavado de pistolas 3	1	1,0
	Horno 3	1	52,5
	Lijadora de banda 4	1	1,2
	Lijadora de rotorbital 4	1	0,6
Pintura línea 3	Centro de pintado 4	1	2,2
1 intura iniea 3	Línea automatizada 4	1	5,5
	Lavado de pistolas 4	1	1,0
	Horno 4	1	52,5
1.10.1.9. Montaje			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
Atornillado	Atornilladora	6	0,3
Punzonado	Punzonadora	6	0,6
1.10.1.10. Embalaje			
Línea de fabricación	Nombre de la máquina	Cantidad	P. Unit. (kW)
Embalaje	Embaladora	4	1,3

1.10.2. Cargas de los servicios generales

1.10.2.1. Servicios generales de la nave

Los servicios generales de la nave comprenden el alumbrado de la nave, la fuerza de la nave (mediante canalizaciones eléctricas prefabricadas), las tomas de corriente de la nave y las cámaras de climatización y ventilación de la nave.

- <u>Alumbrado</u>: Se trata del alumbrado general de la planta, el alumbrado localizado en cada zona y el alumbrado exterior.
- <u>Fuerza</u>: Se ha dividido la planta en cuatro cuadrantes y se instalarán una canalización eléctrica prefabricada en cada una de ellas. Están pensadas para alimentar máquinas y herramientas.
- <u>Tomas de corriente</u>: Se ubicarán tomas de corriente por toda la planta para usarlas en caso de necesidad. Las habrá monofásicas a 230 V y trifásicas a 400 V.
- <u>Cámaras de climatización y ventilación</u>: Se encargan de climatizar y renovar el aire de la planta y los almacenes.

1.10.2.2. Servicios generales centrales.

Los servicios generales centrales comprenden el centro de transformación, el grupo electrógeno, la central de producción de calor, la central de compresores, la central de bombeo de agua, la central de tratamiento de aguas residuales, el taller de mantenimiento, el almacén de recambios y el cuarto de carga de baterías.

Todas las zonas constan de tomas de corriente y fuerza. Adicionalmente, algunos servicios contienen instalaciones especificas:

- Centro de transformación: Ventilación y batería estacionaria.
- <u>Central de producción de calor</u>: Bombas de alimentación de agua para la caldera y pupitres de fuerza y mando.
- <u>Central de compresores</u>: Bombas de alimentación de agua de refrigeración y pupitres de fuerza y mando.
- <u>Central de bombeo de agua</u>: Bombas de alimentación de agua a la planta.
- <u>Central de tratamiento de aguas residuales</u>: Bombas de agua y equipos de tratamiento de aguas residuales.

1.10.3. Cargas de los almacenes.

Todos los almacenes constarán de iluminación y fuerza. En el almacén de materias primas hay dos puentes grúa de 7,5 kW cada uno.

1.10.4. Cargas de las oficinas.

Las oficinas albergan cargas de iluminación, fuerza y climatización, dividido según la zona en la que se encuentran.

1.10.5. Cargas de fuerza de emergencia.

En caso de emergencia el grupo electrógeno alimentará las cubas de pintura para evitar que se sequen mientras no estén en funcionamiento.

1.10.6. Cargas de iluminación de emergencia.

En caso de emergencia el grupo electrógeno alimentará la iluminación de vigilancia, evacuación y antipánico.

1.11. CONSIDERACIONES TÉCNICAS PREVIAS AL DISEÑO DE LA INSTALACIÓN ELÉCTRICA

Para el diseño de la instalación eléctrica se tendrán en cuenta una serie de criterios o premisas que tienen como fin el realizar una instalación que, desde su inicio, permita adaptarse a la evolución que vaya sufriendo la planta industrial, sin que ello suponga grandes cambios e importantes costes económicos.

Aunque en este trabajo no sea abordado, el diseño favorecerá optimizar la explotación y el mantenimiento de las instalaciones mediante la implantación de los sistemas adecuados, recogiendo parámetros o datos que una vez gestionados nos ayuden en la toma de decisiones encaminadas a contribuir a que la planta sea más productiva.

Analizaremos a continuación algunos de estos criterios que hay que tener en cuenta tener en cuenta.

1.11.1. Calidad de la energía eléctrica

La calidad de la energía eléctrica tiene mucha importancia en los procesos productivos ya que ésta es considerada como una materia prima más.

Las perturbaciones de la calidad de la energía eléctrica pueden provenir del exterior de las redes de distribución o ser generadas en el interior de la planta incidiendo en el normal funcionamiento de los receptores a ellas conectadas.

Se deben adoptar medidas correctoras o mitigadoras a fin de minimizar los perjuicios que dichas perturbaciones pudieran ocasionar.

Para poder analizar las causas de un problema en la red eléctrica que haya producido un mal funcionamiento de la instalación, debemos instalar un analizador de redes en la acometida en baja tensión de cada transformador, que registre todo tipo de perturbaciones. La planta también dispondrá de un analizador de redes portátil para instalarlo en aquellos puntos que sufran problemas de calidad.

Este aspecto se tratará en con mayor detalle en el Anexo II.

1.11.2. Red eléctrica de alimentación

Tendrá su origen en el punto de enganche determinado por la compañía suministradora. La tensión estará definida por la potencia demandada prevista. Esta red, bien sea aérea o enterrada, tendrá que discurrir por terrenos ajenos a la fábrica, por este motivo la propiedad realizará la instalación de acuerdo con la Reglamentación vigente y las normas particulares fijadas por la empresa suministradora y después se la entregará a esta para que se encargue del su mantenimiento y conservación.

Puede realizarse a través de una única línea o para asegurar la continuidad de suministro, se plantea la opción de realizar la alimentación a través de dos líneas: una en servicio y otra en reserva, desde distintos Centros de Distribución de la compañía suministradora.

Se ha optado por una sola línea, ya que los cortes de suministro son muy infrecuentes y de corta duración, y la construcción de la línea de reserva duplicaría la inversión a realizar.

De todas maneras, la planta dispondrá de un suministro complementario mediante un grupo electrógeno conectado a las cargas que requieren continuidad de suministro para asegurar su funcionamiento en caso de fallo en la línea de alimentación.

Las características generales del suministro son:

• Corriente alterna trifásica a la tensión trifásica de 20 kV y 50 Hz.

La línea de alimentación estará enterrada bajo tubo y tendrá una de 1000 metros, distancia entre el punto de enganche y el Centro de Transformación.

La sección de los conductores se calculará en función de la potencia total instalada, considerando la posibilidad de que en un futuro esta pueda sufrir un incremento de al menos un 30%.

1.11.3. Centro de transformación

Inicialmente se plantea la construcción de un único centro de transformación del abonado, de tipo interior de obra, ubicado en el perímetro del edificio, centrado lo más posible con las cargas y formado por los siguientes elementos:

- Local del centro de trasformación:
 - o Instalado en el perímetro de los edificios con puertas que den al exterior.
 - o Los transformadores deben tener acceso directo al exterior.
 - O Dimensiones que se permitan la ejecución de las maniobras propias de la explotación en condiciones óptimas de seguridad para las personas.
 - o Rejillas de ventilación que comunicarán el local con el exterior.
 - o Canaletas y conducciones cerradas con material cortafuego 2 horas.
 - o Cable de puesta a tierra y equipotencialidad de las masas.

Transformadores:

- O Dispondrá al menos de dos transformadores para poder trabajar, aunque sea parcialmente, es caso de que uno de ellos se averíe.
- Se han elegido dos transformadores de 1.600 kVA cada uno, los cuales serán capaces de suministrar a la planta la potencia que necesitará dejando un margen del 30%.
- o Transformador seco encapsulado en resina epoxi.
- o Tensión: 20 kV/400-230 V
- o Tomas de regulación de la tensión sin carga: \pm 2,5 %
- Cabinas de media tensión compuestas por:
 - Cabina de entrada con seccionador con corte en carga o interruptor.
 - o Cabina de medida.
 - o Cabinas con interruptor automático para la protección del transformador.
- Cuadro General de Distribución de baja tensión con los siguientes equipamientos mínimos:
 - o Tipo modular y extensible.
 - o Interruptores generales en la entrada.
 - o Interruptores dotados de dispositivos candables en posición de abierto.
 - o Prever como mínimo un 20% de espacio disponible.
 - Contaje de energía eléctrica en cada acometida y en cada salida para optimizar el gasto de energía para imputar el coste energético con precisión en los artículos fabricados.

- Cuadros de Baja Tensión:
 - Resto de cuadros alimentados desde el Cuadro General de Distribución.
- Batería automática de condensadores:
 - o Destinada a corregir el factor de potencia.
- Batería estacionaria de corriente continua:
 - o Alimentación de protecciones y maniobra del Centro de Transformación.

1.11.4. Red de distribución de energía eléctrica en baja tensión

La red de distribución se estudia en función de la situación de las cargas y sus prioridades. La distribución, cuadros y canalizaciones, se determinan a partir de los planos del edificio, de la situación de las cargas y de su necesidad de agrupamiento.

La distribución en baja tensión empieza después del Cuadro General de Distribución, incluyendo las líneas y los cuadros de distribución. La canalización reagrupa los conductores aislados y sus medios de fijación y protección mecánica.

A fin de tener una mayor disponibilidad de la energía eléctrica, los circuitos eléctricos se dividen, lo que permite:

- Limitar las consecuencias de un defecto al circuito que concierne.
- Facilitar la localización de un defecto.
- Realizar las operaciones de mantenimiento de un circuito, manteniendo el resto de la instalación en tensión.

De forma general se pueden establecer los siguientes circuitos:

- Alumbrado.
- Tomas de corriente.
- Equipos de calefacción y climatización.
- Fuerza.
- Alimentación de elementos auxiliares (circuitos de control, mando, etc.).
- Elementos de seguridad (alumbrado de seguridad, circuitos de servicio de incendio, etc.).

Cada uno de los distintos circuitos se realizará atendiendo a criterios de suministrar la mejor calidad y de permitir una buena gestión energética. Para ello debemos realizar tantos circuitos como sea necesario, teniendo en cuenta, entre otros los siguientes criterios:

- Redes de proceso separadas de las de acondicionamiento de edificios
- Realización de redes separadas con cargas más contaminantes
- Circuitos de fuerza por líneas de producción o área de trabajo
- Alimentación a los circuitos de control y a los de potencia independiente
- Alimentación de equipos especialmente sensibles a las perturbaciones mediante fuentes de alta calidad.
- Para garantizar el mayor equilibrado posible de las cargas, en el caso de cargas monofásicas, éstas se repartirán uniformemente entre las tres fases o conductores polares a lo largo de la instalación.
- Recubrimientos cortafuego de 2 horas en los pasos de las paredes y el suelo
- Las bandejas y canalizaciones serán de dimensiones suficientes para permitir la refrigeración de los cables que soportan sin alcanzar la temperatura máxima admisible.

 Redes que permitan medir la energía eléctrica consumida por cada línea de proceso y de acondicionamiento de edificios.

Consideramos dos tipos de distribuciones:

- Distribución con conductores aislados (cables).
- Distribución con canalizaciones eléctricas prefabricadas

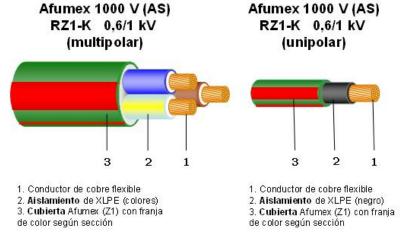


Figura 6. Ejemplo de conductores aislados unipolares y multipolares

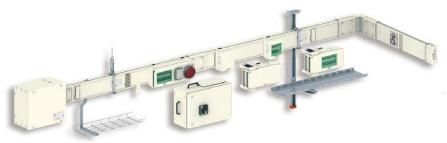


Figura 7. Ejemplo de canalización eléctrica prefabricada

Las cargas centralizadas en los cuadros eléctricos se alimentarán mediante redes eléctricas de distribución con cables aislados. Para las cargas, donde su emplazamiento no esté perfectamente definido, y se encuentren distribuidas por la nave se utilizarán canalizaciones eléctricas prefabricadas.

• Distribución con conductores aislados

En principio la sección del conductor neutro será igual a la de los conductores de fase.

Se utilizarán cables no propagadores del incendio, con emisión de humos y opacidad reducida y libre de halógenos.

• Distribución con canalizaciones eléctricas prefabricadas

Una canalización prefabricada es un conjunto de conducción y conductores, perfectamente definido, que permite desarrollar sistemas de instalación, con objeto de eliminar problemas mecánicos, eléctricos y de compatibilidad electromagnética, reduciendo los tiempos y riesgos de proyecto y los de montaje.

Las canalizaciones prefabricadas se distinguen por su facilidad de puesta en servicio y flexibilidad de instalación y modificación.

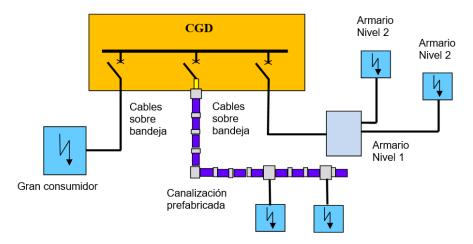


Figura 8. Ejemplo de principio de distribución eléctrica en baja tensión

1.11.4.1. Sección de los conductores

Se calculará en base a las caídas de tensión máximas admisibles y a la intensidad máxima admisible del cable y resistirá las corrientes de cortocircuito que puedan darse en cualquier punto del recorrido del cable hasta que actúe el dispositivo de protección sin que alcance la temperatura máxima admisible.

Los cables discurrirán por bandejas, dentro de tubos de acero o en canaletas. Los cables de corrientes fuertes y corrientes débiles irán en caminos separados. Las canalizaciones eléctricas prefabricadas se montarán apoyadas o suspendidas de la estructura de la nave.

1.11.4.2. Caídas de tensión

De acuerdo con el Apartado 2.2.2 de la ITC-BT-19 del Reglamento Electrotécnico para Baja Tensión, las caídas de tensión máximas admisibles serán de:

- 4,5% para alumbrado
- 6,5% para otros usos

1.11.4.3. Puestas a tierra

Las puestas a tierra se establecen para limitar la diferencia de tensión entre las masas metálicas y la tierra, así como para garantizar la actuación de las protecciones instaladas.

1.11.4.4. Esquema de distribución

El esquema de distribución debe garantizar la correcta actuación de las protecciones dadas las características de la instalación y de las puestas a tierra; por tanto, el esquema de distribución se escogerá siguiendo las exigencias y recomendaciones de la instrucción ITC-BT-08 del Reglamento Electrotécnico para Baja tensión.

1.11.4.5. Dispositivos de mando y protección

Cada circuito dispondrá de su propio dispositivo de seccionamiento omnipolar en el origen destinado a protegerle frente a sobrecargas y cortocircuitos. La intensidad nominal de las protecciones deberá corresponder a la sección de los conductores. Los dispositivos de protección de cada circuito estarán convenientemente coordinados, siendo selectivos con otros dispositivos generales que les precedan.

• Protección contra contactos directos

Los cuadros deberán estar protegidos contra los contactos directos, mediante un dispositivo aislante que impida el acceso a las partes bajo tensión.

Protección contra contactos indirectos

La protección contra contactos indirectos se realizará mediante la puesta a tierra de las masas y los elementos conductores a los que se acceda simultáneamente y estará asociada a la utilización de dispositivos de protección con corte automático de la alimentación de acuerdo con lo especificado en el apartado 4.1.1 de la ITC-BT-24 del Reglamento Electrotécnico para Baja Tensión.

Se instalarán interruptores diferenciales de gran sensibilidad en los circuitos de alumbrado y tomas de corriente. En los circuitos de las líneas del proceso no se instalarán interruptores diferenciales debido a que el ambiente de la zona industrial puede dar lugar a pequeñas derivaciones a tierra que individualmente no dispararían el interruptor, sin embargo, la suma de todas ellas si hicieran disparar un interruptor diferencial puesto en cabecera.

Por este motivo se instalará en cada una de las salidas del Cuadro General de Distribución relés diferenciales regulables con un nivel de alarma y otro de disparo, de tal manera que cuando se llegue al nivel de alarma se compruebe la corriente de defecto a tierra y se busque aguas abajo si alguna de las salidas secundarias tiene una corriente de defecto demasiado elevada y, si es necesario, repararla.

1.11.4.6. **Receptores**

1.11.4.6.1. Iluminación

La sección HE-3 del Código Técnico de la Edificación establece como exigencia básica que los edificios dispongan de instalaciones de iluminación, adecuadas a las necesidades de sus usuarios y a la vez eficaces energéticamente.

Figura 9. Ejemplos de luminarias

• Alumbrado normal del edificio

El edificio se concebirá favoreciendo la utilización máxima de la iluminación natural. La zona de la fábrica, ya que esta iluminada por lucernarios constará de sensores lumínicos que podrán encender y apagar las luminarias en función de la iluminación que se reciba del exterior, además de los interruptores externos al cuadro eléctrico.

Cuando haya iluminación natural, la iluminación artificial se mandará gradualmente, con arreglo al nivel de alumbrado natural, con 3 niveles (1/3, 2/3 y 3/3 del nominal).

Las zonas de la planta que no consten de iluminación exterior también dispondrán de interruptores externos al cuadro eléctrico para mayor comodidad.

Las zonas de uso esporádico (aseos, vestuarios, escaleras, etc.) dispondrán de sistemas de encendido y apagado por detección de presencia o con un pulsador temporizado, con el objetivo de que las luminarias sólo estén encendidas el mínimo tiempo necesario.

• Alumbrado de procesos

Asegurará un nivel de iluminación óptimo sobre el plano de trabajo y el mejor confort visual para que los trabajadores puedan llevar a cabo su labor de forma segura y cómoda.

El alumbrado de ambiente por encima del proceso no será necesario o en su caso se apagará.

El apagado y encendido estará condicionado a la marcha del proceso productivo.

• Alumbrado de emergencia

Se prevé que entre en funcionamiento cuando se produzca un fallo en la alimentación del alumbrado normal. Hay dos tipos de alumbrado de emergencia:

- Antipánico: Permite la identificación y accesos a las rutas de emergencia. Debe proporcionar 0,5 lux en todo el espacio hasta 1 metro de altura durante un tiempo mínimo de 1 hora.
- Evacuación: Permite reconocer y utilizar las rutas de evacuación. Debe proporcionar 5 lux en los cuadros de distribución y en los puntos de los servicios contra incendios, además de *1 lux* en el suelo de las zonas principales de paso.

Debe garantizar la correcta instalación y funcionamiento de los servicios de seguridad, en especial las dedicadas al alumbrado que faciliten la evacuación segura de las personas o la iluminación de puntos viales de los edificios.

• Alumbrado exterior

Estarán situados sobre brazos murales adosados a las fachadas, para favorecer la estética del edificio y la visibilidad desde el exterior.

1.11.4.6.2. Motores

Figura 10. Ejemplo de motor eléctrico y variador de frecuencia trifásico

Los motores deben cumplir con el Reglamento (UE) 2019/1781 de la Comisión, de 1 de octubre de 2019, por el que se establecen requisitos de diseño ecológico para los motores eléctricos y los variadores de velocidad de conformidad con la Directiva 2009/125/CE del Parlamento Europeo y del Consejo.

Este Reglamento se aplica a los siguientes productos:

- Motores de inducción eléctricos
- Variadores de velocidad trifásicos

Figura 11. Otros consumidores

Comprende todo tipo de receptores que no sean iluminación ni motores, como pueden ser tomas de corriente, climatizadores y todo tipo de consumidores que no estén implícitamente definidas el tipo de cargas que son.

1.11.4.6.4. Compensación de energía reactiva

Figura 12. Batería de condensadores

En la planta se encuentran presentes muchos consumidores que absorben energía reactiva. Este consumo de energía reactiva produce efectos no deseables en la instalación, un mayor consumo de corriente, pérdidas en los conductores, aumento en las caídas de tensión y sobrecargas en los transformadores y en las líneas de distribución. Además, un factor de potencia bajo acarreará penalizaciones de la empresa suministradora.

Para evitar estos problemas, el factor de potencia general de la instalación se compensará mediante la instalación de baterías de condensadores automáticas de baja tensión, de una potencia variable que asegure, en todo momento, que el factor de potencia esté por encima del 0.95.

El cuadro de estas baterías se conectará al embarrado del Cuadro General de Distribución de baja tensión, a través de un dispositivo de protección adecuado a la intensidad nominal de los condensadores.

Los condensadores generan energía reactiva en las redes, provocando:

- Aumento la potencia disponible en las instalaciones.
- Mejora del aprovechamiento de los transformadores y de las líneas.
- Mejora de los niveles de caída de tensión.
- Disminución de las pérdidas.
- Supresión de la facturación eventual de energía reactiva.

Los condensadores serán de tipo reforzado y podrán ser instalados en las redes contaminadas que tengan hasta el 25% de generadores de armónicos con relación a la potencia nominal del transformador AT/BT.

Siempre que se vaya a instalar una batería se deben medir armónicos en el punto de conexión. Si la tasa de armónicos en tensión THDV > 2,5-3% y en intensidad THDI > 15-20%, hay que instalar baterías reforzadas en tensión para 460 V y montar filtros. Hay que analizar a la vez las THDV y THDI.

El análisis puede dar los siguientes resultados:

- <u>Tasa de distorsión armónica baja</u>: Se deben instalar baterías convencionales.
- <u>Tasa de distorsión armónica próxima al límite</u>: Se deben instalar baterías reforzadas en tensión, con preparación para instalar filtros de armónicos.
- <u>Tasa de distorsión armónica alta</u>: Se deben instalar baterías reforzadas en tensión con filtros de armónicos.

1.11.4.6.5. Alimentación de cargas críticas

Cargas críticas son determinadas cargas importantes que deben mantenerse en tensión, en caso de que la alimentación eléctrica normal falle. Estas cargas se alimentarán desde un grupo electrógeno, que se pondrá en marcha cuando se produzca un corte de tensión o esta baje del 70% de la nominal.

Los alumbrados de evacuación y antipánico se realizarán con equipos autónomos con batería interna de una autonomía determinada. En cuanto el grupo electrógeno se ponga en marcha, al cabo de pocos segundos, estos equipos recibirán tensión del grupo electrógeno.

Las cargas críticas del Edificio de Oficinas, como son las alimentaciones a los equipos informáticos recibirán tensión de una fuente de alimentación ininterrumpida SAI en línea.

Figura 13. Grupo electrógeno y SAI

1.11.5. Mantenimiento

El mantenimiento es el conjunto de actuaciones necesarias para asegurar el funcionamiento de las instalaciones en las condiciones de uso para las que han sido diseñadas.

Cuatro son los objetivos que deben marcar y dirigir el trabajo del mantenimiento:

- Cumplir con un valor determinado de disponibilidad
- Cumplir con un valor determinado de fiabilidad
- Asegurar la vida útil de la instalación en su conjunto
- Ajustarse al presupuesto óptimo dado para el mantenimiento de la instalación.

Tipos de mantenimiento

- Mantenimiento correctivo
- Mantenimiento preventivo
- Mantenimiento predictivo
- Mantenimiento técnico-legal

1.11.6. Repuestos

La gestión del almacén de repuestos es también un punto importante. Hay que tener en cuenta que los repuestos suponen un inmovilizado para la empresa y por tanto se tratará de reducirlos al mínimo. Si no se dispone de los repuestos de las piezas que se tengan que reemplazar, habrá que esperar a que la pieza se importe o esté disponible. La gestión de los repuestos está relacionada con el adecuado conocimiento de proveedores, tiempos de entrega y costes.

1.12. DISEÑO DE LA INSTALACIÓN ELÉCTRICA

La instalación eléctrica que se proyectará comienza en el punto de enganche de la compañía, en media tensión. Desde aquí parte una linea de media tensión que llega al centro de transformación, donde se reduce su tensión a baja tensión. Desde el centro de transformación salen las líneas eléctricas hasta los cuadros de los equipos consumidores de baja tensión de la planta.

La instalación eléctrica requiere tres proyectos:

- Proyecto de la red de media tensión
- Proyecto del centro de transformación
- Proyecto de la red de distribución de baja tensión

Se tendrá en cuenta todo lo comentado en el Apartado 1.11 "Consideraciones técnicas previas al diseño de la instalación eléctrica".

Para conocer la potencia a suministrar a cada instalación y sus condiciones de funcionamiento y de carga se comenzará por el proyecto de baja tensión. Después se realizará el proyecto del centro de transformación y por último el de la línea de media tensión que alimenta al centro de trasformación.

1.12.1. Red de baja tensión

Se trata de realizar la instalación eléctrica para el suministro de energía eléctrica en baja tensión a todas las necesidades de la fábrica.

1.12.1.1. Alimentación del suministro normal.

En este caso la alimentación general tiene su origen en las bornas de baja tensión de los transformadores del Centro de Transformación MT/BT del abonado, que mediante las canalizaciones adecuadas a la potencia nominal del transformador y suministran energía eléctrica al embarrado del Cuadro General de Distribución (CGD).

Las características de la alimentación del suministro normal son:

Tabla 14. Alimentación normal.

A. GENERAL	REF. CUADRO	INSTALACIÓN RECEPTORA					
		Tensión (V)	Longitud (m)	C. Simult.	F. Pot.		
Bornas BT Trafo 1	TRAFO 1	Cuadro General de Distribución					
		400/230 3 0,7 0,95					
Bornas BT Trafo 2	TRAFO 2	Cuadro General de Distribución					
		400/230	3	0,7	0,95		

1.12.1.2. Alimentación del suministro complementario.

Dispone además de un grupo electrógeno con un cuadro eléctrico desde el que parte una salida para alimentar a los Servicios de Seguridad, una vez que el grupo electrógeno ha arrancado por falta o caída de tensión por debajo del 70%.

La alimentación de energía eléctrica la recibe el doble embarrado del Cuadro General de Distribución (ALIM. EMERGENCIA) que suministrará la energía eléctrica necesaria para el funcionamiento de determinadas instalaciones que así lo requieran.

Las características de la alimentación del grupo electrógeno son:

Tabla 15. Alimentación del grupo electrógeno

A. GENERAL	REF. CUADRO	INSTALACIÓN RECEPTORA						
		Tensión (V)	Longitud (m)	C. Simul.	F. Pot.			
Grupo	ALIM.	Doble embarrado Cuadro General de Distribución						
electrógeno	EMERGENCIA	400/230 16 1 0,9						

1.12.1.3. Red eléctrica de distribución en baja tensión.

Partimos de un plano en planta con cada una de las instalaciones de proceso y de las instalaciones generales y auxiliares, donde se realizará la implantación de los armarios eléctricos. Esta implantación de armarios eléctricos se hará teniendo en cuenta las necesidades de agrupamiento de cargas, de cada instalación y de sus prioridades.

Desde el Cuadro General de Distribución del centro de transformación partirán tantas salidas como se crea conveniente, protegidas por un dispositivo de mando y protección, para alimentar directamente a las instalaciones o a través de cuadros secundarios, con el objetivo de conseguir la mayor disponibilidad o continuidad de la energía eléctrica y de una buena gestión de los consumos de energía.

La red eléctrica de distribución se realizará utilizando cables aislados, con un cable por fase o a lo sumo con dos en paralelo, o con canalizaciones eléctricas prefabricadas cuando la potencia a suministrar sea elevada. Para las cargas donde su emplazamiento no esté perfectamente definido, y se encuentren distribuidas por la nave se utilizarán canalizaciones eléctricas prefabricadas. Las redes dispondrán de medios de fijación y protección mecánica.

Conectado al embarrado del Cuadro General de Distribución de baja tensión, a través de un dispositivo de protección adecuado a la intensidad nominal se instalarán baterías de condensadores automáticas de una potencia variable que asegure, en todo momento, que el factor de potencia esté por encima del 0,95.

El proyecto de baja tensión se realizará con el Software DMELECT Módulo CIEBT.

1.12.1.3.1. Cuadro General de Distribución

Recibe tensión de las bornas de baja tensión de dos transformadores, que trabajarán en paralelo, a través de dos interruptores automáticos de baja tensión.

Tabla 16. Interruptores del Cuadro General de Distribución

	INTERRUPTORES CUADRO (SENERA	AL DE DISTRIBUCIÓN
IGT1	Acometida Trafo 1	IGT2	Acometida Trafo 2
CDT1	Condensadores Trafo 1	CDT2	Condensadores Trafo 2
S1	Galvanizado	S9	Montaje
S2	Líneas de corte	S10	Embalaje
S3	Centros laser	S11	Agrupación almacenes
S4	Plegado	S12	Servicios Generales Centrales
S5	Curvado	S13	Servicios Generales Nave
S6	Otros	S14	Edificio de Oficinas
S7	Soldadura	S16	Alimentación Emergencia
S8	Pintura		

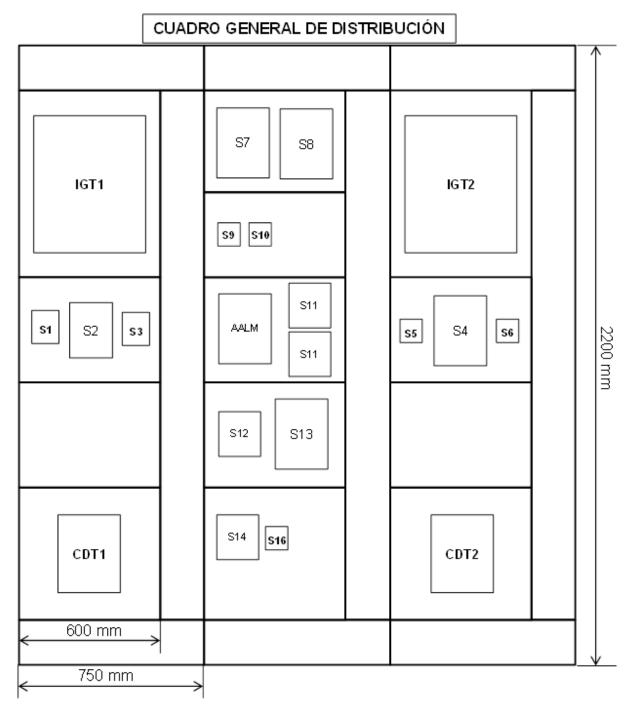


Figura 14. Esquema del Cuadro General de Distribución

Desde el Cuadro General de Distribución partirán las salidas a alimentar a las distintas instalaciones receptoras o a cuadros secundarios de nivel 1.

Tabla 17. Salidas del Cuadro General de Distribución

	<u>as del Cuadro General de</u> CUAD	RO GENERA	L DE DISTRI	BUCIÓN	
SALIDA	REF. CUADRO	REF. Circui	to INS	TALACIÓN RECE	PTORA
Salida 1	S1 GALV	Alimentación	subcuadro nive	el 1 Galvanizado	
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400	95	0,7	0,8
Salida 2	S2 LIN COR	Alimentación	subcuadro nive	el 1 Línea de corte	· · · · · · · · · · · · · · · · · · ·
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400	85	0,6	0,8
Salida 3	S3 CEN LAS	Alimentación	subcuadro nive	el 1 Centros láser	
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400	75	0,7	0,8
Salida 4	S4 PLEG	Alimentación	subcuadro nive		
		Tensión (V)	Longitud (m)	C. simultaneidad	<u> </u>
		400	125	0,7	0,8
Salida 5	S5 CURV		subcuadro nive		· •
		Tensión (V)	Longitud (m)	···· ! ······	F. Potencia
		400	125	0,8	0,8
Salida 6	S6 OTROS		subcuadro nive	····γ······	T
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
<u> </u>	07.001.0	400	150	0,8	0,8
Salida 7	S7 SOLD		subcuadro nive		
		Tensión (V)	Longitud (m)	···· ································	÷
0-11-1-0	OO DINT	400	120	0,5	0,8
Salida 8	S8 PINT		subcuadro nive		F D-1:-
		Tensión (V)	Longitud (m)		<u> </u>
Salida 9	S9 MONT	400	75	0,8	0,8
Salida 9	39 MON I		subcuadro nive		F. Potencia
		Tensión (V) 400	Longitud (m) 15	C. simultaneidad	
Salida 10	S10 EMB		subcuadro niv	0,7	0,8
Saliua 10	310 LIVID	Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400	15	0,8	0,8
Salida 11	S11 ALMACEN			adros Almacenes	· 0,0
Ounda 11	OTTALMAGEN	Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	0,2	0,9	0,9
		S11 ALM. MF		ad. nivel 1 Almacén	
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	60	0,7	0,9
		S11 ALM. PT	Alim. subcu	. nivel 1 Almacén pr	od. terminado
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	45	0,7	0,9
Salida 12	S12 S G CENT	Alimentación	subcuadro nive	el 1 Servicios genera	ales centrales
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	15	0,7	0,8
Salida 13	S13 S G NAVE			el 1 Servicios gener	·
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400/230	15	0,7	0,9
Salida 14	S14 EDIF OFI			el 1 Edificio oficinas	·
		Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia
		400/230	10	0,9	0,9

	Salida 15	Batería	Alimentación Cuadro Condensadores						
ı		Condensadores	Tensión (V)	Longitud (m)	C. simultaneidad	F. Potencia			
ı			400	10	1	0,95			

Desde el embarrado común del Cuadro General de Distribución y de la alimentación desde el grupo electrógeno partirán las siguientes salidas con sus características:

Tabla 18. Salidas del grupo electrógeno

SALIDA	REF. CUADRO	INSTALACIÓN RECEPTORA						
		Tensión (V)	Longitud (m)	C. Simult.	F. Potenc.			
Salida 16	S16 EME AL	Cuadro emerge	Cuadro emergencia alumbrado					
		400/230	15	1	1			
Salida 17	S17 EME FZA	Cuadro emerge	Cuadro emergencia fuerza					
		400/230	15	1	1			

Además del Cuadro General de Distribución se dispondrán de tantos subcuadros y a distintos niveles como requiera la instalación.

Tanto en el Cuadro General de Distribución como en los subcuadros se pueden realizar, dentro del cuadro, agrupaciones de circuitos.

1.12.1.3.2. Subcuadros de nivel 1

Desde el Cuadro General de Distribución del Centro de Transformación se alimentan a los subcuadros de nivel 1 siguientes, con sus líneas de reparto:

Tabla 19. Subcuadros de Nivel 1

Tabla 19. Subcuda		SUBCUADR	OS N	NIVEL 1		
CUADRO	REF. Cuadro	REF. Circuit	to	INSTALA	CIÓN RECEPT	ORA
Cuadro 1.1	S1 GALV	Galvanizado				
		S1.1 LIP PRE		Limpiadora	a a presión	
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		35	1,8	0,8
		S1.2 MAQ DE	S	Máquina d	le desengrase	
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		40	5	0,8
		S1.3 MAQ DE	-	······	le decapado	
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		45	3	0,8
		S1.4 LIN AUT	i	Línea auto	·	
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		50	5	0,8
		S1.5 CRISOL		Crisol	Ŧ	•
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		40	50	0,8
		S1.6 POL 1	_	Polipasto '	·	T = = .
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
		400		30	2	0,8
			S1.7 POL 2 Polipasto 2		¥	T = =
		Tensión (V)	Lon	gitud (m)	Potencia kW	F. Potencia
0 1 10	001111000	400		40	2	0,8
Cuadro 1.2	S2 LIN COR	Líneas de co		Λ1: 4 O		
		S2.1 C AC GA	.,,		ubc. nivel 2 Corte	
		Tensión (V)	Lon	gitud (m)	C. simultaneid.	F. Potencia
		400		20	0,7	0,8

		SUBCUADR	OS I	NIVEL 1		
CUADRO	REF. Cuadro	REF. Circuit	to	INSTALA	CIÓN RECEPT	ORA
		S2.2 C AL LA	С	Alim, Subo	c. nivel 2 Corte aluminio lacad	
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		25	0,7	0,8
		S2.3 C ZINC		Alimentaci	ón Subcuad. nive	el 2 Corte zinc
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	F. Potencia
		400		30	0,7	0,8
		S2.4 C COBR	Έ	Alimentaci	ón Subcua. nivel	2 Corte cobre
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		35	0,7	0,8
		S2.5 C ACER	0	Alimentaci	ón Subcua. nivel	2 Corte acero
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	F. Potencia
		400		40	0,7	0,8
		S2.6 C ALU	Α	limentación	Subcua. nivel 2 0	Corte aluminio
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		45	0,7	0,8
Cuadro 1.3	S3 CEN LAS	Centros láse				
		S3.1 CEN LA	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ón Subc. nivel 2 (.,
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	F. Potencia
		400		25	0,6	0,8
		S3.2 CEN LA	T	. .	ón Subc. nivel 2 (······································
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	
		400		10	0,6	0,8
Cuadro 1.4	S4 PLEG	Plegado		·		
		S4.1 P AC GA	· · · · · · · · · · · · · · · · · · ·	. *	c. nivel 2 Plegado	
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	F. Potencia
		400		15	0,8	0,8
		S4.2 P AL LA	·		nivel 2 Plegado a	··•
		Tensión (V) 400	LOI	ngitud (m) 20	C. simultaneid. 0,8	F. Potencia 0,8
		S4.3 P ZINC	<u> </u>		Subcuad. nivel 2	· · · · · · · · · · · · · · · · · · ·
		Tensión (V)	10	ngitud (m)	C. simultaneid.	
		400	LOI	25	0,8	0,8
		S4.4 P COBR	F		ubcua. nivel 2 Ple	•
		Tensión (V)	T	ngitud (m)	C. simultaneid.	F. Potencia
		400		30	0,8	0,8
		S4.5 P ACER	O		ubcua. nivel 2 Ple	
		Tensión (V)	· · · · · · · · · · · · · · · · · · ·	ngitud (m)	C. simultaneid.	F. Potencia
		400		35	0,8	0,8
		S4.6 P ALU	Α	liment. Subo	cua. nivel 2 Plega	do aluminio
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		40	0,8	0,8
		S4.7 P AC DI	Α	lim. Subc. n	ivel 2 Plegado ac	ero diamant.
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		45	0,8	0,8
Cuadro 1.5	S5 CURV	Curvado		1		
		S5.1 CUR CH	T		Subc. nivel 2 Cu	······································
		Tensión (V)	Loi	ngitud (m)	C. simultaneid.	F. Potencia
		400		10	0,8	0,8
		S5.2 CUR TU	·		n Subc. nivel 2 C	··•
		Tensión (V)	Lor	ngitud (m)	C. simultaneid.	F. Potencia
		400		25	0,8	0,8

CUADROREF. CuadroREF. CircuitoINSTALACIÓN RECEPTORCuadro 1.6S6 OTROSOtrosS6.1 CIZALLAlimentación Subcuadro. nivel 2 Ci	RA
Cuadro 1.6 S6 OTROS Otros	
JOE TOLE TAINING REGION OUDGUARIO. HIVEL & O	izallado
	. Potencia
400 10 0,8	0,8
S6.2 SATIN Alimentación Subcuadro nivel	•
	. Potencia
400 10 0,8	0,8
S6.3 SERR Alimentación Subcuadro nivel	
	. Potencia
400 15 0,8	0,8
Cuadro 1.7 S7 SOLD Soldadura	-,-
S7.1 SOL TIG Alimentación Sub. nivel 2 Solda	adura TIG
	. Potencia
400 10 0,6	0,8
S7.2 MIG/MAG Alim. Subc. nivel 2 Soldadura N	•
	. Potencia
400 15 0,5	0,8
S7.3 S MMA Alimentac. Subc. nivel 2 Soldac	
	. Potencia
400 20 0,6	0,8
S7.4 SOL PUN Alim. Subc. nivel 2 Soldadura po	,
i	. Potencia
400 30 0,2	0,8
S7.5 SOL OXIA Alim. Subc. nivel 2 Soldad. oxia	
	. Potencia
400 25 0,7	0,8
Cuadro 1.8 S8 PINT Pintura	-,-
S8.1 PIN L1 Alimentación Subcu. nivel 2 Pintu	ıra Línea 1
	. Potencia
400 10 0.7	0,8
S8.2 PIN L2 Alimentación Subcu. nivel 2 Pintu	,
	. Potencia
400 25 0,7	0,8
S8.3 PIN L3 Alimentación Subcu. nivel 2 Pintu	
	. Potencia
400 35 0,7	0,8
S8.4 PIN L4 Alimentación Subcu. nivel 2 Pintu	
	. Potencia
400 45 0,7	0,8
Cuadro 1.9 S9 MONT Montaje	,
S9.1 ATOR Alimentación Subcuadro nivel 2 A	Atornillado
	. Potencia
400 10 0,8	0,8
S9.2 PUNZ Alimentación Subcuadro nivel 2 P	
	. Potencia
400 10 0,8	0,8
Cuadro 1.10 S10 EMB Embalaje	, -
S10.1 EMB 1 Embalaje 1	
	. Potencia
400 10 1,3	0,9

		SUBCUADRO	OS NIVEL 1		
CUADRO	REF. Cuadro	REF. Circuit	o INSTALA	CIÓN RECEPT	ORA
		S10.2 EMB 2	Embalaje :	2	
		Tensión (V)	Longitud (m)	Potencia kW	F. Potencia
		400	15	1,3	0,9
		S10.3 EMB 3	Embalaje :		: -,-
		Tensión (V)	Longitud (m)	Potencia kW	F. Potencia
		400	20	1,3	0,9
		S10.4 EMB 4	Embalaje		
		Tensión (V)	Longitud (m)	Potencia kW	F. Potencia
		400	25	1,3	0,9
Cuadro 1.11a	S11 ALM. MP	Almacén mate		1,0	0,0
Oddaro III Id	OTT / (EIVI: IVII	S11.1 ALM AC		ón Sub. nivel 2 Al	macén acero
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400	10	0,7	0,85
		S11.2 ALM AL		ubc. nivel 2 Alma	· · · · · · · · · · · · · · · · · · ·
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400	15	0,7	0,85
		S11.3 ALM ZII		ón Subc. nivel 2 A	
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		· · · · · · · · · · · · · · · · · · ·		······································	<u>.</u>
		400	20	0,7	0,85
		S11.4 ALM CC		ón Sub. nivel 2 A	
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400	25	0,7	0,85
		S11.5 PUE GF	i	ón Subc. nivel 2 F	·····
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
Cuadro 1.11b	S11 ALM. PT	400	25	0,8	0,8
Cuadro 1.11b	STI ALIVI. PT	S11.1 ALM CA	ducto terminad	ub. nivel 2 Almac	án conclonos
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400	10	0,7	0,85
		\$11.2 ALM AF		ubc. nivel 2 Alma	
				·	
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400	15 /C Alimont S	0,7	0,85
		S11.3 ALM RV		ubc. nivel 2 Rejas C. simultaneid.	
		Tensión (V) 400	Longitud (m)		F. Potencia
		S11.4 ALM ES	20	0,7	0,85
				ub. nivel 2 Almac	·
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
Cuadro 1.12	C10 C C CENT	400	25 erales Centrale	0,7	0,85
Cuadro 1.12	S12 S G CENT				noformosión
		S12.1 CE TRA		nivel 2 Centro Tra	·
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	15	0,5	0,85
		S12.2 GR ELE	············	ad. nivel 2 Grupo	
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	20	0,6	0,85
		S12.3 C PR C		ivel 2 Central prod	·
		Tensión (V)	Longitud (m)	C. simultaneid.	F. Potencia
		400/230	15	0,6	0,8
		S12.4 CE CON	VI Alim subcu	. nivel 2 Central C	ompresores

		Tensión (V) 400/230	Longitud (m) 15	C. simultaneid. 0,6	F. Potencia 0,8

		SUBCUADRO	S NIVEL 1		
CUADRO	REF. Cuadro	REF. Circuito	INSTALAC	CIÓN RECEPTO	RA
		S12.5 CE B AG	Alim. subcu	ı. nivel 2 Central b	ombeo agua
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	20	0,6	0,8
		S12.6 T AG RE	Alim. sub.	nivel 2 Trat. Agua	as residuales
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	80	0,6	0,8
		S12.7 T MANT	Alim. subc	u. nivel 2 Taller m	antenimiento
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	15	0,6	0,8
		S12.8 ALM REC	Alim. subc	u. nivel 2 Almacé	n recambios
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	15	0,6	0,9
		S12.9 CA B CA	Alimentac	ión sub. nivel 2 Ca	
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	30	0,7	0,8
Cuadro 1.13	S13 S G NAVE	Servicio Gener	ales Nave	•	
		S13.1 AL NAVE		uadro nivel 2 alun	nbrado nave
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	10	1	0,95
		S13.2 FZA NAV	Alimentac.	subcuadro nivel	
		······································	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	10	0,2	0,8
		S13.3 TC NAVE	Alim. subc	u. nivel 2 tomas c	
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	10	0,2	0,9
		S13.4 CLI NAV	Alim. sub. n	nivel 2 climatizació	n/vent. nave
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400	10	0,9	0,8
Cuadro 1.14	S14 EDIF ADM	Edificio de Ofic	inas		
		S14.1 AL OFI	Alim. sub. n	nivel 2 alumbrado	edificio ofici.
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	100	1	0,95
		S14.2 FZA OFI	Aliment. sul	b. nivel 2 fuerza e	dificio ofici.
		Tensión (V) L	ongitud (m)	C. simultaneid.	F. Potencia
		400/230	100	0,7	0,9
Cuadro 1.16	S16 EMER AL	Cuadro emerge			
		S16.1 VIG ACO		vigilancia almacé	n cobre
		ļ	ongitud m	Potencia W	F. Potencia
		400/230	60	100	0,95
		S16.2 VIG AAL		vigilancia almacé	
			ongitud m	Potencia W	F. Potencia
		400/230	70	100	0,95
		S16.3 VIG AZI	·····•	vigilancia almacé	
		·····	ongitud m	Potencia W	F. Potencia
		100/000	80	100	0,95
		400/230		<u> </u>	
		S16.4 VIG AAC	Alumbrado	vigilancia almacé	n acero
		S16.4 VIG AAC Tensión V L	Alumbrado Longitud m	vigilancia almacé <i>Potencia W</i>	n acero <i>F. Potencia</i>
		\$16.4 VIG AAC Tensión V L 400/230	Alumbrado Longitud m 90	vigilancia almacé Potencia W 100	n acero F. Potencia 0,95
		S16.4 VIG AAC <i>Tensión V L</i> 400/230 S16.5 VIG ZGA	Alumbrado Longitud m 90 Alumbrado	vigilancia almacé <i>Potencia W</i> 100 vigilancia zona ga	n acero F. Potencia 0,95
		S16.4 VIG AAC <i>Tensión V L</i> 400/230 S16.5 VIG ZGA	Alumbrado Longitud m 90	vigilancia almacé Potencia W 100	n acero F. Potencia 0,95

		SUBCUADR	OS I	NIVEL 1		
CUADRO	REF. Cuadro	REF. Circuit	to	INSTALA	CIÓN RECEPT	ORA
		S16.6 VIG LC	0	Alumbrado	o vigilancia líneas	s cortes
	·	Tensión V	Lo	ngitud m	Potencia W	F. Potencia
		400/230		70	200	0,95
		S16.7 VIG CC	DL .	Alumbrado	vigilancia cortes	láser
		Tensión V		ngitud m	Potencia W	F. Potencia
		400/230		90	300	0,95
		S16.8 VIG PC	S	Alumbrado	vigilancia plega	d. curv. solda.
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		120	300	0,95
		S16.9 VIG ZP	l l	Alumbrado	vigilancia zona	pintura
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		50	300	0,95
		S16.10 VIG Z	ME	o vigilancia zona	montaje-emb.	
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		20	200	0,95
		S16.11 VIG A	CA	Alumbrado	vigilancia almac	én canalones
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		25	100	0,95
		S16.12 VIG A	AM	Alumbrado	vigilancia almac	én armarios
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		35	100	0,95
		S16.13 VIG A	······		vigilancia almac	én rejas.
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		45	100	0,95
		S16.14 VIG A	·····	•	o vigilancia almad	
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
	ļ	400/230	<u> </u>	55	100	0,95
		S16.15 EVA A	·	.	do evacuación al	····
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		60	50	0,95
		S16.16 EVA A	·····	<u> </u>	o evacuación alm	· · · · · · · · · · · · · · · · · · ·
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230		70	50	0,95
		S16.17 EVA A	·	4	o evacuación alm	···
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230	\^^	80	50	0,95
		S16.18 EVA A	·····	4	o evacuación alm	
		Tensión V	Lor	ngitud m	Potencia W	F. Potencia
		400/230	7 C A	90	50	0,95
		S16.19 EVA Z	·····	•	o evacuación zon	······································
		Tensión V	LOI	ngitud m 100	Potencia W	F. Potencia
		400/230	<u></u>		170	0,95
		S16.20 EVA L Tensión V	·····	4	o evacuación líne	F. Potencia
		400/230	LUI	ngitud m 70	Potencia W 110	
		S16.21 EVA C			o evacuación cor	0,95
		Tensión V	·····	gitud m	Potencia W	
		400/230	LUI	igitua m 90	170	F. Potencia
			200		i ro o evacuación ple	0,95
		Tensión V	T	gitud m	Potencia W	F. Potencia
		400/230	LUI	120		
		400/230		120	110	0,95

		SUBCUADR	OS N	IVEL 1		
CUADRO	REF. Cuadro	REF. Circuit	to	INSTAL	ACIÓN RECEF	TORA
		S16.23 EVA 2	ZPI	Alumbra	do evacuación zo	na pintura
		Tensión V	Lon	gitud m	Potencia W	F. Potencia
		400/230		50	110	0,95
		S16.24 EVA 2	ZME	Alumbra	do evacuación z	montaje-emb.
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		20	110	0,95
		S16.25 EVA A	ACA	Alumbr.	evacuación alma	cén canalones
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		25	50	0,95
		S16.26 EVA A	AΑM	Alumbr.	evacuación alma	cén armarios
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		35	50	0,95
		S16.27 EVA A	ĄRV	Alumb. e	vacuación almac	
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		45	50	0,95
		S16.28 EVA A			evacuación alma	····•
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		55	50	0,95
		S16.29 ANT A	· · · · · · · · · · · · · · · · · · ·	·· * ·····	do antipánico alm	
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		60	40	0,95
		S16.30 ANT A			antipánico alma	
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230	<u> </u>	70	40	0,95
		S16.31 ANT A			o antipánico alma	
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230	1 1 0	80	40	0,95
		S16.32 ANT A	··•		do antipánico alm	···
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230	7C A	90	40	0,95
		Tensión V	· · · · · · · · · · · · · · · · · · ·	•••••	o antipánico zona	
		400/230	LONG	gitud m 100	Potencia W 140	F. Potencia 0,95
		S16.34 ANT L	CO		o antipánico línea	· · · · · · · · · · · · · · · · · · ·
		Tensión V	··•	gitud m	Potencia W	F. Potencia
		400/230		70	90	0,95
		S16.35 ANT (COL		o antipánico corte	
		Tensión V		gitud m	Potencia W	F. Potencia
		400/230		90	140	0,95
		S16.36 ANT F	CS		o antipánico pleg	· ·
		Tensión V	··•····	gitud m	Potencia W	F. Potencia
		400/230		120	90	0,95
		S16.37 ANT 2	ZPI	Alumbrado	o antipánico zona	
		Tensión V		gitud m	Potencia W	F. Potencia
		400/230		50	90	0,95
		S16.38 ANT 2	ZME	Alumbra	do antipánico zo	
		Tensión V	Long	gitud m	Potencia W	F. Potencia
		400/230		20	90	0,95
		S16.39 ANT A	ACA	Alumbrad.	antipánico alma	
		Tensión V		gitud m	Potencia W	F. Potencia
		400/230		25	40	0,95

		SUBCUADR	OS N	IVEL 1			
CUADRO	REF. Cuadro	REF. Circuit	:0	INSTAL	ACIÓN RECEP	TORA	
		S16.40 ANT A	AAM	Alumbra	d. antipánico alm	acén armarios	
		Tensión V	Lon	gitud m	Potencia W	F. Potencia	
		400/230		35	40	0,95	
		S16.41 ANT A	RV	Alumb. a	intipánico almacé	n rejas.	
		Tensión V	Long	iitud m	Potencia W	F. Potencia	
		400/230		45	40	0,95	
		S16.42 ANT AES Alumbr. ar		antipánico almacén escaleras			
		Tensión V	nsión V Longitud m		Potencia W	F. Potencia	
		400/230		55	40	0,95	
Cuadro 1.17	S17 EME FZA	Cuadro emer					
		S17.1 CUB IM	······	•	cuba imprimación pintura		
		Tensión V	Long	iitud m	Potencia kW	F. Potencia	
		400		70	20	0,8	
		S17.2 PR PIN	DE1	Fuerza	preparación pint	ura depósito 1	
		Tensión V	Long	iitud m	Potencia KW	F. Potencia	
		400		70	3	0,8	
		S17.3 PR PIN	·····	······ ·	preparación pint	······	
		Tensión V	Long	iitud m	Potencia KW	F. Potencia	
		400		70	3	0,8	

1.12.1.3.3. Subcuadros de nivel 2

Desde cuadros nivel 1 se alimentan los cuadros de nivel 2 siguientes, con sus líneas:

Tabla 20. Subcuadros de Nivel 2

Tabla 20. Subcuae	SUBCUADROS NIVEL 2							
CUADRO	REF. Cuadro	REF. Circui			TALACIÓN RE	CEPTORA		
Cuadro 2.1	S2.1 C AC GAV	Corte acero galvanizado						
		S2.1.1 DEV /	Ivanizado					
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	10		4	0,8		
		S2.1.2 COR AC GAL Cortadora acero galvanizad				anizado		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	10		3	0,8		
		S2.1.3 API A	C GAL	Apila	adora acero galva	ınizado		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	15		15	0,8		
Cuadro 2.2	S2.2 C AL LAC	Corte alumii	nio lacado					
		S2.2.1 DEV /	AL LAC	Dev	Devanadora aluminio lacado			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	15		4	0,8		
		S2.2.2 COR	AL LAC	Cort	rtadora aluminio lacado			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	15		3	0,8		
		S2.2.3 API A	L LAC	Apila	adora aluminio lad	cado		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	20		15	0,8		
Cuadro 2.3	S2.3 C ZINC	Corte zinc						
		S2.3.1 DEV 2	ZINC	Dev	anadora zinc			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	20		4	0,8		

		SUBCUADRO	S NIVE	_ 2		
CUADRO	REF. Cuadro	REF. Circuito)	INS	TALACIÓN RE	CEPTORA
		S2.3.2 COR ZI	NC		adora zinc	
		Tensión (V)	Longitue	4	Potencia kW	F. Potencia
		400	20	A	3	0,8
		S2.3.3 API ZIN	IC	Apila	adora zinc	,
		······································	Longitud		Potencia kW	F. Potencia
		400	25	·/	15	0,8
Cuadro 2.4	S2.4 C COBRE	Corte cobre				•
		S2.4.1 DEV C0	OBRE	Deva	anadora cobre	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	25	.3	3	0,8
		S2.4.2 COR C	OBRE	Cort	adora cobre	,
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	25	.3f	4	0,8
		S2.4.3 API CO	BRE	Apila	adora cobre	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	30		15	0,8
Cuadro 2.5	S2.5 C ACERO	Corte acero				
		S2.5.1 DEV AC	CERO	Deva	anadora acero	
		Tensión (V) I	Longitud	(m)	Potencia kW	F. Potencia
		400	30		4	0,8
		S2.5.2 COR A	CERO	Cort	adora acero	
		Tensión (V) I	Longitud	(m)	Potencia kW	F. Potencia
		400	30		3	0,8
		S2.5.3 API AC	ERO	Apila	adora acero	
			Longitud	(m)	Potencia kW	F. Potencia
		400	35		15	0,8
Cuadro 2.6	S2.6 C ALUM	Corte alumini				
		S2.6.1 DEV AL		<u> </u>	anadora aluminic	
			Longitud	(m)	Potencia kW	F. Potencia
		400	35	_	4	0,8
		S2.6.2 COR AI		<u> </u>	adora aluminio	
		λ	Longitud	(m)	Potencia kW	F. Potencia
		400	35	A '1	3	0,8
		S2.6.3 API ALI			adora aluminio	T = 5
			Longitud	(m)	Potencia kW	F. Potencia
Cuadra 0.7	CO 4 OFNI AC4	400	40		15	0,8
Cuadro 2.7	S3.1 CEN LAS1	Centro corte I		Con	do oouto lácou	. 1
		S3.1.1 C COR		4	tro de corte láser	
		λ	Longitud	(111)	Potencia kW	F. Potencia
		400	10	Can	10	0,8
		S3.1.2 C COR		<u> </u>	tro de corte láser Potencia kW	
		}	Longitud	(111)	10	F. Potencia
		400 S3.1.3 C COR	18	Can	<u> </u>	0,8
		······································		<u> </u>	tro de corte láser	···•
		Tensión (V) 1 400	Longitud 26	(111)	Potencia kW 10	F. Potencia
		S3.1.4 C COR		Con	tro de corte láser	0,8
				<u> </u>	Ţ·····	
			Longitud	(111)	Potencia kW	F. Potencia
		400	34		10	0,8

		SUBCUADRO	S NIVE	L 2		
CUADRO	REF. Cuadro	REF. Circuite	0	INS	TALACIÓN RE	CEPTORA
Cuadro 2.8	S3.2 CEN LAS2	Centro corte l	áser 2			
		S3.2.1 C COR	LAS1	Cen	tro de corte láser	5
		Tensión (V)	Longitu	d (m)	Potencia kW	F. Potencia
		400	10		10	0,8
		S3.2.2 C COR	LAS2	Cen	tro de corte láser	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	18	:	10	0,8
		S3.2.3 C COR		.4	tro de corte láser	
		•	Longitud	(m)	Potencia kW	F. Potencia
		400	26		10	0,8
		S3.2.4 C COR		<u> </u>	tro de corte láser	
			Longitud	(m)	Potencia kW	F. Potencia
	244545	400	. 34		10	0,8
Cuadro 2.9	S4.1 P AC GAV	Plegado acerd				
		S4.1.1 PLE AC			adora acero galv	
		}	Longitud	(m)	Potencia kW	F. Potencia
		400	15	DI	15	0,8
		S4.1.2 PLE AC			adora acero galv	
			Longitud	(m)	Potencia kW	F. Potencia
		400	25	Dia	15	0,8
		S4.1.3 PLE AC			gad. acero galva Potencia kW	
		Tensión (V) 400	Longitud 20	(111)	Polericia kvv 5	F. Potencia
Cuadro 2.10	S4.2 P AL LAC	Plegado alum		do	3	0,8
Cuadro 2.10	34.2 F AL LAC	S4.2.1 PLE AL			adora aluminio la	ecado 6 m 2
		······	Longitud	·	Potencia kW	F. Potencia
		400	10	(111)	15	0,8
		\$4.2.2 PLE AL		Plea	adora aluminio la	· ·
			Longitud	<u></u>	Potencia kW	F. Potencia
		400	20	1,,,,	15	0,8
				Plea	adora aluminio la	
					Potencia kW	
		400	15	.1	5	0,8
Cuadro 2.11	S4.3 P ZINC	Plegado zinc				
		S4.3.1 PLE ZI	6M 3	Pleg	adora zinc 6 m 3	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	5		15	0,8
		S4.3.2 PLE ZI	3M 3	Pleg	adora zinc 3 m 3	
			Longitud	(m)	Potencia kW	F. Potencia
		400	15	:	15	0,8
		S4.3.3 PLE ZI		***************************************	adora zinc 1,5 m	···
		\lambda	Longitud	(m)	Potencia kW	F. Potencia
	01156555	400	10		5	0,8
Cuadro 2.12	S4.4 P COBRE	Plegado cobr				
		S4.4.1 PLE C0			adora cobre 6 m	···•
			Longitud	(m)	Potencia kW	F. Potencia
		400	5	D.	15	0,8
		S4.4.2 PLE CO		<u></u>	adora cobre 3 m	··· · ·······
		,	Longitud	(m)	Potencia kW	F. Potencia
		400	15		15	0,8

		SUBCUADRO	S NIVEL	_ 2				
CUADRO	REF. Cuadro	REF. Circuite	0	IN:	INSTALACIÓN RECEPTORA			
		S4.4.3 PLE C0	D 1,5M 4	Ple	gadora cobre 1	,5 m 4		
		Tensión (V)	Longitud ((m)	Potencia kW	F. Potencia		
		400	10		11	0,8		
Cuadro 2.13	S4.5 P ACERO	Plegado acerd)					
		S4.5.1 PLE AC	C 6M 5	Pleg	adora acero 6 r	n 5		
		Tensión (V)	Longitud ((m)	Potencia kW	F. Potencia		
		400	10		30	0,8		
		S4.5.2 PLE AC	3M 5	Pleg	adora acero 3 r	m 5		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	20		30	0,8		
		S4.5.3 PLE AC	C 1,5M 5	Ple	gadora acero 1	,5 m 5		
		Tensión (V)	Longitud ((m)	Potencia kW	F. Potencia		
		400	15		11	0,8		
Cuadro 2.14	S4.6 P ALU	Plegado alum	inio					
		S4.6.1 PLE AL			adora aluminio	6 m 6		
		,λλ	Longitud ((m)	Potencia kW	F. Potencia		
		400	15		30	0,8		
		S4.6.2 PLE AL			adora aluminio			
		,	Longitud ((m)	Potencia kW	F. Potencia		
		400	25		30	0,8		
		S4.6.3 PLE AL			gadora alumini			
		}	Longitud ((m)	Potencia kW	F. Potencia		
		400	20		11	0,8		
Cuadro 2.15	S4.7 P AC DI	Plegado acer	,					
		S4.7.1 PLE AD	<u>i</u>			amantado 3 m 7		
			Longitud	(m)	Potencia kW	F. Potencia		
		400	20		30	0,8		
		S4.7.2 PLE AD		······•	··· ···· ·····························	antado 1,5 m 7		
			Longitud ((m)	Potencia kW	F. Potencia		
0 1 0 10	05 4 0115 0114	400	15		11	0,8		
Cuadro 2.16	S5.1 CUR CHA	Curvado de c						
		S5.1.1 CUR C			ado de chapa	··············		
			Longitud ((m)	Potencia kW	F. Potencia		
		400 S5.2.1 CUR C	<u>5</u>	Cun	5	0,8		
		······································	.		vado de chapa 2 Potencia kW	F. Potencia		
		Tensión (V) 400	Longitud (10	(111)	5	0,8		
		S5.1.3 CUR C		Curv	/ado de chapa 3			
		•	Longitud		Potencia kW	F. Potencia		
		400	5	(111)	5	0,8		
		S5.1.4 CUR C		Curv	rado de chapa ₄			
		······	Longitud (Potencia kW	F. Potencia		
		400	10	(''')	5	0,8		
Cuadro 2.17	S5.2 CUR TUB	Curvado de tu			<u> </u>	, 0,0		
Judio Zili		S5.2.1 CUR TI		Curv	ado de tubos 1			
			Longitud (Potencia kW	F. Potencia		
		400	5	ı/	3,5	0,8		
		\$5.2.2 CUR TI		Curv	ado de tubos 2	<u> </u>		
		ļ	<u>.</u>					
		Tensión (V)	Longitud ((m)	Potencia kW	F. Potencia		

		SUBCUADR	OS NIVE	L 2			
CUADRO	REF. Cuadro	REF. Circui	to	INS	TALACIÓN RE	CEPTORA	
Cuadro 2.18	S6.1 CIZALL	Cizallado					
		S6.1.1 CIZAL	LA 1	Ciza	alla 1		
		Tensión (V)		. <u></u>		F. Potencia	
		400	10		7,5	0,8	
		S6.1.2 CIZAL			alla 2	: -,-	
		Tensión (V)	Longitud	.4	Potencia kW	F. Potencia	
		400	10	1/	7,5	0,8	
Cuadro 2.19	S6.2 SATIN	Satinado			, .	, 0,0	
		S6.2.1 SATIN 1 Satinado 1					
		Tensión (V)	Longitud	. <u>4</u>	Potencia kW	F. Potencia	
		400	5		5	0,8	
		S6.2.2 SATIN		Sa	itinado 2	1 212	
		Tensión (V)	Longitud	·····	Potencia kW	F. Potencia	
		400	5	.1	5	0,8	
Cuadro 2.20	S6.3 SERR	Serrado				1 212	
		S6.3.1 SIE B	AN 1	Sier	ra banda 1		
		Tensión (V)			Potencia kW	F. Potencia	
		400	5		1,8	0,8	
		S6.3.2 SIE B		Sier	ra banda 2	1 212	
		Tensión (V)	Longitud	.1	Potencia kW	F. Potencia	
		400	5	1/	1,8	0,8	
Cuadro 2.21	S7.1 SOL TIG	Soldadura T			., ., .	, 0,0	
	0111 002 110	S7.1.1 SOL 7		Solo	dadura TIG 1		
		Tensión (V)			Potencia kW	F. Potencia	
		400		1/	8,3	0,8	
		S7.1.2 SOL 7		Solo	dadura TIG 2	, ,,,	
		Tensión (V)		.1	Potencia kW	F. Potencia	
		400	10	7/	8,3	0,8	
		\$7.1.3 SOL T		Solo	dadura TIG 3	, 0,0	
		Tensión (V)	Longitud	.4	Potencia kW	F. Potencia	
		400	10	1/	8,3	0,8	
		S7.1.4 SOL 7		Solo	dadura TIG 4		
		Tensión (V)	Longitud		Potencia kW	F. Potencia	
		400	15		8,3	0,8	
		S7.1.5 AMOL		Amo	oladora 1		
		Tensión (V)	Longitud	· L	Potencia kW	F. Potencia	
		400	5		3	0,8	
		S7.1.6 AMOL		Amo	oladora 2	1 212	
		Tensión (V)	Longitud	. 4	Potencia kW	F. Potencia	
		400	10	1/	3	0,8	
		S7.1.7 AMOL		Amo	oladora 3	, -,-	
		Tensión (V)	Longitud	. 4	Potencia kW	F. Potencia	
		400	10	17	3	0,8	
		S7.1.8 AMOL		Amo	oladora 4	, -,-	
		Tensión (V)	Longitud	. <u>.</u>	Potencia kW	F. Potencia	
		400	15	1/	3	0,8	
		\$7.1.9 EXTR		Fy	tractor 1	, J,U	
		Tensión (V)	Longitud	4	Potencia kW	F. Potencia	
		400	Longitud 15	(''')	5	0,8	
		400	10		J	1 0,0	

		SUBCUADR	OS NIVEI	L 2				
CUADRO	REF. Cuadro	REF. Circui	ito	INS	INSTALACIÓN RECEPTORA			
		S7.1.10 EXT	R 2	Extra	actor 2			
		Tensión (V)	Longitue	d (m)	Potencia kW	F. Potencia		
		400	20		5	0,8		
		S7.1.11 EXT	R 3	Extra	actor 3			
		Tensión (V)	Longitue	d (m)	Potencia kW	F. Potencia		
		400	20		5	0,8		
		S7.1.12 EXT	R 4	Extra	actor 4			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	25		5	0,8		
Cuadro 2.22	S7.2 MIG/MAG	Soldadura M						
		S7.2.1 SOL N			oldadura MIG/M			
		Tensión (V)		(m)	Potencia kW	F. Potencia		
		400	10		15	0,8		
ļ		S7.2.2 SOL N			oldadura MIG/M	····· *		
ļ		Tensión (V)		(m)	Potencia kW	F. Potencia		
		400	15		15	0,8		
		S7.2.3 SOL N			oldadura MIG/M	·····ːː		
		Tensión (V)		(m)	Potencia kW	F. Potencia		
		400	15		15	0,8		
		S7.2.4 SOL N			oldadura MIG/M			
		Tensión (V)		(m)	Potencia kW	F. Potencia		
		400	20		15	0,8		
		S7.2.5 AMOL		<u> </u>	ladora 5			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	10	۸	3	0,8		
		\$7.2.6 AMOL		<u></u>	ladora 6			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	15	Λ	3	0,8		
		S7.2.7 AMOL		<u> </u>	ladora 7	C Detencie		
		Tensión (V)	Longitud	(111)	Potencia kW	F. Potencia		
		400 S7.2.8 AMOL	0 15	۸ma	3 oladora 8	0,8		
		Tensión (V)	Longitud	4,	Potencia kW	F. Potencia		
		400	20	(111)	3	0,8		
		\$7.2.9 EXTR		Evtr	actor 5	0,0		
		Tensión (V)	Longitud	i,	Potencia kW	F. Potencia		
		400	10	('''/	5	0,8		
		S7.2.10 EXT		Fxtra	actor 6	0,0		
		Tensión (V)	Longitud	1	Potencia kW	F. Potencia		
		400	15	····/	5	0,8		
		S7.2.11 EXT		Extra	actor 7	<u> </u>		
		Tensión (V)	Longitud	L	Potencia kW	F. Potencia		
		400	15	.3	5	0,8		
		S7.2.12 EXT		Extra	actor 8			
		Tensión (V)	Longitud	4	Potencia kW	F. Potencia		
		400	20		5	0,8		
Cuadro 2.23	S7.3 SOL MMA	Soldadura M						
		S7.3.1 SOL N		So	Idadura MMA 1			
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	15		8	0,8		

		SUBCUADR	OS NIVE	L 2		
CUADRO	REF. Cuadro	REF. Circui	ito	INS	TALACIÓN RE	CEPTORA
		S7.3.2 SOL N	MMA 2	Sold	adura MMA 2	
		Tensión (V)	Longitu	d (m)	Potencia kW	F. Potencia
		400	20		8	0,8
		\$7.3.3 AMOL	_ 9	Amo	ladora 9	
		Tensión (V)	Longitu	d (m)	Potencia kW	F. Potencia
		400	15)	3	0,8
		S7.3.4 AMOL	_ 10	Amo	ladora 10	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	20		3	0,8
		S7.3.5 EXTR	·		xtractor 9	
		Tensión (V)	——————————————————————————————————————	(m)	Potencia kW	F. Potencia
		400	15		5	0,8
		S7.3.6 EXTR	·	<u>k</u>	xtractor 10	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	20		5	0,8
Cuadro 2.24	S7.4 SOL PUN	Soldadura p				
		S7.4.1 SOL F	·····		oldadura por pur	····• , ································
		Tensión (V)		(m)	Potencia kW	F. Potencia
		400	25		100	0,8
		S7.4.2 SOL F	T		oldadura por pur	
		Tensión (V) 400	Longitud 30	(111)	Potencia kW 100	F. Potencia
		S7.4.3 AMOL		Λmo	ladora 11	0,8
		Tensión (V)	T	±	Potencia kW	F. Potencia
		400	Longilua 25	(111)	3	0,8
		S7.4.4 AMOL	·	Δmo	ladora 12	0,6
		Tensión (V)		<u> </u>	Potencia kW	F. Potencia
		400	30	(111)	3	0,8
		S7.4.5 EXTR		Extra	actor 11	, 0,0
		Tensión (V)	Longitud	4	Potencia kW	F. Potencia
		400	25	\	5	0,8
		S7.4.6 EXTR	<u> </u>	Extra	actor 12	-,-
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	30	, , , ,	5	0,8
Cuadro 2.25	S7.5 SOL OXIA	Soldadura o	xiacetilén	ica		
		S7.5.1 AMOL	,		ladora 13	···· ·
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	20	<u> </u>	3	0,8
		\$7.5.2 AMOL	T	±	ladora 14	T = =
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	25	F1	3	0,8
		S7.5.3 EXTR		<u>*</u>	actor 13	E Datamaia
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400 S7.5.4 EXTR	20	Evtro	5 actor 14	0,8
		Tensión (V)	Longitud	÷	Potencia kW	F. Potencia
		400	Lorigitud 25	(111)	5	0,8
Cuadro 2.26	S8.1 PIN L1	Pintura Líne			υ	U,0
Guadi U Z.20	JOH FIN LI	S8.1.1 LIJ BA		Liia	ndora de banda 1	
		Tensión (V)	Longitud	······	Potencia kW	F. Potencia
		400	25	(111)	1,2	0,8
		+00	- 33		۷,۷	0,0

		SUBCUADRO	OS NIVEI	_ 2		
CUADRO	REF. Cuadro	REF. Circuito		INS	TALACIÓN RE	CEPTORA
					lora rotorbital 1	
		Tensión (V)	Longitud	······		F. Potencia
		400	35		0,6	0,8
		S8.1.3 CEN P	IT 1	Cent	tro pintado 1	•
		Tensión (V)	Longitud			F. Potencia
		400	25		2,2	0,8
		S8.1.4 LIN AL	•		a automatizada 1	
		Tensión (V)	Longitud		Potencia kW	F. Potencia
		400	25	X	5,5	0,8
		S8.1.5 LAV P	IS 1	La	avado pistolas 1	,
		Tensión (V)	Longitud		Potencia kW	F. Potencia
		400	15	/	1	0,8
		S8.1.6 HORN		Н	orno 1	
			Longitud	(m)	Potencia kW	F. Potencia
		400	10		52,5	0,8
Cuadro 2.27	S8.2 PIN L2	Pintura Línea	1 2	<u>:</u>	,	
		S8.2.1 LIJ BA	N 2	Lija	adora de banda 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	50	λ	1,2	0,8
		S8.2.2 LIJ RC	T 2	Lija	adora rotorbital 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	50		0,6	0,8
		S8.2.3 CEN P	IT 2	Ce	ntro pintado 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	40		2,2	0,8
		S8.2.4 LIN AL	JT 2	Líne	a automatizada 2	_
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400	40		5,5	0,8
		S8.2.5 LAV P	PIS 2 L		avado pistolas 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400			1	0,8
ļ		S8.2.6 HORN			orno 2	
		ļ	Longitud	(m)	Potencia kW	F. Potencia
		400	25		52,5	0,8
Cuadro 2.28	S8.3 PIN L3	Pintura Línea 3				
		S8.3.1 LIJ BA			adora de banda 3	·;·····
		j	Longitud	(m)	Potencia kW	F. Potencia
		400	65	1	1,2	0,8
		S8.3.2 LIJ RC			adora rotorbital 3	□ Dotomoio
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia
		400 S8.3.3 CEN P	65 UT 2	Co	0,6	0,8
					ntro pintado 3	E Dotonoio
		Tensión (V) 400	Longitud 55	(111)	Potencia kW 2,2	F. Potencia 0,8
		\$8.3.4 LIN AU		Líno	a automatizada 3	· · · · · · · · · · · · · · · · · · ·
		Tensión (V)	Longitud		Potencia kW	F. Potencia
		400	Lorigitud 55	(111)	5,5	0,8
		S8.3.5 LAV P		1	avado pistolas 3	0,0
			Longitud		Potencia kW	F. Potencia
		400	Lorigitua 45	(111)	Polericia kw 1	+
		400	40		I	0,8

		SUBCUADR	OS NIVEI	L 2				
CUADRO	REF. Cuadro	REF. Circuito		INSTALACIÓN RECEPTORA				
		S8.3.6 HORNO 3 Horno			no 3			
		Tensión (V)	Longitue	d (m)	Potencia kW	F. Potencia		
		400	40		52,5	0,8		
Cuadro 2.29	S8.4 PIN L4	Pintura Línea 4						
		S8.4.1 LIJ BAN 4 Lijadora de banda 4						
		Tensión (V)	Longitue	•		F. Potencia		
		400	80		1,2	0,8		
		S8.4.2 LIJ R			dora rotorbital 4	; - , -		
		Tensión (V)	Longitud	<u></u>	Potencia kW	F. Potencia		
		400	80	1	0,6	0,8		
		S8.4.3 CEN		C	Centro pintado 4	, ,,,		
		Tensión (V)	Longitud	.	Potencia kW	F. Potencia		
		400	70	1/	2,2	0,8		
		S8.4.4 LIN A		I	inea automatizad			
		Tensión (V)	•	\	Potencia kW	F. Potencia		
		400	70	(''')	5,5	0,8		
		S8.4.5 LAV F		la	vado pistolas 4	, 0,0		
		Tensión (V)	Longitud	.	Potencia kW	F. Potencia		
		400	60	(111)	1	0,8		
		\$8.4.6 HORN		Но	rno 4	0,0		
		Tensión (V)	Longitud		Potencia kW	F. Potencia		
		400	Lorigitad 55	(111)	52,5	0,8		
Cuadro 2.30	S9.1 ATOR		i		32,3	, 0,0		
Cuaulo 2.50	S9.1 ATOR Montaje atornillado S9.1.1 ATORN 1 Atornilladora 1							
		Tensión (V)	Longitud		Potencia kW	F. Potencia		
		400	·	(111)	0,3	0,8		
		i		Δta	ornilladora 2	0,0		
		Tensión (V)			Potencia kW	F. Potencia		
		400			0,3	0,8		
		\$9.1.3 ATOF		Δta	ornilladora 3	0,0		
		Tensión (V)	Longitud (m)		Potencia kW	F. Potencia		
		400	25	(111)	0,3	0,8		
		S9.1.4 ATOF	·	Λtor	milladora 4	, 0,0		
		Tensión (V)	Longitud (m)		Potencia kW	F. Potencia		
		400	25	(111)	0,3	0,8		
	\$9.1.5 ATORI			Δ	Atornilladora 5	0,0		
		Tensión (V)	Longitud	.	Potencia kW	F. Potencia		
		400	20	(111)	0,3	0,8		
			S ATORN 6 A		Atornilladora 6	, 0,0		
		Tensión (V)			Potencia kW	F. Potencia		
		400	20	(111)	0,3	0,8		
Cuadro 2.31	S9.2 PUNZ	Montaje pur			0,3	0,0		
Cuaulo 2.31	J9.2 FUNZ	S9.2.1 PUNZ		Du	ınzonadora 1			
		Tensión (V)	Longitud		Potencia kW	F. Potencia		
		400	† · · · · · · · · · · · · · · · · · · ·	(111)	· †	···		
		\$9.2.2 PUNZ	30	Du	0,6 Inzonadora 2	0,8		
			·		Potencia kW	F. Potencia		
		Tensión (V) 400	Longitud 30	(111)	•			
		\$9.2.3 PUNZ		ים	0,6	0,8		
			Ţ		Inzonadora 3	E Dotonoio		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia		
		400	25		0,6	0,8		

		SUBCUADR	OS NIVEI	_ 2			
CUADRO	REF. Cuadro	REF. Circuito		INSTALACIÓN RECEPTORA			
		S9.2.4 PUNZ 4 Punzonadora 4					
		Tensión (V)	Longitue	d (m)	Potencia kW	F. Potencia	
		400	25		0,6	0,8	
		S9.2.5 PUNZ	5	Punz	zonadora 5		
		Tensión (V)	Longitue	d (m)	Potencia kW	F. Potencia	
		400	20		0,6	0,8	
		S9.2.6 PUNZ	6	Punz	zonadora 6		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400	20		0,6	0,8	
Cuadro 2.32	S11.1ALM ACE	Almacén ace	ero	·			
		S11.1.1 AL A	LM AC 1	Alun	nbrado almacén	acero zona 1	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	40		1	0,95	
		S11.1.2 AL A	LM AC 2	Alun	nbrado almacén	acero zona 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	50		0,8	0,95	
		S11.1.3 FZA	ALM AC 1	Fue	erza almacén ac	ero zona 1	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	40		9	0,9	
		S11.1.4 FZA	ALM AC 2	Fue	erza almacén ac	ero zona 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	50		6	0,9	
Cuadro 2.33	S11.2 ALM ALU	Almacén alu	minio				
		S11.2.1 AL A	LM AL 1	Alu	ımbr. almacén al	uminio zona 1	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	30		0,9	0,95	
		S11.2.2 AL A	LM AL 2	Alu	ımbr. almacén al	uminio zona 2	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	40		0,9	0,95	
		S11.2.3 FZA			ıminio zona 1		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	A ALM AL 2 Fuerza almacén aluminio zo		0,9		
		S11.2.4 FZA			···:		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	40		9	0,9	
Cuadro 2.34	S11.3 ALM ZIN	Almacén zin		-			
		S11.3.1 AL A			ımbr. almacén al		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	20		0,9	0,95	
		S11.3.2 AL A			mbr. almacén al		
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	30		0,9	0,95	
		S11.3.3 FZA			erza almacén alu	···:	
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	20		9	0,9	
		S11.3.4 FZA ALM ZI 2 Fuerza almacén aluminio zona 2					
		Tensión (V)	Longitud	(m)	Potencia kW	F. Potencia	
		400/230	30		9	0,9	

		SUBCUADRO	OS NIVEL	2	
CUADRO	REF. Cuadro	REF. Circuit	to	INSTALACIÓN	N RECEPTORA
Cuadro 2.35	S11.4ALM COB	Almacén cob	re		
		S11.4.1 AL Al		Alumbr. almacé	n cobre zona 1
		Tensión (V)	Longitud	(m) Potencia k	W F. Potencia
		400/230	10	0,9	0,95
		S11.4.2 AL AI		Alumbr. almacé	
		Tensión (V)	Longitud	<u> </u>	
		400/230	20	0,9	0,95
		S11.4.3 FZA		Fuerza almacér	
		Tensión (V)	Longitud (L	······································
		400/230	10	9	0,9
		S11.4.4 FZA			
		Tensión (V)	Longitud (L	
		400/230	20	9	0,9
Cuadro 2.36	S11.5 PUE GR	Puente grúa			, 0,0
	CINCIOL CI	S11.5.1 PUE	GR 1 Pue	ente grúa 1 almag	cén materia prima
			Longitud (r		
		400/230	15	7,5	0,8
		S11.5.2 PUE			cén materia prima
		······································	Longitud (r		
		400/230	30	7,5	0,8
Cuadro 2.37	S11.1ALM CAN	Almacén can		, 1,0	, 0,0
		S11.1.1 AL AI		Alum, almacén	canalones zona 1
		•	Longitud (r	L	
		400/230	10	0,9	0,95
		S11.1.2 AL ALM CA 2 Alum. almacén canalones zo			
		•	Longitud (r	.	
		400/230	20	0,9	0,95
		S11.1.3 FZA ALM CA 1 Fuerza almacén canalón zona			
		· · · · · · · · · · · · · · · · · · ·			
		400/230	10	9	0,9
			S11.1.4 FZA ALM CA 2 Fuerza almacén canalón :		
					V F. Potencia
		400/230	20	9	0,9
Cuadro 2.38	S11.2 ALM AR	Almacén arm	narios	·	
		S11.2.1 AL AI		Alumbr. almacé	n armarios zona 1
		Tensión (V)	Longitud (r	n) Potencia kV	V F. Potencia
		400/230	20	0,9	0,95
		S11.2.2 AL Al	LM AR 2	Alumbr. almacé	n armarios zona 2
		Tensión (V)	Longitud (r	n) Potencia kV	V F. Potencia
		400/230	30	0,9	0,95
		S11.2.3 FZA	ALM AR 1	Fuerza almacér	armarios zona 1
		Tensión (V)	Longitud (r	n) Potencia kV	V F. Potencia
		400/230	20	9	0,9
		S11.2.4 FZA			armarios zona 2
		Tensión (V)	Longitud (r	n) Potencia kV	V F. Potencia
		400/230	30	9	0,9
Cuadro 2.39	S11.3 ALM RVE	Almacén reja	ıs y ventan		
		S11.3.1 AL AI			ejas y vent. zona 1
		Tensión (V)	Longitud (r		
		400/230	30	0,9	0,95

		SUBCUADR	OS NIVEI	L 2		
CUADRO	REF. Cuadro	REF. Circui	ito	INS	TALACIÓN RE	CEPTORA
		S11.3.2 AL A	LM RV 2		n. almacén rejas.	
		Tensión (V)		4		
		400/230	40		0,9	0,95
		S11.3.3 FZA			er almacén rejas.	
		Tensión (V)		.		
		400/230	30		9	0,9
			ALM RV 2	Fue	er almacén rejas.	zona 2
		Tensión (V)			Potencia kW	F. Potencia
		400/230	40		9	0,9
Cuadro 2.40	S11.4 ALM ESC	Almacén es			<u> </u>	, 0,0
		S11.4.1 AL A		Alu	ım. almacén esca	aleras zona 1
		Tensión (V)			Potencia kW	F. Potencia
		400/230	40	1/	0,9	0,95
		S11.4.2 AL A		Alu	ım. almacén esca	
		Tensión (V)			Potencia kW	···•
		400/230	50	72	0,9	0,95
		S11.4.3 FZA		Fue	erza almacén esc	
		Tensión (V)			Potencia kW	F. Potencia
		400/230	40	1/	9	0,9
		S11.4.4 FZA		Fue	erza almacén esc	
		Tensión (V)	Longitud		Potencia kW	F. Potencia
		400/230	50	1/	9	0,9
Cuadro 2.41	S12.1 CE TRA	Centro Tran		n	<u> </u>	, 0,0
		S12.1.1 AL C			ado centro transf	ormación
		Tensión V	Longitud		Potencia W	F. Potencia
		400/230	15		400	0,95
		S12.1.2 FZA		uerza	centro transform	
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400/230	10		6	0,9
		S12.1.3 VEN	CT V	entilad	ción centro transf	
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400	10		3	0,8
		S12.1.4 B ES	ST CT B	atería	estac. centro tra	·
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400	10		2	0,8
Cuadro 2.42	S12.2 GR ELE	Grupo electi	rógeno			
		S12.2.1 AL G	R ELEC	Alun	nbrado grupo ele	ctrógeno
		Tensión V	Longitud	m	Potencia W	F. Potencia
		400/230	10		100	0,95
		S12.2.2 FZA	GR ELE	Fuer	za grupo electró	geno
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400/230	10		6	0,9
Cuadro 2.43	S12.3 C PR CA	Central prod				
		S12.3.1 BOM			beo 1 agua alime	
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400	10		3	0,8
		S12.3.2 BOM		***************************************	beo 2 agua alime	····
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400	10		3	0,8

		SUBCUADRO	OS NIVE	L 2					
CUADRO	REF. Cuadro	REF. Circui	to	INST	INSTALACIÓN RECEPTORA				
		S12.3.3 PUP	FM CA1	Pupit	re fuerza y man	do caldera 1			
		Tensión V	Longitu		Potencia kW	F. Potencia			
		400	15		4	0,9			
		S12.3.4 PUP	FM CA2	Pupit	re fuerza y man				
		Tensión V	Longitu		Potencia kW	F. Potencia			
		400	15		4	0,9			
		S12.3.5 AL C	E PR C	Alum	brado central pr				
		Tensión V	Longitu	4	Potencia W	F. Potencia			
		400/230	20		400	0,95			
		S12.3.6 FZA	CE PR C	Fue	rza central prod	ucción calor			
		Tensión V	Longitud		Potencia kW	F. Potencia			
		400/230	15		6	0,9			
Cuadro 2.44	S12.4 CE COM	Central comp	presores						
		S12.4.1 BO1		Bombe	eo 1 agua refriga	c. compresor			
		Tensión V	Longitud	***************************************	Potencia kW	F. Potencia			
		400	10		2	0,8			
		S12.4.2 BO2	AG RC	Bombe	eo 2 agua refriga	c. compresor			
		Tensión V	Longitud		Potencia kW	F. Potencia			
		400	10		2	0,8			
		S12.4.3 PUP	FM CO1	Pup	oitre fuerza mand	do compresor1			
		Tensión V	Longitud		Potencia kW	F. Potencia			
		400	15		20	0,8			
		S12.4.4 PUP	FM CO2	Pup	itre fuerza mand	do compresor2			
		Tensión V	Longitud	•••••••••••••••••••••••••••••••••••••••	Potencia kW	F. Potencia			
		400	15		20	0,8			
		S12.4.5 AL C		Alum	brado central co				
		Tensión V	Longitud		Potencia W	F. Potencia			
		400/230	20		100	0,95			
		S12.4.6 FZA	CE COM	Fuerz	za central compr	esores			
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400/230	15		6	0,9			
Cuadro 2.45	S12.5 CE B AG	Central bom	beo de ag	jua					
		S12.5.1 BOM	1 AG AP	Boml	oeo 1 agua alime	entac. planta			
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400	10		5	0,8			
		S12.5.2 BOM	2 AG AP	Boml	peo 2 agua alime				
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400	10		5	0,8			
		S12.5.3 AL C		· -	brado central bo				
		Tensión V	Longitud	m	Potencia W	F. Potencia			
		400/230	20		100	0,95			
		S12.5.4 FZA			za central bombe				
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400/230	15		6	0,8			
Cuadro 2.46	S12.6 T AG RE	Central de tra							
		S12.6.1 BOM			oeo 1 agua a tra				
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400	15		5	0,8			
		S12.6.2 BOM		·*····································	peo 2 agua a tra	···			
		Tensión V	Longitud	m	Potencia kW	F. Potencia			
		400	15		5	0,8			

		SUBCUADR	OS NIVE	L 2		
CUADRO	REF. Cuadro	REF. Circu	ito	INS	TALACIÓN RE	CEPTORA
		S12.6.3 EQ	TR AG1	Equi	po 1 tratamiento	agua residual
		Tensión V	Longitua	l m	Potencia kW	F. Potencia
		400	15		2	0,9
		S12.6.4 EQ	TR AG2	Equip	o 2 tratamiento a	agua residual
		Tensión V	Longitud		Potencia kW	F. Potencia
		400	15		2	0,9
		S12.6.5 AL T	R AG R	Alumb	rado tratamiento	agua residual
		Tensión V	Longitud		Potencia W	
		400/230	20		200	0,95
		S12.6.5 FZ T	R AG R	Fuerz	a tratamiento ag	ua residual
		Tensión V	Longitud		Potencia kW	
		400/230	15		6	0,9
Cuadro 2.47	S12.7 T MANT	Taller de ma	ntenimier	nto		
		S12.7.1 AL T	AL MAN	Alun	nbrado taller de i	mantenimiento
		Tensión V	Longitud	m	Potencia W	F. Potencia
		400/230	15		300	0,95
		S12.7.2 FZA	TAL MA	Fuer	za taller de man	tenimiento
		Tensión V	Longitud	m	Potencia kW	F. Potencia
		400/230	10		12	0,8
Cuadro 2.48	S12.8ALM REC	Almacén de	recambio			
		S12.8.1 AL A			nbrado almacén	
		Tensión V	Longitud	m	Potencia W	F. Potencia
		400/230	15		100	0,95
		S12.8.2 FZ A			za almacén reca	
		Tensión V		m	Potencia kW	
		400/230	15		6	0,9
Cuadro 2.49	S12.9 CA B CA	Carga de ba				
		S12.9.1 AL C			mbrado carga b	
		Tensión V	÷	m	Potencia W	F. Potencia
		400/230	20		200	0,95
		S12.9.2 FZ C	A B CA	Fue	erza carga bater	las carretillas
			:	m	Potencia kW	
Cuadro 2.50	S13.1 AL NAVE	400/230	20		20	0,95
Cuadro 2.50	S13.1 AL NAVE	Alumbrado (A luma h	rada ganaral ga	lvanizada C1
		Tensión V	· · · · · · · · · · · · · · · · · · ·		orado general ga	
		400/230	Longitud		Potencia W os en ruta	F. Potencia 0,95
		S13.1.2 AL G			orado general ga	· · · · · · · · · · · · · · · · · · ·
		Tensión V	Longitud		Potencia W	F. Potencia
		400/230	·		os en ruta	0,95
		S13.1.3 AL G			os en rata orado general lín	
		Tensión V	Longitud		Potencia W	F. Potencia
		400/230	·		os en ruta	0,95
		S13.1.4 AL G			orado general lín	
		Tensión V	Longitud		Potencia W	F. Potencia
		400/230	•		os en ruta	0,95
		S13.1.5 AL G			orado general co	
		Tensión V	Longitud		Potencia W	F. Potencia
		400/230	·		os en ruta	0,95
		TUU/23U	00	nisulli	oo en rula	0,90

		SUBCUADR	OS NIVEL	2	
CUADRO	REF. Cuadro	REF. Circui	ito	INSTALACIÓN RE	CEPTORA
		S13.1.6 AL G	CL C2 A	lumbrado general cor	tes láser C2
		Tensión V	Longitud n	······································	
		400/230	······································	sumos en ruta	0,95
		S13.1.7 AL G	PCS C1	Alumbrado general p	le-curv-sol C1
		Tensión V	Longitud n		F. Potencia
		400/230	i	sumos en ruta	0,95
			PCS C2	Alumbrado general p	le-curv-sol C2
		Tensión V	Longitud n		
		400/230	*·····	sumos en ruta	0,95
		S13.1.9 AL G			
		Tensión V	Ţ		F. Potencia
		400/230	······	sumos en ruta	0,95
			G PIN C2	Alumbrado general	
		Tensión V			
		400/230	·	sumos en ruta	0,95
		S13.1.11 AL	G MON C1	Alumbrado genera	Il montaje C1
		Tensión V	Longitud n		F. Potencia
		400/230	Con	sumos en ruta	0,95
		S13.1.12 AL	G MON C2	Alumbrado genera	Il montaje C2
			Longitud n		
		400/230	+	sumos en ruta	0,95
		S13.1.13 AL			do pintura
		Tensión V			F. Potencia
		400/230		sumos en ruta	0,95
		S13.1.14 AL	L MON	Alumbrado localizad	do montaje
		Tensión V	Longitud n	n Potencia W	F. Potencia
		400/230	Con	sumos en ruta	0,95
		S13.1.15 AL	SER NAV	Alumbrado servicios	s nave
		Tensión V	Longitud n	n Potencia W	F. Potencia
		400/230	20	64	0,95
		S13.1.16 AL	VES NAV	Alumbrado vestuario	os
		Tensión V	Longitud n	n Potencia W	F. Potencia
		400/230	20	64	0,95
		S13.1.17 AL	EXT C1	Alumbrado exterior	C1
		Tensión V	Longitud n		F. Potencia
		400/230	i	sumos en ruta	0,95
		S13.1.18 AL	EXT C2	Alumbrado exterior	C2
		Tensión V	Longitud n	n Potencia W	F. Potencia
		400/230	i	sumos en ruta	0,95
Cuadro 2.51	S13.2 FZA NAV			zación eléctrica pref	
		S13.2.1 CAN	T	Canalización prefab	···!
		Tensión V	Longitud n	i	F. Potencia
		400		sumos en ruta	0,8
		S13.2.2 CAN	Ţ·····	Canalización prefab	
		Tensión V	Longitud n	<u>.</u>	F. Potencia
		400		sumos en ruta	0,8
		S13.2.3 CAN	,	Canalización prefab	
		Tensión V	Longitud n	······	F. Potencia
		400	Con	sumos en ruta	0,8

		SUBCUADRO	OS NIVE	L 2		
CUADRO	REF. Cuadro	REF. Circuit	to	INS	STALACIÓN RE	CEPTORA
		S13.2.4 CAN	PR L2Z2	Ca	analización prefab	ricada L2Z2
		Tensión V	Longitua	l m	Potencia kW	F. Potencia
		400	Co	onsum	nos en ruta	0,8
Cuadro 2.52	S13.3 TC NAVE	Tomas de co	rriente n	ave		
		S13.3.1 TC N	AV L1Z1	Ton	nas de corriente n	ave L1Z1
		Tensión V	Longitud	l m	Potencia W	F. Potencia
		400/230	Co	onsum	nos en ruta	0,9
		S13.3.2 TC N	AV L1Z2	Ton	nas de corriente n	ave L1Z2
		Tensión V	Longitud	l m	Potencia W	F. Potencia
		400/230	Co	onsur	nos en ruta	0,9
		S13.3.3 TC N	AV L2Z1	To	omas de corriente	nave L2Z1
		Tensión V	Longitua	l m	Potencia W	F. Potencia
		400/230	Co	onsum	nos en ruta	0,9
		S13.3.4 TC N	AV L2Z2	To	omas de corriente	nave L2Z2
		Tensión V	Longitua	l m	Potencia W	F. Potencia
		400/230	Co	onsum	nos en ruta	0,9
		S13.3.5 TC S	ER NAV	Ton	nas de corriente s	ervicios nave
		Tensión V	Longitua	l m	Potencia kW	F. Potencia
		400/230	20		9	0,9
		S13.3.6 TC V	ES NAV	Ton	nas corriente vesti	uarios nave
		Tensión V	Longitua	l m	Potencia kW	F. Potencia
		400/230	20		9	0,9
Cuadro 2.53	S13.4 CLI NAV	Cámaras de	climatiza	ción	y ventilación nav	'e
		S13.4.1 CL V			ización/ventilación	
		Tensión V	Longitud	l m	Potencia kW	F. Potencia
		400/230	80		10	0,8
		S13.4.2 CL V	EMP (Climat	ización/ventilaciór	almacén MP
		Tensión V	Longitud	l m	Potencia kW	F. Potencia
		400/230	110		5	0,8
		S13.4.3 CL V	ELC (Climat	ización/ventilaciór	líneas corte
		Tensión V	Longitud	l m	Potencia kW	F. Potencia
		400/230	80		10	0,8
		S13.4.4 CL V			atización/ventilació	n ple-cur-sol.
		Tensión V	Longitud		Potencia kW	F. Potencia
		400/230	140		5	0,8
		S13.4.5 CL V			atización/ventilació	
		Tensión V	Longitud		Potencia kW	F. Potencia
		400/230	60		5	0,8
		S13.4.6 CL V			ațización/ventilació	-,
		Tensión V	Longitud	l m	Potencia W	F. Potencia
		400/230	20		5	0,8
		S13.4.7 CL V			ización/ventilación	T
		Tensión V	Longitud	l m	Potencia kW	F. Potencia
		400	50		5	0,8
Cuadro 2.54	S14.1 AL OFI	Alumbrado e				, , , , , , , , , , , , , , , , , , ,
		S14.1.1 AL E		······································	sub. nivel 3 alum.	T
		Tensión V	Longitud	l m	C. simultaneid.	F. Potencia
		400/230	10		1	0,95
		S14.1.2 AL E	\		sub. nivel 3 alum.	
		Tensión V	Longitud	l m	C. simultaneid.	F. Potencia
		400/230	10		1	0,95

	SUBCUADROS NIVEL 2									
CUADRO	REF. Cuadro	REF. Circuito INSTALACIÓN RECEPTORA								
Cuadro 2.55	S14.2 FZA OFI	Fuerza edifi	cio adminis	trativo						
		S14.2.1 FZA	E OF Z1	Alim. sub. nivel 3 fza	edif. ofi. Z1					
		Tensión V	Longitud m	n C. simultaneid.	F. Potencia					
		400/230	10	0,7	0,9					
		S14.2.1 FZA	E OF Z2	Alim. sub. nivel 3 fza	edif. ofi. Z2					
		Tensión V	Longitud m	n C. simultaneid.	F. Potencia					
		400/230	10	0,7	0,9					

Tabla 21. Consumos en ruta

			СО	NSUN	IOS E	EN RU	TA					
REF. Cuadro	REF.	Circu				NSTAL		N RE	CEPT	ORA		
S13.1 AL NAVE	Alun	nbrad	o de r	nave								
		1,1 AL	_ G G/	4 C1	Ą	Alumbra			galva	nizad	o C1	
Tramo	10	2º	3	30	4 0	5º	6º	7º	8	30	9º	10º
Potencia (W)	100	100			100	100	100	100		00	100	100
Longitud (m)	70	10			10	10	10	10		0	10	10
		1.2 AL				Alumbra						
Tramo	10	2º		30	40	5º	6º	70		30	90	10º
Potencia (W)	100	100			100	100	100	100		00	100	100
Longitud (m)	70	10			10	10	10	10		0	10	10
		1.3 AL	·····		·	Alumbra						
Tramo	1			20		30	4			;o		30 -
Potencia (W)		00		00		00	10			00		00
Longitud (m)	5			0	<u> </u>	10	. 1			0		10
_		1.4 AL	,			Alumbra	·····					
Tramo	1			0		30	4			50		30 00
Potencia (W)		00		00		00	10			00		00
Longitud (m)	5			0		10	1			0		10
T		1.5 AL	·····	,		Alumbra					····•	400
Tramo	10	2 º	3 0	4 0	5º	6º	7º	8 0	9 º	10º	110	12º
Potencia (W)	100 70	100 10	100 10	100 10	100 10	100	100 10	100 10	100	100 10	100	100
Longitud (m)		1.6 AL				Alumbra	_					10
Tramo	10	2º	30	40	5º	60	70 7 0	80	90	100	110	12º
Potencia (W)	100	100	100	100	100	100	100	100	100	100	100	100
Longitud (m)	70	100	100	100	100	100	100	100	100	100	100	100
Longitua (III)		1.7 A		PCS		mbrado		neral		<u> </u>	/ado-s	
	C1			. 00	C1	moraac	<i>y</i> 90.	ioiai	ploge	a oui i	ado o	Diada
Tramo	10	2 º	30	40	50	6º	7 º	80	90	10º	110	12º
Potencia (W)	100	100	100	100	100	100	100	100	100	100		100
Longitud (m)	100	10	10	10	10	10	10	10	10	10	10	10
		1.8 A		PCS	<u>. </u>	mbrado		neral			/ado-s	
	C2				C2							
Tramo	10	2 º	30	40	5º	6º	7º	80	90	10º	11º	12º
Potencia (W)	100	100	100	100	100	100	100	100	100	100	100	100
Longitud (m)	100	10	10	10	10	10	10	10	10	10	10	10

			CO	NSUN		N RU							
REF. Cuadro	REF.	Circu	uito		11	INSTALACIÓN RECEPTORA							
	S13.	1.9 AL	G PI	N C1	Α	Alumbrado general pintur							
Tramo	10	2 º	30	40	50	6º	7 º	80	90	10º	110	12º	
Potencia (W)	100	100	100	100	100	100	100	100	100	100	100	100	
Longitud (m)	60	10	10	10	10	10	10	10	10	10	10	10	
			·····	IN C2		lumbra		,				.,	
Tramo	10	20	30	40	50	6º	70	80	90	10º	110	12º	
Potencia (W)	100	100	100	100	100	100	100	100	100	100	100	100	
Longitud (m)	60	10	10	10	10	10	10	10	10	10	10	10	
			,	10N C	.,ii	lumbra	·						
Tramo	1			0		30	<u>-</u>	.0		50		30	
Potencia (W)	10			00		00		00		00		00	
Longitud (m)	2			0		0		0		0		0	
			·····	10N C		lumbra							
Tramo	1			0		30	<u> </u>	.0		50		30	
Potencia (W)	10			00		00	100		100			100	
Longitud (m)	2			0		0) 10 1 umbrado localizado pin				0 10		
_	S13.		LLP	IN		lumbra	ado lo		do pin	tura			
Tramo		10			2 º			30			40		
Potencia (W)		100			100			100			100		
Longitud (m)	0.40	60			2	2 2 2							
T	\$13.	1.14 <i>P</i> 10	LLM	ION	2º	iumbra	ado Io		ao mo	ntaje	40		
Tramo		-						30			-		
Potencia (W)		100			100			100			100		
Longitud (m)	C12 /		L EX	T C1		lumbra	ada av		C1				
Tramo	10	2º		30	4º	50	60 67	7º		30	90	10º	
Potencia (W)	60	60			60	60	60	60			60	60	
Longitud (m)	20	20			20	20	20	20		20	20	20	
Longitud (III)			L EX		-	lumbra	_			.0	20	20	
Tramo	10	2º		30	4 0	5º	60 60	7 º	······	30	90	10°	
Potencia (W)	60	60		·····	60	60	60	60		·	60	60	
Longitud (m)	20	20		·····	20	20	20	20		20	20	20	
Longitud (III)	20	20		U	20	20	20	20		.0	۷۷	۷۷	

CONSUMOS EN RUTA												
REF. Cuadro	REF.	Circu	iito		I	NSTAL	ACIÓ	N RE	CEPT	ORA		
S13.2 FZA NAV	Fuer	za de	nave.	Cana	alizac	ción el	éctrica	prefa	abric	ada		
		2.1 CA				Canaliz					cada I	_1Z1
Tramo	10	20	30	D	4 0	5º	6º	7º	8	80	90	10º
Potencia (kW)	5	5	5		5	5	5	5		5	5	5
Longitud (m)	30	6	6		6	6	6	6		6	6	6
	S13.2	2,2 CA	N PR	L1Z2	2 (Canaliz	ación e	eléctri	ca pr	efabri	cada <u>l</u>	_1Z2
Tramo	10	20	30		40	5º	6º	7º		80	90	10º
Potencia (kW)	5	5	5		5	5	5	5		5	5	5
Longitud (m)	30	6	6		6	6	6	6		6	6	6
		2,3 CA				Canaliz	•				······································	
Tramo	10	20	30		40	5°	6º	70		80	90	10º
Potencia (kW)	5	5	5		5	5	5	5		5	5	5
Longitud (m)	10	6	6		6	6	6	6		6	6	6
		2.4 CA	··············	······		Canaliz						
Tramo	10	20	30		4 º	5°	6º	7º		80	90	10º
Potencia (kW)	5	5	5		5	5	5	5		5	5	5
Longitud (m)	10	6	6		6	6	6	6		6	6	6
S13.3 TC NAVE	Toma	as de	corrie	nte n	ave							
	0404					_				1 4 7 4		
_		3.1 TC	NAV	L1Z1	7	Tomas	rr					400
Tramo	10	3.1 TC 2º	3º	L1Z1 4 º	5º	6º	7 º	80	90	10º	110	120
Potencia (kW)	1º 3	3.1 TC 2º 3	3º 3	L1Z1 4º 3	5° 3	6º 3	7º 3	8º 3	9º 3	10º 3	11º 3	3
	1º 3 30	3.1 TC 2º 3 5	3° 3 5	L1Z1 4º 3 5	5° 3 5	6º 3 5	7º 3 5	8º 3 5	9º 3 5	10° 3 5	11º 3 5	
Potencia (kW) Longitud (m)	1º 3 30 S13.3	3.1 TC 2º 3 5 3.2 TC	3 3 5 NAV	L1Z1 4º 3 5 L1Z2	5° 3 5	6º 3 5 Tomas	7º 3 5 de cor	8º 3 5 riente	9º 3 5 nave	10° 3 5 L1Z2	11º 3 5	3 5
Potencia (kW) Longitud (m) Tramo	1º 3 30 S13.3	3.1 TC 2º 3 5 3.2 TC 2º	3° 3 5 NAV 3° 3°	L1Z1 4º 3 5 L1Z2 4º	5° 3 5 5	6° 3 5 Tomas 6°	7º 3 5 de corr	8º 3 5 riente 8º	9° 3 5 nave 9°	10° 3 5 L1Z2 10°	11° 3 5 11°	3 5 12º
Potencia (kW) Longitud (m) Tramo Potencia (kW)	1º 3 30 S13.3 1º 3	3.1 TC 2º 3 5 3.2 TC 2º 3	3° 3 5 NAV 3° 3° 3	L1Z1 4º 3 5 L1Z2 4º 3	5° 3 5 5 5° 3	6º 3 5 Tomas 6º 3	7º 3 5 de corr 7º 3	8º 3 5 riente 8º 3	9° 3 5 nave 9° 3	10° 3 5 L1Z2 10° 3	11° 3 5 11° 3 3	3 5 12° 3
Potencia (kW) Longitud (m) Tramo	1º 3 30 \$13.3 1º 3	3.1 TC 2º 3 5 3.2 TC 2º 3 5	3° 3 5 NAV 3° 3 5 5	L1Z1 4º 3 5 L1Z2 4º 3 5	5° 3 5° 3 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	6º 3 5 Tomas 6º 3 5	7º 3 5 de corr 7º 3 5	8° 3 5 riente 8° 3 5	9° 3 5 nave 9° 3 5	10° 3 5 L1Z2 10° 3 5	11° 3 5 11°	3 5 12º
Potencia (kW) Longitud (m) Tramo Potencia (kW)	1º 3 30 \$13.3 1º 3 30 \$13.3	3.1 TC 2º 3 5 3.2 TC 2º 3 5	3° 3 5 NAV 3° 3 5 5	L1Z1 4º 3 5 L1Z2 4º 3	5° 3 5° 3 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	6º 3 5 Tomas 6º 3	7º 3 5 de corr 7º 3 5	8° 3 5 riente 8° 3 5	9° 3 5 nave 9° 3 5	10° 3 5 L1Z2 10° 3 5	11° 3 5 11° 3 3	3 5 12° 3
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m)	1º 3 30 \$13.3 1º 3 30 \$13.3 L2Z1	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3	3° 3 5 NAV 3° 3 5 TC	L1Z1 40 3 5 L1Z2 40 3 5 NAV	5° 3 5 3 5 Tor	6° 3 5 Tomas 6° 3 5	70 3 5 de corr 70 3 5 corrier	8º 3 5 riente 8º 3 5 nte na	9° 3 5 nave 9° 3 5	10° 3 5 L1Z2 10° 3 5	11º 3 5 11º 3 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo	1º 3 30 \$13.3 1º 3 30 \$13.3 L2Z1 1º	3.1 TC 2° 3 5 3.2 TC 2° 3 5 3.3	3° 3 5 NAV 3° 3 5 TC	L1Z1 40 3 5 L1Z2 40 3 5 NAV	5° 3 5 Tor	6° 3 5 Tomas 6° 3 5 mas de	7° 3 5 de corr 7° 3 5 corrier	8º 3 5 riente 8º 3 5 nte na	9° 3 5 nave 9° 3 5 ve L2	10° 3 5 11Z2 10° 3 5 2Z1	11° 3 5 11° 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo Potencia (kW)	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3	3° 3 5 TC 3° 3	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3	50 3 5 50 3 50 3 5 Tor	6° 3 5 Fomas 6° 3 5 mas de	70 3 5 de corr 70 3 5 corrier	8° 3 5 riente 8° 3 5 nte na 8° 3	9° 3 5 nave 9° 3 5 ve L2 9° 3	10° 3 5 1172 10° 3 5 2271 10°	11° 3 5 11° 3 5 11° 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3 10	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3	3° 3 5 NAV 3° 3 5 TC 3° 3 5 5	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3 5	5° 3 5° 3 5° 7 5° 3 5° 3 5° 5° 3 5°	6° 3 5 Tomas 6° 3 5 mas de 6° 3 5	70 3 5 de corr 70 3 5 corrier 70 3 5	8° 3 5 riente 8° 3 5 nte na 8° 3 5	9° 3 5 nave 9° 3 5 ve L2 9° 3 5	10° 3 5 L1Z2 10° 3 5 2Z1 10° 3 5 2Z1 5	11° 3 5 11° 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo Potencia (kW)	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3 10 S13.3	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3 2º 3 5 3.4	3° 3 5 NAV 3° 3 5 TC 3° 3 5 5	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3	5° 3 5° 3 5° 7 5° 3 5° 3 5° 5° 3 5°	6° 3 5 Fomas 6° 3 5 mas de	70 3 5 de corr 70 3 5 corrier 70 3 5	8° 3 5 riente 8° 3 5 nte na 8° 3 5	9° 3 5 nave 9° 3 5 ve L2 9° 3 5	10° 3 5 L1Z2 10° 3 5 2Z1 10° 3 5 2Z1 5	11° 3 5 11° 3 5 11° 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m)	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3 10	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3 2º 3 5 3.4	3° 3 5 TC 3° 3 5 TC	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3 5	50 3 5 50 3 50 3 5 Tor 50 3 5 Tor	6° 3 5 Tomas 6° 3 5 mas de 6° 3 5 mas de	70 3 5 de corr 70 3 5 corrier 70 3 5	8° 3 5 riente 8° 3 5 1 5 1 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1	9° 3 5 nave 9° 3 5 ve L2 9° 3 5	10° 3 5 L1Z2 10° 3 5 2Z1 10° 3 5 2ZZ1	11º 3 5 11º 3 5 11º 3 5	3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3 10 S13.3 L2Z2 1º	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3 5 3.4 2º 2º	3° 3 5 TC 3° 3 5 TC 3° 3° 3 5 TC	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3 5 NAV	5° 3 5 Tor 5° Tor	6° 3 5 Tomas 6° 3 5 mas de 6° 3 5 mas de	70 3 5 de corr 70 3 5 corrier 70 3 5 corrier	8° 3 5 nte na 8° 8° 3 nte	9° 3 5 nave 9° 3 5 ve L2 9° 3 5 ve L2	10° 3 5 L1Z2 10° 3 5 2Z1 10° 3 5 2Z21	11° 3 5 11° 3 5 11° 3 5	3 5 12° 3 5 12° 3 5
Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m) Tramo Potencia (kW) Longitud (m)	1º 3 30 S13.3 1º 3 30 S13.3 L2Z1 1º 3 10 S13.3 L2Z2	3.1 TC 2º 3 5 3.2 TC 2º 3 5 3.3 2º 3 5 3.4	3° 3 5 TC 3° 3 5 TC	L1Z1 40 3 5 L1Z2 40 3 5 NAV 40 3 5 NAV	50 3 5 50 3 50 3 5 Tor 50 3 5 Tor	6° 3 5 Tomas 6° 3 5 mas de 6° 3 5 mas de	70 3 5 de corr 70 3 5 corrier 70 3 5 corrier	8° 3 5 riente 8° 3 5 1 5 1 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1	9° 3 5 nave 9° 3 5 ve L2 9° 3 5 ve L2	10° 3 5 L1Z2 10° 3 5 2Z1 10° 3 5 2ZZ1	11º 3 5 11º 3 5 11º 3 5	3 5 12° 3 5

1.12.1.3.4. Subcuadros de nivel 3

Desde cuadros nivel 2 se alimentan los cuadros de nivel 3 siguientes, con sus líneas:

Tabla 22. Subcuadros de Nivel 3

	daros de Nivel 3 SU	IBCUADROS NIVEL 3	
CUADRO	REF. Cuadro	REF. Circuito I	NSTALACIÓN RECEPTORA
Cuadro 3.1	S14.1.1 AL ED OF Z1	Alumbrado edificio ofic	
		S14.1.1.1 AL OFI Z11	Alumbrado edif. ofi. zona 11
		Tensión V Longitud m	Potencia W F. Potencia
		400/230 15	384 0,95
		S14.1.1.2 AL OFI Z12	Alumbrado edif. ofi. zona 12
		Tensión V Longitud m	Potencia W F. Potencia
		400/230 15	384 0,95
		S14.1.1.3 AL OFI SV	Alumbra edif. ofi. servicios
		Tensión V Longitud m	
		400/230 40	64 0,95
		S14.1.1.4 AL OFI VT	Alumbra edif. ofi. vestuarios
		Tensión V Longitud m	
	0444041 == 0==	400/230 40	64 0,95
Cuadro 3.2	S14.1.2 AL ED OF Z2	Alumbrado edificio ofic	
		S14.1.2.1 AL OFI Z21	Alumbrado edif. ofi. zona 21
		Tensión V Longitud m	
		400/230 30	384 0,95
		S14.1.2.2 AL OFI Z22	Alumbrado edif. ofi. zona 22
		Tensión V Longitud m	
		400/230 30	384 0,95
		S14.1.2.3 AL OF EX C1	
		Tensión V Longitud m	
		400/230 40 S14.1.2.4 AL OF EX C2	96 0,95
		Tensión V Longitud m 400/230 40	96 0,95
Cuadro 3.3	S14.2.1 FZA OF Z1	Fuerza edificio oficinas	<u> </u>
Cuaulo 3.3	314.2.112A 01 21	S14.2.1.1 FZA OF Z11	Fuerza edif. ofi. zona 11
		Tensión V Longitud m	
		400/230 15	9 0,9
		S14.2.1.2 FZA OF Z12	Fuerza edif. ofi. zona 12
		Tensión V Longitud m	
		400/230 15	9 0,9
		S14.2.1.3 CLIM OF Z11	Climatizac. edif. ofi. zona 11
		Tensión V Longitud m	
		400/230 20	10 0,9
		S14.2.1.4 CLIM OF Z12	Climatizac. edif. ofi. zona 12
		Tensión V Longitud m	·····
		400/230 20	10 0,9
Cuadro 3.4	S14.2.2 FZA OF Z2	Fuerza edificio oficinas	s zona 2
		S14.2.2.1 FZA OF Z21	Fuerza edif. ofi. zona 21
		Tensión V Longitud m	Potencia kW F. Potencia
		400/230 20	9 0,9
		S14.2.2.2 FZA OF Z22	Fuerza edif. ofi. zona 22
		Tensión V Longitud m	Potencia kW F. Potencia
		400/230 20	9 0,9

	SU	IBCUADRO:	S NIVEL 3			
CUADRO	REF. Cuadro	REF. Circu	iito	INS	STALACIÓN R	ECEPTORA
		S14.2.2.3 C	LIM EA Z11	1 (Climatizac. edif.	ofi. zona 21
		Tensión V	Longitud n	n	Potencia kW	F. Potencia
		400/230	25		10	0,9
		S14.2.2.4 C	LIM EA Z12	2 (Climatizac. edif.	ofi. zona 22
		Tensión V	Longitud n	n	Potencia kW	F. Potencia
		400/230	25		10	0,9
		S14.2.2.5 F2	Z EA EX C1	1 F	Fuerz edif. ofi. e	xposición C1
		Tensión V	Longitud n	n	Potencia kW	F. Potencia
		400/230	40		3	0,9
		S14.2.2.6 F2	Z EA EX C2	2 F	Fuerz edif. ofi. e	xposición C2
		Tensión V	Longitud n	n	Potencia W	F. Potencia
		400/230	40		6	0,9
		S14.2.2.7 C	LI OF EXC1	1 (Climatiza. edif. c	ofi. expos. C1
		Tensión V	Longitud n	n	Potencia kW	F. Potencia
		400/230	45		10	0,9
		S14.2.2.8 C	LI OF EXC2	2 (Climatiza. edif. c	ofi. expos. C2
		Tensión V	Longitud n	n	Potencia kW	F. Potencia
		400/230	45		10	0,9

1.12.1.4. Demanda de potencia

Sumando la potencia demandada por los consumidores de cada linea de la industria se obtiene la siguiente demanda de potencia:

Tabla 23. Demandas de cada linea y total

SALIDA	DENOMINACIÓN	DEMANDA DE POTENCIA
S1	Galvanizado	67.318 W
S2	Linea de corte	132.000 W
S3	Centros láser	90.000 W
S4	Plegado	230.000 W
S5	Curvado	26.643 W
S6	Otros	28262 W
S7	Soldadura	421.200 W
S8	Pintura	251.952 W
S9	Montaje	5.300 W
S10	Embalaje	5152 W
S11a	Almacén de materias primas	87920 W
S11b	Almacén de productos terminados	73.200 W
S12	Servicios generales centrales	162.844 W
S13	Servicios generales de la nave	415.728 W
S14	Edificio de oficinas	106.020 W
S16	Alumbrado de emergencia	4.540 W
S17	Fuerza de emergencia	25.612 W
	DEMANDA TOTAL	2.133.692 W
	-Potencia instalada de alumbrado	36.414 W
	-Potencia instalada de fuerza	2.097.277 W
	-Potencia máxima admisible	3200 kVA

1.12.2. Diseño del centro de transformación

Para el diseño del Centro de Transformación del abonado deberemos tener en cuenta todo lo expuesto en el Apartado "1.11. Consideraciones técnicas previas al diseño de la instalación eléctrica" "y el apartado 1.11.3 Centro de Transformación".

El Centro de transformación tendrá unas dimensiones de 10 x 6 m, con pasillos suficientes para poder realizar las maniobras propias de la explotación en condiciones óptimas de seguridad y con rejillas de ventilación que comunicarán el local con el exterior

Formarán parte del Centro de Transformación el siguiente equipamiento principal:

- 4 cabinas de media tensión:
 - o 1 entrada
 - o 1 medida
 - o 2 de protección de los transformadores.
- 2 transformadores de 1600 kVA, secos encapsulados en resina epoxi, de una tensión 20 kV/690 V, con tomas de regulación de la tensión sin carga: ± 2.5%.
- 1 Cuadro General de Distribución de baja tensión compuesto por tres paneles para ubicar los interruptores de las instalaciones del proceso productivo y las de servicios generales.
- Además, se instalarán una serie de cuadros secundarios como:
 - o 2 cuadros de baterías de condensadores.
 - o 1 batería de corriente continua para la alimentación de las protecciones y de la maniobra.
 - o 1 cuadro para las instalaciones de Servicios Generales Centrales.
 - o 1 cuadro para las instalaciones de Servicios Generales de Nave.
 - o 1 cuadro para las necesidades del propio Centro de Transformación.
 - o 1 cuadro de emergencia que recibe una doble alimentación, por un lado, del cuadro general de distribución y por otro del grupo electrógeno mediante un inversor.

El Centro de Transformación dispondrá de un panel con todos los elementos necesarios de seguridad y protección de las personas para la realización de las maniobras y un botiquín de primeros auxilios.

Las cabinas de media tensión y el cuadro general de distribución de baja tensión serán modulares y extensibles para poder realizar ampliaciones si ello fuese necesario en un futuro, disponiendo este último, de un espacio libre entorno al 30%. También los transformadores dispondrán de un 30% de potencia con relación a la nominal de cada transformador.

El proyecto se realizará con el Software DMELECT Módulo CT.

1.12.3. Diseño de la red eléctrica de alimentación

Para el diseño de la línea de media tensión se tendrá en cuenta todo lo expuesto en el Apartado "1.11. Consideraciones técnicas previas al diseño de la instalación eléctrica" "y al apartado 1.11.2 Red eléctrica de alimentación".

La línea de media tensión (alterna trifásica de 20 kV y 50 Hz) .partirá del punto de enganche de la compañía suministradora de energía y alimentará al Centro de Transformación del abonado a través de una celda de línea equipada con un seccionador de corte en carga.

La longitud de la línea es de 1000 m y estará enterrada bajo tubo.

En el cálculo de la sección de los conductores se calculará en función de la potencia total instalada, pero se considerará la posibilidad de un aumento de la potencia, en un futuro, de al menos un 30%.

El diseño de la red de Media Tensión estará de acuerdo con la Reglamentación vigente y en las normas particulares fijadas por la empresa suministradora.

El proyecto de la línea de MT se realizará con el Software *DMELECT* módulo *Instalaciones Urbanización*.

2. CÁLCULOS JUSTIFICATIVOS

2.1. RED DE DISTRIBUCIÓN EN BAJA TENSIÓN

La red de distribución de baja tensión se ha calculado usando el *módulo CIEBT* (Cálculo de Instalaciones Eléctricas de Baja Tensión) del programa *DMELECT*, en su versión de 2017.

Los cálculos detallados se encuentran en el Anexo I.

2.1.1. Fórmulas empleadas

2.1.1.1. Intensidad de caída de tensión

Para instalaciones monofásicas de usarán las 2 primeras fórmulas, mientras que para los sistemas trifásicos se usarán las 2 últimas.

$$I = \frac{P_c}{U \cdot \cos(\theta) \cdot R}$$

$$e = \frac{2 \cdot L \cdot P_c}{k \cdot U \cdot \mathbf{n} \cdot \mathbf{S} \cdot R} + \frac{2 \cdot L \cdot P_c \cdot X_U \cdot \sin(\theta)}{1000 \cdot U \cdot n \cdot R \cdot \cos(\theta)}$$

$$I = \frac{P_c}{1,732 \cdot U \cdot \cos(\theta) \cdot R}$$

$$e = \frac{L \cdot P_c}{k \cdot U \cdot \mathbf{n} \cdot \mathbf{S} \cdot R} + \frac{L \cdot P_c \cdot X_U \cdot \sin(\theta)}{1000 \cdot U \cdot n \cdot R \cdot \cos(\theta)}$$

Donde:

- P_c : Potencia de cálculo (W)
- L: Longitud de cálculo (m)
- e: Caída de tensión (V)
- K: Conductividad del conductor
- *I*: Intensidad (I)
- *U*: Tensión de servicio (V)
- S: Sección del conductor (mm²)
- $\cos(\theta)$: Factor de potencia
- R: Rendimiento, sólo en líneas de motor
- n: Número de conductores por fase
- X_U : Reactancia por unidad de longitud $\left(\frac{m\Omega}{m}\right)$

2.1.1.2. Conductividad eléctrica

Se usarán las siguientes ecuaciones:

$$K = \frac{1}{\rho}$$

$$\rho = \rho_{20}[1 + \alpha(T - 20)]$$

$$T = T_o \left[(T_{m\acute{a}x} - T_o) \cdot \left(\frac{I}{I_{m\acute{a}x}} \right)^2 \right]$$

Donde:

- K: Conductividad del conductor a una determinada temperatura
- ρ: Resistividad del conductor a una determinada temperatura
- ρ_{20} : Resistividad del conductor a 20 °C
 - $_{\circ}$ $Cu = 0.017241 \frac{\Omega mm^2}{m}$
 - $Al = 0.028264 \frac{\Omega mm^2}{m}$
- α : Coeficiente de temperatura del conductor
 - \circ Cu = 0.003929
 - o Al = 0.004032
- T: Temperatura del conductor (°C)
- T_o : Temperatura ambiente (°C)
 - o Cables enterrados: 25°C
 - o Cables al aire: 40°C
- $T_{m\acute{a}x}$: Temperatura máxima admisible de conductor en función del aislante (°C)
 - o XLPE, EPR: 90°C
 - o PVC: 70°C
- *I*: Intensidad prevista por el conductor (A)
- $I_{m\acute{a}x}$: Intensidad máxima admisible del conductor (A)

2.1.1.3. Sobrecargas

Para el cálculo de las protecciones contra sobrecargas se tienen las siguientes formulas:

$$I_b \leq I_n \leq I_z$$

$$I_2 \leq 1,45 \cdot I_z$$

Donde:

- *I_b*: Intensidad que circula por el conductor
- I_n : Intensidad nominal del dispositivo de protección
- I_z : Intensidad admisible del conductor
- I_2 : Intensidad que asegura el correcto funcionamiento del dispositivo de protección (para interruptores automáticos se suele tomar como $1,45 \cdot I_z$, en caso de fusibles, $1,6 \cdot I_z$)

2.1.1.4. Compensación de la energía reactiva

Se tienen las siguientes fórmulas:

$$\tan(\theta) = \frac{P}{\sqrt{P^2 + Q^2}}$$

$$Q_C = P \cdot [tan(\theta_1) - tan(\theta_2)]$$

• Para sistemas monofásicos o trifásicos conectados en estrella:

$$C = Q_C \cdot \frac{1000}{U^2 \cdot \omega}$$

• Para sistemas trifásicos conectados en triángulo:

$$C = Q_C \cdot \frac{1000}{3 \cdot U^2 \cdot \omega}$$

Donde:

• P: Potencia activa de la instalación (W)

• L: Potencia reactiva de la instalación (kVAr)

• e: Potencia reactiva que compensar (kVAr)

• θ_1 : Ángulo de desfase de la instalación sin compensar

• θ_2 : Ángulo de desfase de la instalación objetivo

• *U*: Tensión compuesta (*V*)

• ω : $2 \cdot \pi \cdot f$; f = 50 Hz

• C: Capacidad de los condensadores (C)

2.1.1.5. Cortocircuito

$$I_{PccI} = \frac{C_t \cdot U}{\sqrt{3} \cdot Z_T}$$

Donde:

• I_{Pccl} : Intensidad permanente de cortocircuito al inicio de la linea (kA)

• C_T : Coeficiente de tensión

• *U*: Tensión monofásica (*V*)

• Z_T : Impedancia total aguas arriba del punto de cortocircuito, sin incluir la linea o circuito(m Ω)

$$I_{PccF} = \frac{C_t \cdot U_F}{2 \cdot Z_T}$$

Donde:

• I_{PCCF} : Intensidad permanente de cortocircuito al fin de la linea (kA)

• C_T : Coeficiente de tensión

• *U*: Tensión monofásica (*V*)

• Z_T : Impedancia total incluyendo la propia de la linea o circuito (m Ω)

La impedancia total hasta el punto de cortocircuito será:

$$Z_T = \sqrt{{R_T}^2 + {X_T}^2}$$

Donde:

- R_T : Suma de las resistencias de las líneas aguas arriba hasta el punto de cortocircuito.
- X_T : Suma de las reactancias de las líneas aguas arriba hasta el punto de cortocircuito.

$$R = \frac{1000 \cdot L \cdot C_R}{k \cdot S \cdot n}$$
$$X = \frac{X_u \cdot L}{n}$$

Donde:

- R: Resistencia de la línea (m Ω)
- X: Reactancia de la línea (m Ω)
- L: Longitud de la línea (m)
- C_R : Coeficiente de resistividad
- K: Conductividad del metal
- S: Sección de la línea (mm²)
- X_u : Reactancia de la línea por unidad de longitud $(m\Omega/m)$
- *n*: Número de conductores por fase.

$$t_{mcicc} = \frac{C_C \cdot S^2}{I_{PccF}^2}$$

Donde:

- t_{mcicc} : Tiempo máximo que un conductor soporta una intensidad permanente de cortocircuito (s)
- C_C : Constante que depende de la naturaleza del conductor y de su aislamiento
- S: Sección de la línea (mm^2)
- I_{PccF} : Intensidad permanente de cortocircuito al fin de la linea (kA)

$$t_{ficc} = \frac{cte\ fusible}{{I_{PccF}}^2}$$

Donde:

- t_{ficc} : Tiempo de fusión de un fusible para una determinada intensidad de cortocircuito (s)
- I_{PccF} : Intensidad permanente de cortocircuito al fin de la linea (kA)

$$L_{m\acute{a}x} = \frac{0.8 \cdot U_F}{2 \cdot I_{F5} \cdot \sqrt{\left(\frac{1.5}{K \cdot S \cdot n}\right)^2 + \left(\frac{X_U}{1000 \cdot n}\right)^2}}$$

Donde:

- $L_{m\acute{a}x}$: Longitud máxima de conductor protegido a cortocircuito (m)
- U_F : Tensión de fase (V)
- K: Conductividad
- S: Sección del conductor (mm²)
- X_{II} : Reactancia por unidad de longitud $(m\Omega/m)$

- *n*: Número de conductores por fase.
- C_T : Coeficiente de tensión
- C_R : Coeficiente de resistividad
- I_{F5} : Intensidad de fusión de fusible a los 5 segundos (A)

Curvas válidas para protección de Interruptores Automáticos dotados de relé electromagnético:

- Curva B: $I_{mag} = 5 \cdot I_n$
- Curva C: $I_{mag} = 10 \cdot I_n$
- Curva D y MA: $I_{mag} = 20 \cdot I_n$

2.1.1.6. **Embarrado**

Para el cálculo electrodinámico se emplea la siguiente expresión:

$$\sigma_{m\acute{a}x} = \frac{{I_{PCC}}^2 \cdot L^2}{60 \cdot d \cdot n \cdot W_y}$$

Donde:

- $\sigma_{m\acute{a}x}$: Tensión máxima en las pletinas (kg/cm^2)
- I_{PCC} : Intensidad permanente de cortocircuito (kA)
- L: Separación entre apoyos (cm)
- d: Separación entre pletinas (cm)
- n: Número de pletinas por fase.
- W_Y : Modulo resistente por pletina en el eje y-y (cm^3)

Para la comprobación de la solicitación térmica en el cortocircuito:

$$I_{CCSS} = \frac{K_C \cdot S}{1000 \cdot \sqrt{t_{cc}}}$$

- I_{CCSS} : Intensidad de cortocircuito soportada por el conductor durante el tiempo de duración del cortocircuito (kA)
- S: Sección total de las pletinas (mm²)
- t_{cc} : Tiempo de duración del cortocircuito (s)
- K_c : Constante del conductor
 - o Cu = 164
 - o Al = 107

2.1.1.7. Resistencia de tierra

Para el caso de una placa enterrada:

$$R_T = 0.8 \cdot \frac{\rho}{P}$$

Donde:

- R_T : Resistencia de tierra (Ω)
- ρ : Resistividad del terreno $(\Omega \cdot m)$
- P: Perímetro de la placa (m)

Para el caso de una pica vertical:

$$R_T = \frac{\rho}{L}$$

Donde:

• R_T : Resistencia de tierra (Ω)

• ρ : Resistividad del terreno $(\Omega \cdot m)$

• L: Longitud de la pica (m)

Para el caso de un conductor enterrado horizontalmente:

$$R_T = 2 \cdot \frac{\rho}{L}$$

Donde:

• R_T : Resistencia de tierra (Ω)

• ρ : Resistividad del terreno $(\Omega \cdot m)$

• L: Longitud del conductor (m)

Para el caso de una asociación en paralelo de varios electrodos:

$$R_T = \frac{1}{\frac{L_C}{2 \cdot \rho} + \frac{L_P}{\rho} + \frac{P}{0.8 \cdot \rho}}$$

Donde:

• R_T : Resistencia de tierra (Ω)

• ρ : Resistividad del terreno $(\Omega \cdot m)$

• L_C : Longitud total del conductor (m)

• L_P : Longitud total de las picas (m)

• P: Perímetro de las placas (m)

2.1.2. Resultados obtenidos

A continuación, se muestran los resultados de los cálculos de todas las líneas de Baja Tensión. Los esquemas unifilares de todos los cuadros eléctricos de la instalación se muestran en los planos 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 y 24 del Anexo V.

2.1.2.1. Cuadro General de Mando y Protección

Los resultados del Cuadro General de Mando y Protección se muestran en las tablas 14 y 15. Tabla 24. Resultados del Cuadro General de Mando y Protección

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
TRAFO 1	1520000	3	3x1260/630 Cu	2309.47	2500	0.14	0.14	-
TRAFO 2	1520000	3	3x1260/630 Cu	2309.47	2500	0.14	0.14	-
ALIM. EMERG.	46125	16	4x25+TTx16 Cu	73.98	91	0.31	0.31	50
S1 - GALV	48355.45	95	3x25+TTx16 Cu	87.25	122	2.33	2.48	150x60
S2 - LIN COR	96150	85	3x50+TTx25 Cu	173.48	188	2.19	2.34	100x60
S3 - CEN LAS	58500	75	3x25+TTx16 Cu	105.55	122	2.32	2.46	100x60
S4 - PLEG	164750	125	3x95+TTx50 Cu	297.25	298	2.98	3.12	100x60
S5 - CURV	22547.36	125	3x25+TTx16 Cu	40.68	122	1.34	1.48	100x60
S6 - OTROS	24449.92	150	3x25+TTx16 Cu	44.11	122	1.75	1.89	100x60
S7 - SOLD	211850	120	3x150+TTx95 Cu	382.24	401	2.3	2.44	100x60
S8 - PINT	202941.61	75	3x150+TTx95 Cu	366.16	401	1.36	1.5	75x60

S9 - MONT	3856.64	15	3x25+TTx16 Cu	6.96	122	0.03	0.17	150x60
S10 - EMB	4443.6	15	3x25+TTx16 Cu	8.02	122	0.03	0.17	150x60
S11 ALMACEN	157216	0.2	4x95 Cu	283.66	298	0	0.15	150x60
S11a ALM. MP	67416	60	4x25+TTx16 Cu	108.12	122	2.15	2.3	150x60
S11b ALM. PT	55272	45	4x25+TTx16 Cu	88.65	122	1.27	1.41	150x60
S12 - S G CENT	116304.8	15	4x70+TTx35 Cu	209.85	243	0.33	0.47	75x60
S13 - S G NAVE	301197.28	15	4x240+TTx120 Cu	483.06	545	0.25	0.39	150x60
S14 - EDIF OFI	99213.07	10	4x50+TTx25 Cu	159.12	188	0.26	0.4	100x60
S15 – BAT CON	2133692	10	4(3x240+TTx120) Cu	1946.36	2180	0.12	0.27	-
S16 - EME AL	8172	15	4x25+TTx16 Cu	11.8	122	0.06	0.2	Ī
S17 - EME FZA	30544	15	3x25+TTx16 Cu	44.09	122	0.22	0.36	75x60

Tabla 25. Resultados de cortocircuito del Cuadro General de Mando y Protección

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
TRAFO 1	3	3x1260/630Cu	40.42	35	17320.98	108.21	2500;B
TRAFO 2	3	3x1260/630Cu	40.42	35	17320.98	108.21	2500;B
ALIM. EMERG.	16	4x25+TTx16Cu	1.64	4.5	661.17	29.24	80;B
S1 - GALV	95	3x25+TTx16Cu	76.91	100	982.64	13.24	100;B
S2 - LIN COR	85	3x50+TTx25Cu	76.91	100	2180.27	10.75	250;B
S3 - CEN LAS	75	3x35+TTx16Cu	76.91	100	1734.71	8.32	125;C
S4 - PLEG	125	3x95+TTx50Cu	76.91	100	2804.67	23.46	400;B
S5 - CURV	125	3x25+TTx16Cu	76.91	100	747.78	22.86	50;C
S6 - OTROS	150	3x25+TTx16Cu	76.91	100	623.57	32.87	50;C
S7 - SOLD	120	3x150+TTx95Cu	76.91	100	4548.78	22.24	400;C
S8 - PINT	75	3x150+TTx95Cu	76.91	100	7094.05	9.14	400;C
S9 - MONT	15	3x25+TTx16Cu	76.91	100	5982.86	0.36	16;C
S10 - EMB	15	3x25+TTx16Cu	76.91	100	5982.86	0.36	16;C
S11 ALMACEN	0.2	4x95Cu	76.91	100	34531.93	0.15	400;C
S11a ALM. MP	60	4x25+TTx16Cu	76.65	100	1549.28	5.32	125;C
S11b ALM. PT	45	4x25+TTx16Cu	76.65	100	2058.41	3.02	100;C
S12 - S G CENT	15	4x70+TTx35Cu	76.91	100	14671.07	0.47	250;C
S13 - S G NAVE	15	4x240+TTx120Cu	76.91	100	28042.78	1.5	630;C
S14 - EDIF OFI	10	4x50+TTx25Cu	76.91	100	15450.66	0.21	160;C
S15 – BAT CON	10	4(3x240+TTx120)Cu	76.91	100	33952.59	16.35	2000;C
S16 - EME AL	15	4x25+TTx16Cu	76.91	100	5982.86	0.36	16;C
S17 - EME FZA	15	3x25+TTx16Cu	76.91	100	5982.86	0.36	50;C

2.1.2.2. Subcuadro S1 - Galvanizado.

Los resultados del subcuadro S1 de galvanizado se muestran en las tablas 16 y 17.

Tabla 26. Resultados del subcuadro 1 de galvanizado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S1.1 - LIMP PRE	2217.2	35	3x2.5+TTx2.5Cu	4	22	0.36	2.84	20
S1.2 - MAQ DES	4600	40	3x2.5+TTx2.5Cu	8.3	22	0.88	3.35	20
S1.3 - MAQ DEC	3680	45	3x2.5+TTx2.5Cu	6.64	22	0.78	3.26	20
S1.4 - LIN AUT	6164	5	3x2.5+TTx2.5Cu	11.12	22	0.15	2.63	20
S1.5 - CRISOL	50000	40	3x25+TTx16Cu	90.21	100	1.07	3.54	60x30
S1.6 - POL 1	2493.2	30	3x2.5+TTx2.5Cu	4.5	22	0.35	2.83	20
S1.7 - POL 2	2493.2	40	3x2.5+TTx2.5Cu	4.5	22	0.47	2.94	20

Tabla 27. Resultados de cortocircuito del subcuadro 1 de galvanizado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S1.1 - LIMP PRE	35	3x2.5+TTx2.5Cu	2.18	4.5	210.64	2.88	16;C
S1.2 - MAQ DES	40	3x2.5+TTx2.5Cu	2.18	4.5	189.39	3.56	16;C
S1.3 - MAQ DEC	45	3x2.5+TTx2.5Cu	2.18	4.5	172.03	4.32	16;C
S1.4 - LIN AUT	5	3x2.5+TTx2.5Cu	2.18	4.5	645	0.31	16;C
S1.5 - CRISOL	40	3x25+TTx16Cu	2.18	4.5	692.6	26.64	100;B
S1.6 - POL 1	30	3x2.5+TTx2.5Cu	2.18	4.5	237.28	2.27	16;C
S1.7 - POL 2	40	3x2.5+TTx2.5Cu	2.18	4.5	189.39	3.56	16;C

2.1.2.3. Subcuadro S2 - Líneas de corte

Los resultados del subcuadro S2 de líneas de corte se muestran en las tablas 18 y 19.

Tabla 28. Resultados del subcuadro S2 de líneas de corte

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S2.1 - C AC GAV	19150	20	3x10+TTx10Cu	34.55	54	0.48	2.81	32
S2.2 - C AL LAC	19150	25	3x10+TTx10Cu	34.55	54	0.6	2.93	32
S2.3 - C ZINC	19150	30	3x10+TTx10Cu	34.55	54	0.72	3.05	32
S2.4 - C COBRE	19150	35	3x10+TTx10Cu	34.55	54	0.84	3.17	32
S2.5 - C ACERO	19150	40	3x10+TTx10Cu	34.55	54	0.96	3.29	32
S2.6 - C ALU	19150	45	3x10+TTx10Cu	34.55	54	1.08	3.41	32

Tabla 29. Resultados de cortocircuito del subcuadro S2 de líneas de corte

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.1 - C AC GAV	20	3x10+TTx10Cu	4.84	6	1009.04	2.01	40;C
S2.2 - C AL LAC	25	3x10+TTx10Cu	4.84	6	889.52	2.58	40;C
S2.3 - C ZINC	30	3x10+TTx10Cu	4.84	6	795.31	3.23	40;C
S2.4 - C COBRE	35	3x10+TTx10Cu	4.84	6	719.13	3.95	40;C
S2.5 - C ACERO	40	3x10+TTx10Cu	4.84	6	656.28	4.75	40;C
S2.6 - C ALU	45	3x10+TTx10Cu	4.84	6	603.52	5.61	40;C

2.1.2.3.1. Subcuadro S2.1 - Linea de corte de acero galvanizado

Los resultados del subcuadro S2.1 de linea de corte de acero galvanizado se muestran en las tablas 20 y 21.

Tabla 30. Resultados del subcuadro S2.1 de linea de corte de acero galvanizado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S2.1.1 - DEV AC GAV	5000	10	3x2.5+TTx2.5Cu	9.02	22	0.24	3.05	20
S2.1.2 - COR AC GAV	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	2.99	20
S2.1.3 - API AC LAC	18750	15	3x10+TTx10Cu	33.83	54	0.35	3.17	32

Tabla 31. Resultados de cortocircuito del subcuadro S2.1 de linea de corte de acero galvanizado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.1.1 - DEV AC GAV	10	4x2.5+TTx2.5Cu	2.24	4.5	486.26	0.54	16;C
S2.1.2 - COR AC GAV	10	3x2.5+TTx2.5Cu	2.24	4.5	486.26	0.54	16;C
S2.1.3 - API AC LAC	15	3x10+TTx10Cu	2.24	4.5	719.13	3.95	40;C

2.1.2.3.2. Subcuadro S2.2 - Linea de corte de aluminio lacado

Los resultados del subcuadro S2.2 de linea de corte de aluminio lacado se muestran en las tablas 22 y 23.

Tabla 32. Resultados del subcuadro S2.2 de linea de corte de aluminio lacado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S2.2.1 - DEV AL LAC	5000	15	3x2.5+TTx2.5Cu	9.02	22	0.36	3.29	20
S2.2.2 - COR AL LAC	3750	15	3x2.5+TTx2.5Cu	6.77	22	0.27	3.2	20
S2.2.3 - API AL LAC	18750	20	3x10+TTx10Cu	33.83	54	0.47	3.4	32

Tabla 33. Resultados de cortocircuito del subcuadro S2.2 de linea de corte de aluminio lacado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.2.1 - DEV AL LAC	15	3x2.5+TTx2.5Cu	1.97	4.5	367.3	0.95	16;C
S2.2.2 - COR AL LAC	15	3x2.5+TTx2.5Cu	1.97	4.5	367.3	0.95	16;C
S2.2.3 - API AL LAC	20	3x10+TTx10Cu	1.97	4.5	603.52	5.61	40;C

2.1.2.3.3. Subcuadro S2.3 - Linea de corte de zinc

Los resultados del subcuadro S2.3 de linea de corte de zinc se muestran en las tablas 24 y 25.

Tabla 34. Resultados del subcuadro S2.3 de linea de corte de zinc

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S2.3.1 - DEV ZINC	5000	20	3x2.5+TTx2.5Cu	9.02	22	0.48	3.53	20
S2.3.2 - COR ZINC	3750	20	3x2.5+TTx2.5Cu	6.77	22	0.35	3.41	20
S2.3.3 - API ZINC	18750	25	3x10+TTx10Cu	33.83	54	0.58	3.64	32

Tabla 35. Resultados de cortocircuito del subcuadro S2.3 de linea de corte de zinc

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.3.1 - DEV ZINC	20	3x2.5+TTx2.5Cu	1.77	4.5	295.11	1.47	16;C
S2.3.2 - COR ZINC	20	3x2.5+TTx2.5Cu	1.77	4.5	295.11	1.47	16;C
S2.3.3 - API ZINC	25	3x10+TTx10Cu	1.77	4.5	519.93	7.56	40;C

2.1.2.3.4. Subcuadro S2.4 - Linea de corte de cobre

Los resultados del subcuadro S2.4 de linea de corte de cobre se muestran en las tablas 26 y 27.

Tabla 36. Resultados del subcuadro S2.4 de linea de corte de cobre

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S2.4.1 - DEV COBRE	5000	25	3x2.5+TTx2.5Cu	9.02	22	0.6	3.77	20
S2.4.2 - COR COBRE	3750	25	3x2.5+TTx2.5Cu	6.77	22	0.44	3.62	20
S2.4.3 - API COBRE	18750	30	3x10+TTx10Cu	33.83	54	0.7	3.87	32

Tabla 37. Resultados de cortocircuito del subcuadro S2.4 de linea de corte de cobre

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.4.1 - DEV COBRE	25	3x2.5+TTx2.5Cu	1.6	4.5	246.63	2.1	16;C
S2.4.2 - COR COBRE	25	3x2.5+TTx2.5Cu	1.6	4.5	246.63	2.1	16;C
S2.4.3 - API COBRE	30	3x10+TTx10Cu	1.6	4.5	456.68	9.81	40;C

2.1.2.3.5. Subcuadro S2.5 - Linea de corte de acero

Los resultados del subcuadro S2.5 de linea de corte de acero se muestran en las tablas 28 y 29.

Tabla 38. Resultados del subcuadro S2.5 de linea de corte de acero

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S2.5.1 - DEV ACERO	5000	30	3x2.5+TTx2.5Cu	9.02	22	0.72	4.01	20
S2.5.2 - COR ACERO	3750	30	3x2.5+TTx2.5Cu	6.77	22	0.53	3.83	20
S2.5.3 - API ACERO	18750	35	3x10+TTx10Cu	33.83	54	0.82	4.11	32

Tabla 39. Resultados de cortocircuito del subcuadro S2.5 de linea de corte de acero

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.5.1 - DEV ACERO	30	3x2.5+TTx2.5Cu	1.46	4.5	211.83	2.85	16;C
S2.5.2 - COR ACERO	30	3x2.5+TTx2.5Cu	1.46	4.5	211.83	2.85	16;C
S2.5.3 - API ACERO	35	3x10+TTx10Cu	1.46	4.5	407.14	12.34	40;C

2.1.2.3.6. Subcuadro S2.6 - Linea de corte de aluminio.

Los resultados del subcuadro S2.6 de linea de corte de aluminio se muestran en las tablas 30 y 31.

Tabla 40. Resultados del subcuadro S2.6 de linea de corte de aluminio

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S2.6.1 - DEV ALUM	5000	35	3x2.5+TTx2.5Cu	9.02	22	0.84	4.25	20
S2.6.2 - COR ALUM	3750	40	3x2.5+TTx2.5Cu	6.77	22	0.71	4.12	20
S2.6.3 - API ALUM	18750	40	3x10+TTx10Cu	33.83	54	0.93	4.35	32

Tabla 41. Resultados de cortocircuito del subcuadro S2.6 de linea de corte de aluminio

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S2.6.1 - DEV ALUM	35	3x2.5+TTx2.5Cu	1.34	4.5	185.64	3.71	16;C
S2.6.2 - COR ALUM	40	3x2.5+TTx2.5Cu	1.34	4.5	168.93	4.48	16;C
S2.6.3 - API ALUM	40	3x10+TTx10Cu	1.34	4.5	367.3	15.16	40;B

2.1.2.4. Subcuadro S3 – Centros de corte láser

Los resultados del subcuadro S3 de centros de corte láser se muestran en las tablas 32 y 33.

Tabla 42. Resultados del subcuadro S3 de centros de corte láser

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S3.1 - CEN LAS 1	35000	25	3x16+TTx16Cu	63.15	77	0.71	2.75	32
S3.2 - CEN LAS 2	26500	10	3x10+TTx10Cu	47.81	57	0.35	2.38	32

Tabla 43. Resultados de cortocircuito del subcuadro S3 de centros de corte láser

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S3.1 - CEN LAS 1	25	3x16+TTx16Cu	3.85	4.5	1007.59	5.16	80;C
S3.2 - CEN LAS 2	10	3x10+TTx10Cu	3.85	4.5	1186.7	1.45	50;C

2.1.2.4.1. Agrupación de centros de corte láser 1

Los resultados de la agrupación de centros de corte láser 1 se muestran en las tablas 34 y 35.

Tabla 44. Resultados de la agrupación de centros de corte láser 1

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S3.1.1 - C COR LAS1	12500	10	3x4+TTx4Cu	22.55	30	0.4	3.15	20
S3.2.2 - C COR LAS2	12500	18	3x4+TTx4Cu	22.55	30	0.72	3.47	20
S3.1.3 - C COR LAS3	12500	26	3x4+TTx4Cu	22.55	30	1.04	3.79	20
S3.1.4 - C COR LAS4	12500	34	3x4+TTx10Cu	22.55	30	1.36	4.69	20

Tabla 45. Resultados de cortocircuito de la agrupación de centros de corte láser 1

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S3.1.1 - C COR LAS1	10	3x4+TTx4Cu	1.51	4.5	468.07	1.49	25;C
S3.2.2 - C COR LAS2	18	3x4+TTx4Cu	1.51	4.5	374.63	2.33	25;C
S3.1.3 - C COR LAS3	26	3x4+TTx4Cu	1.51	4.5	312.3	3.35	25;C
S3.1.4 - C COR LAS4	34	3x4+TTx10Cu	1.51	4.5	267.74	4.56	25;C

2.1.2.4.2. Agrupación de centros de corte láser 2

Los resultados de la agrupación de centros de corte láser 2 se muestran en las tablas 36 y 37.

Tabla 46. Resultados de la agrupación de centros de corte láser 2

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S3.2.1 - C COR LAS1	12500	10	3x4+TTx4Cu	22.55	30	0.4	2.78	20
S3.2.2 - C COR LAS2	12500	18	3x4+TTx4Cu	22.55	30	0.72	3.1	20
S3.2.3 - C COR LAS2	12500	23	3x4+TTx4Cu	22.55	30	0.92	3.3	20
S3.2.4 - C COR LAS2	12500	34	3x4+TTx4Cu	22.55	30	1.36	3.74	20

Tabla 47. Resultados de cortocircuito de la agrupación de centros de corte láser 2

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S3.2.1 C COR LAS1	10	3x4+TTx4Cu	2.63	4.5	662.9	0.74	25;C
S3.2.2 - C COR LAS2	18	3x4+TTx4Cu	2.63	4.5	489.88	1.36	25;C
S3.2.3 - C COR LAS2	23	3x4+TTx4Cu	2.63	4.5	421.17	1.84	25;C
S3.2.4 - C COR LAS2	34	3x4+TTx4Cu	2.63	4.5	321.86	3.16	25;C

2.1.2.5. Subcuadro S4 – Plegado.

Los resultados del subcuadro S4 de plegado se muestran en las tablas 38 y 39.

Tabla 48. Resultados del subcuadro S4 de plegado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.1 - P AC GAV	31750	15	3x16+TTx16Cu	57.29	77	0.38	3.5	32
S4.2 - P AL LAC	31750	20	3x16+TTx16Cu	57.29	77	0.51	3.63	32
S4.3 - P ZINC	31750	25	3x16+TTx16Cu	57.29	77	0.63	3.75	32
S4.4 - P COBRE	31750	30	3x16+TTx16Cu	57.29	77	0.76	3.88	32
S4.5 - P ACERO	31750	35	3x16+TTx16Cu	57.29	77	0.89	4.01	32
S4.6 - P ALU	31750	40	3x16+TTx16Cu	57.29	77	1.02	4.13	32
S4.7 - P AC DI	19750	45	3x10+TTx10Cu	35.63	57	1.11	4.22	32

Tabla 49. Resultados de cortocircuito del subcuadro S4 de plegado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.1 - P AC GAV	15	3x16+TTx16Cu	6.23	10	1650.56	1.92	63;C
S4.2 - P AL LAC	20	3x16+TTx16Cu	6.23	10	1451.31	2.49	63;C
S4.3 - P ZINC	25	3x16+TTx16Cu	6.23	10	1294.96	3.12	63;C
S4.4 - P COBRE	30	3x16+TTx16Cu	6.23	10	1169	3.83	63;C
S4.5 - P ACERO	35	3x16+TTx16Cu	6.23	10	1065.36	4.61	63;C
S4.6 - P ALU	40	3x16+TTx16Cu	6.23	10	978.59	5.47	63;C
S4.7 - P AC DI	45	3x10+TTx10Cu	6.23	10	643.26	4.94	40;C

2.1.2.5.1. Subcuadro S4.1 - Plegado de acero galvanizado.

Los resultados del subcuadro S4.1 de plegado de acero galvanizado se muestran en las tablas 40 y 41.

Tabla 50. Resultados del subcuadro S4.1 de plegado de acero galvanizado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S4.1.1 PLE AG 6M 1	18750	15	3x10+TTx10Cu	33.83	54	0.35	3.85	32
S4.1.2 PLE AG 3M 1	18750	25	3x10+TTx10Cu	33.83	54	0.58	4.08	32
S4.1.3 PLE AG 1,5M	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	4.11	20

Tabla 51. Resultados de cortocircuito del subcuadro S4.1 de plegado de acero galvanizado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.1.1 PLE AG 6M 1	15	3x10+TTx10Cu	3.66	4.5	994.8	2.07	40;C
S4.1.2 PLE AG 3M 1	25	3x10+TTx10Cu	3.66	4.5	786.43	3.31	40;C
S4.1.3 PLE AG 1,5M	20	3x2.5+TTx2.5Cu	3.66	4.5	365.4	0.96	16;C

2.1.2.5.2. Subcuadro S4.2 - Plegado de aluminio lacado.

Los resultados del subcuadro S4.2 de plegado de aluminio lacado se muestran en las tablas 42 y 43.

Tabla 52. Resultados del subcuadro S4.2 de plegado de aluminio lacado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S4.2.1 PLE AL 6M 2	18750	10	3x10+TTx10Cu	33.83	54	0.23	3.86	32
S4.2.2 PLE AL 3M 2	18750	20	3x10+TTx10Cu	33.83	54	0.47	4.09	32
S4.2.3 PLE AL 1,5M	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	4.08	20

Tabla 53. Resultados de cortocircuito del subcuadro S4.2 de plegado de aluminio lacado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.2.1 PLE AL 6M 2	10	3x10+TTx10Cu	3.22	4.5	1046.8	1.87	40;C
S4.2.2 PLE AL 3M 2	20	3x10+TTx10Cu	3.22	4.5	818.58	3.05	40;C
S4.2.3 PLE AL 1,5M	15	3x2.5+TTx2.5Cu	3.22	4.5	437.22	0.67	16;C

2.1.2.5.3. Subcuadro S4.3 - Plegado de zinc.

Los resultados del subcuadro S4.3 de plegado de zinc se muestran en las tablas 44 y 45.

Tabla 54. Resultados del subcuadro S4.3 de plegado de zinc

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.3.1 PLE ZI 6M 3	18750	5	3x10+TTx10Cu	33.83	54	0.12	3.87	32
S4.3.2 PLE ZI 3M 3	18750	15	3x10+TTx10Cu	33.83	54	0.35	4.1	32
S4.3.3 PLE ZI 1,5M	6250	10	3x2.5+TTx2.5Cu	11.28	22	0.3	4.06	20

Tabla 55. Resultados de cortocircuito del subcuadro S4.3 de plegado de zinc

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.3.1 PLE ZI 6M 3	5	3x10+TTx10Cu	2.87	4.5	1104.53	1.68	40;C
S4.3.2 PLE ZI 3M 3	15	3x10+TTx10Cu	2.87	4.5	853.47	2.81	40;C
S4.3.3 PLE ZI 1,5M	10	3x2.5+TTx2.5Cu	2.87	4.5	544.18	0.43	16;C

2.1.2.5.4. Subcuadro S4.4 - Plegado de cobre.

Los resultados del subcuadro S4.4 de plegado de cobre se muestran en las tablas 46 y 47.

Tabla 56. Resultados del subcuadro S4.4 de plegado de cobre

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.4.1 PLE CO 6M 4	18750	5	3x10+TTx10Cu	33.83	54	0.12	4	32
S4.4.2 PLE CO 3M 4	18750	15	3x10+TTx10Cu	33.83	54	0.35	4.23	32
S4.4.3 PLE CO 1,5M	6250	10	3x2.5+TTx2.5Cu	11.28	22	0.3	4.18	20

Tabla 57. Resultados de cortocircuito del subcuadro S4.4 de plegado de cobre

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.4.1 PLE CO 6M 4	5	3x10+TTx10Cu	2.59	4.5	1011.55	2	40;C
S4.4.2 PLE CO 3M 4	15	3x10+TTx10Cu	2.59	4.5	796.86	3.22	40;C
S4.4.3 PLE CO 1,5M	10	3x2.5+TTx2.5Cu	2.59	4.5	520.59	0.47	16;C

2.1.2.5.5. Subcuadro S4.5 - Plegado de acero.

Los resultados del subcuadro S4.5 de plegado de acero se muestran en las tablas 48 y 49.

Tabla 58. Resultados del subcuadro S4.5 de plegado de acero

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.5.1 PLE AC 6M 5	18750	10	3x10+TTx10Cu	33.83	54	0.23	4.24	32
S4.5.2 PLE AC 3M 5	18750	20	3x10+TTx10Cu	33.83	54	0.47	4.47	32
S4.5.3 PLE AC 1,5M	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	4.46	20

Tabla 59. Resultados de cortocircuito del subcuadro S4.5 de plegado de acero

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.5.1 PLE AC 6M 5	10	3x10+TTx10Cu	2.36	4.5	829.89	2.97	40;C
S4.5.2 PLE AC 3M 5	20	3x10+TTx10Cu	2.36	4.5	679.65	4.43	40;C
S4.5.3 PLE AC 1,5M	15	3x2.5+TTx2.5Cu	2.36	4.5	394.18	0.82	16;C

2.1.2.5.6. Subcuadro S4.6 - Plegado de aluminio.

Los resultados del subcuadro S4.6 de plegado de aluminio se muestran en las tablas 50 y 51.

Tabla 60. Resultados del subcuadro S4.6 de plegado de aluminio

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.6.1 PLE AL 6M 6	18750	15	3x10+TTx10Cu	33.83	54	0.35	4.48	32
S4.6.2 PLE AL 3M 6	18750	25	3x10+TTx10Cu	33.83	54	0.58	4.72	32
S4.6.3 PLE AL 1,5M	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	4.74	20

Tabla 61. Resultados de cortocircuito del subcuadro S4.6 de plegado de aluminio

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.6.1 PLE AL 6M 6	15	3x10+TTx10Cu	2.17	4.5	703.53	4.13	40;C
S4.6.2 PLE AL 3M 6	25	3x10+TTx10Cu	2.17	4.5	592.49	5.83	40;C
S4.6.3 PLE AL 1,5M	20	3x2.5+TTx2.5Cu	2.17	4.5	317.16	1.27	16;C

2.1.2.5.7. Subcuadro S4.7 - Plegado de acero diamantado.

Los resultados del subcuadro S4.7 de plegado de acero diamantado se muestran en las tablas 52 y 53.

Tabla 62. Resultados del subcuadro S4.7 de plegado de acero diamantado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S4.7.1 PLE AD 3M 7	18750	20	3x10+TTx10Cu	33.83	54	0.47	4.69	32
S4.7.2 PLE AD 1,5M	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	4.68	20

Tabla 63. Resultados de cortocircuito del subcuadro S4.7 de plegado de acero diamantado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S4.7.1 PLE AD 3M 7	20	3x10+TTx10Cu	1.43	4.5	479.07	8.91	40;C
S4.7.2 PLE AD 1,5M	15	3x2.5+TTx2.5Cu	1.43	4.5	317.16	1.27	16;C

2.1.2.6. Subcuadro S5 – Curvado

Los resultados del subcuadro S5 de curvado se muestran en las tablas 54 y 55.

Tabla 64. Resultados del subcuadro S5 de curvado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S5.1 CUR CHA	17012.64	10	3x6+TTx6Cu	30.7	39	0.37	1.85	25
S5.2 CUR TUB	6399.52	25	3x2.5+TTx2.5Cu	11.55	22	0.78	2.26	20

Tabla 65. Resultados de cortocircuito del subcuadro S5 de curvado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S5.1 CUR CHA	10	3x6+TTx6Cu	1.66	4.5	561.4	2.34	32;C
S5.2 CUR TUB	25	3x2.5+TTx2.5Cu	1.66	4.5	249.92	2.05	16;C

2.1.2.6.1. Subcuadro S5.1 - Curvado de chapa

Los resultados del subcuadro S5.1 de curvado de chapa se muestran en las tablas 56 y 57.

Tabla 66. Resultados del subcuadro S5.1 de curvado de chapa

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S5.1.1 CUR CHA 1	6164	5	3x2.5+TTx2.5Cu	11.12	22	0.15	2	20
S5.1.2 CUR CHA 2	6164	10	3x2.5+TTx2.5Cu	11.12	22	0.3	2.15	20
S5.1.3 CUR CHA 3	6164	5	3x2.5+TTx2.5Cu	11.12	22	0.15	2	20
S5.1.4 CUR CHA 4	6164	10	3x2.5+TTx2.5Cu	11.12	22	0.3	2.15	20

Tabla 67. Resultados de cortocircuito del subcuadro S5.1 de curvado de chapa

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S5.1.1 CUR CHA 1	5	3x2.5+TTx2.5Cu	1.25	4.5	432.14	0.68	16;C
S5.1.2 CUR CHA 2	10	3x2.5+TTx2.5Cu	1.25	4.5	351.26	1.04	16;C
S5.1.3 CUR CHA 3	5	3x2.5+TTx2.5Cu	1.25	4.5	432.14	0.68	16;C
S5.1.4 CUR CHA 4	10	3x2.5+TTx2.5Cu	1.25	4.5	351.26	1.04	16;C

2.1.2.6.2. Subcuadro S5.2 - Curvado de tubos

Los resultados del subcuadro S5.2 de curvado de tubos se muestran en las tablas 58 y 59.

Tabla 68. Resultados del subcuadro S5.2 de curvado de tubos

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S5.2.1 CUR TUB 1	4324	5	3x2.5+TTx2.5Cu	7.8	22	0.1	2.36	20
S5.2.2 CUR TUB 2	4324	10	3x2.5+TTx2.5Cu	7.8	22	0.21	2.47	20

Tabla 69. Resultados de cortocircuito del subcuadro S5.2 de curvado de tubos

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S5.2.1 CUR TUB 1	5	3x2.5+TTx2.5Cu	0.55	4.5	220.55	2.63	16;C
S5.2.2 CUR TUB 2	10	3x2.5+TTx2.5Cu	0.55	4.5	197.35	3.28	16;C

2.1.2.7. **Subcuadro S6 – Otros**

Los resultados del subcuadro S6 de otros se muestran en las tablas 60 y 61.

Tabla 70. Resultados del subcuadro S6 de otros

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S6.1 CIZALL	13616	10	3x4+TTx4Cu	24.57	30	0.44	2.33	20
S6.2 SATIN	9122.72	10	3x2.5+TTx2.5Cu	16.46	22	0.47	2.36	20
S6.3 SERR	3404	10	3x2.5+TTx2.5Cu	6.14	22	0.16	2.05	20

Tabla 71. Resultados de cortocircuito del subcuadro S6 de otros

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S6.1 CIZALL	10	3x4+TTx4Cu	1.38	4.5	440.6	1.69	25;C
S6.2 SATIN	10	3x2.5+TTx2.5Cu	1.38	4.5	374.63	0.91	20;C
S6.3 SERR	10	3x2.5+TTx2.5Cu	1.38	4.5	374.63	0.91	16;C

2.1.2.7.1. Subcuadro S6.1 - Cizallado

Los resultados del subcuadro S6.1 de cizallado se muestran en las tablas 62 y 63.

Tabla 72. Resultados del subcuadro S6.1 de cizallado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S6.1.1 CIZALLA 1	9200	10	3x2.5+TTx2.5Cu	16.6	22	0.47	2.8	20
S6.1.2 CIZALLA 2	9200	10	3x2.5+TTx2.5Cu	16.6	22	0.47	2.8	20

Tabla 73. Resultados de cortocircuito del subcuadro S6.1 de cizallado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S6.1.1 CIZALLA 1	10	3x2.5+TTx2.5Cu	0.98	4.5	299.82	1.42	20;C
S6.1.2 CIZALLA 2	10	3x2.5+TTx2.5Cu	0.98	4.5	299.82	1.42	20;C

2.1.2.7.2. Subcuadro S6.2 - Satinado

Los resultados del subcuadro S6.2 de satinado se muestran en las tablas 64 y 65.

Tabla 74. Los resultados del subcuadro S6.2 de satinado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S6.2.1 SATIN 1	6164	5	3x2.5+TTx2.5Cu	11.12	22	0.15	2.51	20
S6.2.2 SATIN 2	6164	5	3x2.5+TTx2.5Cu	11.12	22	0.15	2.51	20

Tabla 75. Resultados de cortocircuito del subcuadro S6.2 de satinado

	Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
	S6.2.1 SATIN 1	5	3x2.5+TTx2.5Cu	0.83	4.5	312.3	1.31	16;C
ĺ	S6.2.2 SATIN 2	5	3x2.5+TTx2.5Cu	0.83	4.5	312.3	1.31	16;C

2.1.2.7.3. Subcuadro S6.3 - Serrado

Los resultados del subcuadro S6.3 de serrado se muestran en las tablas 66 y 67.

Tabla 76. Resultados del subcuadro S6.3 de serrado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S6.3.1 SIE BAN 1	2300	5	3x2.5+TTx2.5Cu	4.15	22	0.05	2.1	20
S6.3.2 SIE BAN 2	2300	5	3x2.5+TTx2.5Cu	4.15	22	0.05	2.1	20

Tabla 77. Resultados de cortocircuito del subcuadro S6.3 de serrado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S6.3.1 SIE BAN 1	5	3x2.5+TTx2.5Cu	0.83	4.5	312.3	1.31	16;C
S6.3.2 SIE BAN 2	5	3x2.5+TTx2.5Cu	0.83	4.5	312.3	1.31	16;C

2.1.2.8. Subcuadro S7 – Soldadura

Los resultados del subcuadro S7 de soldadura se muestran en las tablas 68 y 69.

Tabla 78. Resultados del subcuadro S7 de soldadura

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.1 SOL TIG	40370	10	3x16+TTx16Cu	72.84	77	0.34	2.78	32
S7.2 MIG/MAG	47250	15	3x25+TTx16Cu	85.25	122	0.36	2.8	
S7.3 S MMA	20450	20	3x10+TTx10Cu	36.9	54	0.52	2.95	32
S7.4 SOL PUN	44450	30	3x70+TTx35Cu	80.2	243	0.23	2.66	
S7.5 SOL OXIA	12450	25	3x4+TTx4Cu	22.46	30	1	3.43	20

Tabla 79. Resultados de cortocircuito del subcuadro S7 de soldadura

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.1 SOL TIG	10	3x16+TTx16Cu	10.1	15	2593.64	0.78	80;C
S7.2 MIG/MAG	15	3x25+TTx16Cu	10.1	15	2639.11	1.84	100;C
S7.3 S MMA	20	3x10+TTx10Cu	10.1	15	1330.88	1.15	40;C
S7.4 SOL PUN	30	3x70+TTx35Cu	10.1	15	2999.49	11.14	250;C
S7.5 SOL OXIA	25	3x4+TTx4Cu	10.1	15	530.96	1.16	25;C

2.1.2.8.1. Subcuadro S7.1 - Soldadura TIG

Los resultados del subcuadro S7.1 de soldadura TIG se muestran en las tablas 70 y 71.

Tabla 80. Resultados del subcuadro S7.1 de soldadura TIG

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.1.1 SOL TIG 1	8300	5	3x2.5+TTx2.5Cu	14.98	22	0.21	2.99	20
S7.1.2 SOL TIG 2	8300	10	3x2.5+TTx2.5Cu	14.98	22	0.42	3.2	20
S7.1.3 SOL TIG 3	8300	10	3x2.5+TTx2.5Cu	14.98	22	0.42	3.2	20
S7.1.4 SOL TIG 4	8300	15	3x2.5+TTx2.5Cu	14.98	22	0.63	3.41	20
S7.1.5 AMOL 1	3750	5	3x2.5+TTx2.5Cu	6.77	22	0.09	2.87	20
S7.1.6 AMOL 2	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	2.96	20
S7.1.7 AMOL 3	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	2.96	20
S7.1.8 AMOL 4	3750	15	3x2.5+TTx2.5Cu	6.77	22	0.27	3.05	20
S7.1.9 EXTR 1	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	3.24	20
S7.1.10 EXTR 2	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	3.39	20
S7.1.11 EXTR 3	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	3.39	20
S7.1.12 EXTR 4	6250	25	3x2.5+TTx2.5Cu	11.28	22	0.76	3.54	20

Tabla 81. Resultados de cortocircuito del subcuadro S7.1 de soldadura TIG

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.1.1 SOL TIG 1	5	3x2.5+TTx2.5Cu	5.76	6	1089.56	0.11	16;C
S7.1.2 SOL TIG 2	10	3x2.5+TTx2.5Cu	5.76	6	689.42	0.27	16;C
S7.1.3 SOL TIG 3	10	3x2.5+TTx2.5Cu	5.76	6	689.42	0.27	16;C
S7.1.4 SOL TIG 4	15	3x2.5+TTx2.5Cu	5.76	6	504.22	0.5	16;C
S7.1.5 AMOL 1	5	3x2.5+TTx2.5Cu	5.76	6	1089.56	0.11	16;C
S7.1.6 AMOL 2	10	3x2.5+TTx2.5Cu	5.76	6	689.42	0.27	16;C
S7.1.7 AMOL 3	10	3x2.5+TTx2.5Cu	5.76	6	689.42	0.27	16;C
S7.1.8 AMOL 4	15	3x2.5+TTx2.5Cu	5.76	6	504.22	0.5	16;C
S7.1.9 EXTR 1	15	3x2.5+TTx2.5Cu	5.76	6	504.22	0.5	16;C
S7.1.10 EXTR 2	20	3x2.5+TTx2.5Cu	5.76	6	397.44	0.81	16;C
S7.1.11 EXTR 3	20	3x2.5+TTx2.5Cu	5.76	6	397.44	0.81	16;C
S7.1.12 EXTR 4	25	3x2.5+TTx2.5Cu	5.76	6	327.99	1.19	16;C

2.1.2.8.2. Subcuadro S7.2 - Soldadura MIG/MAG

Los resultados del subcuadro S7.2 de soldadura MIG/MAG se muestran en las tablas 72 y 73.

Tabla 82. Resultados del subcuadro S7.2 de soldadura MIG/MAG

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.2.1 SOL MIG/MAG	15000	10	3x6+TTx6Cu	27.06	39	0.32	3.11	25
S7.2.2 SOL MIG/MAG	15000	15	3x6+TTx6Cu	27.06	39	0.47	3.27	25
S7.2.3 SOL MIG/MAG	15000	15	3x6+TTx6Cu	27.06	39	0.47	3.27	25
S7.2.4 SOL MIG/MAG	15000	20	3x6+TTx6Cu	27.06	39	0.63	3.43	25
S7.2.5 AMOL 5	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	2.97	20
S7.2.6 AMOL 6	3750	15	3x2.5+TTx2.5Cu	6.77	22	0.27	3.06	20
S7.2.7 AMOL 7	3750	15	3x2.5+TTx2.5Cu	6.77	22	0.27	3.06	20
S7.2.8 AMOL 8	3750	20	3x2.5+TTx2.5Cu	6.77	22	0.35	3.15	20
S7.2.9 EXTR 5	6250	10	3x2.5+TTx2.5Cu	11.28	22	0.3	3.1	20
S7.2.10 EXTR 6	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	3.25	20
S7.2.11 EXTR 7	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	3.25	20
S7.2.12 EXTR 8	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	3.41	20

Tabla 83. Resultados de cortocircuito del subcuadro S7.2 de soldadura MIG/MAG

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.2.1 SOL MIG/MAG	10	3x6+TTx6Cu	5.86	6	1215.98	0.5	32;C
S7.2.2 SOL MIG/MAG	15	3x6+TTx6Cu	5.86	6	957.58	0.8	32;C
S7.2.3 SOL MIG/MAG	15	3x6+TTx6Cu	5.86	6	957.58	0.8	32;C
S7.2.4 SOL MIG/MAG	20	3x6+TTx6Cu	5.86	6	789.73	1.18	32;C
S7.2.5 AMOL 5	10	3x2.5+TTx2.5Cu	5.86	6	692.6	0.27	16;C
S7.2.6 AMOL 6	15	3x2.5+TTx2.5Cu	5.86	6	505.92	0.5	16;C
S7.2.7 AMOL 7	15	3x2.5+TTx2.5Cu	5.86	6	505.92	0.5	16;C
S7.2.8 AMOL 8	20	3x2.5+TTx2.5Cu	5.86	6	398.5	0.8	16;C
S7.2.9 EXTR 5	10	3x2.5+TTx2.5Cu	5.86	6	692.6	0.27	16;C
S7.2.10 EXTR 6	15	3x2.5+TTx2.5Cu	5.86	6	505.92	0.5	16;C
S7.2.11 EXTR 7	15	3x2.5+TTx2.5Cu	5.86	6	505.92	0.5	16;C
S7.2.12 EXTR 8	20	3x2.5+TTx2.5Cu	5.86	6	398.5	0.8	16;C

2.1.2.8.3. Subcuadro S7.3 - Soldadura MMA

Los resultados del subcuadro S7.3 de soldadura MMA se muestran en las tablas 74 y 75.

Tabla 84. Resultados del subcuadro S7.3 de soldadura MMA

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.3.1 SOL MMA 1	8000	15	3x2.5+TTx2.5Cu	14.43	22	0.6	3.56	20
S7.3.2 SOL MMA 2	8000	20	3x2.5+TTx2.5Cu	14.43	22	0.8	3.76	20
S7.3.3 AMOL 9	3750	15	3x2.5+TTx2.5Cu	6.77	22	0.27	3.22	20
S7.3.4 AMOL 10	3750	20	3x2.5+TTx2.5Cu	6.77	22	0.35	3.31	20
S7.3.5 EXTR 9	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	3.41	20
S7.3.6 EXTR 10	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	3.56	20

Tabla 85. Resultados de cortocircuito del subcuadro S7.3 de soldadura MMA

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.3.1 SOL MMA 1	15	3x2.5+TTx2.5Cu	2.95	4.5	425.61	0.71	16;C
S7.3.2 SOL MMA 2	20	3x2.5+TTx2.5Cu	2.95	4.5	346.93	1.06	16;C
S7.3.3 AMOL 9	15	3x2.5+TTx2.5Cu	2.95	4.5	425.61	0.71	16;C
S7.3.4 AMOL 10	20	3x2.5+TTx2.5Cu	2.95	4.5	346.93	1.06	16;C
S7.3.5 EXTR 9	15	3x2.5+TTx2.5Cu	2.95	4.5	425.61	0.71	16;C
S7.3.6 EXTR 10	20	3x2.5+TTx2.5Cu	2.95	4.5	346.93	1.06	16;C

2.1.2.8.4. Subcuadro S7.4 - Soldadura por puntos

Los resultados del subcuadro S7.4 de soldadura por puntos se muestran en las tablas 76 y 77.

Tabla 86. Resultados del subcuadro S7.4 de soldadura por puntos

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.4.1 SOL PUN 1	100000	25	3x70+TTx35Cu	180.43	193	0.48	3.14	63
S7.4.2 SOL PUN 2	100000	30	3x70+TTx35Cu	180.43	193	0.58	3.24	63
S7.4.3 AMOL 11	3750	25	3x2.5+TTx2.5Cu	6.77	22	0.44	3.11	20
S7.4.4 AMOL 12	3750	30	3x2.5+TTx2.5Cu	6.77	22	0.53	3.2	20
S7.4.5 EXTR 11	6250	25	3x2.5+TTx2.5Cu	11.28	22	0.76	3.42	20
S7.4.6 EXTR 12	6250	30	3x2.5+TTx2.5Cu	11.28	22	0.91	3.58	20

Tabla 87. Resultados de cortocircuito del subcuadro S7.4 de soldadura por puntos

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.4.1 SOL PUN 1	25	3x70+TTx35Cu	6.66	10	2334.96	18.38	250;B
S7.4.2 SOL PUN 2	30	3x70+TTx35Cu	6.66	10	2235.82	20.04	250;B
S7.4.3 AMOL 11	25	3x2.5+TTx2.5Cu	6.66	10	333.71	1.15	16;C
S7.4.4 AMOL 12	30	3x2.5+TTx2.5Cu	6.66	10	283.33	1.59	16;C
S7.4.5 EXTR 11	25	3x2.5+TTx2.5Cu	6.66	10	333.71	1.15	16;C
S7.4.6 EXTR 12	30	3x2.5+TTx2.5Cu	6.66	10	283.33	1.59	16;C

2.1.2.8.5. Subcuadro S7.5 - Soldadura oxiacetilénica

Los resultados del subcuadro S7.5 de soldadura oxiacetilénica se muestran en las tablas 78 y 79.

Tabla 88. Resultados del subcuadro S7.5 de soldadura oxiacetilénica

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S7.5.1 AMOL 13	3750	20	3x2.5+TTx2.5Cu	6.77	22	0.35	3.79	20
S7.5.2 AMOL 14	3750	25	3x2.5+TTx2.5Cu	6.77	22	0.44	3.88	20
S7.5.3 EXTR 13	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	4.04	20
S7.5.4 EXTR 14	6250	25	3x2.5+TTx2.5Cu	11.28	22	0.76	4.2	20

Tabla 89. Resultados de cortocircuito del subcuadro S7.5 de soldadura oxiacetilénica

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S7.5.1 AMOL 13	20	3x2.5+TTx2.5Cu	1.18	4.5	249.09	2.06	16;C
S7.5.2 AMOL 14	25	3x2.5+TTx2.5Cu	1.18	4.5	219.9	2.64	16;C
S7.5.3 EXTR 13	20	3x2.5+TTx2.5Cu	1.18	4.5	249.09	2.06	16;C
S7.5.4 EXTR 14	25	3x2.5+TTx2.5Cu	1.18	4.5	219.9	2.64	16;C

2.1.2.9. Subcuadro S8 – Pintura

Los resultados del subcuadro S8 de pintura se muestran en las tablas 80 y 81.

Tabla 90. Resultados del subcuadro S8 de pintura

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S8.1 PIN L1	45471.6	10	3x35+TTx16Cu	82.04	114	0.17	1.67	50
S8.2 PIN L2	45471.6	25	3x35+TTx16Cu	82.04	114	0.41	1.91	50
S8.3 PIN L3	45471.6	35	3x35+TTx16Cu	82.04	114	0.58	2.08	50
S8.4 PIN L4	45471.6	45	3x35+TTx16Cu	82.04	114	0.74	2.24	50

Tabla 91. Resultados de cortocircuito del subcuadro S8 de pintura

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S8.1 PIN L1	10	3x35+TTx16Cu	15.75	20	4628.22	1.17	100;C
S8.2 PIN L2	25	3x35+TTx16Cu	15.75	20	3034	2.72	100;C
S8.3 PIN L3	35	3x35+TTx16Cu	15.75	20	2466.16	4.12	100;C
S8.4 PIN L4	45	3x35+TTx16Cu	15.75	20	2077.05	5.81	100;C

2.1.2.9.1. Subcuadro S8.1 - Linea de pintura 1

Los resultados del subcuadro S8.1 de la linea de pintura 1 se muestran en las tablas 82 y 83.

Tabla 92. Resultados del subcuadro S8.1 de la linea de pintura 1

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S8.1.1 LIJ BAN 1	1472	35	3x2.5+TTx2.5Cu	2.66	22	0.24	1.91	20
S8.1.2 LIJ ROT 1	736	35	3x2.5+TTx2.5Cu	1.33	22	0.12	1.79	20
S8.1.3 CEN PIT 1	2760	25	3x2.5+TTx2.5Cu	4.98	22	0.32	1.99	20
S8.1.4 LIN AUT 1	6900	25	3x2.5+TTx2.5Cu	12.45	22	0.85	2.51	20
S8.1.5 LAV PIS 1	1242	15	3x2.5+TTx2.5Cu	2.24	22	0.09	1.75	20
S8.1.6 HORNO 1	52500	15	3x35+TTx16Cu	94.72	114	0.29	1.96	50

Tabla 93. Resultados de cortocircuito del subcuadro S8.1 de la linea de pintura 1

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S8.1.1 LIJ BAN 1	35	3x2.5+TTx2.5Cu	10.27	15	253.53	1.99	16;C
S8.1.2 LIJ ROT 1	35	3x2.5+TTx2.5Cu	10.27	15	253.53	1.99	16;C
S8.1.3 CEN PIT 1	25	3x2.5+TTx2.5Cu	10.27	15	347.39	1.06	16;C
S8.1.4 LIN AUT 1	25	3x2.5+TTx2.5Cu	10.27	15	347.39	1.06	16;C
S8.1.5 LAV PIS 1	15	3x2.5+TTx2.5Cu	10.27	15	551.58	0.42	16;C
S8.1.6 HORNO 1	15	3x35+TTx16Cu	10.27	15	3034	2.72	100;C

2.1.2.9.2. Subcuadro S8.2 - Linea de pintura 2

Los resultados del subcuadro S8.2 de la linea de pintura 2 se muestran en las tablas 84 y 85.

Tabla 94. Resultados del subcuadro S8.2 de la linea de pintura 2

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S8.2.1 LIJ BAN 2	1472	50	3x2.5+TTx2.5Cu	2.66	22	0.34	2.26	20
S8.2.2 LIJ ROT 2	736	50	3x2.5+TTx2.5Cu	1.33	22	0.17	2.09	20
S8.2.3 CEN PIT 2	2760	40	3x2.5+TTx2.5Cu	4.98	22	0.52	2.43	20
S8.2.4 LIN AUT 2	6900	40	3x2.5+TTx2.5Cu	12.45	22	1.36	3.27	20
S8.2.5 LAV PIS 2	1242	30	3x2.5+TTx2.5Cu	2.24	22	0.17	2.09	20
S8.2.6 HORNO 2	52500	25	3x35+TTx16Cu	94.72	114	0.49	2.4	50

Tabla 95. Resultados de cortocircuito del subcuadro S8.2 de la linea de pintura 2

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S8.2.1 LIJ BAN 2	50	3x2.5+TTx2.5Cu	6.73	10	176.77	4.09	16;C
S8.2.2 LIJ ROT 2	50	3x2.5+TTx2.5Cu	6.73	10	176.77	4.09	16;C
S8.2.3 CEN PIT 2	40	3x2.5+TTx2.5Cu	6.73	10	217.8	2.69	16;C
S8.2.4 LIN AUT 2	40	3x2.5+TTx2.5Cu	6.73	10	217.8	2.69	16;C
S8.2.5 LAV PIS 2	30	3x2.5+TTx2.5Cu	6.73	10	283.64	1.59	16;C
S8.2.6 HORNO 2	25	3x35+TTx16Cu	6.73	10	1925.11	6.76	100;C

2.1.2.9.3. Subcuadro S8.3 - Linea de pintura 3

Los resultados del subcuadro S8.3 de la linea de pintura 3 se muestran en las tablas 86 y 87.

Tabla 96. Resultados del subcuadro S8.3 de la linea de pintura 3

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S8.3.1 LIJ BAN 3	1472	65	3x2.5+TTx2.5Cu	2.66	22	0.45	2.53	20
S8.3.2 LIJ ROT 3	736	65	3x2.5+TTx2.5Cu	1.33	22	0.22	2.3	20
S8.3.3 CEN PIT 3	2760	55	3x2.5+TTx2.5Cu	4.98	22	0.71	2.79	20
S8.3.4 LIN AUT 3	6900	55	3x2.5+TTx2.5Cu	12.45	22	1.87	3.95	20
S8.3.5 LAV PIS 3	1242	45	3x2.5+TTx2.5Cu	2.24	22	0.26	2.34	20
S8.3.6 HORNO 3	52500	40	3x35+TTx16Cu	94.72	114	0.79	2.86	50

Tabla 97. Resultados de cortocircuito del subcuadro S8.3 de la linea de pintura 3

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S8.3.1 LIJ BAN 3	65	3x2.5+TTx2.5Cu	5.47	6	136.4	6.87	16;B
S8.3.2 LIJ ROT 3	65	3x2.5+TTx2.5Cu	5.47	6	136.4	6.87	16;B
S8.3.3 CEN PIT 3	55	3x2.5+TTx2.5Cu	5.47	6	159.59	5.02	16;B
S8.3.4 LIN AUT 3	55	3x2.5+TTx2.5Cu	5.47	6	159.59	5.02	16;B
S8.3.5 LAV PIS 3	45	3x2.5+TTx2.5Cu	5.47	6	192.3	3.46	16;C
S8.3.6 HORNO 3	40	3x35+TTx16Cu	5.47	6	1409.35	12.61	100;C

2.1.2.9.4. Subcuadro S8.4 - Linea de pintura 4

Los resultados del subcuadro S8.4 de la linea de pintura 4 se muestran en las tablas 88 y 89.

Tabla 98. Resultados del subcuadro S8.4 de la linea de pintura 4

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S8.4.1 LIJ BAN 4	1472	80	3x2.5+TTx2.5Cu	2.66	22	0.55	2.79	20
S8.4.2 LIJ ROT 4	736	80	3x2.5+TTx2.5Cu	1.33	22	0.27	2.52	20
S8.4.3 CEN PIT 4	2760	70	3x2.5+TTx2.5Cu	4.98	22	0.91	3.15	20
S8.4.4 LIN AUT 4	6900	70	3x2.5+TTx2.5Cu	12.45	22	2.38	4.62	20
S8.4.5 LAV PIS 4	1242	60	3x2.5+TTx2.5Cu	2.24	22	0.35	2.59	20
S8.4.6 HORNO 4	52500	55	3x35+TTx16Cu	94.72	114	1.08	3.32	50

Tabla 99. Resultados de cortocircuito del subcuadro S8.4 de la linea de pintura 4

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S8.4.1 LIJ BAN 4	80	3x2.5+TTx2.5Cu	4.61	6	111.03	10.37	16;B
S8.4.2 LIJ ROT 4	80	3x2.5+TTx2.5Cu	4.61	6	111.03	10.37	16;B
S8.4.3 CEN PIT 4	70	3x2.5+TTx2.5Cu	4.61	6	125.93	8.06	16;B
S8.4.4 LIN AUT 4	70	3x2.5+TTx2.5Cu	4.61	6	125.93	8.06	16;B
S8.4.5 LAV PIS 4	60	3x2.5+TTx2.5Cu	4.61	6	145.46	6.04	16;B
S8.4.6 HORNO 4	55	3x35+TTx16Cu	4.61	6	1111.44	20.28	100;C

2.1.2.10. Subcuadro S9 – Montaje

Los resultados del subcuadro S9 de montaje se muestran en las tablas 90 y 91.

Tabla 100. Resultados del subcuadro S9 de montaje

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S9.1 ATOR	1486.72	10	3x2.5+TTx2.5Cu	2.68	22	0.07	0.24	20
S9.2 PUNZ	2973.44	10	3x2.5+TTx2.5Cu	5.36	22	0.14	0.31	20

Tabla 101. Resultados de cortocircuito del subcuadro S9 de montaje

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	IpccI (kA) P de C (kA)		tmcicc (sg)	Curva válida
S9.1 ATOR	10	3x2.5+TTx2.5Cu	13.28	15	812.52	0.19	16;C
S9.2 PUNZ	10	3x2.5+TTx2.5Cu	13.28	15	812.52	0.19	16;C

2.1.2.10.1. Subcuadro S9.1 - Atornillado

Los resultados del subcuadro S9.1 de atornillado se muestran en las tablas 92 y 93.

Tabla 102. Resultados del subcuadro S9.1 de atornillado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S9.1.1 ATORN 1	368	30	3x2.5+TTx2.5Cu	0.66	22	0.05	0.29	20
S9.1.2 ATORN 2	368	30	3x2.5+TTx2.5Cu	0.66	22	0.05	0.29	20
S9.1.3 ATORN 3	368	25	3x2.5+TTx2.5Cu	0.66	22	0.04	0.28	20
S9.1.4 ATORN 4	368	25	3x2.5+TTx2.5Cu	0.66	22	0.04	0.28	20
S9.1.5 ATORN 5	368	20	3x2.5+TTx2.5Cu	0.66	22	0.03	0.27	20
S9.1.6 ATORN 6	368	20	3x2.5+TTx2.5Cu	0.66	22	0.03	0.27	20

Tabla 103. Resultados de cortocircuito del subcuadro S9.1 de atornillado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S9.1.1 ATORN 1	30	3x2.5+TTx2.5Cu	1.8	4.5	225.85	2.51	16;C
S9.1.2 ATORN 2	30	3x2.5+TTx2.5Cu	1.8	4.5	225.85	2.51	16;C
S9.1.3 ATORN 3	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	16;C
S9.1.4 ATORN 4	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	16;C
S9.1.5 ATORN 5	20	3x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C
S9.1.6 ATORN 6	20	3x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C

2.1.2.10.2. Subcuadro S9.2 – Punzonado

Los resultados del subcuadro S9.2 de punzonado se muestran en las tablas 94 y 95.

Tabla 104. Resultados del subcuadro S9.2 de punzonado

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S9.2.1 PUNZ 1	736	30	3x2.5+TTx2.5Cu	1.33	22	0.1	0.41	20
S9.2.2 PUNZ 2	736	30	3x2.5+TTx2.5Cu	1.33	22	0.1	0.41	20
S9.2.3 PUNZ 3	736	25	3x2.5+TTx2.5Cu	1.33	22	0.09	0.39	20
S9.2.4 PUNZ 4	736	25	3x2.5+TTx2.5Cu	1.33	22	0.09	0.39	20
S9.2.5 PUNZ 5	736	20	3x2.5+TTx2.5Cu	1.33	22	0.07	0.38	20
S9.2.6 PUNZ 6	736	20	3x2.5+TTx2.5Cu	1.33	22	0.07	0.38	20

Tabla 105. Resultados de cortocircuito del subcuadro S9.2 de punzonado

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S9.2.1 PUNZ 1	30	3x2.5+TTx2.5Cu	1.8	4.5	225.85	2.51	16;C
S9.2.2 PUNZ 2	30	3x2.5+TTx2.5Cu	1.8	4.5	225.85	2.51	16;C
S9.2.3 PUNZ 3	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	16;C
S9.2.4 PUNZ 4	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	16;C
S9.2.5 PUNZ 5	20	3x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C
S9.2.6 PUNZ 6	20	3x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C

2.1.2.11. Subcuadro S10 – Embalaje

Los resultados del subcuadro S10 de embalaje se muestran en las tablas 96 y 97.

Tabla 106. Resultados del subcuadro S10 de embalaje

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S10.1 EMB 1	1610	10	3x2.5+TTx2.5Cu	2.58	22	0.08	0.25	20
S10.2 EMB 2	1610	15	3x2.5+TTx2.5Cu	2.58	22	0.11	0.29	20
S10.3 EMB 3	1610	20	3x2.5+TTx2.5Cu	2.58	22	0.15	0.32	20
S10.4 EMB 4	1610	25	3x2.5+TTx2.5Cu	2.58	22	0.19	0.36	20

Tabla 107. Resultados de cortocircuito del subcuadro S10 de embalaje

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S10.1 EMB 1	10	3x2.5+TTx2.5Cu	13.28	15	812.52	0.19	16;C
S10.2 EMB 2	15	3x2.5+TTx2.5Cu	13.28	15	567.06	0.4	16;C
S10.3 EMB 3	20	3x2.5+TTx2.5Cu	13.28	15	435.48	0.67	16;C
S10.4 EMB 4	25	3x2.5+TTx2.5Cu	13.28	15	353.47	1.02	16;C

2.1.2.12. Subcuadro S11a – Almacenes de materias primas

Los resultados del subcuadro S11a del almacén de materias primas se muestran en las tablas 98 y 99.

Tabla 108. Resultados del subcuadro S11a del almacén de materias primas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.1 ALM ACE	12768	10	4x4+TTx4Cu	21.68	30	0.41	2.7	25
S11.2 ALM ALU	14868	15	4x6+TTx6Cu	25.25	39	0.46	2.76	25
S11.3 ALM ZIN	14868	20	4x6+TTx6Cu	25.25	39	0.62	2.92	25
S11.4 ALM COB	12768	25	4x4+TTx4Cu	21.68	30	1.02	3.31	25
S11.5 PUE GR	13616	25	3x4+TTx4Cu	24.57	30	1.11	3.41	20

Tabla 109. Resultados de cortocircuito del subcuadro S11a del almacén de materias primas

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.1 ALM ACE	10	4x4+TTx4Cu	3.44	4.5	762.65	0.56	25;C
S11.2 ALM ALU	15	4x6+TTx6Cu	3.44	4.5	762.65	1.27	32;C
S11.3 ALM ZIN	20	4x6+TTx6Cu	3.44	4.5	652.24	1.73	32;C
S11.4 ALM COB	25	4x4+TTx4Cu	3.44	4.5	432.87	1.75	25;C
S11.5 PUE GR	25	3x4+TTx4Cu	3.44	4.5	432.87	1.75	25;C

2.1.2.12.1. Subcuadro S11a.1 - Almacén de acero

Los resultados del subcuadro S11a.1 del almacén de acero se muestran en las tablas 100 y 101.

Tabla 110. Resultados del subcuadro S11a.1 del almacén de acero

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.1.1 AL ALM AC 1	1800	40	4x1.5+TTx1.5Cu	2.73	16.5	0.56	3.26	20
S11.1.2 AL ALM AC 2	1440	50	4x1.5+TTx1.5Cu	2.19	16.5	0.56	3.26	20
S11.1.3 FZ ALM AC 1	9000	40	4x2.5+TTx2.5Cu	14.43	22	1.8	4.51	20
S11.1.4 FZ ALM AC 2	6000	50	4x2.5+TTx2.5Cu	9.62	22	1.44	4.15	20

Tabla 111. Resultados de cortocircuito del subcuadro S11a.1 del almacén de acero

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.1.1 AL ALM AC 1	40	4x1.5+TTx1.5Cu	1.69	4.5	118.83	3.26	10;C
S11.1.2 AL ALM AC 2	50	4x1.5+TTx1.5Cu	1.69	4.5	98.12	4.78	10;B
S11.1.3 FZ ALM AC 1	40	4x2.5+TTx2.5Cu	1.69	4.5	179.41	3.97	16;C
S11.1.4 FZ ALM AC 2	50	4x2.5+TTx2.5Cu	1.69	4.5	150.61	5.63	16;B

2.1.2.12.2. Subcuadro S11a.2 - Almacén de aluminio

Los resultados del subcuadro S11a.2 del almacén de aluminio se muestran en las tablas 102 y 103.

Tabla 112. Resultados del subcuadro S11a.2 del almacén de aluminio

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S11.2.1 AL ALM AL 1	1620	30	4x1.5+TTx1.5Cu	2.46	16.5	0.38	3.14	20
S11.2.2 AL ALM AL 2	1620	40	4x1.5+TTx1.5Cu	2.46	16.5	0.5	3.27	20
S11.2.3 FZ ALM AL 1	9000	30	4x2.5+TTx2.5Cu	14.43	22	1.35	4.11	20
S11.2.4 FZ ALM AL 2	9000	40	4x2.5+TTx2.5Cu	14.43	22	1.8	4.57	20

Tabla 113. Resultados de cortocircuito del subcuadro S11a.2 del almacén de aluminio

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.2.1 AL ALM AL 1	30	4x1.5+TTx1.5Cu	1.69	4.5	150.61	2.03	10;C
S11.2.2 AL ALM AL 2	40	4x1.5+TTx1.5Cu	1.69	4.5	118.83	3.26	10;C
S11.2.3 FZ ALM AL 1	30	4x2.5+TTx2.5Cu	1.69	4.5	221.82	2.6	16;C
S11.2.4 FZ ALM AL 2	40	4x2.5+TTx2.5Cu	1.69	4.5	179.41	3.97	16;C

2.1.2.12.3. Subcuadro S11a.3 - Almacén de zinc

Los resultados del subcuadro S11a.3 del almacén de zinc se muestran en las tablas 104 y 105.

Tabla 114. Resultados del subcuadro S11a.3 del almacén de zinc

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.3.1 AL ALM ZI 1	1620	20	4x1.5+TTx1.5Cu	2.46	16.5	0.25	3.17	20
S11.3.2 AL ALM ZI 2	1620	30	4x1.5+TTx1.5Cu	2.46	16.5	0.38	3.29	20
S11.3.3 FZ ALM ZI 1	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	3.82	20
S11.3.4 FZ ALM ZI 2	9000	30	4x2.5+TTx2.5Cu	14.43	22	1.35	4.27	20

Tabla 115. Resultados de cortocircuito del subcuadro S11a.3 del almacén de zinc

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.3.1 AL ALM ZI 1	20	4x1.5+TTx1.5Cu	1.45	4.5	196.64	1.19	10;C
S11.3.2 AL ALM ZI 2	30	4x1.5+TTx1.5Cu	1.45	4.5	145.74	2.17	10;C
S11.3.3 FZ ALM ZI 1	20	4x2.5+TTx2.5Cu	1.45	4.5	272.89	1.72	16;C
S11.3.4 FZ ALM ZI 2	30	4x2.5+TTx2.5Cu	1.45	4.5	211.41	2.86	16;C

2.1.2.12.4. Subcuadro S11a.4 - Almacén de cobre

Los resultados del subcuadro S11a.4 del almacén de cobre se muestran en las tablas 106 y 107.

Tabla 116. Resultados del subcuadro S11a.4 del almacén de cobre

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.4.1 AL ALM CO 1	1620	10	4x1.5+TTx1.5Cu	2.46	16.5	0.13	3.44	20
S11.1.2 AL ALM AC 2	1620	20	4x1.5+TTx1.5Cu	2.46	16.5	0.25	3.56	20
S11.1.3 FZ ALM AC 1	9000	10	4x2.5+TTx2.5Cu	14.43	22	0.45	3.76	20
S11.1.4 FZ ALM AC 2	6000	20	4x2.5+TTx2.5Cu	9.62	22	0.58	3.89	20

Tabla 117. Resultados de cortocircuito del subcuadro S11a.4 del almacén de cobre

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.4.1 AL ALM CO 1	10	4x1.5+TTx1.5Cu	0.96	4.5	244.72	0.77	10;C
S11.1.2 AL ALM AC 2	20	4x1.5+TTx1.5Cu	0.96	4.5	170.58	1.58	10;C
S11.1.3 FZ ALM AC 1	10	4x2.5+TTx2.5Cu	0.96	4.5	296.22	1.46	16;C
S11.1.4 FZ ALM AC 2	20	4x2.5+TTx2.5Cu	0.96	4.5	225.15	2.52	16;C

2.1.2.12.5. Subcuadro S11a.5 - Puentes grúa

Los resultados del subcuadro S11a.5 de los puentes grúa se muestran en las tablas 108 y 109.

Tabla 118. Resultados del subcuadro S11a.5 de los puentes grúa

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S11.5.1 PUE GR 1	9200	15	3x2.5+TTx2.5Cu	16.6	22	0.71	4.11	20
S11.5.2 PUE GR 2	9200	30	3x2.5+TTx2.5Cu	16.6	22	1.42	4.82	20

Tabla 119. Resultados de cortocircuito del subcuadro S11a.5 de los puentes grúa

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.5.1 PUE GR 1	15	3x2.5+TTx2.5Cu	0.96	4.5	255.84	1.95	20;C
S11.5.2 PUE GR 2	30	3x2.5+TTx2.5Cu	0.96	4.5	181.58	3.88	20;B

2.1.2.13. Subcuadro S11b – Almacenes de productos terminados

Los resultados del subcuadro S11b del almacén de productos terminados se muestran en las tablas 110 y 111.

Tabla 120. Resultados del subcuadro S11b del almacén de productos terminados

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.1 ALM CAN	12768	10	4x4+TTx4Cu	21.68	30	0.41	1.82	25
S11.2 ALM AR	14868	15	4x6+TTx6Cu	25.25	39	0.46	1.88	25
S11.3 ALM RVE	14868	20	4x6+TTx6Cu	25.25	39	0.62	2.03	25
S11.4 ALM ESC	12768	25	4x4+TTx4Cu	21.68	30	1.02	2.43	25

Tabla 121. Resultados de cortocircuito del subcuadro S11b del almacén de productos terminados

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.1 ALM CAN	10	4x4+TTx4Cu	4.57	6	868.51	0.43	25;C
S11.2 ALM AR	15	4x6+TTx6Cu	4.57	6	868.51	0.98	32;C
S11.3 ALM RVE	20	4x6+TTx6Cu	4.57	6	728.14	1.39	32;C
S11.4 ALM ESC	25	4x4+TTx4Cu	4.57	6	465.04	1.51	25;C

2.1.2.13.1. Subcuadro S11b.1 - Almacén de canalones

Los resultados del subcuadro S11b.1 del almacén de canalones se muestran en las tablas 112 y 113.

Tabla 122. Resultados del subcuadro S11b.1 del almacén de canalones

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.1.1 AL ALM CA 1	1620	10	4x1.5+TTx1.5Cu	2.46	16.5	0.13	1.95	20
S11.1.2 AL ALM CA 2	1620	20	4x1.5+TTx1.5Cu	2.46	16.5	0.25	2.07	20
S11.1.3 FZ ALM CA 1	9000	10	4x2.5+TTx2.5Cu	14.43	22	0.45	2.27	20
S11.1.4 FZ ALM CA 2	6000	20	4x2.5+TTx2.5Cu	9.62	22	0.58	2.4	20

Tabla 123. Resultados de cortocircuito del subcuadro S11b.1 del almacén de canalones

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.1.1 AL ALM CA 1	10	4x1.5+TTx1.5Cu	1.93	4.5	341.6	0.39	10;C
S11.1.2 AL ALM CA 2	20	4x1.5+TTx1.5Cu	1.93	4.5	212.61	1.02	10;C
S11.1.3 FZ ALM CA 1	10	4x2.5+TTx2.5Cu	1.93	4.5	451.07	0.63	16;C
S11.1.4 FZ ALM CA 2	20	4x2.5+TTx2.5Cu	1.93	4.5	304.64	1.38	16;C

2.1.2.13.2. Subcuadro S11b.2 - Almacén de armarios

Los resultados del subcuadro S11b.2 del almacén de armarios se muestran en las tablas 114 y 115.

Tabla 124. Resultados del subcuadro S11b.2 del almacén de armarios

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.2.1 AL ALM AR 1	1620	20	4x1.5+TTx1.5Cu	2.46	16.5	0.25	2.13	20
S11.2.2 AL ALM AR 2	1620	30	4x1.5+TTx1.5Cu	2.46	16.5	0.38	2.26	20
S11.2.3 FZ ALM AR 1	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	2.78	20
S11.2.4 FZ ALM AR 2	9000	30	4x2.5+TTx2.5Cu	14.43	22	1.35	3.23	20

Tabla 125. Resultados de cortocircuito del subcuadro S11b.2 del almacén de armarios

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.2.1 AL ALM AR 1	20	4x1.5+TTx1.5Cu	1.93	4.5	212.61	1.02	10;C
S11.2.2 AL ALM AR 2	30	4x1.5+TTx1.5Cu	1.93	4.5	154.33	1.93	10;C
S11.2.3 FZ ALM AR 1	20	4x2.5+TTx2.5Cu	1.93	4.5	304.64	1.38	16;C
S11.2.4 FZ ALM AR 2	30	4x2.5+TTx2.5Cu	1.93	4.5	229.98	2.42	16;C

2.1.2.13.3. Subcuadro S11b.3 - Almacén de rejas

Los resultados del subcuadro S11b.3 del almacén de rejas se muestran en las tablas 116 y 117.

Tabla 126. Resultados del subcuadro S11b.3 del almacén de rejas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.3.1 AL ALM RV 1	1620	30	4x1.5+TTx1.5Cu	2.46	16.5	0.38	2.41	20
S11.3.2 AL ALM RV 2	1620	40	4x1.5+TTx1.5Cu	2.46	16.5	0.5	2.54	20
S11.3.3 FZ ALM RV 1	9000	30	4x2.5+TTx2.5Cu	14.43	22	1.35	3.39	20
S11.3.4 FZ ALM RV 2	9000	40	4x2.5+TTx2.5Cu	14.43	22	1.8	3.84	20

Tabla 127. Resultados de cortocircuito del subcuadro S11b.3 del almacén de rejas

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.3.1 AL ALM RV 1	30	4x1.5+TTx1.5Cu	1.62	4.5	149.22	2.07	10;C
S11.3.2 AL ALM RV 2	40	4x1.5+TTx1.5Cu	1.62	4.5	117.95	3.31	10;C
S11.3.3 FZ ALM RV 1	30	4x2.5+TTx2.5Cu	1.62	4.5	218.8	2.67	16;C
S11.3.4 FZ ALM RV 2	40	4x2.5+TTx2.5Cu	1.62	4.5	177.43	4.06	16;C

2.1.2.13.4. Subcuadro S11b.4 - Almacén de escaleras

Los resultados del subcuadro S11b.4 del almacén de escaleras se muestran en las tablas 118 y 119.

Tabla 128. Resultados del subcuadro S11b.4 del almacén de escaleras

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S11.4.1 AL ALM ES 1	1800	40	4x1.5+TTx1.5Cu	2.73	16.5	0.56	2.99	20
S11.4.2 AL ALM ES 2	1440	50	4x1.5+TTx1.5Cu	2.19	16.5	0.56	2.99	20
S11.4.3 FZ ALM ES 2	9000	40	4x2.5+TTx2.5Cu	14.43	22	1.8	4.23	20
S11.4.4 FZ ALM ES 2	6000	50	4x2.5+TTx2.5Cu	9.62	22	1.44	3.87	20

Tabla 129. Resultados de cortocircuito del subcuadro S11b.4 del almacén de escaleras

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S11.4.1 AL ALM ES 1	40	4x1.5+TTx1.5Cu	1.03	4.5	108.05	3.94	10;C
S11.4.2 AL ALM ES 2	50	4x1.5+TTx1.5Cu	1.03	4.5	90.65	5.6	10;B
S11.4.3 FZ ALM ES 2	40	4x2.5+TTx2.5Cu	1.03	4.5	155.93	5.26	16;B
S11.4.4 FZ ALM ES 2	50	4x2.5+TTx2.5Cu	1.03	4.5	133.71	7.15	16;B

2.1.2.14. Subcuadro S12 – Servicios generales centrales

Los resultados del subcuadro S12 de los servicios generales centrales se muestran en las tablas 120 y 121.

Tabla 130. Resultados del subcuadro S12 de los servicios generales centrales

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.1 CE TRA	6568	15	4x2.5+TTx2.5Cu	11.15	22	0.48	0.95	20
S12.2 GR ELE	3708	20	4x2.5+TTx2.5Cu	6.3	22	0.35	0.82	20
S12.3 C PR CA	13182	20	4x4+TTx4Cu	23.78	30	0.85	1.33	25
S12.4 CE COM	30608	15	4x16+TTx16Cu	55.23	77	0.36	0.84	40
S12.5 CE B AG	10958	20	4x2.5+TTx2.5Cu	19.77	22	1.17	1.64	20
S12.6 T AG RE	13466	80	4x4+TTx4Cu	24.3	30	3.5	3.98	25
S12.7 T MANT	7524	15	4x4+TTx4Cu	13.58	30	0.34	0.81	25
S12.8 ALM REC	3708	15	4x2.5+TTx2.5Cu	5.95	22	0.26	0.73	20
S12.9 CA B CA	14252	30	4x6+TTx6Cu	25.71	39	0.89	1.37	25

Tabla 131. Resultados de cortocircuito del subcuadro S12 de los servicios generales centrales

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.1 CE TRA	15	4x2.5+TTx2.5Cu	32.56	35	602.14	0.35	16;C
S12.2 GR ELE	20	4x2.5+TTx2.5Cu	32.56	35	455.88	0.61	16;C
S12.3 C PR CA	20	4x4+TTx4Cu	32.56	35	717.17	0.64	25;C
S12.4 CE COM	15	4x16+TTx16Cu	32.56	35	3194.77	0.51	63;C
S12.5 CE B AG	20	4x2.5+TTx2.5Cu	32.56	35	455.88	0.61	20;C
S12.6 T AG RE	80	4x4+TTx4Cu	32.56	35	185.51	9.51	25;B
S12.7 T MANT	15	4x4+TTx4Cu	32.56	35	942.13	0.37	25;C
S12.8 ALM REC	15	4x2.5+TTx2.5Cu	32.56	35	602.14	0.35	16;C
S12.9 CA B CA	30	4x6+TTx6Cu	32.56	35	717.17	1.43	32;C

2.1.2.14.1. Subcuadro S12.1 - Centro de transformación

Los resultados del subcuadro S12.1 del centro de transformación se muestran en las tablas 122 y 123.

Tabla 132. Resultados del subcuadro S12.1 del centro de transformación

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.1.1 AL CT	720	15	4x1.5+TTx1.5Cu	1.09	16.5	0.08	1.03	20
S12.1.2 FZA CT	6000	10	4x2.5+TTx2.5Cu	9.62	22	0.29	1.24	20
S12.1.3 VEN CT	3680	10	3x2.5+TTx2.5Cu	6.64	22	0.17	1.12	20
S12.1.4 B EST CT	2000	10	4x2.5+TTx2.5Cu	3.61	22	0.09	1.04	20

Tabla 133. Resultados de cortocircuito del subcuadro S12.1 del centro de transformación

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.1.1 AL CT	15	4x1.5+TTx1.5Cu	1.34	4.5	231.22	0.86	10;C
S12.1.2 FZA CT	10	4x2.5+TTx2.5Cu	1.34	4.5	366.79	0.95	16;C
S12.1.3 VEN CT	10	3x2.5+TTx2.5Cu	1.34	4.5	366.79	0.95	16;C
S12.1.4 B EST CT	10	4x2.5+TTx2.5Cu	1.34	4.5	366.79	0.95	16;C

2.1.2.14.2. Subcuadro S12.2 - Grupo electrógeno

Los resultados del subcuadro S12.2 del centro de transformación se muestran en las tablas 124 y 125.

Tabla 134. Resultados del subcuadro S12.2 del centro de transformación

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S12.2.1 AL GR ELEC	180	10	4x1.5+TTx1.5Cu	0.27	16.5	0.01	0.84	20
S12.2.2 FZA GR ELE	6000	10	4x2.5+TTx2.5Cu	9.62	22	0.29	1.11	20

Tabla 135. Resultados de cortocircuito del subcuadro S12.2 del centro de transformación

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.2.1 AL GR ELEC	10	4x1.5+TTx1.5Cu	1.01	4.5	251.91	0.73	10;C
S12.2.2 FZA GR ELE	10	4x2.5+TTx2.5Cu	1.01	4.5	306.82	1.36	16;C

2.1.2.14.3. Subcuadro S12.3 - Central de producción de calor

Los resultados del subcuadro S12.3 de la central de producción de calor se muestran en las tablas 126 y 127.

Tabla 136. Resultados del subcuadro S12.3 de la central de producción de calor

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.3.1 BOM1 AG CA	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	1.5	20
S12.3.2 BOM2 AG CA	3750	10	3x2.5+TTx2.5Cu	6.77	22	0.18	1.5	20
S12.3.3 PUP FM CA1	4000	15	3x2.5+TTx2.5Cu	6.42	22	0.28	1.61	20
S12.3.4 PUP FM CA2	4000	15	4x2.5+TTx2.5Cu	6.42	22	0.28	1.61	20
S12.3.5 AL CE PR C	720	20	4x1.5+TTx1.5Cu	1.09	16.5	0.11	1.44	20
S12.3.6 FZA CE PR C	6000	15	4x2.5+TTx2.5Cu	9.62	22	0.43	1.76	20

Tabla 137. Resultados de cortocircuito del subcuadro S12.3 de la central de producción de calor

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.3.1 BOM1 AG CA	10	3x2.5+TTx2.5Cu	1.59	4.5	406.51	0.77	16;C
S12.3.2 BOM2 AG CA	10	3x2.5+TTx2.5Cu	1.59	4.5	406.51	0.77	16;C
S12.3.3 PUP FM CA1	15	3x2.5+TTx2.5Cu	1.59	4.5	334.14	1.14	16;C
S12.3.4 PUP FM CA2	15	4x2.5+TTx2.5Cu	1.59	4.5	334.14	1.14	16;C
S12.3.5 AL CE PR C	20	4x1.5+TTx1.5Cu	1.59	4.5	202.16	1.13	10;C
S12.3.6 FZA CE PR C	15	4x2.5+TTx2.5Cu	1.59	4.5	334.14	1.14	16;C

2.1.2.14.4. Subcuadro S12.4 - Central de compresores

Los resultados del subcuadro S12.4 de la central de compresores se muestran en las tablas 128 y 129.

Tabla 138. Resultados del subcuadro S12.4 de la central de compresores

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.4.1 BO1 AG RC	2500	10	3x2.5+TTx2.5Cu	4.51	22	0.12	0.95	20
S12.4.2 BO2 AG RC	2500	10	3x2.5+TTx2.5Cu	4.51	22	0.12	0.95	20
S12.4.3 PUP FM CO1	20000	15	3x10+TTx10Cu	36.09	54	0.38	1.21	32
S12.4.4 PUP FM CO2	20000	15	4x10+TTx10Cu	36.09	54	0.38	1.21	32
S12.4.5 AL CEN COM	180	20	4x1.5+TTx1.5Cu	0.27	16.5	0.03	0.86	20
S12.4.6 FZA CE COM	6000	15	4x2.5+TTx2.5Cu	9.62	22	0.43	1.27	20

Tabla 139. Resultados de cortocircuito del subcuadro S12.4 de la central de compresores

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.4.1 BO1 AG RC	10	3x2.5+TTx2.5Cu	7.09	10	725.84	0.24	16;C
S12.4.2 BO2 AG RC	10	3x2.5+TTx2.5Cu	7.09	10	725.84	0.24	16;C
S12.4.3 PUP FM CO1	15	3x10+TTx10Cu	7.09	10	1404.64	1.04	40;C
S12.4.4 PUP FM CO2	15	4x10+TTx10Cu	7.09	10	1404.64	1.04	40;C
S12.4.5 AL CEN COM	20	4x1.5+TTx1.5Cu	7.09	10	258.79	0.69	10;C
S12.4.6 FZA CE COM	15	4x2.5+TTx2.5Cu	7.09	10	523.43	0.47	16;C

2.1.2.14.5. Subcuadro S12.5 - Central de bombeo de aguas

Los resultados del subcuadro S12.5 de la central de bombeo de aguas se muestran en las tablas 130 y 131.

Tabla 140. Resultados del subcuadro S12.5 de la central de bombeo de aguas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.5.1 BOM1 AG AP	6250	10	3x2.5+TTx2.5Cu	11.28	22	0.3	1.94	20
S12.5.2 BOM2 AG AP	6250	10	3x2.5+TTx2.5Cu	11.28	22	0.3	1.94	20
S12.5.3 AL CEN AGU	180	20	4x1.5+TTx1.5Cu	0.27	16.5	0.03	1.67	20
S12.5.4 FZA CE AGU	6000	15	4x2.5+TTx2.5Cu	10.83	22	0.44	2.08	20

Tabla 141. Resultados de cortocircuito del subcuadro S12.5 de la central de bombeo de aguas

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.5.1 BOM1 AG AP	10	3x2.5+TTx2.5Cu	1.01	4.5	306.82	1.36	16;C
S12.5.2 BOM2 AG AP	10	3x2.5+TTx2.5Cu	1.01	4.5	306.82	1.36	16;C
S12.5.3 AL CEN AGU	20	4x1.5+TTx1.5Cu	1.01	4.5	174.04	1.52	10;C
S12.5.4 FZA CE AGU	15	4x2.5+TTx2.5Cu	1.01	4.5	263.71	1.84	16;C

2.1.2.14.6. Subcuadro S12.6 – Central de tratamiento de aguas residuales

Los resultados del subcuadro S12.6 de la central de tratamiento de aguas residuales se muestran en las tablas 132 y 133.

Tabla 142. Resultados del subcuadro S12.6 de la central de tratamiento de aguas residuales

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S12.6.1 BOM1 AG TR	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	4.43	20
S12.6.2 BOM2 AG TR	6250	15	3x2.5+TTx2.5Cu	11.28	22	0.46	4.43	20
S12.6.3 EQ TR AG1	2000	15	3x2.5+TTx2.5Cu	3.21	22	0.14	4.12	20
S12.6.4 EQ TR AG2	2000	15	3x2.5+TTx2.5Cu	3.21	22	0.14	4.12	20
S12.6.5 AL TR AG R	360	20	4x1.5+TTx1.5Cu	0.55	16.5	0.06	4.03	20
S12.6.6 FZ TR AG R	6000	15	4x2.5+TTx2.5Cu	9.62	22	0.43	4.41	20

Tabla 143. Resultados de cortocircuito del subcuadro S12.6 de la central de tratamiento de aguas residuales

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.6.1 BOM1 AG TR	15	3x2.5+TTx2.5Cu	0.41	4.5	143.08	6.24	16;B
S12.6.2 BOM2 AG TR	15	3x2.5+TTx2.5Cu	0.41	4.5	143.08	6.24	16;B
S12.6.3 EQ TR AG1	15	3x2.5+TTx2.5Cu	0.41	4.5	143.08	6.24	16;B
S12.6.4 EQ TR AG2	15	3x2.5+TTx2.5Cu	0.41	4.5	143.08	6.24	16;B
S12.6.5 AL TR AG R	20	4x1.5+TTx1.5Cu	0.41	4.5	111.82	3.68	10;C
S12.6.6 FZ TR AG R	15	4x2.5+TTx2.5Cu	0.41	4.5	143.08	6.24	16;B

2.1.2.14.7. Subcuadro S12.7 - Taller de mantenimiento

Los resultados del subcuadro S12.7 del taller de mantenimiento se muestran en las tablas 134 y 135.

Tabla 144. Resultados del subcuadro S12.7 del taller de mantenimiento

Denominación	Denominación Pot. Cálc. (W)		Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S12.7.1 AL TAL MAN	540	15	4x1.5+TTx1.5Cu	0.82	16.5	0.06	0.87	20
S12.7.2 FZA TAL MA	12000	10	4x4+TTx4Cu	21.65	30	0.38	1.19	25

Tabla 145. Resultados de cortocircuito del subcuadro S12.7 del taller de mantenimiento

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.7.1 AL TAL MAN	15	4x1.5+TTx1.5Cu	2.09	4.5	268.43	0.64	10;C
S12.7.2 FZA TAL MA	10	4x4+TTx4Cu	2.09	4.5	578.92	0.98	25;C

2.1.2.14.8. Subcuadro S12.8 - Almacén de recambios

Los resultados del subcuadro S12.8 del almacén de recambios se muestran en las tablas 136 y 137.

Tabla 146. Resultados del subcuadro S12.8 del almacén de recambios

Denominación	(W) (m)		Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S12.8.1 AL A REC	180	15	4x1.5+TTx1.5Cu	0.27	16.5	0.02	0.75	20
S12.8.2 FZ A REC	6000	15	4x2.5+TTx2.5Cu	9.62	22	0.43	1.17	20

Tabla 147. Resultados de cortocircuito del subcuadro S12.8 del almacén de recambios

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.8.1 AL A REC	15	4x1.5+TTx1.5Cu	1.34	4.5	231.22	0.86	10;C
S12.8.2 FZ A REC	15	4x2.5+TTx2.5Cu	1.34	4.5	306.82	1.36	16;C

2.1.2.14.9. Subcuadro S12.9 - Carga de baterías de las carretillas

Los resultados del subcuadro S12.9 de la carga de baterías se muestran en las tablas 138 y 139.

Tabla 148. Resultados del subcuadro S12.9 de la carga de baterías

Denominación Pot. Cálc. (W)		Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S12.9.1 AL CA B CA	360	20	4x1.5+TTx1.5Cu	0.55	16.5	0.06	1.42	20
S12.9.2 FZ CA B CA	20000	20	4x6+TTx6Cu	30.39	39	0.86	2.23	25

Tabla 149. Resultados de cortocircuito del subcuadro S12.9 de la carga de baterías

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S12.9.1 AL CA B CA	20	4x1.5+TTx1.5Cu	1.59	4.5	202.16	1.13	10;C
S12.9.2 FZ CA B CA	20	4x6+TTx6Cu	1.59	4.5	438.15	3.83	32;C

2.1.2.15. Subcuadro S13 – Servicios generales de la nave

Los resultados del subcuadro S13 de los servicios generales de la nave se muestran en las tablas 140 y 141.

Tabla 150. Resultados del subcuadro S13 de los servicios generales de la nave.

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S13.1 AL NAVE	24710.4	10	4x10+TTx10Cu	37.54	54	0.31	0.7	32
S13.2 FZA NAV	39000	10	3x25+TTx16Cu	70.37	91	0.2	0.59	40
S13.3 TC NAVE	32400	10	3x16+TTx16Cu	51.96	72	0.26	0.65	32
S13.4 CLI NAV	43000	10	3x25+TTx16Cu	77.58	100	0.22	0.61	40

Tabla 151. Resultados de cortocircuito del subcuadro S13 de los servicios generales de la nave

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S13.1 AL NAVE	10	4x10+TTx10Cu	62.24	70	3456.26	0.17	40;C
S13.2 FZA NAV	10	3x25+TTx16Cu	62.24	70	7622.35	0.22	100;C
S13.3 TC NAVE	10	3x16+TTx16Cu	62.24	70	5258.79	0.19	63;C
S13.4 CLI NAV	10	3x25+TTx16Cu	62.24	70	7622.35	0.22	80;C

2.1.2.15.1. Subcuadro S13.1 - Alumbrado de la nave

Los resultados del subcuadro S13.1 del alumbrado de la nave se muestran en las tablas 142 y 143.

Tabla 152. Resultados del subcuadro S13.1 del alumbrado de la nave

Denominación	Pot. Cálc.	Dist. Cálc	Sección	Int. Cálc.	Int. Adm	C.T. Parc	C.T. Tot.	Dimensiones (mm) Tubo,
	(W)	(m)	(mm²)	(A)	(A)	(%)	(%)	Bandeja
S13.1.1 AL G GA C1	1800	160	4x2.5+TTx2.5Cu	2.73	22	0.97	1.67	20
S13.1.2 AL G GA C2	1800	160	4x2.5+TTx2.5Cu	2.73	22	0.97	1.67	20
S13.1.3 AL G LC C1	1080	100	4x1.5+TTx1.5Cu	1.64	16.5	0.63	1.33	20
S13.1.4 AL G LC C2	1080	100	4x1.5+TTx1.5Cu	1.64	16.5	0.63	1.33	20
S13.1.5 AL G CL C1	2160	180	4x2.5+TTx2.5Cu	3.28	22	1.26	1.97	20
S13.1.6 AL G CL C2	2160	180	4x2.5+TTx2.5Cu	3.28	22	1.26	1.97	20
S13.1.7 AL G PCS C1	2160	210	4x4+TTx4Cu	3.28	30	0.97	1.68	25
S13.1.8 AL G PCS C2	2160	210	4x4+TTx4Cu	3.28	30	0.97	1.68	25
S13.1.9 AL G PI C1	2160	170	4x2.5+TTx2.5Cu	3.28	22	1.16	1.86	20
S13.1.10 AL G PI C2	2160	170	4x2.5+TTx2.5Cu	3.28	22	1.16	1.86	20
S13.1.11 AL G MO C1	1080	70	4x1.5+TTx1.5Cu	1.64	16.5	0.38	1.08	20
S13.1.12 AL G MO C2	1080	70	4x1.5+TTx1.5Cu	1.64	16.5	0.38	1.08	20
S13.1.13 AL L PIN	720	66	4x1.5+TTx1.5Cu	1.09	16.5	0.35	1.06	20
S13.1.14 AL L MON	720	26	4x1.5+TTx1.5Cu	1.09	16.5	0.13	0.83	20
S13.1.15 AL SER NAV	115.2	20	4x1.5+TTx1.5Cu	0.18	16.5	0.02	0.72	20
S13.1.16 AL VES NAV	115.2	20	4x1.5+TTx1.5Cu	0.18	16.5	0.02	0.72	20
S13.1.17 AL EXT C1	1080	200	4x4+TTx4Cu	1.64	30	0.35	1.05	25
S13.1.18 AL EXT C2	1080	200	4x4+TTx4Cu	1.64	30	0.35	1.05	25

Tabla 153. Resultados de cortocircuito del subcuadro S13.1 del alumbrado de la nave

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S13.1.1 AL G GA C1	160	4x2.5+TTx2.5Cu	7.67	10	57.67	38.43	10;B
S13.1.2 AL G GA C2	160	4x2.5+TTx2.5Cu	7.67	10	57.67	38.43	10;B
S13.1.3 AL G LC C1	100	4x1.5+TTx1.5Cu	7.67	10	55.4	14.99	10;B
S13.1.4 AL G LC C2	100	4x1.5+TTx1.5Cu	7.67	10	55.4	14.99	10;B

S13.1.5 AL G CL C1	180	4x2.5+TTx2.5Cu	7.67	10	51.36	48.45	10;B
S13.1.6 AL G CL C2	180	4x2.5+TTx2.5Cu	7.67	10	51.36	48.45	10;B
S13.1.7 AL G PCS C1	210	4x4+TTx4Cu	7.67	10	70.05	66.68	10;B
S13.1.8 AL G PCS C2	210	4x4+TTx4Cu	7.67	10	70.05	66.68	10;B
S13.1.9 AL G PI C1	170	4x2.5+TTx2.5Cu	7.67	10	54.33	43.29	10;B
S13.1.10 AL G PI C2	170	4x2.5+TTx2.5Cu	7.67	10	54.33	43.29	10;B
S13.1.11 AL G MO C1	70	4x1.5+TTx1.5Cu	7.67	10	78.61	7.45	10;B
S13.1.12 AL G MO C2	70	4x1.5+TTx1.5Cu	7.67	10	78.61	7.45	10;B
S13.1.13 AL L PIN	66	4x1.5+TTx1.5Cu	7.67	10	83.26	6.64	10;B
S13.1.14 AL L MON	26	4x1.5+TTx1.5Cu	7.67	10	203.83	1.11	10;C
S13.1.15 AL SER NAV	20	4x1.5+TTx1.5Cu	7.67	10	260.39	0.68	10;C
S13.1.16 AL VES NAV	20	4x1.5+TTx1.5Cu	7.67	10	260.39	0.68	10;C
S13.1.17 AL EXT C1	200	4x4+TTx4Cu	7.67	10	73.48	60.6	10;B
S13.1.18 AL EXT C2	200	4x4+TTx4Cu	7.67	10	73.48	60.6	10;B

2.1.2.15.2. Subcuadro S13.2 - Fuerza de la nave

Los resultados del subcuadro S13.2 de la fuerza de la nave se muestran en las tablas 144 y 145.

Tabla 154. Resultados del subcuadro S13.2 de la fuerza de la nave

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T.Parc (%)	C.T.Tot. (%)
S13.2.1 CAN PR L1Z1	50000	84	600/300+TTx600Cu	90.21	1350	0.06	0.28
S13.2.2 CAN PR L1Z2	45000	83	600/300+TTx600Cu	81.19	1350	0.05	0.27
S13.2.3 CAN PR L2Z1	50000	64	600/300+TTx600Cu	90.21	1350	0.04	0.26
S13.2.4 CAN PR L2Z2	50000	64	600/300+TTx600Cu	90.21	1350	0.04	0.26

Tabla 155. Resultados de cortocircuito del subcuadro S13.2 de la fuerza de la nave

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S13.2.1 CAN PR L1Z1	84	600/300+TTx600Cu	69.18	70	16836.11	25.97	100;C
S13.2.2 CAN PR L1Z2	83	600/300+TTx600Cu	69.18	70	16947.21	25.63	100;C
S13.2.3 CAN PR L2Z1	64	600/300+TTx600Cu	69.18	70	19314.25	19.73	100;C
S13.2.4 CAN PR L2Z2	64	600/300+TTx600Cu	69.18	70	19314.25	19.73	100;C

2.1.2.15.3. Subcuadro S13.3 - Tomas de corriente de la nave

Los resultados del subcuadro \$13.3 de las tomas de corriente de la nave se muestran en las tablas 146 y 147.

Tabla 156. Resultados del subcuadro S13.3 de las tomas de corriente de la nave

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S13.3.1 TC NAV L1Z1	36000	85	4x16+TTx16Cu	57.74	72	1.68	2.33	40
S13.3.2 TC NAV L1Z2	36000	85	4x16+TTx16Cu	57.74	72	1.68	2.33	40
S13.3.3 TC NAV L2Z1	36000	65	4x16+TTx16Cu	57.74	72	1.1	1.75	40
S13.3.4 TC NAV L2Z2	36000	65	4x16+TTx16Cu	57.74	72	1.1	1.75	40
S13.3.5 TC SER NAV	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	1.55	20
S13.3.6 TC VES NAV	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	1.55	20

Tabla 157. Resultados de cortocircuito del subcuadro S13.3 de las tomas de corriente de la nave

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S13.3.1 TC NAV L1Z1	85	4x16+TTx16Cu	11.67	15	623.57	13.46	63;B
S13.3.2 TC NAV L1Z2	85	4x16+TTx16Cu	11.67	15	623.57	13.46	63;B
S13.3.3 TC NAV L2Z1	65	4x16+TTx16Cu	11.67	15	786.97	8.45	63;C
S13.3.4 TC NAV L2Z2	65	4x16+TTx16Cu	11.67	15	786.97	8.45	63;C
S13.3.5 TC SER NAV	20	4x2.5+TTx2.5Cu	11.67	15	431.11	0.69	16;C
S13.3.6 TC VES NAV	20	4x2.5+TTx2.5Cu	11.67	15	431.11	0.69	16;C

2.1.2.15.4. Subcuadro S13.4 - Climatización de la nave

Los resultados del subcuadro S13.4 de la climatización de la nave se muestran en las tablas 148 y 149.

Tabla 158. Resultados del subcuadro S13.4 de la climatización de la nave

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S13.4.1 CL VE GA	12500	80	3x4+TTx4Cu	22.55	30	3.2	3.82	20
S13.4.2 CL VE MP	6250	110	3x2.5+TTx2.5Cu	11.28	22	3.35	3.96	20
S13.4.3 CL VE LC	12500	80	3x4+TTx4Cu	22.55	30	3.2	3.82	20
S13.4.4 CL VE PCS	6250	140	3x4+TTx4Cu	11.28	30	2.61	3.22	20
S13.4.5 CL VE PIN	6250	60	3x2.5+TTx2.5Cu	11.28	22	1.83	2.44	20
S13.4.6 CL VE MON	6250	20	3x2.5+TTx2.5Cu	11.28	22	0.61	1.22	20
S13.4.7 CL VE PT	6250	50	3x2.5+TTx2.5Cu	11.28	22	1.52	2.14	20

Tabla 159. Resultados de climatización del subcuadro S13.4 de la climatización de la nave

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S13.4.1 CL VE GA	80	3x4+TTx4Cu	16.92	20	183.26	9.74	25;B
S13.4.2 CL VE MP	110	3x2.5+TTx2.5Cu	16.92	20	84.38	17.95	16;B
S13.4.3 CL VE LC	80	3x4+TTx4Cu	16.92	20	183.26	9.74	25;B
S13.4.4 CL VE PCS	140	3x4+TTx4Cu	16.92	20	105.79	29.24	16;B
S13.4.5 CL VE PIN	60	3x2.5+TTx2.5Cu	16.92	20	153.32	5.44	16;B
S13.4.6 CL VE MON	20	3x2.5+TTx2.5Cu	16.92	20	442.54	0.65	16;C
S13.4.7 CL VE PT	50	3x2.5+TTx2.5Cu	16.92	20	183.26	3.81	16;C

2.1.2.16. Subcuadro S14 – Edificio de oficinas

Los resultados del subcuadro S14 del edificio de oficinas se muestran en las tablas 150 y 151.

Tabla 160. Resultados del subcuadro S14 del edificio de oficinas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S14.1 AL OFI	3322.8	100	4x25+TTx16Cu	5.05	122	0.15	0.56	100x60
S14.2 FZA OFI	75387.67	100	4x25+TTx16Cu	120.91	122	4.13	4.53	100x60

Tabla 161. Resultados de cortocircuito del subcuadro S14 del edificio de oficinas

Denominación	ominación Longitud (m)		IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.1 AL OFI	100	4x25+TTx16Cu	34.29	35	889.52	16.15	10;C
S14.2 FZA OFI	100	4x25+TTx16Cu	34.29	35	889.52	16.15	125;B

2.1.2.16.1. Subcuadro S14.1 - Alumbrado del edificio de oficinas

Los resultados del subcuadro S14.1 del alumbrado del edificio de oficinas se muestran en las tablas 152 y 153.

Tabla 162. Resultados del subcuadro S14.1 del alumbrado del edificio de oficinas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S14.1.1 AL ED OF Z1	1612.8	10	4x1.5+TTx1.5Cu	2.45	16.5	0.13	0.68	20
S14.1.2 AL ED OF Z2	1710	10	4x1.5+TTx1.5Cu	2.6	16.5	0.13	0.69	20

Tabla 163. Resultados de cortocircuito del subcuadro S14.1 del alumbrado del edificio de oficinas

Denominación	Longitud (m)			P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.1.1 AL ED OF Z1	10	4x1.5+TTx1.5Cu	1.97	4.5	344.81	0.39	10;C
S14.1.2 AL ED OF Z2	10	4x1.5+TTx1.5Cu	1.97	4.5	344.81	0.39	10;C

2.1.2.16.1.1. Subcuadro S14.1.1 - Alumbrado del edificio de oficinas – Zona 1

Los resultados del subcuadro S14.1.1 del alumbrado del edificio de oficinas – Zona 1 se muestran en las tablas 154 y 155.

Tabla 164. Resultados del subcuadro S14.1.1 del alumbrado del edificio de oficinas – Zona 1

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S14.1.1.1 AL OF Z11	691.2	15	4x1.5+TTx1.5Cu	1.05	16.5	0.08	0.76	20
S14.1.1.2 AL OF Z12	691.2	15	4x1.5+TTx1.5Cu	1.05	16.5	0.08	0.76	20
S14.1.1.3 AL OFI SV	115.2	40	4x1.5+TTx1.5Cu	0.18	16.5	0.04	0.72	20
S14.1.1.4 AL OFI VT	115.2	40	4x1.5+TTx1.5Cu	0.18	16.5	0.04	0.72	20

Tabla 165. Resultados de cortocircuito del subcuadro S14.1.1 del alumbrado del edificio de oficinas - Zona 1

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.1.1.1 AL OF Z11	15	4x1.5+TTx1.5Cu	0.77	4.5	179.72	1.42	10;C
S14.1.1.2 AL OF Z12	15	4x1.5+TTx1.5Cu	0.77	4.5	179.72	1.42	10;C
S14.1.1.3 AL OFI SV	40	4x1.5+TTx1.5Cu	0.77	4.5	99.95	4.61	10;B
S14.1.1.4 AL OFI VT	40	4x1.5+TTx1.5Cu	0.77	4.5	99.95	4.61	10;B

2.1.2.16.1.2. Subcuadro S14.1.2 - Alumbrado del edificio de oficinas – Zona 2

Los resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2 se muestran en las tablas 156 y 157.

Tabla 166. Resultados del subcuadro S14.1.2 del alumbrado del edificio de oficinas - Zona 2

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S14.1.2.1 AL OF Z21	691.2	30	4x1.5+TTx1.5Cu	1.05	16.5	0.16	0.85	20
S14.1.2.2 AL OF Z22	691.2	30	4x1.5+TTx1.5Cu	1.05	16.5	0.16	0.85	20
S14.1.2.3 AL OF EX 1	154.8	40	4x1.5+TTx1.5Cu	0.24	16.5	0.05	0.74	20
S14.1.2.4 AL OF EX 2	172.8	40	4x1.5+TTx1.5Cu	0.26	16.5	0.05	0.74	20

Tabla 167. Resultados de cortocircuito del subcuadro S14.1.2 del alumbrado del edificio de oficinas – Zona 2

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.1.2.1 AL OF Z21	30	4x1.5+TTx1.5Cu	0.77	4.5	121.53	3.12	10;C
S14.1.2.2 AL OF Z22	30	4x1.5+TTx1.5Cu	0.77	4.5	121.53	3.12	10;C
S14.1.2.3 AL OF EX 1	40	4x1.5+TTx1.5Cu	0.77	4.5	99.95	4.61	10;B
S14.1.2.4 AL OF EX 2	40	4x1.5+TTx1.5Cu	0.77	4.5	99.95	4.61	10;B

2.1.2.16.2. Subcuadro S14.2 -Fuerza del edificio de oficinas

Los resultados del subcuadro S14.2 de la fuerza del edificio de oficinas se muestran en las tablas 158 y 159.

Tabla 168. Resultados del subcuadro S14.2 de la fuerza del edificio de oficinas

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S14.2.1 FZA OFI Z1	28872.96	10	4x10+TTx10Cu	46.31	54	0.38	4.92	32
S14.2.1 FZA OFI Z2	48980.32	10	4x25+TTx16Cu	78.55	91	0.26	4.79	50

Tabla 169. Resultados de cortocircuito del subcuadro S14.2 de la fuerza del edificio de oficinas

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.2.1 FZA OFI Z1	10	4x10+TTx10Cu	1.97	4.5	719.13	3.95	50;C
S14.2.1 FZA OFI Z2	10	4x25+TTx16Cu	1.97	4.5	812.52	19.36	80;C

2.1.2.16.2.1. Subcuadro S14.2.1 - Fuerza del edificio de oficinas – Zona 1

Los resultados del subcuadro S14.2.1 de la fuerza del edificio de oficinas – Zona 1 se muestran en las tablas 160 y 161.

Tabla 170. Resultados del subcuadro S14.2.1 de la fuerza del edificio de oficinas – Zona 1

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S14.2.1.1 FZ EA Z11	9000	15	4x2.5+TTx2.5Cu	14.43	22	0.68	5.59	20
S14.2.1.2 FZ EA Z12	9000	15	4x2.5+TTx2.5Cu	14.43	22	0.68	5.59	20
S14.2.1.3 CL EA Z11	12328	20	3x2.5+TTx2.5Cu	19.77	22	1.31	6.23	20
S14.2.1.4 CL EA Z12	12328	20	3x2.5+TTx2.5Cu	19.77	22	1.31	6.23	20

Tabla 171. Resultados de cortocircuito del subcuadro S14.2.1 de la fuerza del edificio de oficinas – Zona 1

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.2.1.1 FZ OF Z11	15	4x2.5+TTx2.5Cu	1.6	4.5	334.56	1.14	16;C
S14.2.1.2 FZ OF Z12	15	4x2.5+TTx2.5Cu	1.6	4.5	334.56	1.14	16;C
S14.2.1.3 CL OF Z11	20	3x2.5+TTx2.5Cu	1.6	4.5	283.95	1.59	20;C
S14.2.1.4 CL OF Z12	20	3x2.5+TTx2.5Cu	1.6	4.5	283.95	1.59	20;C

2.1.2.16.2.2. Subcuadro S14.2.2 - Fuerza del edificio de oficinas – Zona 2

Los resultados del subcuadro S14.2.2 de la fuerza del edificio de oficinas – Zona 2 se muestran en las tablas 162 y 163.

Tabla 172. Resultados del subcuadro S14.2.2 de la fuerza del edificio de oficinas – Zona 2

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S14.2.2.1 FZ OF Z21	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	5.7	20
S14.2.2.2 FZ OF Z22	9000	20	4x2.5+TTx2.5Cu	14.43	22	0.9	5.7	20
S14.2.2.3 CL OF Z21	12328	25	3x2.5+TTx2.5Cu	19.77	22	1.64	6.44	20
S14.2.2.4 CL OF Z22	12328	25	3x2.5+TTx2.5Cu	19.77	22	1.64	6.44	20
S14.2.2.5 FZ OF EX 1	3000	40	4x2.5+TTx2.5Cu	4.81	22	0.56	5.36	20
S14.2.2.6 FZ OF EX 2	6000	40	4x2.5+TTx2.5Cu	9.62	22	1.15	5.95	20
S14.2.2.7 CLI OF EX1	12328	45	3x6+TTx6Cu	19.77	39	1.12	5.92	25
S14.2.2.8 CLI OF EX2	12328	45	3x6+TTx6Cu	19.77	39	1.12	5.92	25

Tabla 173. Resultados de cortocircuito del subcuadro S14.2.2 de la fuerza del edificio de oficinas – Zona 2

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S14.2.2.1 FZ OF Z21	20	4x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C
S14.2.2.2 FZ OF Z22	20	4x2.5+TTx2.5Cu	1.8	4.5	297.45	1.44	16;C
S14.2.2.3 CL OF Z21	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	20;C
S14.2.2.4 CL OF Z22	25	3x2.5+TTx2.5Cu	1.8	4.5	256.75	1.94	20;C
S14.2.2.5 FZ OF EX 1	40	4x2.5+TTx2.5Cu	1.8	4.5	182.04	3.86	16;C
S14.2.2.6 FZ OF EX 2	40	4x2.5+TTx2.5Cu	1.8	4.5	182.04	3.86	16;C
S14.2.2.7 CLI OF EX1	45	3x6+TTx6Cu	1.8	4.5	309.72	7.67	20;C
S14.2.2.8 CLI OF EX2	45	3x6+TTx6Cu	1.8	4.5	309.72	7.67	20;C

2.1.2.17. Subcuadro S16 – Alumbrado de emergencia

Los resultados del subcuadro S16 del alumbrado de emergencia se muestran en las tablas 164 y 165.

Tabla 174. Resultados del subcuadro S16 del alumbrado de emergencia

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)	Int. Adm (A)	C.T. Parc (%)	C.T. Tot. (%)	Dimensiones (mm) Tubo, Bandeja
S16.1 VIG ACO	180	60	4x1.5+TTx1.5Cu	0.27	16.5	0.08	0.28	20
S16.2 VIG AAL	180	70	4x1.5+TTx1.5Cu	0.27	16.5	0.1	0.3	20
S16.3 VIG AZI	180	80	4x1.5+TTx1.5Cu	0.27	16.5	0.11	0.31	20
S16.4 VIG AAC	180	90	4x1.5+TTx1.5Cu	0.27	16.5	0.13	0.32	20
S16.5 VIG ZGA	540	100	4x1.5+TTx1.5Cu	0.82	16.5	0.42	0.62	20
S16.6 VIG LCO	360	70	4x1.5+TTx1.5Cu	0.55	16.5	0.2	0.39	20
S16.7 VIG COL	540	90	4x1.5+TTx1.5Cu	0.82	16.5	0.38	0.58	20
S16.8 VIG PCS	540	120	4x2.5+TTx2.5Cu	0.82	22	0.3	0.5	20
S16.9 VIG ZPI	540	50	4x1.5+TTx1.5Cu	0.82	16.5	0.21	0.41	20
S16.10 VIG ZME	360	20	4x1.5+TTx1.5Cu	0.55	16.5	0.06	0.26	20
S16.11 VIG ACA	180	25	4x1.5+TTx1.5Cu	0.27	16.5	0.03	0.23	20
S16.12 VIG AAM	180	35	4x1.5+TTx1.5Cu	0.27	16.5	0.05	0.25	20
S16.13 VIG ARV	180	45	4x1.5+TTx1.5Cu	0.27	16.5	0.06	0.26	20
S16.14 VIG AES	180	55	4x1.5+TTx1.5Cu	0.27	16.5	0.08	0.28	20
S16.15 EVA ACO	90	60	4x1.5+TTx1.5Cu	0.14	16.5	0.04	0.24	20
S16.16 EVA AAL	90	70	4x1.5+TTx1.5Cu	0.14	16.5	0.05	0.25	20
S16.17 EVA AZI	90	80	4x1.5+TTx1.5Cu	0.14	16.5	0.06	0.26	20
S16.18 EVA AAC	90	90	4x1.5+TTx1.5Cu	0.14	16.5	0.06	0.26	20
S16.19 EVA ZGA	306	100	4x1.5+TTx1.5Cu	0.46	16.5	0.24	0.44	20
S16.20 EVA LCO	198	70	4x1.5+TTx1.5Cu	0.3	16.5	0.11	0.31	20
S16.21 EVA COL	306	90	4x1.5+TTx1.5Cu	0.46	16.5	0.21	0.41	20
S16.22 EVA PCS	198	120	4x2.5+TTx2.5Cu	0.3	22	0.11	0.31	20
S16.23 EVA ZPI	198	50	4x1.5+TTx1.5Cu	0.3	16.5	0.08	0.28	20
S16.24 EVA ZME	198	20	4x1.5+TTx1.5Cu	0.3	16.5	0.03	0.23	20

S16.25 EVA ACA	90	25	4x1.5+TTx1.5Cu	0.14	16.5	0.02	0.22	20
S16.26 EVA AAM	90	35	4x1.5+TTx1.5Cu	0.14	16.5	0.02	0.22	20
S16.27 EVA ARV	90	45	4x1.5+TTx1.5Cu	0.14	16.5	0.03	0.23	20
S16.28 EVA AES	90	55	4x1.5+TTx1.5Cu	0.14	16.5	0.04	0.24	20
S16.29 ANT ACO	72	60	4x1.5+TTx1.5Cu	0.11	16.5	0.03	0.23	20
S16.30 ANT AAL	72	70	4x1.5+TTx1.5Cu	0.11	16.5	0.04	0.24	20
S16.31 ANT AZI	72	80	4x1.5+TTx1.5Cu	0.11	16.5	0.04	0.24	20
S16.32 ANT AAC	72	90	4x1.5+TTx1.5Cu	0.11	16.5	0.05	0.25	20
S16.33 ANT ZGA	252	100	4x1.5+TTx1.5Cu	0.38	16.5	0.2	0.39	20
S16.34 ANT LCO	162	70	4x1.5+TTx1.5Cu	0.25	16.5	0.09	0.29	20
S16.35 ANT COL	252	90	4x1.5+TTx1.5Cu	0.38	16.5	0.18	0.38	20
S16.36 ANT PCS	162	120	4x2.5+TTx2.5Cu	0.25	22	0.09	0.29	20
S16.37 ANT ZPI	162	50	4x1.5+TTx1.5Cu	0.25	16.5	0.06	0.26	20
S16.38 ANT ZME	162	20	4x1.5+TTx1.5Cu	0.25	16.5	0.03	0.22	20
S16.39 ANT ACA	72	25	4x1.5+TTx1.5Cu	0.11	16.5	0.01	0.21	20
S16.40 ANT AAM	72	35	4x1.5+TTx1.5Cu	0.11	16.5	0.02	0.22	20
S16.41 ANT ARV	72	45	4x1.5+TTx1.5Cu	0.11	16.5	0.03	0.22	20
S16.42 ANT AES	72	55	4x1.5+TTx1.5Cu	0.11	16.5	0.03	0.23	20

Tabla 175. Resultados de cortocircuito del subcuadro S16 del alumbrado de emergencia

	Longitud	Sección	IpccI	P de C	IpccF		Curva
Denominación	(m)	(mm²)	(kA)	(kA)	(A)	tmcicc (sg)	válida
S16.1 VIG ACO	60	4x1.5+TTx1.5Cu	13.28	15	92.41	5.39	10;B
S16.2 VIG AAL	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.3 VIG AZI	80	4x1.5+TTx1.5Cu	13.28	15	69.57	9.51	10;B
S16.4 VIG AAC	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.5 VIG ZGA	100	4x1.5+TTx1.5Cu	13.28	15	55.78	14.79	10;B
S16.6 VIG LCO	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.7 VIG COL	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.8 VIG PCS	120	4x2.5+TTx2.5Cu	13.28	15	77.2	21.44	10;B
S16.9 VIG ZPI	50	4x1.5+TTx1.5Cu	13.28	15	110.55	3.76	10;C
S16.10 VIG ZME	20	4x1.5+TTx1.5Cu	13.28	15	269.02	0.64	10;C
S16.11 VIG ACA	25	4x1.5+TTx1.5Cu	13.28	15	217.14	0.98	10;C
S16.12 VIG AAM	35	4x1.5+TTx1.5Cu	13.28	15	156.71	1.87	10;C
S16.13 VIG ARV	45	4x1.5+TTx1.5Cu	13.28	15	122.59	3.06	10;C
S16.14 VIG AES	55	4x1.5+TTx1.5Cu	13.28	15	100.67	4.54	10;C
S16.15 EVA ACO	60	4x1.5+TTx1.5Cu	13.28	15	92.41	5.39	10;B
S16.16 EVA AAL	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.17 EVA AZI	80	4x1.5+TTx1.5Cu	13.28	15	69.57	9.51	10;B
S16.18 EVA AAC	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.19 EVA ZGA	100	4x1.5+TTx1.5Cu	13.28	15	55.78	14.79	10;B
S16.20 EVA LCO	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.21 EVA COL	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.22 EVA PCS	120	4x2.5+TTx2.5Cu	13.28	15	77.2	21.44	10;B
S16.23 EVA ZPI	50	4x1.5+TTx1.5Cu	13.28	15	110.55	3.76	10;C
S16.24 EVA ZME	20	4x1.5+TTx1.5Cu	13.28	15	269.02	0.64	10;C
S16.25 EVA ACA	25	4x1.5+TTx1.5Cu	13.28	15	217.14	0.98	10;C
S16.26 EVA AAM	35	4x1.5+TTx1.5Cu	13.28	15	156.71	1.87	10;C
S16.27 EVA ARV	45	4x1.5+TTx1.5Cu	13.28	15	122.59	3.06	10;C
S16.28 EVA AES	55	4x1.5+TTx1.5Cu	13.28	15	100.67	4.54	10;C
S16.29 ANT ACO	60	4x1.5+TTx1.5Cu	13.28	15	92.41	5.39	10;B
S16.30 ANT AAL	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.31 ANT AZI	80	4x1.5+TTx1.5Cu	13.28	15	69.57	9.51	10;B
S16.32 ANT AAC	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.33 ANT ZGA	100	4x1.5+TTx1.5Cu	13.28	15	55.78	14.79	10;B
S16.34 ANT LCO	70	4x1.5+TTx1.5Cu	13.28	15	79.38	7.3	10;B
S16.35 ANT COL	90	4x1.5+TTx1.5Cu	13.28	15	61.92	12	10;B
S16.36 ANT PCS	120	4x2.5+TTx2.5Cu	13.28	15	77.2	21.44	10;B

S16.37 ANT ZPI	50	4x1.5+TTx1.5Cu	13.28	15	110.55	3.76	10;C
S16.38 ANT ZME	20	4x1.5+TTx1.5Cu	13.28	15	269.02	0.64	10;C
S16.39 ANT ACA	25	4x1.5+TTx1.5Cu	13.28	15	217.14	0.98	10;C
S16.40 ANT AAM	35	4x1.5+TTx1.5Cu	13.28	15	156.71	1.87	10;C
S16.41 ANT ARV	45	4x1.5+TTx1.5Cu	13.28	15	122.59	3.06	10;C
S16.42 ANT AES	55	4x1.5+TTx1.5Cu	13.28	15	100.67	4.54	10;C

2.1.2.18. Subcuadro S17 – Fuerza de emergencia

Los resultados del subcuadro S17 de la fuerza de emergencia se muestran en las tablas 166 y 167.

Tabla 176. Resultados del subcuadro S17 de la fuerza de emergencia

Denominación	Pot. Cálc. (W)	Dist. Cálc (m)	Sección (mm²)	Int. Cálc. (A)		C.T. Parc (%)		Dimensiones (mm) Tubo, Bandeja
S17.1 CUB IMP	24656	70	3x10+TTx10Cu	44.49	54	2.25	2.61	32
S17.2 PR PIN DE1	3680	70	3x2.5+TTx2.5Cu	6.64	22	1.22	1.58	20
S17.3 PR PIN DE2	3680	70	3x2.5+TTx2.5Cu	6.64	22	1.22	1.58	20

Tabla 177. Resultados de cortocircuito del subcuadro S17 de la fuerza de emergencia

Denominación	Longitud (m)	Sección (mm²)	IpccI (kA)	P de C (kA)	IpccF (A)	tmcicc (sg)	Curva válida
S17.1 CUB IMP	70	3x10+TTx10Cu	13.28	15	492.64	8.43	50;B
S17.2 PR PIN DE1	70	3x2.5+TTx2.5Cu	13.28	15	131.15	7.43	16;B
S17.3 PR PIN DE2	70	3x2.5+TTx2.5Cu	13.28	15	131.15	7.43	16;B

2.2. CÁLCULO DEL CENTRO DE TRANSFORMACIÓN

El centro de transformación se ha calculado usando el módulo CT de cálculo de centros de transformación de interior y de tipo intemperie del programa DMELECT, en su versión de 2017.

2.2.1. Intensidad en alta tensión

En un transformador trifásico la intensidad del circuito primario viene dada por la expresión:

$$I_P = \frac{S}{1,732 \cdot U_P}$$

Donde:

• I_P : Intensidad primaria (A)

• S: Potencia del transformador (kVA)

• U_P : Tensión compuesta primaria (kV)

Se obtienen los siguientes datos:

Tabla 178. Resultados de intensidad en el primario

Transformador	Potencia	U_P	I_P
Trafo 1	1600 kVA	20 kV	46,19 A
Trafo 2	1600 kVA	20 kV	46,19 A

2.2.2. Intensidad en baja tensión

En un transformador trifásico la intensidad del circuito secundario viene dada por la expresión:

$$I_S = \frac{1000 \cdot S}{1,732 \cdot U_P}$$

Donde:

• I_S : Intensidad secundaria (A)

• S: Potencia del transformador (kVA)

• U_S : Tensión compuesta secundaria (kV)

Se obtienen los siguientes datos:

Tabla 179. Resultados de intensidad en el secundario

T	ransformador	Potencia	U_S	I_S
	Trafo 1	1600 kVA	400 V	2309,47 A
	Trafo 2	1600 kVA	400 V	2309,47 A

2.2.3. Cortocircuito

Para el cálculo de la intensidad primaria de cortocircuito se tendrá en cuenta una potencia de cortocircuito de 350 MVA en la red de distribución, dato proporcionado por la compañía suministradora.

Para el cálculo de la intensidad primaria para cortocircuito en el lado de Alta Tensión utilizaremos la siguiente expresión:

$$I_{CCP} = \frac{S_{CC}}{1,732 \cdot U_P}$$

Donde:

• I_{CCP} : Intensidad de cortocircuito primaria (kA)

• S_{CC} : Potencia de cortocircuito de la red (kVA)

• U_P : Tensión compuesta primaria (kV)

Se obtienen los siguientes datos:

Tabla 180. Resultados de corriente de cortocircuito primaria

S_{CC}	U_P	I_{CCP}
350 MVA	20 kV	10.1 kA

Para el cálculo de la Intensidad secundaria para cortocircuito en el lado de Baja Tensión (despreciando la impedancia de la red de Alta Tensión) utilizaremos la siguiente expresión:

$$I_{CCS} = \frac{100 \cdot S}{1,732 \cdot U_{CC}(\%) \cdot U_{S}}$$

Donde:

• I_{CCS} : Intensidad de cortocircuito secundaria (kA)

• S: Potencia del transformador (kVA)

• U_{CC} : Tensión de cortocircuito del transformador (%)

• U_S : Tensión compuesta en carga en el secundario (kV)

Se obtienen los siguientes datos:

Tabla 181 Resultados de corriente de cortocircuito secundaria

Transformador	Potencia	U_S	Ucc	I _{ccs}
Trafo 1	1600 kVA	400 V	6 %	38.49 kA
Trafo 2	1600 kVA	400V	6 %	38.49 kA

2.2.4. Embarrado

Las características del embarrado son:

• Intensidad asignada: 400 A.

• Límite térmico, 1 s. : 12.5 kA eficaces.

Límite electrodinámico: 31.25 kA cresta.

Por lo tanto, dicho embarrado debe soportar la intensidad nominal sin superar la temperatura de régimen permanente (comprobación por densidad de corriente), así como los esfuerzos electrodinámicos y térmicos que se produzcan durante un cortocircuito.

2.2.4.1. Comprobación por densidad de corriente

La comprobación por densidad de corriente tiene por objeto verificar que el conductor que constituye el embarrado es capaz de conducir la corriente nominal máxima sin sobrepasar la densidad de corriente máxima en régimen permanente. Dado que se utilizan celdas bajo

envolvente metálica fabricadas por Orma-SF6 conforme a la normativa vigente, se garantiza lo indicado para la intensidad asignada de 400 A.

2.2.4.2. Comprobación por solicitación electrodinámica

La resistencia mecánica de los conductores deberá verificar, en caso de cortocircuito que:

$$\sigma_{m\acute{a}x} \ge \frac{I_{CCP}^2 \cdot L^2}{60 \cdot d \cdot W}$$

Donde:

- $\sigma_{m\acute{a}x}$: Valor de la carga de rotura de tracción del material de los conductores. Para cobre semiduro 2.800 kg/cm^2
- I_{CCP} : Intensidad permanente de cortocircuito trifásico (kA)
- L: Separación longitudinal entre apoyos (m)
- d: Separación entre fases (cm)
- W: Módulo resistente de los conductores (cm³)

Dado que se utilizan celdas bajo envolvente metálica fabricadas por Orma-SF6 conforme a la normativa vigente se garantiza el cumplimiento de la expresión anterior.

2.2.4.3. Comprobación por solicitación térmica a cortocircuito

La sobreintensidad máxima admisible en cortocircuito para el embarrado se determina:

$$I_{th} = \alpha \cdot S \cdot \sqrt{\frac{\Delta T}{t}}$$

Donde:

- I_{th} : Intensidad eficaz (A)
- α : Para el cobre tiene un valor de 13.
- S: Sección del embarrado (mm^2)
- ΔT : Incremento máximo de la temperatura. Para el cobre tiene un valor de 150 °C.
- t: Tiempo de duración del cortocircuito (s)

Puesto que se utilizan celdas bajo envolvente metálica fabricadas por Orma-SF6 conforme a la normativa vigente, se garantiza que $I_{th} \ge 12,5 \ kA$ durante 1 segundo.

2.2.5. Protecciones

Los transformadores están protegidos tanto en AT como en BT. En Alta tensión la protección la efectúan las celdas asociadas a esos transformadores, y en baja tensión la protección se incorpora en los cuadros de BT.

2.2.5.1. Protección general en AT.

La protección general en AT de este CT se realiza utilizando una celda de interruptor automático dotado de relé electrónico con captadores toroidales de intensidad por fase, cuya señal alimentará a un disparador electromecánico liberando el dispositivo de retención del interruptor y así efectuar la protección a sobrecargas, cortocircuitos.

2.2.5.2. Protección en Baja Tensión.

En el circuito de baja tensión de cada transformador se instalará un Cuadro de Distribución de 4 salidas con posibilidad de ampliación. Se instalarán interruptores automáticos en todas las salidas, con una intensidad nominal igual al valor de la intensidad exigida a esa salida, y un poder de corte mayor o igual a la corriente de cortocircuito en el lado de baja tensión, calculada en el apartado 2.2.3.

La descarga del transformador al cuadro de Baja Tensión se realizará con conductores XLPE 0,6/1kV 240 mm2 Al unipolares instalados al aire cuya intensidad admisible a 40°C de temperatura ambiente es de 390 A.

Para ambos transformadores se emplearán 6 conductores por fase y 3 para el neutro.

2.2.6. Ventilación del Centro de Transformación

Para el cálculo de la superficie mínima de las rejillas de entrada de aire en el edificio del centro de transformación, se utiliza la siguiente expresión:

$$S_r = \frac{W_{cu} + W_{fe}}{0.24 \cdot k \cdot \sqrt{h \cdot \Delta T^3}}$$

Donde:

- S_r : Superficie mínima de la rejilla de entrada de ventilación del transformador (m^2)
- W_{cu} : Perdidas en el cobre del transformador (kW)
- W_{fe} : Perdidas en el hierro del transformador (kW)
- k: Coeficiente en función de la forma de las rejillas de entrada de aire, 0,5.
- h: Distancia vertical entre centros de las rejillas de entrada y salida, 1.7 m.
- ΔT : Diferencia de temperatura entre el aire de salida y el de entrada, 15 °C.

Tabla 182. Resultados de rejillas

Transformador	Potencia	Perdidas (Wcu + Wfe)	Sr
Trafo 1	1600 kVA	24 kW	2.64 m^2
Trafo 2	1600 kVA	24 kW	2.64 m^2

2.2.7. Pozo apagafuegos

No es necesario dimensionar pozo apagafuegos por tratarse de transformadores con aislamiento seco.

2.2.8. Instalación de puesta a tierra

2.2.8.1. Características del suelo

Según la investigación previa del terreno donde se instalará este Centro de Transformación, se determina una resistividad media superficial de 150 Ω m.

2.2.8.2. Corrientes máximas de puesta a tierra y tiempo máximo correspondiente a la eliminación del defecto.

Los parámetros de la red que intervienen en los cálculos de faltas a tierras son el tipo de neutro y el tipo de protecciones en el origen de la linea:

El neutro de la red puede estar aislado, rígidamente unido a tierra, o a través de impedancia (resistencia o reactancia), lo cual producirá una limitación de las corrientes de falta a tierra.

Cuando se produce un defecto, éste es eliminado mediante la apertura de un elemento de corte que actúa por indicación de un relé de intensidad, el cual puede actuar en un tiempo fijo (relé a tiempo independiente), o según una curva de tipo inverso (relé a tiempo dependiente).

Asimismo, pueden existir reenganches posteriores al primer disparo que sólo influirán en los cálculos si se producen en un tiempo inferior a 0,5 s.

Según los datos de la red proporcionados por la compañía suministradora, se tiene:

- Intensidad máxima de defecto a tierra, *Idmáx*: 300 A
- Tiempo máximo de eliminación del defecto: 0,7 segundos.

2.2.8.3. Diseño de la instalación de tierra

Para los cálculos a realizar se emplearán los procedimientos del "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría", editado por UNESA.

En lo referente a la tierra de protección, se conectarán a este sistema las partes metálicas de la instalación que no estén en tensión normalmente, pero pueden estarlo por defectos de aislamiento, averías o causas fortuitas, tales como chasis y bastidores de los aparatos de maniobra, envolventes metálicas de las cabinas prefabricadas y carcasas de los transformadores.

En cuanto a la tierra de servicio, se conectarán a este sistema el neutro del transformador y la tierra de los secundarios de los transformadores de tensión e intensidad de la celda de medida.

Para la puesta a tierra de servicio se utilizarán picas en hilera de diámetro 14 mm y longitud 2 m., unidas mediante conductor desnudo de Cu de 50 mm2 de sección. El valor de la resistencia de puesta a tierra de este electrodo deberá ser inferior a 37 W.

La conexión desde el centro hasta la primera pica del electrodo se realizará con cable de Cu de 50 mm2, aislado de 0,6/1 kV bajo tubo plástico con grado de protección al impacto mecánico de 7 como mínimo.

2.2.8.4. Resistencia del sistema de tierra

Las características de la red de alimentación son:

- Tensión de alimentación: 20.000 V
- Puesta atierra del neutro: Desconocida
- Nivel de aislamiento de las instalaciones de Baja Tensión: 10.000 V
- Características del terreno: $\rho_{terreno} = 150 \ \Omega m$; $\rho_{hormig\acute{o}n} = 3000 \ \Omega m$

Para el caso de la tierra de protección, para el cálculo de la resistencia de la puesta a tierra de las masas (R_t) , la intensidad y tensión de defecto (I_d, UE) , se utilizarán las siguientes fórmulas:

$$R_t = K_r \cdot \rho$$
$$I_d = I_{d,m\acute{a}x}$$

$$UE = R_t \cdot I_d$$

El electrodo adecuado tiene las siguientes propiedades:

- Configuración seleccionada: 80-40/5/82
- Geometría: Anillo
- Dimensiones: 8 x 4 mProfundidad del electrodo: 0,5 m
- Número de picas: 8
- Longitud de las picas: 2 m

Los parámetros característicos del electrodo son:

- De la resistencia: $K_r = 0.065 \frac{\Omega m}{m}$
- De la tensión de paso: $K_p = 0.0134 \frac{V}{(\Omega m) \cdot A}$
- De la tensión de contacto exterior: $K_C = 0.0284 \frac{V}{(\Omega m) \cdot A}$

Con estos parámetros se obtienen los siguientes valores:

$$R_t = 9,75 \Omega$$

$$I_d = 300 A$$

$$UE = 2925 V$$

Para el caso de la tierra de servicio, el electrodo tiene las siguientes propiedades:

- Configuración seleccionada: 5/32
- Geometría: Picas en hilera
- Profundidad del electrodo: 0.5 m
- Número de picas: 3
- Longitud de las picas: 2 m
- Separación entre picas: 3 m

Los parámetros característicos del electrodo son:

• De la resistencia: $K_r = 0.135 \frac{\Omega m}{m}$

Se obtiene el siguiente valor:

$$R_{t,NFIJTRO} = 20,25 \Omega$$

2.2.8.5. Tensiones en el exterior de la instalación

Con el fin de evitar la aparición de tensiones de contacto elevadas en el exterior de la instalación, las puertas y rejillas metálicas que dan al exterior del centro no tendrán contacto eléctrico alguno con masas conductoras que, a causa de defectos o averías, sean susceptibles de quedar sometidas a tensión.

Con estas medidas de seguridad, no será necesario calcular las tensiones de contacto en el exterior, ya que estas serán prácticamente nulas. Por otra parte, la tensión de paso en el exterior vendrá dada por las características del electrodo y la resistividad del terreno según la expresión:

$$U'_P = K_P \cdot \rho \cdot I_d$$

Sustituyendo valores se obtiene un valor de la tensión de paso exterior de:

$$U'_{P} = 603 V$$

2.2.8.6. Tensiones en el interior de la instalación.

En el piso del Centro de Transformación se instalará un mallazo electrosoldado, con redondos de diámetro no inferior a 4 mm formando una retícula no superior a 0,30 x 0,30 m. Este mallazo se conectará como mínimo en dos puntos opuestos de la puesta a tierra de protección del Centro.

Dicho mallazo estará cubierto por una capa de hormigón de 10 cm. como mínimo.

Con esta medida se consigue que la persona que deba acceder a una parte que pueda quedar en tensión, de forma eventual, estará sobre una superficie equipotencial, con lo que desaparece el riesgo de la tensión de contacto y de paso interior.

De esta forma no será necesario el cálculo de las tensiones de contacto y de paso en el interior, ya que su valor será prácticamente cero.

Asimismo, la existencia de una superficie equipotencial conectada al electrodo de tierra hace que la tensión de paso en el acceso sea equivalente al valor de la tensión de contacto exterior:

$$U'_{P}(acc) = K_{c} \cdot \rho \cdot I_{d}$$

 $U'_{P}(acc) = 1278 V$

2.2.8.7. Tensiones aplicadas

Para la obtención de los valores máximos admisibles de la tensión de paso exterior y en el acceso, se utilizan las siguientes expresiones:

$$\begin{split} U_P &= 10 \cdot U_{ca} \cdot \left[1 + \frac{2 \cdot R_{ac} + 6 \cdot \rho_s \cdot C_s}{1000} \right] \\ U_P(acc) &= 10 \cdot U_{ca} \cdot \left[1 + \frac{2 \cdot R_{ac} + 3 \cdot \rho_s \cdot C_s + 3 \cdot \rho_H}{1000} \right] \\ C_S &= 1 - 0,106 \cdot \left[\frac{1 - \frac{\rho}{\rho_S}}{2 \cdot h_S + 0,106} \right] \\ t &= t' + t'' \end{split}$$

Donde:

- U_P : Tensión de paso admisible en el exterior (V)
- $U_P(acc)$: Tensión en el acceso admisible (V)
- U_{ca} : Tensión de contacto aplicada admisible según ITC-RAT 13 (Tabla 1) (V)
- R_{ac} : Resistencias adicionales, como calzado, aislamiento de la torre, etc. (Ω)
- C_S : Coeficiente reductor de la resistencia superficial del suelo
- h_s : Espesor de la capa superficial del terreno (m)
- ρ : Resistividad natural del terreno (Ωm)
- ρ_s : Resistividad superficial del terreno (Ωm)
- ρ_H : Resistividad del hormigón (3000 Ωm)
- t: Tiempo de duración de la falla (s)
- *t'*: Tiempo de desconexión inicial (*s*)
- t": Tiempo de la segunda desconexión (s)

Según el punto 2.2.8.2, el tiempo de duración de la falta es 0,7 segundos, por lo tanto:

$$t = t' = 0.7$$
 segundos

Sustituyendo valores en las expresiones anteriores se obtienen los siguientes resultados:

$$U_P = 9.746,8 V$$

 $U_P(acc) = 23.871,4$
 $C_S = 1$

Los resultados obtenidos se presentan en la siguiente tabla:

Tabla 183. Resultados de tensiones

Tensión de paso en el exterior y de paso en el acceso.				
Concepto Valor calculado Condición Valor			Valor admisible	
Tensión de paso en el exterior	$U'_{P} = 603 \text{ V}$	<u> </u>	$U'_P = 9746.8 \text{ V}$	
Tensión de paso en el acceso	$U'_{P} (acc) = 1278 \text{ V}$	<u> </u>	$U'_P (acc) = 23871,4 \text{ V}$	

Tabla 184. Resultados de tensión e intensidad de defecto

Tensión e intensidad de defecto				
Concepto Valor calculado Condición Valor admi				
Aumento del potencial de tierra	UE = 292 V	<u> </u>	$U_{bt} = 9746,8 \text{ V}$	
Intensidad de defecto	$I_d = 300 \text{ A}$	>	-	

2.2.8.8. Tensiones transferibles al exterior.

Al no existir medios de transferencia de tensiones al exterior no se considera necesario un estudio para su reducción o eliminación.

No obstante, para garantizar que el sistema de puesta a tierra de servicio no alcance tensiones elevadas cuando se produce un defecto, existirá una distancia de separación mínima (Dn-p), entre los electrodos de los sistemas de puesta a tierra de protección y de servicio.

$$Dn - p \ge \frac{\rho \cdot I_d}{2000 \cdot \pi}$$

Donde:

- ρ : Resistividad natural del terreno (Ωm)
- I_d : Intensidad de defecto (A)

Sustituyendo se obtiene:

$$Dn - p \ge 7.16 m$$

La conexión desde el centro hasta la primera pica del electrodo de servicio se realizará con cable de Cu de 50 mm², aislado de 0,6/1 kV bajo tubo plástico con grado de protección al impacto mecánico de 7 como mínimo.

2.3. CÁLCULO DE LA RED DE MEDIA TENSIÓN

La red de distribución de media tensión se ha calculado usando el apartado *Red AT* del módulo *Instalaciones Urbanización* del programa *DMELECT*, en su versión de 2017.

2.3.1. Formulas empleadas

Para el cálculo de la intensidad y la caída de tensión se emplearán las siguientes expresiones:

$$I = \frac{1000 \cdot S}{1,732 \cdot U}$$

Donde:

• I: Intensidad (A)

• S: Potencia de cálculo (kVA)

• *U*: Tensión de servicio (*V*)

$$e = 1,732 \cdot I \cdot \left[\left(\frac{L \cdot \cos(\theta)}{k \cdot s \cdot n} \right) + \left(\frac{X_u \cdot L \cdot sen(\theta)}{1.00 \cdot n} \right) \right]$$

• e: Caída de tensión (V)

• L: Longitud de cálculo (m)

• k: Conductividad a 20 °C

• s: Sección del conductor (mm²)

• *n*: Número de conductores por fase.

• X_U : Reactancia por unidad de longitud $(m\Omega/m)$

Para los cálculos de cortocircuito:

$$I_{pccM} = \frac{1000 \cdot S_{cc}}{1.732 \cdot U}$$

Donde:

• I_{pccM} : Intensidad permanente de cortocircuito máxima de la red (A)

• S_{cc} : Potencia de cortocircuito (MVA)

• *U*: Tensión nominal (*V*)

$$I_{ccS} = \frac{K_c \cdot S}{\sqrt{t_{cc}}}$$

Donde:

• I_{ccs} : Intensidad de cortocircuito soportada por el conductor durante un tiempo t_{cc} (A)

• K_c : Constante del conductor que depende de su naturaleza y su aislamiento

• S: Sección del conductor (mm²)

• t_{cc} : Tiempo máximo de duración del cortocircuito (s)

2.3.2. Características generales de la red

Las características generales de la red de media tensión son las siguientes:

• Nudo de origen: Punto de enganche de la compañía

• Nudo de destino: Centro de transformación de la planta

• Longitud de la linea: 1000 m

• Tensión: 20.000 V

• Caída de Tensión máxima: 5%

• Factor de potencia: 0,8

• Coeficiente de simultaneidad: 1

• Temperatura de cálculo de conductividad eléctrica:

Conductores aislados: 20 °C
 Conductores desnudos: 50 °C

• Constante de cortocircuito Kc:

Tabla 185. Constantes de cortocircuito para cada tipo de conductor

Constante de aislamiento	Cobre	Aluminio	Aluminio-Acero
PVC, Sección ≤ 300 mm	115	76	
PVC, Sección > 300 mm	102	68	
XLPE	143	94	
EPR	143	94	
HEPR, $Uo/U \le 18/30$	135	89	
HEPR, Uo/U > 18/30	143	94	
Desnudos	164	107	135

2.3.3. Resultados obtenidos

Los resultados obtenidos para la red de media tensión son los siguientes:

Tabla 186. Resultados de la linea de media tensión

Long.	Metal/ Xu	Canalización	Designación	Polar.	Int. de Cálc.	Sección	Ø tubo	Int. Adm.
1.000	Al/0,15	Enterrado	RHZ1 15/25	Unip.	92,38 A	3x95	175	190 A
m	$m\Omega/m$	Bajo Tubo	H25	omp.	72,30 A	mm2	mm	170 A

Los resultados acerca de las caídas de tensión son:

Tabla 187. Resultados de caídas de tensión en la linea de media tensión

Nudo	Caída de Tensión	Tensión del Nudo	Caída de Tensión	Carga del Nudo
Punto de Enganche	0 V	20.000 V	0 %	92,379 A / 3.200 kVA
Centro de Transformación	-52,896 V	19.947,104 V	0,264 %	-92,379 A / -3.200 KVA

Los resultados acerca de las pérdidas de potencia activa son:

Tabla 188. Resultados de pérdidas de potencia activa en la linea de media tensión

Nudo de origen	Nudo de destino	Perdida de potencia activa
Punto de Enganche	Centro de Transformación	7,7 kW

Los resultados acerca de las protecciones de la linea son:

Tabla 189. Resultados de protecciones en la linea de media tensión

Nudo de origen	Nudo de destino	Un	U ₁	\mathbf{U}_2	Interruptor Automático /Intensidad de regulación del relé térmico
Punto de Enganche	Centro de Transformación	24 kV	125 kV	50 kV	400A / 141A

Donde:

- U_n : Tensión más elevada de la red.
- U_1 : Tensión de ensayo al choque con onda de impulso de 1,2/50 microsegundos. (Tensión de cresta).
- U_2 : Tensión de ensayo a frecuencia industrial 50 Hz, bajo lluvia durante un minuto. (Tensión eficaz)

Los resultados acerca de los cálculos de cortocircuito son los siguientes:

• *Scc*: 350 MVA

• *U*: 20 kV

tcc: 0,5 segundos*I_{pccM}*: 10.103,93 A

Tabla 190. Resultados de cortocircuito en la linea de media tensión

Nudo Origen	Nudo Destino	Sección	Icccs	Prot. térmica/In	Poder de Corte
Punto de	Centro de	3x95	12.628,93A	400A	12,5 kA
Enganche	Transformación	mm^2	12.026,93A	400A	12,3 KA

Los datos generales del cortocircuito en pantalla son los siguientes:

- I_{pcc} en la pantalla = 1.000A
- Tiempo de duración c.c. en la pantalla = 1s

Los resultados obtenidos son los siguientes:

- Sección pantalla = 25 mm²
- I_{cc} admisible en pantalla = 4.630 A

3. MEDICIONES Y PRESUPUESTO

3.1. MEDICIONES Y PRESUPUESTO DE LA RED DE MEDIA TENSIÓN

A continuación, se enumeran los componentes de la red de media tensión, sus características, cantidades y precios:

3.1.1. Cables

Tabla 191. Presupuesto de cables

Sección	Metal	Designación	Polaridad	Longitud	Precio unitario	Precio total
95 mm^2	Aluminio	RHZ1 15/25 H25	Unipolar	3.000 m	9,28 €	27.840 €
	_	_		_	TOTAL	27.840 €

3.1.2. Tubos

Tabla 192. Presupuesto de tubos

Diámetro interior	Longitud	Precio unitario	Precio total
175 mm	1.000 m	5,48 €	5.480 €
		TOTAL	5.480 €

3.1.3. Protecciones

Tabla 193. Presupuesto de protecciones

Descripción	Intensidad	Cantidad	Precio unitario	Precio total
Interruptor Automático	1.000 A	1	328,13 €	328,13 €
			TOTAL	328,13 €

3.1.4. Presupuesto total de la red de media tensión

El presupuesto total de la red de media tensión asciende a **33.648,13€**

3.2. MEDICIONES Y PRESUPUESTO DEL CENTRO DE TRANSFORMACIÓN

A continuación, se enumeran los componentes del centro de transformación, sus características, cantidades y precios:

3.2.1. Celdas de alta tensión

Tabla 194. Presupuesto de celdas de alta tensión

Denominación	I. Asignada	Cantidad	Precio Unitario	Precio Total
Linea	400 A	1	7.053,01 €	7.053,01 €
Protección con automático	400 A	2	15.493,93 €	30.987,86 €
Medida	400 A	1	2.363,61 €	2.363,61 €
			TOTAL	40.404,48 €

3.2.2. Interconexión celdas de alta tensión y transformadores

Tabla 195. Presupuesto de interconexión AT-Trafo

Denominación	Cantidad	Precio Unitario	Precio Total
Cables AT aislante seco	2 metros	187,80 €	375,60 €
		TOTAL	375,60 €

3.2.3. Transformadores

Tabla 196. Presupuesto de transformadores

Denominación	Potencia	Cantidad	Precio Unitario	Precio Total
Transformador seco	1600 kVA	2	21.616,61 €	43.233,23 €
			TOTAL	43.233,23 €

3.2.4. Interconexión celdas de transformadores y cuadros de baja tensión

Tabla 197. Presupuesto de interconexión Trafo-BT

Denominación	Cantidad	Precio Unitario	Precio Total
Cables BT 0,6/1 kV	2 metros	89,54 €	179,08 €
		TOTAL	179,08 €

3.2.5. Equipos de baja tensión

Tabla 198. Presupuesto de cuadros de BT

Denominación	Cantidad	Precio Unitario	Precio Total
Cuadros de BT	10	2.124,11 €	21.241,10 €
		TOTAL	2.124,11 €

3.2.6. Red de tierras

Tabla 199. Presupuesto de toma de tierra

Denominación	Cantidad	Precio Unitario	Precio Total
Picas ø14mm	11 unidades	152,97 €	1682,67 €
Cond. desnudo Cu 50 mm ²	30 metros	6,68 €	200,40 €
		TOTAL	1.883,07 €

3.2.7. Varios

Tabla 200. Presupuesto de elementos varios

Denominación	Cantidad	Precio Unitario	Precio Total
Rejillas de protección	3	33,78 €	101,34 €
Extintores	2	20,10 €	40,20 €
Focos	2	17,51 €	35,02 €
		TOTAL	176,56 €

3.2.8. Presupuesto total del centro de transformación

El presupuesto total del centro de transformación asciende a 107.493,12 €

3.3. MEDICIONES Y PRESUPUESTO DE LA RED DE BAJA TENSIÓN

A continuación, se enumeran los componentes de la red de baja tensión, sus características, cantidades y precios:

3.3.1. Cables

Tabla 201. Presupuesto de cables

Tabla 201. P Sección	_		Long.	Precio		
(mm ²)	Metal	Designación	Polar.	(m)	Unit.	Precio Tot.
1,5	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	3747	2,33 €	8.730,51 €
1,5	Cu	TT	Uni.	3747	0,72 €	2.697,84 €
2,5	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	3320	2,55 €	8.466,00 €
2,5	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	2250	3,15 €	7.087,50 €
2,5	Cu	TT	Uni.	5570	0,99 €	5.514,30 €
4	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	499	3,56 €	1.776,44 €
4	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	1015	4,43 €	4.496,45 €
4	Cu	TT	Uni.	1514	1,40 €	2.119,60 €
6	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	160	5,67 €	907,20€
6	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	120	6,99 €	838,80€
6	Cu	TT	Uni.	280	2,06 €	576,80 €
10	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	165	3,83 €	631,95€
10	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	699	8,54 €	5.969,46 €
10	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	35	10,74 €	375,90 €
10	Cu	TT	Uni.	789	3,36 €	2.651,04 €
16	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	660	5,39 €	3.557,40 €
16	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	10	12,67 €	126,70 €
16	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	300	16,15 €	4.845,00 €
16	Cu	TT	Uni.	1676	4,79 €	8028,04 €
25	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	2320	7,36 €	17.075,20 €
25	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tetra.	126	23,90 €	10.061,90 €
25	Cu	TT	Uni.	95	6,11 €	580,45 €
35	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	225	10,00 €	2.250,00 €
35	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Tri.	250	44,56 €	11.140,00 €
35	Cu	TT	Uni.	100	8,58 €	858,00 €
50	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	295	13,21 €	3.896,95 €
50	Cu	TT	Uni.	125	12,37 €	1.546,25 €
70	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	315	18,64 €	5.871,60 €
95	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	375,8	23,39 €	8789,96 €
95	Cu	TT	Uni.	195	23,18 €	4.520,10 €
120	Cu	TT	Uni.	85	29,60 €	1.628,00 €
150	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	585	35,93 €	21.019,05 €
240	Cu	RZ1-K(AS) Cca-s1b,d1,a1	Uni.	300	57,74 €	10.393,20 €
600	Cu	Barras Blindadas	Uni.	24	67,62 €	1.622,88 €
600	Cu	TT	Uni.	85	55,54 €	4.720,90 €
1260	Cu	Barras Blindadas	Uni.	24	117,65 €	2.823,60 €
					TOTAL	176.261,27 €

3.3.2. Tubos

Tabla 202. Presupuesto de tubos

Diám. (mm)	Lon. (m)	Denominación	Precio Unit.	Precio Tot.
20	9816	Tubo de policarbonato rígido, libre de halógenos	4,63 €	45.448,08 €
25	1295	Tubo de policarbonato rígido, libre de halógenos	5,89 €	7.627,55 €
32	999	Tubo de policarbonato rígido, libre de halógenos	7,62 €	7.612,38 €
40	335	Tubo de policarbonato rígido, libre de halógenos	10,46 €	3.504,10 €
50	571	Tubo de policarbonato rígido, libre de halógenos	13,53 €	7.725,63 €
63	55	Tubo de policarbonato rígido, libre de halógenos	17,56 €	965,80 €
			TOTAL	72.883,54 €

3.3.3. Bandejas

Tabla 203. Presupuesto de bandejas

Dimensiones (mm)	Tipo	Longitud (m)	Precio Unit.	Precio Tot.
75x60	Perforada	105	27,71 €	2.909,55 €
100x60	Perforada	375	29,86 €	11.197,50 €
			TOTAL	14.107,05 €

3.3.4. Interruptores automáticos

Tabla 204. Presupuesto de interruptores automáticos

Descripción	Intensidad (A)		Cantidad	Precio Unit.	Precio Tot.
Mag/Trip.	16	6	30	88,54 €	2.656,20 €
Mag/Trip.	16	10	11	103,01 €	1.133,11 €
Mag/Trip.	16	15	13	115,81 €	1.505,53 €
Mag/Trip.	16	20	5	138,57 €	692,85 €
Mag/Trip.	16	4,5	69	103,65 €	7.151,85 €
Mag/Trip.	16	100	2	487,66 €	975,32 €
Mag/Trip.	20	4,5	11	103,65 €	1.140,15 €
Mag/Trip.	25	15	1	121,24 €	121,24 €
Mag/Trip.	25	20	2	145,06 €	290,12 €
Mag/Trip.	25	4,5	9	103,65 €	932,85 €
Mag/Trip.	32	6	4	97,77 €	391,08 €
Mag/Trip.	32	4,5	1	114,66 €	114,66 €
Mag/Trip.	40	6	6	85,97 €	515,82 €
Mag/Trip.	40	10	2	135,53 €	271,06 €
Mag/Trip.	40	15	1	149,18 €	149,18 €
Mag/Trip.	40	4,5	19	135,48 €	2.574,12 €
Mag/Trip.	50	15	1	230,27 €	230,27 €
Mag/Trip.	50	4,5	2	160,48 €	320,96 €
Mag/Trip.	50	100	3	351,14 €	1.053,42 €
Mag/Trip.	63	10	6	254,72 €	1.528,32 €
Mag/Trip.	63	70	1	1.571,55 €	1.571,55 €
Mag/Tetr.	10	10	19	143,25 €	2.721,75 €
Mag/Tetr.	10	15	42	133,66 €	5.613,72 €
Mag/Tetr.	10	35	1	405,75 €	405,75 €
Mag/Tetr.	10	4,5	34	138,20 €	4.698,80 €

I.Aut/Trip. I.Aut/Tetr.	100 125 250 250 250 400 2000 80 100 100 125 125 160 250 400 630 2500	100 10 15 100 100 100 4,5 20 100 35 100 100 100 100 100 35	1 2 1 1 2 4 1 1 1 1 1 1 1 2 2 1 1 2 1 2	$353,82 \in 479,34 \in 479,34 \in 648,32 \in 474,18 \in 1.784,03 \in 10.799,54 \in 275,03 \in 647,33 \in 62,27 \in 122,00 \in 583,34 \in 685,12 \in 1.389,80 \in 2.004,87 \in 2.008,81 \in 10.799,54 \in$	$353,82 \in \\ 958,68 \in \\ 648,32 \in \\ 474,18 \in \\ 5.352,09 \in \\ 10.799,54 \in \\ 550,05 \in \\ 2.589,32 \in \\ 62,27 \in \\ 122,00 \in \\ 583,34 \in \\ 685,12 \in \\ 1.389,80 \in \\ 2.004,87 \in \\ 2.008,81 \in \\ 21.599,08 \in $
I.Aut/Tetr.	125 250 250 250 400 2000 80 100 100 125 125 160 250 400	100 10 15 100 100 100 4,5 20 100 35 100 100 100	2 1 1 3 1 2 4 1 1 1 1 1	$479,34 \in$ $648,32 \in$ $474,18 \in$ $1.784,03 \in$ $10.799,54 \in$ $275,03 \in$ $647,33 \in$ $62,27 \in$ $122,00 \in$ $583,34 \in$ $685,12 \in$ $1.389,80 \in$ $2.004,87 \in$	$\begin{array}{c} 958,68 \in \\ 648,32 \in \\ 474,18 \in \\ 5.352,09 \in \\ 10.799,54 \in \\ 550,05 \in \\ 2.589,32 \in \\ 62,27 \in \\ 122,00 \in \\ 583,34 \in \\ 685,12 \in \\ 1.389,80 \in \\ 2.004,87 \in \end{array}$
I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100 100 125 125 160 250	100 10 15 100 100 100 4,5 20 100 35 100 100 100	2 1 1 3 1 2 4 1 1 1 1	$479,34 \in$ $648,32 \in$ $474,18 \in$ $1.784,03 \in$ $10.799,54 \in$ $275,03 \in$ $647,33 \in$ $62,27 \in$ $122,00 \in$ $583,34 \in$ $685,12 \in$ $1.389,80 \in$	$\begin{array}{c} 958,\!68 \in \\ 648,\!32 \in \\ 474,\!18 \in \\ 5.352,\!09 \in \\ 10.799,\!54 \in \\ 550,\!05 \in \\ 2.589,\!32 \in \\ 62,\!27 \in \\ 122,\!00 \in \\ 583,\!34 \in \\ 685,\!12 \in \\ 1.389,\!80 \in \end{array}$
I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100 100 125 125 160	100 10 15 100 100 100 4,5 20 100 35 100 100	2 1 1 3 1 2 4 1 1 1	$479,34 \in \\ 648,32 \in \\ 474,18 \in \\ 1.784,03 \in \\ 10.799,54 \in \\ 275,03 \in \\ 647,33 \in \\ 62,27 \in \\ 122,00 \in \\ 583,34 \in \\ 685,12 \in $	$\begin{array}{c} 958,68 \in \\ 648,32 \in \\ 474,18 \in \\ 5.352,09 \in \\ 10.799,54 \in \\ 550,05 \in \\ 2.589,32 \in \\ 62,27 \in \\ 122,00 \in \\ 583,34 \in \\ 685,12 \in \end{array}$
I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100 100 125 125	100 10 15 100 100 100 4,5 20 100 35 100	2 1 1 3 1 2 4 1 1	$479,34 \in$ $648,32 \in$ $474,18 \in$ $1.784,03 \in$ $10.799,54 \in$ $275,03 \in$ $647,33 \in$ $62,27 \in$ $122,00 \in$ $583,34 \in$	$\begin{array}{c} 958,68 \in \\ 648,32 \in \\ 474,18 \in \\ 5.352,09 \in \\ 10.799,54 \in \\ 550,05 \in \\ 2.589,32 \in \\ 62,27 \in \\ 122,00 \in \\ 583,34 \in \end{array}$
I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100 100 125	100 10 15 100 100 100 4,5 20 100 35	2 1 1 3 1 2 4 1 1	$479,34 \in 648,32 \in 474,18 \in 1.784,03 \in 10.799,54 \in 275,03 \in 647,33 \in 62,27 \in 122,00 \in$	958,68 ∈ $648,32 ∈$ $474,18 ∈$ $5.352,09 ∈$ $10.799,54 ∈$ $550,05 ∈$ $2.589,32 ∈$ $62,27 ∈$ $122,00 ∈$
I.Aut/Tetr. I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100	100 10 15 100 100 100 4,5 20 100	2 1 1 3 1 2 4	$479,34 \in 648,32 \in 474,18 \in 1.784,03 \in 10.799,54 \in 275,03 \in 647,33 \in 62,27 \in$	$\begin{array}{c} 958,68 \in \\ 648,32 \in \\ 474,18 \in \\ 5.352,09 \in \\ 10.799,54 \in \\ 550,05 \in \\ 2.589,32 \in \\ 62,27 \in \end{array}$
I.Aut/Tetr. I.Aut/Tetr.	125 250 250 250 400 2000 80 100	100 10 15 100 100 100 4,5 20	2 1 1 3 1 2 4	$479,34 \in 648,32 \in 474,18 \in 1.784,03 \in 10.799,54 \in 275,03 \in 647,33 \in$	958,68 ∈ $648,32 ∈$ $474,18 ∈$ $5.352,09 ∈$ $10.799,54 ∈$ $550,05 ∈$ $2.589,32 ∈$
I.Aut/Tetr.	125 250 250 250 400 2000 80	100 10 15 100 100 100 4,5	2 1 1 3 1 2	$479,34 \in 648,32 \in 474,18 \in 1.784,03 \in 10.799,54 \in 275,03 \in$	958,68 € 648,32 € 474,18 € 5.352,09 € 10.799,54 € 550,05 €
•	125 250 250 250 400 2000	100 10 15 100 100 100	2 1 1 3 1	479,34 € 648,32 € 474,18 € 1.784,03 € 10.799,54 €	958,68 € 648,32 € 474,18 € 5.352,09 € 10.799,54 €
I.Aut/Trip.	125 250 250 250 400	100 10 15 100 100	2 1 1 3 1	479,34 € 648,32 € 474,18 € 1.784,03 €	958,68 € 648,32 € 474,18 € 5.352,09 €
T A4 /T-:	125 250 250 250	100 10 15 100	2 1 1	479,34 € 648,32 € 474,18 €	958,68 € 648,32 € 474,18 €
I.Aut/Trip.	125 250 250	100 10 15	2 1 1	479,34 € 648,32 €	958,68 € 648,32 €
I.Aut/Trip.	125 250	100 10	2	479,34 €	958,68 €
I.Aut/Trip.	125	100			
I.Aut/Trip.	125				
I.Aut/Trip.	100		i	252.02.0	252 92 0
I.Aut/Trip.	100	100	1	122,00 €	122,00 €
I.Aut/Trip.	100	70	1	82,64 €	82,64 €
I.Aut/Trip.	100	4,5	1	331,64 €	331,64 €
I.Aut/Trip.	100	20	4	267,72 €	1.070,88 €
I.Aut/Trip.	100	15	2	364,25 €	728,50 €
I.Aut/Trip.	100	10	1	337,63 €	337,63 €
I.Aut/Trip.	100	6	2	193,00 €	386,00 €
I.Aut/Trip.	80	70	1	1.658,24 €	1.658,24 €
I.Aut/Trip.	80	4,5	1	183,35 €	183,35 €
I.Aut/Trip.	80	15	1	360,08 €	360,08 €
Mag/Tetr.	63	35	1	520,48 €	520,48 €
Mag/Tetr.	63	15	4	240,99 €	963,96 €
Mag/Tetr.	50	4,5	1	240,72 €	240,72 €
Mag/Tetr.	40	70	1	1.903,30 €	1.903,30 €
Mag/Tetr.	40	10	1	188,89 €	188,89 €
Mag/Tetr.	32	4,5	3	152,88 €	458,64 €
Mag/Tetr.	32	35	1	455,40 €	455,40 €
Mag/Tetr.	32	6	2	139,52 €	279,04 €
Mag/Tetr.	25	4,5	3	138,20 €	414,60 €
Mag/Tetr.	25	35	3	439,24 €	1.317,72 €
Mag/Tetr.	25	6	2	133,99 €	267,98 €
Mag/Tetr.	20	35	1	421,92 €	421,92 €
Mag/Tetr.	16	100	1	493,65 €	493,65 €
Mag/Tetr.	16	4,5	30	138,20 €	4.146,00 €
Mag/Tetr.	16	35	3	410,91 €	1.232,73 €
Mag/Tetr.	16	15	2	136,20 €	272,40 €
Mag/Tetr.	16	10	1	144,84 €	144,84 €

3.3.5. Interruptores de corte en carga

Tabla 205. Presupuesto de interruptores c/c

Descripción	Intensidad (A)	Cantidad	Precio Unit.	Precio Tot.
Interr.c.c	10	3	37,52 €	112,56 €
Interr.c.c	16	10	38,08 €	380,80€
Interr.c.c	20	2	108,45 €	216,90 €
Interr.c.c	25	10	46,63 €	466,30 €
Interr.c.c	32	6	48,26 €	289,56 €
Interr.c.c	40	9	59,63 €	536,67 €
Interr.c.c	50	6	74,10 €	444,60 €
Interr.c.c	63	8	121,42 €	971,36 €
Interr.c.c	80	3	115,98 €	347,94 €
Interr.c.c	100	8	154,42 €	1.235,36 €
Interr.c.c	125	3	130,52 €	391,56 €
Interr.c.c	160	1	167,36 €	167,36 €
Interr.c.c	200	2	267,81 €	535,62 €
Interr.c.c	250	1	474,18 €	474,18 €
Interr.c.c	320	1	516,34 €	516,34 €
Interr.c.c	400	2	547,65 €	1.095,30 €
Interr.c.c	500	1	1.025,65 €	1.025,65 €
			TOTAL	9.208,06 €

3.3.6. Interruptores y transformadores diferenciales

Tabla 206. Presupuesto de interruptores diferenciales

Descripción	Clase	Int. (A)	Sensib. (mA)	Cantidad	Precio Unit.	Precio Tot.
Diferen./Tetr.	AC	25	30	125	266,17 €	33.271,25 €
Diferen./Tetr.	AC	40	30	1	275,41 €	275,41 €
Diferen./Tetr.	AC	63	30	4	326,24 €	1.304,96 €
Relé y Transf.	AC	80	30	1	468,16 €	468,16 €
Relé y Transf.	AC	100	30	4	486,02 €	1.944,08 €
Relé y Transf.	AC	2000	30	1	752,30 €	752,30 €
					TOTAL	30.016,16 €

3.3.7. Elementos de control – maniobra

Tabla 207. Presupuesto de elementos de control - maniobra

Descripción	Int. (A)	Cantidad	Precio Unit.	Precio Tot.
Contac/Tetr.	80	2	105,65 €	211,30 €
			TOTAL	211,30 €

3.3.8. Presupuesto total de la red de baja tensión

El presupuesto total del centro de transformación asciende a 410.611,58 €

3.4. PRESUPUESTO TOTAL

Sumando el presupuesto de los tres proyectos:

Tabla 208. Presupuesto total del proyecto

Proyecto	Presupuesto
Red de media tensión	33.648,13 €
Centro de transformación	107.493,12 €
Red de baja tensión	410.611,58 €
TOTAL	551.752,83 €

El presupuesto total del proyecto asciende a **551.752,83** €

4. CONCLUSIONES

En el presente trabajo se ha llevado a cabo el diseño y el cálculo de una instalación eléctrica para una industria dedicada a la fabricación de una gran variedad de productos metálicos, especializada en ciertos productos, como son la fabricación de canalones, armarios, rejas y escaleras, pero con gran flexibilidad para ejecutar diversos encargos. En este sentido, la empresa ofrece servicios de galvanizado y pintura personalizados con la intención de aprovechar sus instalaciones de galvanizado y líneas de pintura el máximo tiempo posible.

El proceso productivo comienza utilizando los diversos materiales almacenados en el almacén de materia prima, sometiéndoles a transformaciones en la zona de chapa, pasado luego a la zona de pintura y por último a la zona de montaje y almacenaje, terminando en el almacén de productos terminados preparados para su distribución.

Una vez definidos los procesos productivos de cada una de las fases se realiza la implantación en planta de la maquinaria y equipos. Además de las instalaciones del proceso productivo se dispone también de instalaciones de servicios generales (aire comprimido, agua y ventilación y extracción de la nave) como apoyo a las del proceso y de instalaciones de servicios auxiliares de acondicionamiento de las naves distribuidas a lo largo de la planta (tomas de corriente, alumbrados, etc.).

Para realizar el diseño y cálculo de la instalación eléctrica se realiza previamente una estimación de las cargas eléctricas a suministrar energía, por lo que no es viable una alimentación en baja tensión. La alimentación se realizará en media tensión a 20 kV y 50 Hz.

Ante un eventual corte del suministro se instalará un grupo electrógeno con el objetivo de suministrar electricidad a la iluminación de emergencia y a las cargas críticas.

El diseño de la instalación eléctrica se comienza por la red de baja tensión una vez conocidas las demandas de potencia de todas las instalaciones, tanto del proceso como las de los servicios generales y auxiliares, y su disposición en planta.

La red eléctrica de distribución de energía eléctrica parte del Cuadro General de Distribución ubicado en el Centro de Transformación y alimenta a cuadros secundarios de distintos niveles. Los cuadros dispondrán de un espacio libre para futuras ampliaciones de alrededor del 30%.

La implantación de los cuadros se ha realizado atendiendo a criterios de obtener una mayor disponibilidad de la energía eléctrica, por lo que los circuitos eléctricos se han dividido permitiendo:

- Limitar las consecuencias de un defecto al circuito que concierne.
- Facilitar la localización de un defecto.
- Realizar las operaciones de mantenimiento de un circuito, manteniendo el resto de la instalación en tensión.
- Controlar la calidad del suministro.
- Medir los consumos en cada proceso.

Mediante un analizador de redes se controlará la calidad de la energía eléctrica que nos proporcionará datos que nos permitan analizar las causas de un problema en el funcionamiento de una instalación o máquina y mediante contadores se medirán los consumos.

Para el diseño de la instalación eléctrica se han tenido en cuenta una serie de criterios o premisas con el fin el realizar una instalación eficiente desde el punto de vista del uso de los recursos energéticos.

La iluminación se realizará de acuerdo con lo especificado en la sección HE-3 del Código Técnico de la Edificación. Se utilizarán lámparas LED.

Los motores cumplirán con el Reglamento (UE) 2019/1781 de la Comisión, de 1 de octubre de 2019, por el que se establecen requisitos de diseño ecológico para los motores eléctricos y los variadores de velocidad de conformidad con la Directiva 2009/125/CE del Parlamento Europeo y del Consejo.

Cada línea de la red de distribución dispondrá de un dispositivo de mando y protección contra sobreintensidades. Como protección ante contactos directos se colocarán barreras y obstáculos y contra los indirectos se instalarán interruptores diferenciales de alta sensibilidad en las líneas de alumbrado y tomas de corriente y relés diferenciales regulables con un nivel de alarma y otro de disparo en los circuitos de potencia sobre todo de los procesos. En la entrada de cada cuadro secundario se colocarán interruptores de corte en carga.

Los conductores serán aislados con polietileno reticulado (XLPE) no propagadores de llama y con emisión de humos y opacidad reducida, con una tensión de aislamiento de 0,6/1 kV. Los conductores con secciones mayores de 50 mm2 serán unipolares y multipolares cuando sea menor. En función de la sección de los cables las canalizaciones discurrirán bajo tubo o sobre bandeja perforada.

Para mantenerle factor de potencia general de la instalación por encima del 0,95, se instalarán en el Cuadro General de Distribución baterías de condensadores automáticas de baja tensión.

El Centro de Transformación, que es del tipo de abonado, se ha ubicado lo más cerca posible del centro de gravedad de las cargas y dispondrá de dos trasformadores, 20 kV/400-230 V, de la misma potencia trabajando en paralelo, y reservando un espacio para un tercer transformador.

La línea de alimentación de media tensión partirá del punto de enganche de la compañía suministradora de energía y será enterrada bajo tubo. Se calculará en función de la potencia total instalada, pero teniendo en cuenta la posibilidad de un aumento de la potencia del 30%.

Se han realizado tres proyectos:

- Proyecto de la Línea de Media Tensión: realizado con el Software *DMELECT* Módulo *Instalaciones Urbanización*.
- Proyecto del Centro de Transformación del abonado: realizado con el Software *DMELECT* Módulo *CT*.
- Proyecto de Baja Tensión: realizado con el Software *DMELECT* Módulo *CIEBT*.

5. BIBLIOGRAFÍA

Normativa eléctrica:

- Reglamento Electrotécnico para Baja Tensión, según Real Decreto 842/2002 de 2 de agosto, Instrucciones Técnicas Complementarias y normas UNE de aplicación.
- Reglamento sobre condiciones técnicas y garantías de seguridad en instalaciones eléctricas de alta tensión y sus Instrucciones Técnicas Complementarias ITC-RAT 01 a 23, según Real Decreto 337/2014 de 9 de mayo.
- Normas UNE y recomendaciones UNESA que sean de aplicación.
- Normas particulares de la Compañía distribuidora.
- Reglamento de seguridad contra incendios en los establecimientos industriales, según Real Decreto 2267/2004 de 3 de diciembre.
- Código Técnico de la Edificación, según Real Decreto 314/2006 de 17 de marzo.
- Reglamento de Seguridad e Higiene en el Trabajo, según orden Ministerial del 9 de marzo de 1971.
- Ley de prevención de riesgos laborales, según Real Decreto 31/1995 de 8 de noviembre.
- Disposiciones mínimas de seguridad y salud en los lugares de trabajo, según Real Decreto 486/1997 de 14 de abril.
- Disposiciones mínimas de seguridad y de salud en las obras de construcción, según Real Decreto 1627/1997 de 24 de octubre.

Libros:

• Fraile Mora, Jesús. (2003), *Máquinas Eléctricas*, Editorial MC Graw Hill

Páginas web:

- https://galvasa.com/es/el-galvanizado-en-caliente/
- https://industriassanla.es
- https://www.lomusa.com

Programas informáticos:

- Módulo CIEBT de DMELECT 2017: Cálculo de la red de Baja Tensión
- Módulo Instalaciones Urbanización de DMELECT 2017: Cálculo de la linea de Media Tensión
- Módulo CT de DMELECT 2017: Cálculo del Centro de Transformación.
- Módulo *Generador de Precios* de *CYPE 2022*: Búsqueda de los precios de cada elemento en la redacción de los presupuestos.
- AutoCAD 2023: Confección de los planos del proyecto