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Summary 

English 

In the process industry, efficiency improvements can come from two 

main courses of action: replacing older plants, equipment, or processes by more 

modern and efficient ones; or being more efficient with the current facilities by 

looking closer at the daily operation, instead of making larger investments with 

uncertain payback horizons. Focusing on that second way, one can realize that 

nowadays decision making is conceptually more complex than it was in the past 

since the rapidly growing technology and communication systems have 

spawned a large number of alternatives from which a decision maker can select. 

In addition, a wrong or suboptimal decision with the structural complexity of 

current problems often results in a magnification of costs along the value chain. 

Despite that, actual deployment of advanced Decision Support Systems (DSS) 

remains atypical in process industries since they require big efforts in terms of 

model development and maintenance, complex mathematical formulations, 

demanding computational requirements, and integration with the existing 

control or planning infrastructure.  

This thesis contributes to reduce the above barriers by developing 

efficient formulations for Real-Time Optimization (RTO) in an industrial site. 

In particular, to improve the operation of three interconnected sections of an 
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viscose-fiber production facility: an evaporation network, a cooling system one, 

and a heat-recovery network. 

The decisions to take in these systems include the assignment of 

products to units, the distribution of continuous production among units, and 

the allocation of shared resources among units. All of these need to consider 

many constraints due to the actual plant layout, production demands, equipment 

capacities, environmental conditions and the state of fouling, key aspect in the 

equipment efficiency. However, it is not enough to formulate the optimization 

problems, but these must be the core of a tool used by plant operators. Thus, it 

must be taken into account that these operators are not expert control engineers, 

so the results must be presented in a way that can be easily and quickly 

understood. 

Another aspect that this thesis deals with is the importance of 

coordinating the operation of the different sections of the factory, since the 

systems are coupled, i.e., the operation of one network depends on the operation 

of the other one and vice versa. 

Finally, in any industry, process revamping and plant upgrades over 

time are very common. However, carrying out such re-designs efficiently is 

quite complex. The right way to approach the process re-design is to investigate 

the different possible alternatives together with the future optimal operation, 

and then to formulate a model which represents the behavior of the 

plant/network for all the design possibilities, i.e., a superstructure incorporating 

the different configurations of new equipment. In this case, the cooling-water 

network could be enhanced incorporating heat pumps. 

 

Objectives 

Therefore, the particular objectives of this thesis are: to develop 

models that represent the operation of each section; to formulate optimization 

problems using these models to minimize the cost of operation in real time, to 

develop data driven models which explicitly consider the state of fouling; to 
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develop interfaces for the visualization of the results; to study how to coordinate 

the operation of the sections; and to obtain the optimal redesign of the cooling-

water network. 

 

Methodology 

To address the objective of optimal operation of the different sections, 

the methodology followed has consisted in studying the systems and 

developing mathematical models that combine discrete decisions with 

continuous ones, simultaneously considering operation and maintenance tasks. 

Plant models for optimization are built upon first principles, but they are 

completed with data-driven sub-models based on available plant data for those 

relations among variables that are complex to model by physics. Data 

reconciliation and constrained-regression methods are employed to face the 

existence of unreliable plant measurements in the development of the data-

driven models.  

Once the models that represent the systems and their different forms 

of operation have been obtained, different optimization problems have been 

formulated. These problems are based on the developed models to which an 

objective function has been incorporated (in addition to different logical 

restrictions) that minimizes the operating cost of the corresponding system. In 

this way, an optimization problem has been obtained capable of establishing 

the values that the process variables must take so that the operating cost is 

minimal. It should be noted that the developed models feed on the conditions 

of the plant, so that the solution obtained depends on these conditions. In 

addition, the developed formulation allows obtaining results in short 

computation times, thus allowing their application in real time. Hence, by 

feeding the optimization with the real-time conditions, an RTO system capable 

of predicting the optimal operation in real time is obtained. 

In addition, different parameters have been included in the developed 

models to take into account the fouling effects that reduce the equipment 
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efficiency over time. In this way, the RTOs can suggest the cleaning operations 

that seem more beneficial from an economic point of view, while respecting 

operation constraints. 

Once the RTO problems have been formulated, two decision support 

systems (DSS) have been developed that help operators in the decision-making 

process on how to operate the different sections of the factory. Each DSS has 

as its core one of the developed RTO problems and includes an interface for the 

presentation of information. These interfaces have been developed tailored to 

the case study and operators preferences, that lead to a symbiosis of people and 

computer-based algorithms. 

To study the coordination of the operation of the different sections, 

three different approaches have been analyzed. The first approach is to solve 

the coupled optimization problems iteratively, the second is to formulate a new 

optimization problem centralized, and the final fashion is a distributed approach 

based on Lagrangean decomposition. 

In order to obtain the optimal redesign of the cooling network, a 

superstructure has been developed that not only contemplates all the possible 

redesigns of the network, but also takes into account the payback time of the 

purchased equipment. In addition, as predicted benefits depend on the future 

operation conditions that are somehow uncertain, a two-stage stochastic 

optimization framework is employed. Thus, a new optimization problem has 

been formulated based on the superstructure and whose solution indicates what 

would be the optimal design from an economic point of view. However, as the 

resulting problem is computationally hard to solve in a monolithic fashion, a 

decomposition method has been proposed. 

 

Results and conclusions 

The results obtained after executing the optimization problems with 

historical plant data show that if the system variables had been modified 

according to the solutions provided by the optimizers, significant savings would 
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have been obtained. Of course, as has been proven with historical data, such 

savings depend on the historical data and how it was acted at the time, but in 

general, it can be concluded that the developed RTO formulations are very 

useful to help decision making by indicating the optimal operation. In addition, 

the results also show that the current policy of cleaning the dirtiest is not the 

most profitable from an economic point of view, since it depends on many 

factors. Thus, the developed RTOs also help configuring maintenance task 

schedule. 

The results obtained solving the problems independently versus 

coordinated verify that the solutions obtained when the problems are solved 

independently are local, so any of the coordination approaches obtains better 

results. Furthermore, the comparison of the approaches shows that for this 

problem size, the centralized formulation is the most suitable. 

Analyzing the solution obtained for the network re-design, the 

conclusion is that the cost of operating the network decreases when the number 

of heat pumps used increases, up to an extent. Therefore, the number of pumps 

to buy depends on the payback time of the investment that the company 

considers acceptable, regardless of the value of such investment. It is worth 

mentioning that the optimal number of heat pumps to use and their arrangement 

depend on each scenario. 

 

Finally, it should be noted that this thesis is the result of several years 

of collaboration between academic and an industrial company, dealing with 

problems of a real case study. However, although the different technologies 

developed are tailored for a specific industrial plant, they could easily be 

adapted and extended to any industry with similar equipment and problems. 
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Español 

En la industria de procesos se puede obtener un aumento de la 

eficiencia de las plantas de producción, bien mediante la sustitución de procesos 

o equipos antiguos por otros más modernos y eficientes, o bien operando de 

forma más eficiente las instalaciones actuales en lugar de realizar grandes 

inversiones con tiempos de amortización inciertos. Si nos centramos en esta 

segunda línea de acción, hoy en día la toma de decisiones es conceptualmente 

más compleja que en el pasado, debido al rápido crecimiento que ha tenido la 

tecnología últimamente y a que los sistemas de comunicación han generado un 

gran número de alternativas entre las que se ha de elegir. Además, una decisión 

incorrecta o subóptima, con la complejidad estructural de los problemas 

actuales, a menudo resulta en un aumento de los costes a lo largo de la cadena 

de producción. A pesar de ello, el uso de sistemas de apoyo a la toma de 

decisiones (DSS) sigue siendo atípico en las industrias de procesos debido a los 

esfuerzos que se requieren en términos de desarrollo y mantenimiento de 

modelos matemáticos y al desafío de formulaciones matemáticas complejas, los 

exigentes requisitos computacionales y/o la difícil integración con la 

infraestructura de control o planificación existente.  

Esta tesis contribuye en la reducción estas barreras desarrollando 

formulaciones eficientes para la optimización en tiempo real (RTO) en una 

planta industrial. En particular, esta tesis busca mejorar la operación de tres 

secciones interconectadas de una fábrica de producción de fibra de viscosa: una 

red de evaporación, una de sistema de enfriamiento y una red de recuperación 

de calor.  

Las decisiones que se han de tomar en estos sistemas incluyen la 

asignación de productos a equipos, la distribución de la producción entre 

equipos paralelos y la distribución de recursos compartidos. Todo ello 

considerando un alto número de restricciones debido a la configuración de las 

diferentes redes, las demandas de producción, capacidades de los equipos y 

condiciones medioambientales, en especial considerando el estado de 
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ensuciamiento, aspecto clave en la eficiencia de los equipos, Además, no basta 

con formular los problemas de optimización, sino que estos deben ser la base 

de una herramienta que pueda ser utilizada por los operarios de la planta, 

teniendo en cuenta que estos no son expertos ingenieros de control y, por 

consiguiente, los resultados deben presentarse de manera que se puedan 

entender fácil y rápidamente. 

Otro de los aspectos que trata esta tesis es la importancia de coordinar 

el funcionamiento de las diferentes secciones de la fábrica, ya que los sistemas 

están acoplados y, por tanto, la operación de una red depende de la operación 

de otra y viceversa. 

Por último, en cualquier industria, la renovación de procesos y el 

rediseño de secciones en una planta industrial son muy comunes. Sin embargo, 

llevar a cabo estos rediseños de manera eficiente es bastante complejo. Para 

ello, es necesario investigar las diferentes opciones posibles, junto con la futura 

óptima operación, y formular un modelo matemático que represente el 

funcionamiento de la red para todas las posibilidades del rediseño, es decir, una 

superestructura que incorpore diferentes configuraciones de los equipos a 

incorporar. En este caso, la red de agua de refrigeración podría mejorar su 

eficiencia incorporando bombas de calor. 

 

Objetivos 

Así pues, los objetivos particulares que esta tesis se marca son: 

desarrollar modelos que representen las diferentes formas de operación de cada 

sección; formular problemas de optimización usando dichos modelos para 

minimizar el coste de operación en tiempo real; desarrollar modelos basados en 

datos para considerar de manera explícita el estado de ensuciamiento de los 

equipos; desarrollar interfaces para la visualización de los resultados; estudiar 

la forma de coordinar la operación de las secciones; y obtener el rediseño 

óptimo de la red de agua de refrigeración. 
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Metodología 

Para hacer frente al objetivo de la operación óptima de las diferentes 

secciones, la metodología seguida ha consistido en estudiar los sistemas y 

desarrollar modelos matemáticos que combinan decisiones discretas y 

continuas sobre la operación y las tareas de mantenimiento. Dichos modelos se 

basan en primeros principios, pero incluyen submodelos de caja gris basados 

en datos históricos de operación de la planta para aquellas relaciones entre 

variables difíciles de obtener dados los datos disponibles. Para afrontar las 

mediciones de datos poco fiables en el desarrollo de los modelos basados en 

datos, se han utilizado métodos tales como reconciliación de datos y regresión 

restringida.  

Una vez obtenidos los modelos que representan los sistemas y sus 

distintas formas de operación, se han formulado diferentes problemas de 

optimización. Estos problemas se basan en los modelos desarrollados a los que 

se les ha incorporado (además de diferentes restricciones lógicas) una función 

objetivo que minimiza el coste de operación del correspondiente sistema. De 

esta forma, se ha obtenido un problema de optimización capaz de establecer 

cuáles son los valores que han de tomar las variables del proceso para que el 

coste de operación sea mínimo. Cabe destacar que los modelos desarrollados se 

alimentan de las condiciones de la planta, de forma que la solución que se 

obtiene depende de dichas condiciones. Además, la formulación desarrollada 

permite obtener resultados para su aplicación en tiempo real, por lo que 

alimentando la optimización con las condiciones en tiempo real, se obtiene un 

sistema RTO capaz de predecir la operación óptima en tiempo real. 

Además, en los modelos desarrollados se han incluido diferentes 

parámetros para tener en cuenta la pérdida de eficiencia de los equipos debido 

a su estado de ensuciamiento. De esta forma, los problemas de RTO también 

pueden sugerir las tareas de mantenimiento que se deben llevar a cabo desde un 

punto de vista económico, respetando las restricciones de operación. 
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Una vez formulados los problemas de RTO, se han desarrollado dos 

sistemas de apoyo a la decisión (DSS) que ayudan a los operadores en el 

proceso de toma de decisiones sobre cómo operar las diferentes secciones de la 

fábrica. Cada DSS tiene como núcleo uno de los problemas de RTO 

desarrollados e incluyen interfaces para la presentación de la información. 

Dichas interfaces se han desarrollado según las preferencias de los operarios, 

de forma que se produce una simbiosis entre los operadores y los algoritmos de 

control. 

Para estudiar la coordinación de la operación de las diferentes 

secciones se han analizado tres enfoques distintos. El primer enfoque consiste 

en resolver los problemas de optimización acoplados de forma iterativa, el 

segundo es desarrollar un nuevo problema de optimización en el que se 

centralicen ambos sistemas, y un enfoque distribuido basado en la 

descomposición lagrangeana.  

Finalmente, con el objetivo de obtener el rediseño óptimo de la red de 

refrigeración, se ha desarrollado una superestructura que no sólo contempla 

todos los posibles rediseños de la red, sino que también tiene en cuenta el 

tiempo de amortización de los equipos que se van a comprar. Además, los 

beneficios de dicha inversión dependen de las diferentes condiciones de 

operación que se pueden dar en el futuro, que son, de algún modo, inciertas, por 

lo que se ha tenido que emplear una formulación estocástica de dos etapas. Así 

pues, se ha formulado un nuevo problema de optimización basado en la 

superestructura y cuya solución indica cuál sería el diseño óptimo desde un 

punto de vista económico. Sin embargo, el problema resultante era 

computacionalmente difícil de resolver, por lo que se ha desarrollado un 

método de descomposición que disminuye el tiempo de resolución. 

 

Resultados y conclusiones 

Los resultados obtenidos tras ejecutar los problemas de optimización 

con datos históricos de la planta muestran que, si se hubieran modificado las 
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variables de los sistemas de acuerdo a las soluciones proporcionadas por los 

optimizadores, se habrían obtenido ahorros significativos. Por supuesto, como 

se ha probado con datos históricos, dicho ahorro depende de dichos datos y 

cómo se actuó en su momento, pero en general, se puede concluir que las 

formulaciones de RTO desarrolladas son muy útiles para ayudar a la toma de 

decisiones indicando la operación óptima. Además, los resultados también 

muestran que la política actual de limpiar los equipos dependiendo de cuál es 

el último que se limpió no es la más rentable desde el punto de vista económico, 

puesto que depende de muchos factores. Así pues, los problemas de RTO 

también son útiles para ayudar a establecer las tareas de mantenimiento. 

Los resultados obtenidos al comparar resolver los problemas 

independientemente y coordinadamente, demuestran que efectivamente al 

resolverlos de forma independiente se obtienen soluciones locales. Cualquiera 

de los tres enfoques de coordinación proporciona mejores resultados (se habría 

obtenido un ahorro mayor). Además, la comparación de los tres enfoques 

demuestra que, para problemas de este tamaño, la formulación centralizada es 

la más adecuada. 

Analizando la solución obtenida del problema del rediseño de la red, 

se concluye que el coste de operar la red disminuye conforme aumenta el 

número de bombas de calor utilizadas, pero solo hasta cierto punto. Por tanto, 

el número de bombas a comprar depende del tiempo de recuperación de la 

inversión que la empresa considera aceptable, independientemente de valor de 

dicha inversión. Cabe mencionar que el número óptimo de bombas de calor a 

utilizar y su disposición dependen de cada escenario. 

 

Finalmente, cabe destacar que esta tesis es el resultado de varios años 

de colaboración entre el mundo académico y una industria de procesos, en la 

que se proponen soluciones a problemas de un caso de estudio real. No obstante, 

aunque las diferentes tecnologías desarrolladas están personalizadas para una 

planta industrial en concreto, se podrían adaptar y extender fácilmente a 

cualquier industria que tenga equipos y problemas similares. 
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Chapter 1                   

Introduction 

Nowadays, industrial companies must deal with two main factors: on 

the one hand, the globalization, which makes the market more competitive and 

on the other hand, the increasingly restrictive environmental regulation. These 

factors increase the need to produce as efficiently as possible by reducing the 

energy and resource consumption (Krämer & Engell, 2017). Furthermore, the 

European Union and the European Association called SPIRE (Sustainable 

Process Industry through Resource and Energy Efficiency) have identified 

energy and resource efficiency as a key step on the path towards a sustainable 

economy, and the targets for the next few years are to decrease the greenhouse 

gas emissions and to increase the efficiency of the energy consumption.  

To tackle such goals, not only technical innovations, new plants and 

new technologies are needed, but also the exploitation of the opportunities in 

existing plants by means of a more optimal operation in terms of energy and 

resource consumption. Thus, decisions about global production and plant–wide 

operation are increasingly being considered highly relevant (de Prada et al., 

2018). However, not all are constraints in these challenges. The industries can 

(and must) exploit the recent technological advances in data storage, 

communications, and computational power, in order to advance in the 
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objective fulfillment. This is linked with the fourth industrial revolution, called 

Industry 4.0, which is ongoing, and whose goals are to achieve a higher level 

of operational efficiency and productivity, as well as a higher level of 

automatization (Lu, 2017). The concept of Industry 4.0 was born in 2011 as an 

initiative for developing German economy. Such initiative arises as a 

consequence of the increment of global competition and the need for fast 

adaptation of production to the ever-changing market requests in the industrial 

production in the last few years. In order to achieve these requirements, 

extensive digitalization and organizational changes in current manufacturing 

technology are needed (Rojko, 2017).   

Industry has entered a phase of big change that sees digital 

technologies as a key factor for the future to design Cyber-Physical Production 

Systems. These systems are predicted to enable new automation paradigms and 

improve plant operations in terms of increased facilities effectiveness 

(Lamnabhi-Lagarrigue et al., 2017). The advances in technology to collect and 

display data could help in such tasks, but what is really important is to 

transform data into sensible information for really making an impact in the 

companies. Besides, we could use the information not only to have a better 

monitoring of the plant, but also to develop different tools which help plant 

operators and managers to take the best operative decisions in real time. 

Furthermore, the coordination management of the production at different 

layers, from real-time actions to medium-term scheduling of production and 

maintenance, is a key factor in the efficiency of daily operation (Khor & 

Varvarezos, 2017). For this reason, in the last years, process optimization not 

only has become an interesting research line from an academic perspective, but 

also translated into a set of mature technologies with significant impact in 

engineering practice.  

The field of process systems engineering (PSE) has been pushing 

around such ideas in various ways for over 50 years. This field integrates 

different areas such as process design, control and operations, and product 

design. It addressed the development of process models, either steady state or 

dynamic, strategies of process calculations, and computational methods for 
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optimization that have become key on many industrial automation and control 

systems (Grossmann & Harjunkoski, 2019). In particular, in the 1980s, the 

confluence of several developments such as algorithms for numerical 

optimization, open equation modeling, increment of computer processing 

capability, etc., allowed for the first time, real-time optimization (Darby et al., 

2011). 

In industry, the production process usually adopts a hierarchical 

structure composed of different functional layers. The traditional pyramidal 

structure described in the international standard ANSI/ISA-95.00.01-2000 

(ISA, 2000) and ANSI/ISA-95.00.03-2005 (2005) of process control systems 

is formed by four different decision levels, each one with a different objective, 

complexity, and time scale. 

At the bottom of the pyramid of Figure 1.1, there is the Field Level 

which refers to the physical production process itself.  

 

Figure 1.1. Pyramid of control 

The first layer of the pyramid is the Basic Control Level, which 

defines the basic activities involved in sensing and manipulating the physical 

processes monitoring the measured variables and maintaining some of them in 

their range or setpoint, i.e., it controls them, by modifying the manipulated 

variables. The time scale can range of seconds up to milliseconds such as those 

required for regulatory control. Some examples of systems at this level are: 

PIDs, PLCs or DCSs. 
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The next level in the pyramid is the Supervision and Advanced 

Control Level which undertakes the activities of the workflow to produce the 

goods with the desired quality, setting suitable setpoints or ranges to achieve 

production goals. Usually, the time scale of this level is from seconds to hours. 

In this level we can find different systems like Model Predictive Control 

(MPC) among others (Camacho & Alba, 2013; P. Santos et al., 2020; Wang et 

al., 2017). 

Above is located the Management Level which establishes the basic 

plant schedule providing the operation point in order to fulfill the demand, 

avoiding delays or excess of storage. This level takes the decisions of how to 

operate from an economic point of view. Decision systems at the top of this 

level are normally named manufacturing execution systems (MES), which 

support manufacturing operation management (MOM). This level usually 

operates in a timescale range of hours up to weeks using tools such as 

scheduling and real-time optimization (RTO).  

Finally, the top level is the Planning Level or Enterprise Resource 

Planning (ERP) whose aim is to focus on the economic planning, deciding what 

to produce and how much of it, the resources allocation to do it and the time to 

start. 

The complexity of the decisions to take grows according to the height 

of the pyramid and, consequently, specialized human intervention increases as 

the achieved degree of automation decreases. So, in addition to the many 

technological developments and mathematical background to improve the 

bottom layers of the pyramid (Åström et al., 2006; Skogestad and Postlethwaite, 

2007), it is still needed to develop tools to help in the decision-making process 

of higher levels, which should be connected to the lower ones in both ways, 

usual top-bottom but also bottom up or feedback.   

Consequently, an important issue to consider is how to coordinate the 

operation of the different layers and systems according to the real-time 

conditions (Qian et al., 2017). To tackle this issue, an integration of process 

knowledge with actual data gathered from the plant is needed. The wide-plant 
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optimization is related to process coordination, meanwhile control is related to 

each process. Hence, integrating process knowledge with plant information is 

useful not only for control but also for optimization and coordination of the 

processes. 

1.1 Motivation 

The motivation of this thesis is aligned with the target mentioned 

above of the European Union and the SPIRE association to achieve a 

sustainable economy. The three consolidated targets on this path for 2030 are: 

• a 40% cut in greenhouse gas emissions compared to 1990 levels 

• a 27% to 30% share of renewable energy consumption 

• an increment of 27% to 30% energy savings compared with the 

business-as-usual scenario 

Within this framework, in the process industries, not only technical 

innovations, new plants and new technologies are needed to achieve these 

targets but also the exploitation of the opportunities in existing and in future 

plants by even more energy and resource optimal operation.  

Thereby, the challenge is to operate a process/plant efficiently taking 

decisions in real time, by looking closer at daily operation. However, the 

industrial processes could be very broad and complex, so their optimal 

operation is a complex task, often with conflicting objectives (typically the 

economic benefit versus resource efficiency). Anyway, a clearly wrong or 

suboptimal decision with the structural complexity of actual process plants 

often results in a magnification of costs along the products value chain. 

Currently, many decisions about how to operate the process units are made by 

the operators and plant managers based on their own expertise. Nevertheless, 

due to the huge number of alternatives arising from the combinatorial problems 

that new technologies enable, it is often too complex for a human decision 

maker to find the best option with tight time requirements. Thus, most of the 

time, plant managers are happy if just feasible solutions are reached. 
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In this context, real-time optimization (RTO) appears as a sensible 

approach to adapt the operation to the mentioned targets and varying 

production aims. RTO makes use of a rigorous stationary model of the process 

to compute the operation conditions that optimize a predefined performance 

index, for example, minimization of the operating costs, maximization of 

product yields, or minimization of waste (Hernandez et al., 2018).  

However, RTO is not very spread in industry due to the efforts it 

requires in terms of model development and maintenance, and the need of 

reaching steady-state operation of the plant to successfully update calculations 

and to see the results, among other reasons. In practice, large-scale plants are 

rarely in complete steady state and, even if they are, many processes suffer 

from inherent long-term dynamics (fouling, mechanical wear, catalyst 

deactivation, etc.) that may invalidate the optimality of the results computed 

by RTO. Considering how such degradation dynamics affect the behavior of 

the process is key in order to obtain a realistic model of the system and to 

determine the best current action that does not worsen the plant state in the long 

term.  

One must bear in mind that RTO should address global aims defined 

by the planning layer of the company, receiving production aims, prices and 

constraints imposed by other parts of the process. Hence, its implementation 

should be done with dedicated software, communicating with the other 

functional layers through the real-time information system of the site. The 

standard approach for implementation is to connect the basic structure of RTO 

in cascade to MPC. However, if perfectly processed plant-model information 

cannot be assured, the loop plant-MPC-RTO may not be fully closed as the 

results of the RTO could not be realistic. Thus, an intermediate step is needed. 

In this thesis such intermediate step is using a Decision Support 

System (DSS) that executes the RTO and displays the solution of the optimal 

operation conditions on a suitable interface. Hence, the human manager is still 

the one in charge of taking decisions based on expert knowledge, but now 

helped by the valuable suggestions provided by the DSS. Thereby, personnel 
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are more confident in adopting RTO technologies and the troubles and 

expenses of closing the loop with the RTO systems are partially avoided. 

Note that the benefits of adopting an RTO solution do not constrain 

to the daily operation, as using the RTO model offline may have additional 

benefits if used for What if scenarios or plant improvement studies. There are 

also benefits from monitoring RTO model parameters such as equipment 

efficiencies and heat transfer coefficients as a mean of optimally schedule the 

maintenance activities. 

Another important issue to consider is that optimal decisions in a 

factory require a more global vision than considering in isolation the operation 

of the individual processes, since what can be good from the point of view of 

a specific process may not be so good for the whole factory. Thus, seeking for 

the best operation point in a section of a plant, could be suboptimal from a 

global point of view as a fully decentralized control architecture does not 

consider global constraints among processes or sections. Moreover, increasing 

the complexity of the models to consider the relation between other parts of the 

plants could cause the computing time to be too large for a practical application. 

Furthermore, huge models are much more difficult to maintain and update. For 

that reason, it is very important to study how to coordinate the production of 

the different sections, which may lead to a coordination of different RTO 

schemes. Note that larger RTOs have been implemented, for example for oil 

refineries as the work of (Galan et al., 2019), but these are the exception in the 

industry. 

 

On the other hand, the operation of a typical process factory is 

conditioned not only by the decisions made about the way the different 

processes are conducted and external factors such as markets or raw materials, 

but also by plant layout and the state of the process units. Plant layout and 

operation capacities of process units or utilities impose hard constraints on 

what can be achieved and obtained from a process. Consequently, process 

revamping and plant upgrades from time to time are quite common, in order to 

remove bottlenecks or improve capacities. 
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An approach based on optimization criteria allows to obtain better 

designs but requires developing rigorous models, often nonlinear, that establish 

the relationship between variables, as well as the use of the proper software 

tools. The problem is more complex when alternative plant structures are 

involved, all of which can be represented in a single model using what is known 

as a superstructure of the process, where alternative process units or operation 

modes are included or removed from the active model by means of discrete 

variables. This, of course, at the price of increasing the complexity of the 

design-optimization problem (Liong & Atiquzzaman, 2004), often intractable 

in the past if nonlinear mixed-integer formulations were involved. Fortunately, 

current advances in hardware, software and optimization algorithms allow to 

use this approach in a wider class of problems, with clear benefits over designs 

made mainly from experience and simulation.  

Normally, the changes to be implemented in a process are designed 

so that it performs well in the new conditions in which it is expected to operate. 

Nevertheless, quite often, the designer forgets to consider that the process has 

to operate under different circumstances, different loads, materials quality, etc., 

so that it has to perform well not only for the selected nominal point, but for a 

whole range of operating conditions that may not be known with precision a 

priori.  

The integration of different operation conditions in the design stage 

of a plant can be approached in different ways. A well-known method is the 

so-called multi-point or robust design, in which the model of the plant to be 

designed has to simultaneously fulfill different operating conditions and 

constraints, having a common unit sizing or structure and operational variables. 

This quite often leads to conservative designs linked to the worst-case situation.  

Alternatively, the use of two-stage stochastic optimization (TSSO) 

methods (Birge & Louveaux, 2011) offers a more interesting framework for 

implementing such integrated design with operation. This approach allows 

considering the two stages, design and operation under uncertain environments, 

explicitly in a single framework (Steimel & Engell, 2015). TSSO incorporates 

the different operating conditions under which a process is expected to operate 
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by means of a set of scenarios, each one corresponding to selected values of 

the uncertain variables that may appear, with a given likelihood assigned.  

In both cases, for the optimal operation and for the optimal re-design, 

the optimization problem should be model based, so one important task is to 

develop a good mathematical model which fairly represents the behavior of the 

system to optimize (de Prada et al., 2017). 

This thesis intends to contribute to the advance in the knowledge and 

implementation of these topics, with a clear focus on industrial application 

taking as reference an existing Austrian fiber-production plant. Accordingly, 

this thesis not only proposes models and theoretical RTO formulations, but also 

addresses the most common issues and limitations above mentioned detected 

for their implementation in a case study. In particular different RTO schemes 

for the optimal operation of some sections of an industrial plant are proposed 

and coordinated. Such RTO schemes take explicit consideration of fouling 

effects. Their implementation as a part of DSSs is also addressed. Furthermore, 

an integrated process re-design with RTO is also approached for a section of 

the plant. 

 

The reference industrial site 

In the production of viscose fibers at Lenzing AG (Austria), the most 

energy intensive process is the recovery of various chemicals by means of an 

evaporator process and heat recovery units, among other processes. In order to 

operate these process units optimally, five interdependent tasks have to be 

performed by the plant staff:  

• Assignment of the evaporators to the individual products 

• Setting of the individual evaporator loads  

• Setting the amount of cooling water that goes through each 

cooling system attached to the evaporators 

• Allocate the hot sources as utilities to heat up the products  

• Setting the flow through each device 
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All this must be done under the presence of a high number of 

constraints whether due to first principles and logic statements in the model, or 

to the required operating conditions.  

Furthermore, as in many other industries, there are thick layers of 

unwanted deposits on the surface of the equipment, which strongly reduce their 

efficiency (fouling effect). Hence, a continuous monitoring of such fouling is 

needed in order to improve the reliability of the models.  

Currently, all decisions about how to operate the process units are 

made by the operators and plant manager based on their own expertise. 

Nevertheless, due to the huge number of alternatives arising from such 

combinatorial problems is often too complex for a human operator/manager. 

Hence, a DSS based on RTO will help operators and plant managers in the 

decision-making process on how to operate the process units according to the 

real-time conditions. The results of the optimization must be presented in an 

easily and quickly understandable interface. 

The different decisions to take can be grouped according to the 

different networks of the process units (an evaporation network, a cooling 

system one, and a heat-recovery network). Nevertheless, it is very important to 

coordinate the operation of the different sections, as they are coupled. Thus, 

this thesis studies three different ways to coordinate the operation of the 

different networks, comparing not only the goodness of the results obtained but 

also the computational time required to achieve such results. 

Finally, one of the sections in the plant could be re-designed in order 

to incorporate new equipment. Thus, a rigorous mathematical model which 

represents the behavior of the network for all the design possibilities must be 

formulated. The model must consider not only the operation cost but also the 

payback time as a constraint to fulfill. It must bear in mind that the new design 

must be able to operate in different future operation conditions, so the 

uncertainty of these conditions must be considered. 
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1.2 State of the technology 

In line with the pyramidal structure showed in  Figure 1.1, the general 

hierarchy for control and decision making in a plant according to (Darby et al., 

2011) is as Figure 1.2 shows. 

 

Figure 1.2. Plant decision hierarchy (Darby et al., 2011) 

This hierarchy decomposes an otherwise unmanageable problem into 

a cascade of interconnected solvable problems as each layer determines what 

is relevant for the specific decisions that must be made and omitting the details 

that are not relevant. However, it makes necessary sharing relevant plant data, 

model information, constraints and pricing across all levels of the hierarchy, 

which is the nowadays main concern. 

The DCS layer is responsible for regulatory control, providing 

stability and safety to the operation of the process systems. The MPC layer not 

only allows to take care of interactions among process variables, but also 

considers the constraints about admissible variable values and the presence of 

complex nonlinear and delayed dynamics of the processes. It is based on a 

process model which allows to consider future consequences of the interactions 

and process dynamics, according to the current control actions. The model 

allows computing the future evolution of the controlled variables over a 
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prediction horizon respecting the constraints and fulfilling the control 

specifications. 

Once the decisions about the technical aspects of how to get to the 

best operation point from the control point of view have been performed, the 

next layer is to find such point considering an economical point of view. That 

is where RTO arises.  

Note that, comparing Figure 1.1 and Figure 1.2, the Management 

Level has been split into scheduling and RTO as they are used to solve different 

problems. In scheduling, the important issue is operational planning over short-

medium time periods (from hours to weeks), meanwhile RTO computes control 

setpoints in real time, based on current plant conditions. 

One must bear in mind that the vertical integration of the automation 

pyramid is not fully complete, the feedback of information from the lower 

layers to the upper layers is not well resolved. Nowadays the MES and ERP 

layers are still very manual, and one of the key ideas of Industry 4.0 is to 

automate them. Hence, the limits of the pyramid layers are blurred in order to 

achieve an idyllic autonomous and intelligent factory where the well defined 

and isolated control departments are no longer a model to follow. 

1.2.1 Real Time Optimization 

Since RTO emerged when online computer control of chemical plants 

became available, it has been developed closely with industry. Its applications 

involve not only chemical and petrochemical industries but also food 

production or biological processes, among others. 

According to the hierarchical structure seen in Figure 1.1, RTO 

provides a bridge between plant scheduling and process control as medium-

term decisions are made, by explicitly considering economics in operations 

decisions (de Prada & Pitarch, 2018). Thus, a real-time optimizer computes the 

optimal operating point under changing conditions based on an economic 

criterion through the explicit use of models. Such operating points are the 
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setpoints for a set of controlled variables that are passed on to the lower-level 

controllers. 

 Although RTO expands from MPC, the base problem to be solved 

has two important differences. First, in RTO, the objective function is based 

on an economic criterion. In addition, meanwhile in the MPC model considers 

the dynamics of the processes, in RTO the problem is formulated in steady 

state. Note that in this case real time is referred not in a continuous way, but 

from time to time, generally according to each time that there are (or could be) 

changes in the operation conditions, such as changes in raw material quantity 

or product demand. When RTO is implemented with MPC, the rate at which 

RTO can be executed depends on the frequency of unmeasured disturbances 

and the time required for MPC to move the process to a new steady state. 

Furthermore, as the models only describe the steady-state behavior of the 

process, the optimizer only should be executed when the process is in steady 

state.  

The benefits of using RTO in addition to MPC comes when we 

consider the optimization problems from a wider perspective than a process 

unit, i.e., RTO accounts for tradeoffs that MPC cannot, either by considering 

economic aspects or a larger envelope. Meanwhile MPC application has a 

usually local scope, RTO is normally implemented to seek the best operation 

point that optimizes the global process efficiency and economy.  

RTO can consider the amount of interconnected equipment and 

networks that those industries are made up, where to achieve the optimal 

management is not a trivial task. Thus, the development of a systematic 

mechanism, such as RTO, translates into important economic payoffs. So many 

companies have developed RTO solutions and related software, whose use is 

increasing due to the highly competitive market. Some examples in the recent 

literature of the benefits of using an RTO scheme in process-decision making 

are (Galan et al., 2019; Han et al., 2015; Merino et al., 2018).  

The majority of RTOs implemented over the last years use rigorous 

models based on first principles to describe the theoretical steady-state 
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behavior of a process with enough precision. There are many RTO 

implementations which use commercially available flow sheeting packages 

based on open-equation modeling techniques that can code such first-principles 

models. However, care must be taken for a model to represent the actual 

process accurately, as a wrong RTO solution has large impact on the economy 

and efficiency of the factory. Thus, it is worth spending time and effort on 

formulating and customizing the model to the actual plant before implementing 

RTO. Moreover, the model must be of enough detail and complexity to 

adequately reflect the key economic tradeoffs and operating constraints, so that 

the model predictions result in a valid economic optimum, but also considering 

the computational demands in the optimization as well as the efforts needed by 

plant engineers to maintain the model. 

Therefore, a finer approach is to develop a base model via first-

principles laws for the process type under consideration, and then to tailor it to 

the specific plant with empirical laws derived from process data. Building these 

hybrid or gray-box models implies both, knowledge of process behavior based 

on conservation laws (for mass, energy, and momentum) and constitutive 

equations that describe phase and chemical equilibrium, transport processes, 

reaction, etc., and gathering informative enough process data (de Prada et al., 

2017). In this way, machine learning can be recalled to approximate some 

effects that cannot be easily modeled by first principles. Furthermore, the 

model equations should be coupled with constraints based on process and 

product specifications, as well as an objective usually driven by an economic 

criterion (Biegler, 2010). Finally, a set of available decisions, as equipment 

parameters or operating conditions need to be selected. All these items are 

translated as a process model with objective and constraint functions, which 

define the optimization problem, as Figure 1.3.  
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Figure 1.3. Conceptual formulation for process optimization (Biegler, 2010) 

Following such scheme, the typical formulation of an optimization 

problem must contain: 

• An objective function that measures the quantitative performance to 

be minimized or maximized, usually the operational costs, yield or 

profit. 

• Decision variables which are the variables that can be adjusted to 

satisfy the constraints and find the optimal value for the objective 

function. 

• A model which consists of a set of equations and inequalities named 

constraints that describe the behavior of the process. 

• Operating constraints, i.e., the limitations on the values of some 

variables due to equipment constraints, safety constraints, quality 

constraints and/or environmental constraints. 

Grouping the decision variables in a vector denoted x, and representing the cost 

function as 𝐽(𝑥) and the equality constraints as ℎ𝑖(𝑥)  =  0 and the constraints 

as 𝑔𝑗(𝑥)  ≤  0 , the typical RTO can be associated to the solution of the 

problem: 
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Depending on the domain of the variables (binaries or real) and 

characteristics of the constraints (linear or nonlinear), the optimization problem 

could be very complex. 

One of the major contributions to the use of rigorous models was the 

arrival of open equation modeling, which allowed engineers to focus on the 

model equations without worrying about convergence details, or how to 

structure and solve the model update step vs. the optimization step, as was the 

case with traditional, flow sheeting packages (Darby et al., 2011). With the 

increment of computer processing capability, to get an efficient and reliable 

solution for large problems was possible. 

Nevertheless, sometimes, the relation among some variables can be 

quite complex, difficult to model, or even depending on unknown variables. In 

such cases, hybrid models are needed, where some relationships are extracted 

from process data. Hence, the development of these models is a critical point 

in order to have reliable results (de Prada et al., 2017). A more detailed 

explanation of hybrid modeling is given in the next section (Section 1.2.2). 

In addition, field measurements used either as input data to the model 

or to build the hybrid model, are never perfect. Therefore, it is necessary to 

correct the raw information before its further use, because if wrong information 

appears in the model, the solutions of the RTO that must verify these equality 

equations would not correspond to the real process optimum, even if the 

structure of the model was perfect. In order to mitigate this problem, RTO is 

normally accompanied by a module called data reconciliation (Leibman et al., 

1992) that computes reliable estimations of the model parameters, i.e., the raw 

data collected from sensors, using the basic first-principles laws.  

One of the biggest challenges concerning RTO is that models never 

represent the real behavior as processes are always affected by unknown 

disturbances. When the model has structural differences with reality, it is 
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possible that RTO gives wrong results, obtaining an optimal operation point 

different from the real one. Hence, different solutions have been studied in 

literature for dealing with the uncertainty involved in the problem, such as the 

ISOPE (Integrated System Optimization and Parameter Estimation) (Roberts, 

1979) methods or Modifier Adaptation(Marchetti et al., 2009) which use the 

process measurements to estimate the gradients of the objective function in 

order to compute some modifiers for the cost function and the constraints. Or 

also Extremum-Seeking Control (Ariyur & Krstić, 2004) and Neighboring-

Extremal Control (Würth et al., 2009) which incorporate the plant information 

to update the process inputs, replacing the optimization problem by a feedback 

control problem which tries to satisfy the process optimality conditions.  

In addition, although RTO is usually based on steady state models, it 

may happen that dynamic effects could not be neglected. An example of this 

case is when the plant is rarely at steady state due to the presence of significant 

and persistent disturbances. The solution then is to merge the MPC and RTO 

layers in order to formulate a dynamic RTO, obtaining a dynamic controller 

with an economic target optimization, called economic MPC. Some examples 

of such type of controllers can be found in (Engell, 2007; A. I. G. Santos et al., 

2001) 

Finally, another of the big challenges of the RTO concerns the 

implementation of the solutions obtained. Usually, such solutions are passed 

to the MPC as the value of the setpoint, allowing a smooth transition between 

the current and the optimal operation point. However, it requires consistency 

between the gains of the RTO and MPC models. But even when such 

consistency exists, the optimal operation conditions given by the RTO may be 

in a different operating region, forcing to update the MPC local model.  

Thereby, alternative approaches of the implementation of the RTO solutions 

have been studied in the literature. One possibility is described in (Skogestad, 

2000), which consists in solving the RTO offline and then to design a control 

scheme that approximately implements the optimal solutions by maintaining 

the so-called self-optimizing variables at their setpoints. Another approach is 

to move the RTO to the MPC layer, using the nonlinear model to update the 
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steady-state gains in the MPC instead of using the model in a separate 

optimizer, as proposed in (de Gouvêa & Odloak, 1998). Thus, the optimal 

operating point is obtained based on gains determined by the nonlinear model, 

without the requirement of achieving plant steady state.  

This thesis contributes in the problem of developing hybrid models 

suitable for RTO of large systems, and in the implementation challenge, i.e., 

how to put solutions into practice, when the loop is not yet closed and requires 

human acceptance and participation. 

1.2.2 Hybrid modeling 

The concepts of gray-box modeling and hybrid semiparametric 

modeling, emerged in the 1990s, but in different fields. The first one came up 

in the systems and control theory field, where the first session on gray-box 

identification was held at the fourth IFAC Symposium on Adaptive Systems in 

Control and Signal Processing in 1992. In 1994 a first special issue in 

International Journal of Adaptive Control and Signal Processing was published 

on the same topic. The hybrid semiparametric modeling has evolved from the 

neural network field as a way to introduce structure into the neural network 

models with the work of Psichogios and Ungar; Johansen and Foss; Kramer, 

Thompson, and Bhagat; and Su et al. (Glassey & von Stosch, 2018). 

Gray-box modeling combines priori knowledge (mainly structural 

information derived from first principles, i.e., white-box models) and response 

data from experiments (black-box models). Hybrid semi-parametric models 

may be classified as a type of grey-box models as its definition, given by 

(Thompson & Kramer, 1994), is “model structures that combine parametric 

and nonparametric submodels” considering; (a) parametric models those 

determined a priori based on knowledge about the process and their number of 

parameters is fixed but, depending on the level of knowledge sophistication, 

they might have a physical or empirical interpretation; (b) nonparametric 

models those where the number and nature of the parameters are flexible and 

not fixed in advance by knowledge. 
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Since its first practical application in the 1990’s, hybrid modeling has 

gained interest and several practical applications was adopted by different 

industries. A collection of relevant papers of the different applications can be 

found in (von Stosch et al., 2014).  

Current trends encourage the use of pure data-driven approaches due 

to the rise of Big Data at industry. Nevertheless, the process industry is 

characterized by its knowledge of the physiochemical processes and detailed 

models for some equipment/plants have been developed successfully in the last 

decades. Therefore, relying only on data-driven models and throwing out all 

this deep knowledge would be a waste of information. 

The development of first-principles models requires detailed 

knowledge about the process but, in the process industry, this knowledge is 

usually partial, as could be unmeasured variables or the effort for computing 

them is too expensive and the effects of unknown inputs (disturbances) are not 

negligible. Thus, incorporating data-driven models allows to keep an 

understanding of the system, yet not all parts of the model need to be 

fundamentally understood. This is the principal benefit of hybrid modeling but 

not the only one.  

The other benefit of using hybrid modeling is that the requirements 

on the data are lower than for purely data-driven models, as the incorporated 

fundamental knowledge to build these models may help to describe the relation 

between variables, reducing the need to investigate these interactions 

experimentally. Furthermore, the extrapolation properties are better than in 

purely black-box models, as it has been reported several times (Oliveira, 2004; 

te Braake et al., 1998; van Can et al., 1998), allowing reliable model predictions 

beyond experimentally tested process conditions. 

Nevertheless, this kind of modeling also raises different challenges, 

being the major one the identification of the unknown. There are many 

machine-learning methods for such identification from data, being one of the 

most common the least-squares (LS) regression with regularization in the 

model coefficients (Kim et al., 2007; Neumaier, 1998). However, it must be 
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considered that the goodness of the obtained model and its guarantees of 

physical coherence depend strongly not only on the quantity but also on the 

quality of the data.  

Therefore, the design of an identification experiment should be 

carried out in a way such that the unknown part of the model can almost be 

completely discovered, though it is rather unrealistic to know that in advance 

for many cases. If no data at all, nor any knowledge about the system at hand 

is available, then a systematic exploration of the process design space, through 

experimental design, can be highly valuable (Chang et al., 2007; S. Gupta et 

al., 1999; Saraceno et al., 2010; Thibault et al., 2000; Tholudur et al., 2000; 

Tholudur & Ramirez, 1999).  

However, although operation data are available, such raw data 

obtained from plant measurements might have inconsistencies due to noisy or 

biased sensors, so the estimation of the real values of the data is a must before 

any identification in a data-driven model or other further use. Data 

reconciliation (Leibman et al., 1992) is one of the best ways to ensure the 

quality of the data. Such methodology consists in estimating the real values of 

the data by solving an optimization problem that finds the values of the model 

variables and unknown parameters that better fit the plant measurements. 

Nevertheless, there are different techniques to approximate the models through 

the data from the real plant measurements, according to the existing 

redundancy either in the model (due to additional algebraic constraints) or 

duplicated sensors.  

Recently, (Pitarch et al., 2019a) proposed an interesting approach for 

building hybrid models in the PSE context. The methodology is split in two-

stages, combining robust data reconciliation of the raw data with improved 

constrained regression for the identification of extra black-box relationships.  

Note that black-box models are developed mainly based on data, but 

if the environment is no longer the same as when these models were identified, 

it might never be possible for the prediction to correspond to the actual system 

response. 
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In this thesis, different hybrid models have been developed for 

optimization purposes. Such models are essentially based on first principles, 

expert knowledge on the processes, and their operation constraints. For the 

relation between variables which are too complex to determine by this way, 

data-driven models have been developed using the SOS-constrained regression 

(Pitarch et al., 2019b), both to fit the data and to enforce coherent physical 

model responses.  

Such method consists in assuming that a dataset of N samples over 

time for some outputs 𝑦 and some inputs 𝑢  is available. Then, a candidate 

model for regression 𝑓(⋅) is sought such that a p-measure of the error (e.g., L1-

regularized or least squares) with respect to the data is minimized over a set of 

constraints 𝑐(⋅), which specify some desired features on the model (e.g., non-

negativity or complex bounds on the model n-degree derivatives). The 

optimization problem to solve is: 

min
𝑥
∑‖𝑦[𝑡] − 𝑓(𝑥; 𝑢[𝑡])‖

𝑁

𝑡=1 𝑝

s. t. :
          𝑐(𝑥; 𝑢) ≤ 0                      ∀   𝑢 ∈ 𝒰

  

In this thesis, the data used to develop the models have been obtained 

under selected operation points of the plant, to ensure the right conditions to 

develop a proper model. If the required experiments were not possible to 

perform due to tight production constraints at the factory, data from plant 

historian was treated by data-reconciliation techniques, when the redundancy 

in the first-principles base model made it possible. 

Sometimes the name hybrid model is also applied for those models 

which combine discrete and continuous variables, i.e., those models where 

some of the variables are constrained to take integer values, for instance in 

scheduling problems (Harjunkoski et al., 2014). The previous concept of gray-

box model is used in this thesis to represent equipment behaviors, and this 

different concept of hybrid models is used to model equipment-network 

layouts and operation constraints. The optimization problems derived from 
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such models can be solved via Mixed-Integer Programming (MIP). If in 

addition, the objective function and/or the feasible region of the problem are 

described by nonlinear function, the problem becomes a Mixed-Integer 

NonLinear Programming (MINLP) problem. 

1.2.3 Mixed-Integer NonLinear Programming (MINLP) 

Mixed-Integer NonLinear Programming problems combine the 

difficulty of optimizing over integer variables with the handling of nonlinear 

functions, turning out to be NP-hard. Depending on wether all the functions 

included in the model are convex or not, the MINLP is itself called convex or 

non-convex. Despite both kinds of MINLP are generally NP-hard, the convex 

ones are much easier to solve than non-convex ones (Burer & Letchford, 2012). 

However, process systems which include discrete decisions are usually non-

convex, as the physical laws that describe the behavior of the variable so are.  

There are quite-effective exact-solution methods for convex MINLP 

problems which have been devised based on the premise that the continuous 

relaxation of a convex MINLP is itself convex. Some examples of such 

solution methods are Generalized Benders’ Decomposition (Geoffrion, 1972), 

Branch-and-Bound (O. K. Gupta & Ravindran, 1985), Outer Approximation 

(Duran & Grossmann, 1986), LP/NLP-based branch-and-bound (Quesada & 

Grossmann, 1992), the Extended Cutting Plane (Sawaya & Grossmann, 2005), 

branch-and-cut (Stubbs & Mehrotra, 1999), and the hybrid methods (Abhishek 

et al., 2010). These approaches generally rely on the successive solutions of 

closely related nonlinear programming (NLP) or MIP problems. Nevertheless, 

all these methods have proved to be capable of solving instances with 

thousands of variables. 

In contrast, the continuous relaxation of a non-convex MINLP is itself 

a global optimization problem, and therefore likely to be NP-hard. Therefore, 

using such methods for non-convex MINLP may cause that the NLP 

subproblems obtained in the relaxation have a local optimum and/or that the 

MILP master problem may cut-off the global optimum. There are two 

approaches to handle nonconvexities; (i) replace nonconvex terms by 
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underestimates/convex envelopes and solve the global optimization or (ii) use 

local methods adding slacks to linearizations and searching until no 

improvement in NLP problems. 

The exact algorithms for non-convex MINLP problems are usually 

based on the exact-solution methods for convex MINLP problems, specially 

based on the branch-and-bound method. Some of the most remarkable are: 

spatial branch-and-bound (Lee & Grossmann, 2001; Smith & Pantelides, 1997), 

branch-and-reduce (Ryoo & Sahinidis, 1995, 1996), conversion to an MILP 

(Beale & Tomlin, 1970), branch-and-refine (Leyffer et al., 2008). Using the 

mentioned exact-solution methods, several software packages have been 

developed, like BARON (Sahinidis, 1996) or Couenne (Wächter et al., n.d.), 

among others. Nevertheless, although all these methods are able to solve non-

convex MINLP problems to proven optimality, the computational time 

required is usually too high for real-time demands or the LP relaxation may be 

infeasible or too expensive. 

In contrast, the local methods have been designed to find good and 

quick solutions, although probably the solution obtained is not globally optimal. 

Thus, they are recommended when the model is so complex that an exact-

solution method cannot get a solution, or, in the author’s opinion, in the cases 

when the computational time to obtain a solution is more important than such 

solution to be the global optimal, as in RTO. Such local methods can be divided 

in those based on converting exact-global algorithms for convex MINLP 

problems into local for non-convex MINLP problems (Leyffer, 2001; Nowak 

& Vigerske, 2008), and those which adapt classical heuristic (and meta-

heuristic) approaches, normally applied to 0–1 LP problems, to the more 

general case of non-convex MINLP problems (Nannicini & Belotti, 2012; 

Schlüter et al., 2009; Yiqing et al., 2007). Some software packages that can be 

used to find local solutions for non-convex MINLP problems are BONMIN 

(Bonami et al., 2008) or DICOPT (Viswanathan & Grossmann, 1990), which 

are actually packages for convex MINLP problems. 

The different hybrid models developed in this thesis normally mix 

continuous variables (as the flow that must go through each unit) with discrete 
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decisions (the allocation of products). Furthermore, not only some first 

principles but also the data-driven models developed are nonlinear functions in 

the decision variables. Hence, the associated optimization problems are 

MINLP without guarantee of convexity. As those problems are the core of an 

RTO for a DSS, the computational time to obtain a solution is key.  Therefore, 

the method used to get a solution is local, using the software package 

BONMIN. However, it should be mentioned that BARON has also been tried 

in order to get the global optimal solution, but its required computational time 

to get it made it worthless. 

1.2.4 Decomposition methods 

When the optimization problem is a non-convex large-scale MINLP 

problem and neither the global solution methods nor local ones are suitable 

(due to computational time or limited memory requirements), a last option is 

to decompose the monolithic problem into several less-complex subproblems.  

The key idea of decomposition is to solve a large-scale o complex 

problem by breaking it up into smaller ones and solving each of the smaller 

ones separately. Nevertheless, usually the smaller problems are coupled (there 

are complicating variables o complicating constraints), so they cannot be 

solved independently. For these cases there are coordination techniques, i.e., 

decomposition methods, which approach the solution of the centralized 

original problem by iteratively solving a sequence of smaller subproblems. In 

Conejo et al. (2006) the principal decomposition methods can be found 

according to the optimization problem type.  

When the subproblems are well defined and the main problem to solve 

them independently is that there are shared variables, not only decomposed 

methods but also many architectures to coordinate the subproblems in the 

search for solutions involving the whole process can be applied.  

The most common decomposition methods for MINLP problems are 

based in the Lagrangean relaxation method (Geoffrion, 1974), where the 

complicating part of the problem is added to the objective function as a penalty 
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and the dual problem is exploited. There is a collection of different updating 

procedures for the Lagrangean multipliers, being some of the most highlighted 

the subgradient (Boyd et al., 2003) and the cutting plane method (Kelley  James 

E, 1960). 

There are also architectures based on cooperative games applicable to 

coordinate the solution of the subproblems (Lozano et al., 2013). Most often, 

the control scheme considers a distributed linear system composed of 

subsystems coupled with the adjacent subsystems through the variables. The 

big disadvantage of this method is that it is designed for systems controlled by 

a small number of variables as the number of options of the cooperative game 

grows in a combinational way. 

Finally, there are also methods based on price-driven coordination 

algorithm (Cheng et al., 2007). In this approach a multi-layer architecture is 

needed where the subproblems exchange information with a coordinator 

(master problem). The harmonization between subproblems is made via price 

assignment mechanisms, such as price (Lagrangean) coordination methods 

where the master problem modifies the local cost functions to achieve a global 

optimal solution. In the case of applied price-driven coordination for shared 

variables between subproblems, each subproblem must add a constraint to 

force that the shared variable is equal to a reference. Such constraint is relaxed, 

i.e., added as a penalty in the objective function with a multiplier (called price). 

The master problem must compare the results of the shared variables and 

update the price and the reference for each subproblem. Traditional price-

driven coordination algorithms are based on market law to update prices, but 

nowadays there are different alternatives to enhance the performance as the 

one proposed in Martí (2015). Nevertheless, these methods are usually not 

applicable for MINLP. 

1.3 Objectives 

The objective of this thesis is located in the framework of the work 

that contributes to operate industrial facilities efficiently by providing plant 
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operators and managers with suitable decision-support systems at the RTO 

level resource consumption efficiently. Specifically, in this thesis, we face the 

mathematical modeling, optimal operation, and process re-design problems at 

several interconnected sections of a fiber-production site, not only by 

developing separate RTO schemes, but also providing a coordination strategy 

among them. 

To reach this general aim, the following objectives have been 

considered in particular:  

• Studying the operation of different sections of the plant, 

considering discrete and continuous decisions about both 

operation and maintenance: 

o An evaporation network 

o A cooling-water distribution system 

o A heat recovery network 

• Developing data-based reliable models for optimization 

purposes, that take explicit consideration of the fouling 

effects. 

• Building hybrid models of the operation alternatives at each 

considered section.  

• Formulating optimization problems using the hybrid models 

to minimize the operation cost in order to: 

o Assign the products to the evaporation plants 

o Distribute the cooling water in the cooling system 

o Allocate the hot utilities in the heat recovery 

network 

• Modeling a superstructure to represent all the possible 

configuration for the re-design of one of the networks (the 

cooling systems attached to the evaporation network). 

• Studying different approaches for formulating an 

optimization problem for the superstructure, taking explicit 

consideration of the uncertainty in future operation 

conditions. 
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• Studying how to coordinate the operation of the different 

sections in order to get the global optimal point instead of 

the local optimal point of each one. 

• Validating the models and algorithms with real plant data 

and studying its industrial implementation. 

• Developing a DSS which incorporates the developed RTO 

systems together with suitable interfaces to show the results 

appropriately to plant personnel. 

1.4 Structure of the thesis 

The thesis is organized as follows: in the next chapter (Chapter 2), a 

global description of the fiber-production site is presented as well as the 

different sections whose operation is the core of the work, highlighting the 

most relevant details. 

Chapter 3 is about the first case study, an evaporation network. After 

a brief description of the network, previous work to this thesis on this case is 

summarized. Then, the development of data-based models for predicting the 

behavior of the important variables is presented. The mathematical formulation 

of the optimization problem which compound the RTO is presented afterwards, 

besides the results of using this RTO. Finally, a proposal on how to integrate 

this RTO scheme with the previous work done is shown. 

In Chapter 4, the other case study, which deals with a heat exchanger 

network, is presented. First, the layout of the network is described, and after 

that, the fouling effect inside the heat exchangers is modeled based on data. 

Finally, the hybrid model of the network operation is formulated, and it is 

incorporated to an RTO scheme, whose validation is demonstrated with the 

results obtained. 

Chapter 5 addresses the formulation of the evaporation network 

model to consider, not only the operation, but also the optimal re-design for the 

incorporation of new equipment. As the model includes uncertainty of the 
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future operation conditions, different formulations to solve the problem are 

presented. Once the optimal re-design is computed, its optimal operation is also 

guaranteed by a proposed RTO that is coherent with the design phase.  

Chapter 6 is about the importance of the implementation of the 

developed technology, in these cases as decision support tools (DSS). Hence, 

a brief introduction to DSSs is presented. After that, the implementation of the 

different RTO schemes presented on previous chapters through the 

development of suitable DSSs is described. Then, the operator interfaces for 

each DSS are explained. Finally, how the integration of the DSSs with the 

control system would be implemented is briefly described. 

 Finally, Chapter 7 lists again the main contributions of the thesis but 

giving some general conclusions extracted after  the work done. Also, a brief 

discussion of the future challenges and open issues that could be carried out as 

future work is included in this chapter. 



Chapter 2                       

Industrial case study 

The industrial networks for which this thesis provides decision 

support solutions correspond to a factory of the Lenzing Group, the biggest 

European man-made cellulose fiber production company. In particular on its 

head-quarter plant, located in the small Austrian town that gives name to the 

company. This industrial site will be used as a reference in the formulation of 

the problems and as a test site of the tools developed. 

In such plant, they mainly produce several types of fibers with 

cellulose extracted from wood, their raw material. The fiber types are viscose, 

lyocell and modal fibers, and all of them are used in a variety of textile 

applications in addition to in hygiene products, cosmetics, or even agricultural 

applications. Nevertheless, as cellulose only represents the 40% of the wood, 

the other components are used to obtain different products (for food or 

pharmaceutical industries) or energy to supply their plants (see Figure 2.1). 

Although the process to obtain the different fibers is essentially the 

same but with specific modifications, in this thesis we are going to focus on 

the viscose fibers. 
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Figure 2.1. Diagram of Lenzing Group production 

First, the wood is shredded, and the obtained cellulose pulp is matured 

and dissolved in a multi-stage physical-chemical process in order to obtain a 

viscous solution of high purity. After that, such solution is pressed through fine 

nozzles sunken in an acid bath. This is the key stage, called spinning, where 

fibers are recovered from the viscose solution by a chemical reaction. Finally, 

the resulting fibers are subject to different treatments (washed, stretched, cut, 

dried, and finished with an ended of soap-like substances) in order to obtain a 

lush and high-quality final product. (See Figure 2.2). 

 

Figure 2.2. Scheme of the different processes to obtain fiber from cellulose pulp. 

During the overall process, several chemical products are needed, and, 

in addition to the fibers, other chemical by-products obtained. In particular, in 

the spinning, the acid bath used for regeneration of the cellulose in viscose 
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fibers, is composed of sulfuric acid (H2SO4), sodium sulfate (Na2SO4), zinc 

sulfate (ZnSO4), alum and water. During regeneration, the alkali present in the 

viscose reacts with H2SO4 to form Na2SO4 and water. Hence, there is a 

continuous depletion of H2SO4 and build-up of Na2SO4 in the bath. The dilution 

of acid bath occurs due to large water content in viscose and water generation 

by the reaction of NaOH and H2SO4, causing the degradation of the bath. 

Therefore, in order to maintain the quality of the fibers and to reduce the 

wastewater and chemical consumption, the acidity of the baths (called spinbath 

hereinafter) must be recovered continuously (fiber production is a continuous 

process).  

For that purpose, there is a recovery system which works in parallel 

to the spinning process. It involves a series of processes and equipment like 

circulation tanks, spinbath filters, evaporators, a crystallizer and rotary vacuum 

filters (see Figure 2.3). 

 

Figure 2.3. Recovery system scheme of the acid bath. 

In the process unit Evaporation, water is separated from the spinbath, 

meanwhile the process unit Crystallization separates the sodium sulfate. Heat 

recovery units are used in order to transfer heat from one to the other process 

unit and in the Calcination unit water is removed from the sodium sulfate. 
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Nevertheless, this thesis is just going to spotlight the evaporation process (and 

its cooling system) and the heat recovery process, which are going to be briefly 

explained in the following sections. The complete detail of the networks and 

all the variables and parameters involved in each one, are in Chapter 3 and 

Chapter 4. Due to the complexity of each network layout, the amount of 

decisions to take, and the non-convexity of some model equations (e.g. energy 

balances) with respect to the decision variables, each network is going to be 

modeled separately. Then, a solution on how to coordinate the separate 

optimization problems to approach plant-wide optimization is given. 

2.1 Evaporation network 

As Figure 2.3 shows, one of the key processes to recover the acidity 

of the spinbaths is the evaporation of the water, which is carried out by a 

network of evaporation plants. These plants are multiple-effect evaporation 

stations (Prada et al., 1987) where each one consists of several separation 

chambers connected in series, working at low pressure to ease the boiling, 

among other equipment (see Figure 2.4).  

 

Figure 2.4. Scheme of a single evaporation plant 

The spinbath inflow enters the plant by an evaporation chamber (the 

last in the chain of the evaporation chambers), where it mixes with part of the 

concentrated spinbath being recirculated. In this last chamber is where the 2nd-
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effect vapor is extracted by the vacuum created with a cooling system. The 

recirculated mixture is then pumped through a series of heat exchangers, where 

it is preheated with the vapor coming from the rest of evaporation chambers. 

Nevertheless, to achieve the appropriate temperature to start evaporation, extra 

live steam coming from boilers is needed (main source of energy consumption). 

Once the solution is heated to the desired setpoint, it goes to the different 

evaporation chambers. The concentrated spinbath is finally extracted by 

overflow in the penultimate chamber, though it is mostly recirculated.  

There are twenty-nine evaporation plants working simultaneously in 

the Lenzing’s facility, forming an evaporation network. However, due to the 

different units that compose each evaporation plant, they are not equivalent, 

having different evaporation capacities (the amount of evaporation flow that 

can achieve) and efficiencies. In addition, Lenzing AG produces several types 

of viscose fibers (five different ones), which means a particular spinbath for 

each one to obtain the different fiber features. Although the efficiency of an 

evaporation plant does not directly depend on the spinbath that is treating, the 

demand of evaporated water does.  

Despite the evaporation network is just a part of the recovery system 

parallel to the main processes of fibers production, it means a high demand of 

live steam consumption. In fact, it represents about 75% of the whole energy 

consumption in the factory. Thus, any improvement in such network that 

implies a reduction of steam consumption will have a big impact on the overall 

factory operation cost.  

Hence, one of the aims of this thesis is to develop a system able to 

optimize the global steam consumption of the network by considering the 

coordinate operation of all the evaporation plants, taking into account the 

operational constraints associated to the process, such as the performance of 

the cooling system attached to the plants. Furthermore, as it will be exposed in 

subsequent chapters, there are few process magnitudes monitored and 

controlled but many different decisions to take (only the evaporation network 

involves around 150 decision variables, half of them discrete ones). 
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2.2 Cooling System Network 

Attached to each evaporation plant there is a cooling system based on 

surface condensers. The aim of the surface condensers is, on one hand, to 

generate a pressure drop by condensation to evaporate the water of the spinbath 

(the 2nd-effect of the multiple-effect evaporation stations), and on the other 

hand, to condense such evaporated water to be used later in other parts of the 

factory. Nevertheless, the efficiency of evaporation plants depends on the 

behavior of this cooling system: the higher condenser performance, the higher 

evaporation capacity of a plant and the lower steam consumption. Thus, a good 

performance of the cooling system could also mean a significant reduction of 

the steam consumption, and consequently a reduction of the overall 

expenditure of the site. 

The surface condensers are designed as tube and shell heat exchangers 

(see Figure 2.5) where the cooling medium, which in this case is cooling water 

from a river nearby, is passed through the tube bundles and the vapor condenses 

on the pipe wall.  

 

Figure 2.5. Scheme of a surface condenser. 

Taking into account that the inlet temperature of the cooling water 

cannot be controlled, the way to increment the condenser performance is 

incrementing the cooling-water flow that, at the same time, involves a 

reduction of the outlet temperature of the cooling water at the output of the 

surface condenser. Nevertheless, the cooling water available to be taken from 

the river is limited, so the key is to know how to distribute the cooling water 



CHAPTER 2: INDUSTRIAL CASE STUDY 35 

 

among the most suitable condensers, analyzing how the efficiency of each 

evaporation plant varies with the cooling power developed by the attached 

surface condensers. 

The surface condensers themselves form a network and, according to 

the source of the cooling water fed to each condenser, the evaporation plants 

can be grouped into two sub-networks (see Figure 2.6). The first one can only 

get cooling water from one source, meanwhile the subnet two can get cooling 

water from the two available sources. Furthermore, as the outlet cooling water 

goes back to the river, its temperature must be below a limit imposed by 

environmental regulation.  

 

Figure 2.6. Cooling water network 

In addition, nowadays the factory is thinking on improving the 

network by integrating some heat pumps. In brief, a heat pump is a thermal 

machine that extracts heat from a fluid and transfers it to another. In this case, 

the heat pumps will cool down the outlet cooling water from surface 
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condensers. Thus, another task is to investigate which is the best way to 

incorporate heat pumps in the cooling network such that the cooling power is 

improved (hence, operability margins in the evaporation section too) while 

fulfilling environmental regulations without incurring in an excessive time lag 

between investment and payback. 

Thus, regarding the cooling-water network, the aims are to develop a 

system able to provide the cooling-water distribution among the surface 

condensers not only for the actual network but also the optimal integration of 

the heat pumps and the cooling-water distribution in the future network layout. 

All of this, taking into account how it affects the evaporation-plant efficiency 

and the load allocation of spinbaths to plants. Even though the cooling-water 

distribution problem is not very large (barely around 15 decision variables), 

the complexity increases when considering the joint operation including the 

evaporation network, that not only raises the number of variables but 

incorporates discrete ones, making the problem non-convex. The heat-pump 

integration also brings more discrete decisions, as well as the need of 

incorporating uncertainty in the future operation conditions, making the 

problem even more complex and non-convex. 

2.3 Heat recovery network 

The spinbaths concentrated after the evaporation network (and the 

crystallizer process) must be heated in order to be in the suitable temperature 

for the spinning. Thus, another important network in the recovery system is the 

heat recovery network (see Figure 2.3) whose aim is to reduce the energy cost 

using the remaining heat present in waste streams.  

The heat recovery network consists of fifteen heat exchangers. These 

heat exchangers are plate type, which are widely used industrially due to their 

extraordinary heat transfer properties. A plate heat exchanger consists of a set 

of corrugated metal plates in contact with each other where each plate has four 

holes that serve as inlet / outlet ports and to conduct the fluids along the plate. 

The plates are grouped together within a frame distributing the hot fluid 
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through one of the plates and the cold fluid through the next one, thus allowing 

the transfer of heat (as shown in Figure 2.7). Due to its more compact design, 

they allow greater effectiveness in heat transfer. 

 

Figure 2.7. Scheme of a plate type heat exchanger 

The network should be able to heat the different spinbaths to their 

suitable temperature by using four diverse heat sources: vapor condensates and 

different wastewaters that come from other parts of the plant. Nevertheless, not 

all the heat exchangers have access to the different hot sources. The heat 

exchangers are mostly disposed in parallel layout, and they can be grouped 

according to the hot sources that can use. In this regard, in one group the heat 

exchangers are disposed in a serial layout. In addition, the use of these sources 

in the heat exchangers involves a cost (pumping and maintenance plus the 

shadow cost of utilization for other purposes).  

Therefore, the key operational decisions are how to allocate and 

distribute the heat sources (utilities) among the heat exchangers in order to 

fulfill the different setpoint for the spinbaths. As it will be shown in Chapter 4, 

there are about 200 decisions to take (some of which are discrete) and roughly 

twice as many constraints, where some are deeply non-convex. 

2.4 Fouling effect 

One of the most important issues that process industries that have 

fluids flowing through pipes usually have to deal with is the fouling effect. 
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Fouling is the accumulation of unwanted deposits on the surfaces of an 

equipment (see for example a fouled plate heat exchanger in Figure 2.8). In the 

case of heat exchangers, these deposits are related mainly to the fluid velocity, 

the compounds of the dissolution and the temperature. It increases the 

resistance to heat transfer, thus reducing the efficiency of such equipment over 

time. Consequently, more flow from the utilities is needed to reach the product 

temperature setpoint. Therefore, taking into account that the effect of fouling 

is key in order to obtain a realistic model of the process behavior and to 

determine the best way of action.   

 

Figure 2.8. Fouling of a heat exchanger plate 

Moreover, eventually the exchangers need to be cleaned in order to 

recover its nominal efficiency. But knowing when it is the best moment to 

schedule maintenance tasks is not a trivial task. Indeed, production-

maintenance scheduling has been widely studied in the literature. See for 

instance the works of (Ghaleb et al., 2020; Palacín et al., 2018; Wang et al., 

2022). Nevertheless, in those works the scheduling problems are not solved in 

real time, or the formulation is approximated to get a linear optimization 

problem. This second way is not feasible in this case study, at least without 

being extremely conservative or limiting too much the prediction range. Thus, 

instead of modeling the fouling dynamics to state a full production-

maintenance scheduling over a future time window, this thesis focuses on 

developing proper models that estimate the heat-transfer efficiency in real time, 

and comparing it against the nominal values without fouling. By this way, we 
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can monitor the fouling state and even suggest which heat exchanger should 

be cleaned in order to increase the efficiency of the network considering the 

cost of the cleaning task. Such suggestions increase the complexity of the 

problems, but it is possible to solve them in real time. 
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Chapter 3                          

Optimal operation of the 

evaporation network 

This chapter is focused on the evaporation network and its cooling 

systems, briefly described in Chapter 2. In particular, this chapter addresses the 

optimal operation of such two continuous industrial systems interconnected.  

First, previous work of the optimal operation of the evaporation 

network is presented in Section 3.1, along with the main operation problems of 

the cooling system attached. The main objectives for this case study will be 

listed in Section 3.2, and, after that, Section 3.3 will show the data-driven 

models developed for the unknown relations between decision variables, and 

the considerations taken into account. In Section 3.4 the mathematical 

formulation of the optimization problem associated to the cooling system and 

some results obtained are presented. Section 3.5 studies how to connect the two 

optimization problems in order to get a coordinated solution for the whole 

network. Finally, a summary of the work done in this case study and the 

conclusions are presented in Section 3.6. 
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3.1 Previous work and remained problems 

As it was introduced in Chapter 2, the Lenzing site has an evaporation 

network used to concentrate the spinbaths, which is the main energy consumer 

section of the site. Thus, one important concern was to minimize the amount 

of steam required by each evaporation plant taking into consideration that the 

evaporation demand of each spinbath must be fulfilled.  

The optimal operation of an individual evaporation plant was 

addressed in (Pitarch et al., 2017). In such work, the authors determined that, 

for a given demand of evaporated water (the so-called evaporation load, EC), 

the optimal operation point can be accomplished by setting the temperature of 

the recirculated flow (denoted T in Figure 3.1) at the highest admissible value, 

and then adjusting the recirculated flow (F in Figure 3.1) to reach the EC 

demand. A self-optimizing controller was implemented to ensure that 

operation always works this way. Note that the evaporation ratio for a given 

spinbath is known and fixed, so the flow of diluted spinbath (Fin) is not a 

control variable according to the control system at Lenzing. Instead, the 

evaporation flow to be reached (EC) determines the plant setpoint, given a 

spinbath inlet flow (Fin) to concentrate. 

 

Figure 3.1. Simplified scheme of an evaporation plant 

Once known the optimal operation of a single plant, the problem of 

how to allocate the different spinbaths to plants and the amount of water to be 

evaporated (evaporation load) that each plant must reach, has also been studied 
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(Kalliski et al., 2019; Palacín et al., 2018). The models proposed in such works 

consider that the evaporation plants have different nominal efficiencies. 

Moreover, depending on operating point, the specific steam consumption at 

each plant changes.  

 

Figure 3.2. Example of distribution of production load among evaporation plants. 

Do not forget that the efficiency of the evaporation plants also 

depends strongly on the performance of the cooling system. In those works, 

the studied network is composed of plants that have attached a cooling tower 

as cooling system. Thus, the performance of such cooling system is normally 

an active constraint, as they always work at maximum cooling power. 

Nevertheless, in the network studied in this thesis, the evaporation plants use 

surface condensers as cooling system, where the cooling power depends both 

on the cooling water flow through the condensers (control variable) and its inlet 

temperature (disturbance). Hence, the more and colder cooling water is 

provided to the condensers, the more efficient the evaporation plant becomes 

as less live steam is needed to achieve the evaporation setpoint. Nevertheless, 

the total available cooling water is limited, making impossible to run all surface 

condensers even at their maximum achievable cooling power given an inlet 

water temperature. Therefore, a proper cooling-water distribution through the 

surface condensers in real time could lead to increase the efficiency of the 

evaporation plants and, consequently, to decrease their operating cost.  

The amount of cooling water available depends on two sources. 

According to the evaporation network layout, the surface condensers are 
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grouped into two subnetworks where the first one is composed by the ones that 

only have access to Source 1, meanwhile the surface condensers of the second 

subnetwork have access to both sources (see Figure 3.3).  

 

Figure 3.3. Simplification of the cooling-water network 

Such sources are not only limited (the amount of cooling-water 

available per hour is limited) but also shared with other departments of the 

factory, consequently its use implies a cost. Thus, the operating cost of the 

network is a trade-off between the cost of live steam and cooling water usage.  

In addition, due to environmental regulations, the temperature of the 

cooling water at the output of the cooling-system network must be below a 

limit value, as it goes back to the river (see Figure 3.3). Thus, a model to predict 

such temperature depending on the cooling-water flow through each surface 

condenser is needed for the optimal cooling-water distribution problem 

formulation.   

Furthermore, one must bear in mind that industries which work with 

fluids usually have to deal with fouling problems that can lead to a loss of 

efficiency. In the case of surface condensers, the cooling water comes from the 

river, and although it is mainly water, it could include slight amounts of other 
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organic particles that form unwanted deposits. Such deposit formation is 

related mainly to different factors as fluid velocity and temperature. The 

fouling layer decreases the heat transmission, so knowing how it affects the 

performance of the surface condensers is a must in order to have a realistic 

prediction of the system behavior. 

Thus, an optimization problem that optimally distributes the cooling 

water through the surface condensers taking into account the network layout, 

the cooling-water availability and the outlet temperature should be formulated. 

The objective will be to minimize the operation cost given not only by the 

cooling-water flow, but also considering how such distribution affects the live 

steam consumption of the evaporation plants. In this regard, given an 

evaporation load allocation, using for example the proposed RTO tool by 

(Kalliski et al., 2019), the optimal cooling-water distribution can be obtained 

by the new problem formulation proposed in this chapter.  

Nevertheless, with the new distribution of cooling water, the initially 

computed evaporation load allocation could be sub-optimal. Thus, it is 

necessary to integrate the cooling-water distribution problem jointly with the 

evaporation load allocation problem. In this chapter, different approaches have 

been studied in order to get the optimal operation for both systems.  

The first approach is to solve both problems in an iterative way as the 

solution of each optimization changes the value of the parameters needed for 

the other optimization. This procedure is easy to implement, and the 

termination condition would be the equality of the computed cooling power in 

the solution of both problems. Nevertheless, such procedure has no global 

optimality guarantees.  

The second approach is to merge both formulations into a centralized 

problem. However, as the cooling-water distribution is an NLP problem and 

the evaporation load allocation involves discrete decisions, the centralized 

problem becomes an MINLP one. Therefore, the complexity of this approach 

is expected to be higher than the one of the separate problems. 
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 In order to overcome the above issues, the third approach proposed 

is to address the optimization in a distributed fashion reusing the existent 

formulations for the separate problems. This is done via Lagrangean 

decomposition and price-coordination schemes (Cheng et al., 2007), adding 

the shared variables as a penalty in the objective function for each individual 

problem. Furthermore, a smart rule for updating the resource prices in each 

iteration is employed to speed up the resolution, providing a decision-support 

tool with real-time capabilities.  

3.2 Objectives 

The global aim is to operate the whole evaporation network in the 

most efficient way, i.e., with the lower operating cost, now taking into account 

not only the performance of the evaporation system but also its cooling system.   

This implies targets at the plant level and targets at the network level. 

Initially, the optimal operation of the cooling system according to the cooling 

water distribution must be studied. As one constraint of the network operation 

is the outlet temperature of the cooling water, which goes to the river, a data-

driven model to know how it depends on the cooling-water flow through the 

surface condenser must be obtained. Moreover, such models must consider the 

decrease of heat transfer due to fouling in real time.  

Furthermore, the efficiency of the evaporation network can be 

measured by its specific steam consumption. Thus, it is necessary to develop a 

model to know how the live steam consumption depends on the cooling water 

distribution (cooling water flow through each surface condenser). 

Once such data-driven models for the outlet temperature and the live-

steam consumption have been obtained, they can be used to develop a reliable 

hybrid model which represents all possible cooling-system responses 

according to the plant conditions measured in real time. Such model will be the 

base for the formulation of an optimization problem which predicts the optimal 

operation of the cooling system in real-time (an RTO). The objective of the 
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RTO is to distribute the available cooling water minimizing a trade-off between 

the live steam consumption and the cooling water. 

After that, a study of how to integrate such distribution with the 

spinbath allocation problem to the plants will be included, so that both 

problems can be solved in a coordinated way in order to get the optimal 

operating point of the whole network in real time. 

In summary, this chapter aims to: 

• Obtain reliable data-driven models of the dependency of the 

steam consumption and the outlet temperature with the cooling-

water flow.  

• Formulate an optimization problem to distribute the cooling 

water according with real-time conditions.  

• Implement and test the proposed RTO scheme with plant data. 

• Study the best way to solve jointly the allocation of spinbath and 

the cooling water distribution. 

3.3 Data-driven models 

The cooling system associated to the evaporation plants uses cooling 

water to condense the vapor extracted. After passing through the surface 

condensers, the cooling water is returned to the river as shown in Figure 3.4.  

Nevertheless, such temperature must be below certain value in order 

to avoid environmental problems (it is regulated by environmental laws).  Thus, 

it is necessary to know how the outlet temperature (𝑇𝑜) depends on the cooling 

water flow (𝐹) in order to incorporate such constraint into an optimization 

problem of the specific steam consumption at the evaporation plants. 
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Figure 3.4. Scheme of an evaporation plant with its surface condenser 

Thus, the relation between the outlet temperature (𝑇𝑜) and the live 

steam consumption (𝑆𝑆𝐶) with respect to the flow of the cooling water (𝐹) 

must be studied. Modeling such relation based on first principles could be 

difficult due to the reduced flexibility of such kind of models (few parameters 

to be adjusted by the user to fit the actual plant), the many assumptions stated 

in the related literature, as well as the lack of information on some key variables 

that are not measured in the plant. Therefore, such relations have been modeled 

as black-box equations upon different experiments carried out onsite.  

3.3.1 Modeling methodology  

The experiments have consisted in running the surface condensers in 

different conditions, i.e., covering their usual range of flow operation. All the 

experiments have been done under three specific conditions:  

• The elapsed time between experiments must be short to ensure 

that the inlet temperature of the cooling water is kept constant. 

• The evaporation load must also keep constant. 

• The experiments must take place after a cleaning to ensure that 

there is no fouling in the plant heat exchangers. 
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Applying these requisites allows to perform additional experiments in 

the future and to combine them with the already collected data with coherence, 

in order to improve and/or update the models over time. In addition, if the 

surface condensers are fully clean, it can be assured that the live steam 

consumption of each plant is the minimum achievable. Note that the specific 

live steam consumption of each plant also depends on the recirculated flow and 

its temperature, but such variables are already controlled in order to reach the 

optimal operation at each moment.  

Furthermore, the experiments have been done with the plant in steady 

state as dynamics of pressure drop and heat transfer in the surface condensers 

are neglected (they are quite fast in comparison to the time constants of the 

plant). Thus, the relations between variables can be simply identified fitting a 

polynomial model to the experimental data by least squares. However, as such 

models have been obtained when the surface condensers are fully clean and for 

a given inlet water temperature, they must be adapted to be able to represent 

the system under other conditions. 

It must be borne in mind that these experimental conditions do not 

prevent possible outlier points in the experimental data due to disturbances or 

sensor noise. Hence, these fits might not be the best to represent the real 

behavior of the system if such points are not avoided in the identification. 

Additionally, as there is not redundancy in the initial model due to additional 

algebraic constraints or duplicated sensors, data reconciliation methods 

(mentioned in Section 1.2.2) cannot be applied.   

Thus, a more sophisticated modeling method to obtain these curves 

(instead of fitting the data to polynomials by least squares) is proposed based 

on the ideas collected in (Cozad et al., 2014).  Such modeling routine can be 

divided into two steps: 

i) Adjust:  

First, given a series of N data (outlet temperature and specific live steam 

consumption) order them with respect to the values of the variable we want to 

relate them (cooling-water flow).  
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After that, find the best polynomial fit by solving the following nonlinear 

mixed-integer optimization problem, where the objective function follows the 

Akaike corrected criterion (Hurvich & Tsai, 1993) which is a trade-off between 

model complexity (determined by the variable D) and the fitting error got by 

the candidate polynomial functions 𝑓:ℝ → ℝ and 𝑔:ℝ → ℝ. Such functions 

relate the outlet temperature and the specific steam consumption with the 

cooling water flow and the cooling power respectively, for each surface 

condenser. 

min
𝛼,𝛽,𝐷 ∈ ℝ9

𝑦∈{0,1}4

𝑁 log(𝑁−1𝐽) + 2𝐷 + 
2𝐷(𝐷 + 1)

𝑁 − 𝐷 − 1
 

𝑠. 𝑡. 

(3.1a) 

𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 ≤ 𝐷 (3.1b) 

𝛼𝑙𝑦1 ≤ 𝛼2 ≤ 𝛼𝑢𝑦1, 𝛼𝑙𝑦2 ≤ 𝛼3 ≤ 𝛼𝑢𝑦2 (3.1c) 

𝛽𝑙𝑦3 ≤ 𝛽2 ≤ 𝛽𝑢𝑦3, 𝛽𝑙𝑦4 ≤ 𝛽3 ≤ 𝛽𝑢𝑦4 (3.1d) 

𝑓(𝐹𝑖+1) − 𝑓(𝐹𝑖) < 0             𝑖 ∈ 𝒩 (3.1e) 

𝑔(𝑄𝑐𝑝𝑖+1) − 𝑔(𝑄
𝑐𝑝
𝑖) < 0             𝑖 ∈ 𝒩 (3.1f) 

𝑔 ∘ 𝑓(𝐹𝑖+1) − 𝑔 ∘ 𝑓(𝐹𝑖) < 0             𝑖 ∈ 𝒩 (3.1g) 

 

Where 𝒩 ≔ {1,… ,𝑁 − 1} and parameters α and β refer to the coefficients of 

the base functions that compose the candidate models 𝑓 and 𝑔 respectively. 

Such coefficients are limited by their lower and upper bounds, (3.1c)-(3.1d). 

In addition, they can be overridden to be zero, as the bounds are multiplied by 

the binary variables y allowing to limit the complexity of the model given by 

the decision variable D in (3.1b), being D the number of different base 

functions that will finally compose the models 𝑓 and 𝑔.  

 

Symbol 𝑔 ∘ 𝑓 is the composition of both functions, i.e., function 𝑔 is applied 

to the result of applying the function 𝑓 to 𝐹𝑖. In this case, the specific steam 

consumption depends on the cooling power, which at the same time depends 

on the cooling water flow and its outlet temperature. The next sections 

(sections 3.3.2 and 3.3.3) explain the development of the models, and 𝑔 ∘ 𝑓 
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refers to the complete model, being used to compute the fitting error in the 

objective function, (3.13a).  

Besides, 𝐽 computes the fair function (Huber, 1981): 

𝐽 ≔ 𝐶2∑(
|𝜖𝑖  |

𝐶
− log (1 +

|𝜖𝑖  |

𝐶
))

𝑁

𝑖=1

 (3.2) 

Being 𝐶 ∈ ℝ+the parameter that defines the sensitivity of the fair function to 

incoherent measures, and 𝜖𝑖 is obtained in each case as the differences between 

the collected data and the predicted one by the model. In this formulation the 

least squares function could be also used, but we prefer the fair function as it 

is robust to gross measurement errors (Nicholson et al., 2014). 

The fundamental contribution of this methodology is the addition of constraints 

(3.1e)-(3.1g), where it is imposed that the numerical derivative of the three 

functions forming the model (i.e., 𝑓, 𝑔 and 𝑔 ∘ 𝑓)  must be negative, since it is 

known from physics that at higher water flows, lower outlet temperature and 

lower specific steam consumption.  Note that it is also possible to obtain good 

polynomial models with restrictions in their derivatives using the SOS-

constrained regression with regularization, but it has been decided to present 

this methodology in order to use the fair function instead of least squares and 

to have the possibility of using base functions not polynomials in the candidate 

model (although it has not been necessary). 

ii) Validation 

Obtained the model coefficients α and β, analytically check the fulfillment of 

the model constraints in the possible range of cooling-water flow (region of 

operation) by solving respectively: 

min
𝐹
𝑓(𝐹)                  𝑠. 𝑡. : 𝐹 ≤ 𝐹 ≤ 𝐹         (3.3a) 

min
𝑄𝑐𝑝

𝑔(𝑄𝑐𝑝)               𝑠. 𝑡. : 𝑄𝑐𝑝 ≤ 𝑄𝑐𝑝 ≤ 𝑄𝑐𝑝 (3.3b) 

min
𝐹
𝑔 ∘ 𝑓(𝐹)           𝑠. 𝑡. : 𝐹 ≤ 𝐹 ≤ 𝐹           (3.3c) 
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If the solution of any of the previous problems is equal to the upper bound of 

the variable, the obtained model is monotonically decreasing for any flow 

value, and consistent with the physics of the process, so the algorithm ends. 

Otherwise, add each value found into the ordered dataset (so 𝒩 grows) and 

repeat the adjust step. 

3.3.2 Outlet cooling water temperature 

Models providing the outlet temperature of cooling water (To) with 

respect to the cooling water flow (F) have been obtained fitting the data to a 

polynomial curve (see an example in Figure 3.5). It has to be emphasized that 

there is a different model for each evaporation plant, so, a set of 15 different 

models was obtained after performing the corresponding experiments.  

 

Figure 3.5. Experimental model for outlet temperature vs. flow 

Nevertheless, these models output predict with respect to a reference 

temperature. That reference is the inlet water temperature when the 

experiments were carried out, T𝑖𝑛
𝑒 . Therefore, removing such reference 

temperature allows getting an incremental model (3.4). Hence, given a real-

time measurement of the inlet temperature, denoted by T̂in , the outlet 

temperature can be predicted at any weather condition by (3.5). 

Δ𝑇 =  𝑓(𝐹) − T𝑖𝑛
𝑒  (3.4) 

𝑇𝑜 = Δ𝑇 + T̂in (3.5) 

Where 𝑓:ℝ → ℝ  is a nonlinear function that represents the experimental 

model, e.g., the polynomial curve depicted in Figure 3.5. 
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In addition, due to the fouling that the surface condensers suffer, the 

heat transfer decreases with time and, consequently, the outlet temperature of 

the cooling water will also decrease. Thus, assuming the tests were carried out 

with the surface condensers fully clean, the actual outlet temperature measured 

at any time instant will be always lower or equal than the predicted by (3.5), as 

shown in Figure 3.6. 

 

Figure 3.6. Model adaptation to current fouling state 

Then, the idea is to add a bias parameter Kf to the above base model 

(3.5), which adjusts the curve to the real-time measurement: 

𝑇𝑜 = (𝑓(𝐹) − T𝑖𝑛
𝑒𝑥𝑝
) + T̂in − Kf (3.6) 

In this way, the current state of fouling will be considered in the 

network optimization. The bias Kf can be easily updated from run to run with 

real-time measurements of the outlet temperature T̂o and the flow F̂ by: 

Kf  = 𝑓(F̂) − T𝑖𝑛
𝑒 + T̂in − T̂o (3.7) 

Note that this approach allows to isolate the fouling effects in the 

cooling system from the ones in the spinbath heating line, which also affect the 

overall specific steam consumption. Fouling monitoring in the heating line was 

treated in a work before this thesis; see (Kalliski et al., 2019) for details. 
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3.3.3 Specific Steam Consumption 

From the collected data of inlet/outlet temperature and volumetric 

flow of the cooling water, the actual cooling power (𝑄𝑐𝑝 ) in the surface 

condensers can be computed by (3.8), where the water density (ρ) and the 

specific heat capacity (Cp) are assumed to be constant.  

𝑄𝑐𝑝  =  𝐹 ρ Cp(𝑇𝑜 − T̂in) (3.8) 

Moreover, by recording the live steam consumption of the 

evaporation plant in during the tests with the SCs, the specific steam 

consumption (SSC) can be depicted versus the cooling power 𝑄𝑐𝑝 and, hence, 

to fit a model for prediction, as Figure 3.7 shows.  

 

Figure 3.7. Specific steam consumption vs. cooling power 

Note that, as well as for the outlet temperature models, there is a 

different model for each surface condenser. 

Analogous to the previous case, we also need to remove the 

dependency on the operating point (evaporation load) during the experiments 

from the fitted model. To do so, the simplest idea is to compute the best specific 

steam consumption (BSSC), i.e., the minimum SSC obtained in the 

experiments, and to build an incremental model: 

Δ𝑆𝑆𝐶 = 𝑔(𝑄𝑐𝑝) − 𝐵𝑆𝑆𝐶 (3.9) 

Where 𝑔:ℝ → ℝ  is a nonlinear function that represents the experimental 

model, e.g., the polynomial curve depicted in Figure 3.7. For that to be true, it 

is needed to assume that the tests were carried out with the surface condensers 
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fully clean, and that the model for Δ𝑆𝑆𝐶  (i.e., the shape of the curve in Figure 

3.7 for instance) does not vary significantly from one operation point to another 

(plant evaporation loads).  

Based on the data, polynomials with degree no greater than three are 

enough to get a good fit. These models represent satisfactorily the system in 

the operation range and are suitable for real-time optimization.  

Once both data-driven models 𝑓(𝐹) and 𝑔(𝑄𝑐𝑝) have been found by 

identification, they can be used for prediction, receiving the water flows F and 

the inlet temperatures T̂in as inputs and providing the water outlet temperatures 

𝑇𝑜 and the increase of specific steam consumption Δ𝑆𝑆𝐶 as outputs. Note that, 

the current measured outlet temperature T̂o and flow F̂ can be used to update 

the parameter Kf online, but they are different from the predictions, i.e., the 

decision variables for optimization. 

3.4 Cooling system optimization 

Once the different data-driven models for the outlet temperature and 

specific steam consumption are obtained and adapted to be able to predict the 

behavior under different conditions (inlet temperature and state of fouling), the 

next step is to formulate a mathematical model which represents the behavior 

of the network. Such model is based on first principles, i.e., mass balances, but 

including the black-box models developed. Thus, the resulting model is a gray-

box model which predicts the performance of the cooling-water system.  

As mentioned in section 3.1, this evaporation network can be grouped 

into two sub-networks according to the source of the cooling water (resource) 

that feeds each surface condenser. The first one, formed by four evaporation 

plants, can only get cooling water from Source 1, meanwhile the subnet two, 

formed by the remaining eleven plants, can get cooling water from the two 

sources (see Figure 3.3). The surface condensers are connected in parallel, i.e., 

the cooling water used by one surface condenser is not used in another surface 
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condenser. Thus, as the cooling water to take from each source is limited, a 

problem of shared resources arises.  

The next step is to incorporate an economic target as objective 

function that minimizes the operation costs, thus obtaining an optimization 

problem which seeks for the optimal plant operation. Such problem is 

formulated in terms of mathematical programming. 

The optimal distribution strongly depends on the efficiency of each 

plant, i.e., the specific-steam consumption of each plant and the cooling-water 

consumption. Thus, the problem objective deals with the trade-off between the 

cost of live steam and water usage, distributing the cooling water in an optimal 

way so that the more efficient plants are prioritized as long as the evaporation 

demand for each spinbath is met. The solution will give the optimal flow of 

cooling water for each surface condenser given the real-time conditions 

(fouling state, demand and inlet cooling-water temperature). Automatic 

differentiation and current gradient-based NLP algorithms will allow to get 

solutions in real-time. 

3.4.1 Mathematical formulation 

The first step is to define the set ℰ of all the evaporation plants which 

use a surface condenser as cooling system. Hence, the set ℰ is also the set of 

the surface condensers. Moreover, this set is divided into two subsets 

ℰ = {ℰ1∪ ℰ2}  according to those surface condensers that have access to 

cooling-water Source 2 or not (see Figure 3.8).  

The set of decision variables is 𝐹𝑒𝑣 ∈ ℝ+ which denotes the cooling-

water flow that should go through each surface condenser attached to the 

evaporation plant ev. Moreover, the exceeding water which can go from subnet 

1 to subnet 2, but not backwards, is a decision variable denoted by 𝐹𝐿 ∈ ℝ+. 
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Figure 3.8. Scheme of cooling-water network 

The problem constraints are: 

1. Mass balance of cooling water in each subnet. For subnet 1, the total 

flow that feeds the surface condensers in this subnet must be as 

maximum the available flow at source 1 (MF1) minus the flow that 

goes to subnet 2 (𝐹𝐿); meanwhile in subnet 2, the maximum water that 

the surface condensers can use is the available at source 2 (MF2) plus 

the remaining water from source 1 (𝐹𝐿). (See equations (3.13b) and 

(3.13c), respectively). 

2. Lower and upper flow bounds defined for each surface condenser 

(Fev, , Fev), i.e., suitable operation range in order to avoid the presence 

of the spinbath in the surface condenser pipes (3.13d). This effect is 

particularly harmful for the equipment, so it needs to be avoided. 

3. The outlet water temperature resulting from the surface condensers 

has to be lower than the maximum allowed (MTO), as such outlet 

water goes to the river and it has to fulfill the constraints imposed by 

environmental regulations, (3.13e). 

Note that, in this formulation, italic symbols represent variables and sets whilst 

plain ones are known values (i.e., inputs or parameters) for the optimization. 
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Finally, the objective function is to minimize the operational cost, i.e., 

a trade-off between the cost of live steam and cooling-water consumption. 

Thus, it is needed to compute the absolute steam consumption of each plant 

(ASCev) according to the cooling-water distribution. It can be obtained from the 

predicted specific steam consumption and the assigned evaporation load at 

each plant (ECev), as shown in: 

𝐴𝑆𝐶𝑒𝑣 = 𝑆𝑆𝐶𝑒𝑣 · ECev (3.10) 

However, the black-box model (3.9) provides the increment of the specific 

steam consumption, so the absolute steam consumption must be computed 

using the minimum specific steam consumption (BSSC) that each plant can 

reach, plus its increment due to the performance of the cooling system (Δ𝑆𝑆𝐶), 

(3.11). Nevertheless, as the BSSC is a fixed term, for the resource tradeoff 

optimization problem we must only account for the increment of the absolute 

steam consumption (Δ𝐴𝑆𝐶), defined as shown in (3.12).  

𝐴𝑆𝐶𝑒𝑣 = (BSSC + Δ𝑆𝑆𝐶𝑒𝑣)ECev (3.11) 

Δ𝐴𝑆𝐶𝑒𝑣 = Δ𝑆𝑆𝐶𝑒𝑣 ECev (3.12) 

In other words, maximum water flows to SCs correspond to best SSC (i.e., 

zero steam cost in the tradeoff optimization problem) and minimum water 

consumption leads to the highest steam cost. 

Hence, the operational cost tradeoff is given by: (i) the absolute steam 

consumption increment of all the plant times the price of generating a unit mass 

of live steam in boilers (Psteam) plus (ii) the net amount of water consumed from 

the sources times the cost of pumping and pipes operation (Pwater). Both price 

values are calculated internally in the company and their values are omitted 

here due to confidentiality agreements.  

The formulated optimization problem is: 

min
𝐹𝑒𝑣∈ℝ+

𝐽 =  ∑(Δ𝐴𝑆𝐶𝑒𝑣  Psteam

ℰ

𝑒𝑣

+ 𝐹𝑒𝑣 Pwater)  (3.13a) 
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  s.t.: 

∑𝐹𝑒𝑣

ℰ1

𝑒𝑣

≤ MF1− 𝐹𝐿 (3. 13b) 

∑𝐹𝑒𝑣

ℰ2

𝑒𝑣

≤ MF2+ 𝐹𝐿 (3. 13c) 

                                    Fev ≤ 𝐹𝑒𝑣 ≤ Fev                ∀𝑒𝑣 ∈ ℰ (3. 13d) 

∑ 𝑇𝑜𝑒𝑣 𝐹𝑒𝑣
ℰ
𝑒𝑣

∑ 𝐹𝑒𝑣
ℰ
𝑒𝑣

≤ MTO (3. 13e) 

Where To could be calculated by the experimental model of each plant 

as stated in section 3.3.2, formula (3.6) expanded to all the evaporators (3.13f) , 

and ΔSSC can be obtained combining (3.8) and (3.9), as (3.13g) shows. 

𝑇𝑜𝑒𝑣 = 𝑓(𝐹𝑒𝑣) − T𝑖𝑛
𝑒𝑥𝑝

+ T̂in − Kf𝑒𝑣 (3. 13f) 

Δ𝑆𝑆𝐶𝑒𝑣 = 𝑔 ( ρ Cp 𝐹𝑒𝑣 ⋅ (𝑇𝑜𝑒𝑣 − T̂in,ev)) − BSSCev (3. 13g) 

Finally, as the experimental models are C1 nonlinear functions, 

usually quadratic polynomials, and the evaporation load (ECev) is a known 

value taken from the plant control system, the optimization problem (3.13) is 

easily handled via nonlinear programming (NLP) using an interior point 

optimizer, e.g. IPOPT (Wächter & Biegler, 2006). 

3.4.2 Implementation considerations 

Once the problem is formulated, some concerns have to be taken into 

account for its implementation on the real plant as an RTO scheme that 

supports operators and plant managers in the optimal distribution of the cooling 

water.  

First, as the experimental models have been built for a specific flow 

range, if the future real-time cooling-water flows (F̂𝑒𝑣) are out of such range, 

the optimization should not be executed, as the estimation of the fouling 
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parameter (Kf) via (3.7) may be wrong due to plant-model mismatch. Therefore, 

a warning message should appear to inform of such situation. 

However, if this happens because the plants are in maintenance, i.e., 

they are not processing any spinbath, the flow of this evaporator must not be 

optimized, but the rest of the network can be optimized. To do that, if the 

evaporation load of an evaporator (EC) is less than a small value, e.g., 1 m3/h, 

the flow of that surface condenser is set to its measured value, i.e., constraint 

(3.13d) is automatically replaced by the following expressions: 

{
Fev ≤ 𝐹𝑒𝑣 ≤ Fev                ∀𝑒𝑣 ∈ {𝑒𝑣|ECev > 1}

𝐹𝑒𝑣 = F̂𝑒𝑣                          ∀𝑒𝑣 ∉ {𝑒𝑣|ECev > 1}
 (3.14) 

Finally, it may be the case that, due to an aggressive state of fouling 

and/or water inlet temperature to the surface condensers, the optimum cooling 

power is out of the range where the experimental models were built. In this 

case, the optimization should not run, and a warning should be displayed in 

order to inform the operators of this situation. 

The optimization problem (3.13) and the above extra considerations 

have been modeled and coded in MATLAB using the open-source tool for 

nonlinear optimization CasADi (Andersson et al., 2019). The MATLAB 

environment was chosen by Lenzing preference, as it allows their experienced 

engineers to collect the real-time data of the needed parameters from the data 

acquisition system, for example the PI system (PI System, OSIsoft, n.d.), as 

well as to maintain the code.  

3.4.3 First-test results 

The optimization formulated in the previous section has been tested 

offline with real data taken from the Lenzing database. The values of the 

parameters used to solve the problem are omitted due to confidentiality reasons. 

The obtained results are shown along with the real-time measured data for the 

time that the parameters were recorded. 
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Comparing the optimized flows with the measured ones (Figure 3.9), 

it is observed that, although the total amount of cooling water did not decrease, 

it has been redistributed. This can look inconsistent a priori (especially for 

those plants that increase their use) as the cooling water has a cost. However, 

as shown in Figure 3.10, the consumption of steam has decreased. Note that 

the steam price is 10 times higher than the water one, so when adding both 

costs in the tradeoff objective function, the result is that benefits have been 

obtained. Indeed, the cooling-water cost was almost negligible by that time, 

and the key is to distribute the total available cooling water from the two 

sources in an optimal way in order to reduce the steam consumption as much 

as possible. 

 

Figure 3.9. Cooling-water distribution 

 

Figure 3.10. Increment of specific steam consumption 

It should be noted that the ΔASC of plants 1, 12 and 15 is zero. 

Analyzing their corresponding cooling-water flows, it can be determined that 

evaporation plants 12 and 15 are in maintenance, so such flow has not been 
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optimized and there is no steam consumption. Furthermore, a warning message 

appears in the designed decision-support system indicating it. With respect to 

plant 1, there is indeed a real steam consumption recorded in the database, but 

the SC was running at its maximum flow, so the predicted SSC coincides with 

the BSSC, and the increment of steam consumption is zero. 

Comparing the operational current cost and the predicted one 

applying the optimization results, the savings would be around 16%. 

Nevertheless, note that such value only represents a snapshot in a particular 

time instant and only refers to the cost of the cooling water consumption 

without considering the live steam consumption of the evaporators whose cost 

is ~30 times greater. Nonetheless, the annual potential benefit that would be 

obtained by applying this optimization tool in daily operation looks promising.  

3.5 Full network optimization 

Once the optimization problem for the cooling system has been 

developed, the goal now becomes to recompute the optimal load allocation for 

the evaporation network where the power values developed by the cooling 

systems are also decision variables.  

In the previous work (Kalliski et al., 2019) surrogate models were 

developed to estimate the steam consumption by an evaporation plant. After 

straightforward manipulations with such models, the steam consumption is 

found to depend on the evaporation load (EC), on the cooling power of the 

cooling system (𝑄𝑐𝑝) and on the state of fouling of the evaporation plant (𝐾𝑣), 

i.e., in the state of fouling of the heat exchangers used to heat the spinbath 

(different fouling that in the surface condensers, 𝐾𝑓). Note that, the specific 

steam consumption also depends on the recirculated flow and its temperature, 

but such variables are already controlled in an optimal way (see section 3.1). 

                   𝑆𝑆𝐶 = a1 𝐾𝑣  +  a2 𝑄
𝑐𝑝 + a3 𝐸𝐶 (3.15) 

In models (3.15), a1, a2 and a3 are regression parameters obtained from those 

in (Kalliski et al., 2019). 
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The evaporation-load allocation problem consists in assigning the 

amount of evaporation load that each plant must process, for the five different 

spinbaths, in order to minimize the overall live steam consumption. Two sets 

are defined to build the problem formulation; one for all the evaporation plants 

ℰ (same set that in the cooling-water distribution problem), and a set for all the 

different spinbaths that must be processed (called products hereinafter), 𝒫. 

The decision variables that relate the above introduced sets are: 

• 𝐸𝐶𝑒𝑣,𝑝 ∈ ℝ+: evaporation load of product p that the 

evaporation plant ev must achieve. 

• 𝑋𝑒𝑣,𝑝 ∈ {0,1}: links the plant ev to process product p. 

The constraints being considered are the following: 

Each plant can only process one product at a time (3.16), and each 

product requires a different amount of water to be removed, i.e., evaporation 

load demand that must be fulfilled (3.17).  

                   ∑𝑋𝑒𝑣,𝑝

𝒫

𝑝

≤ 1  ∀𝑒𝑣 ∈ ℰ (3.16) 

                  ∑𝐸𝐶𝑒𝑣,𝑝

ℰ

𝑒𝑣

≥ SPp  ∀𝑝 ∈ 𝒫 (3.17) 

Furthermore, not all plants can process all the different products, 

mainly because not all connections from plants to products are physically 

feasible (3.18).  

                 𝑋𝑒𝑣,𝑝 = 0  (𝑒𝑣, 𝑝) ∈  ℳ (3.18) 

Table 1 shows the available links between products and plants, where the ticks 

indicate that a link is feasible. Thus, the set ℳ is composed of the combination 

of products and plants which are not physically connected and therefore cannot 

be linked. 
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Table 1. Connections between products and plants. The ticks indicate feasible connection. 

 

Finally, the achievable evaporation load in each plant is bounded due 

to actual equipment features: 

ECev𝑋𝑒𝑣,𝑝 ≤ 𝐸𝐶𝑒𝑣,𝑝 ≤ ECev𝑋𝑒𝑣,𝑝  ∀𝑒𝑣 ∈ ℰ, ∀𝑝 ∈ 𝒫 (3.19) 

Where ECev and ECev state the minimum and maximum evaporation load for a 

plant to operate correctly. Moreover, to ensure that 𝐸𝐶𝑒𝑣,𝑝 take zero value for 

the products not linked to plant ev, the limits are multiplied by 𝑋𝑒𝑣,𝑝. 

The objective function is to minimize the live steam consumption 

given by the specific steam consumption times the evaporation load (see 

(3.10)). Thus, the evaporation-load allocation problem is summarized in (3.20). 

min
𝐸𝐶𝑒𝑣,𝑝∈ℝ+

𝑋𝑒𝑣,𝑝∈{0,1}

         𝐽 =∑∑𝑆𝑆𝐶𝑒𝑣,𝑝

𝒫

𝑝

𝐸𝐶𝑒𝑣,𝑝

ℰ

𝑒𝑣

     

      𝑠. 𝑡. :                  (3.16) − (3.19) 

(3.20) 

 To solve the optimization problem, one needs to know the values of 

the state of fouling of each evaporation plant (𝐾𝑣) and of the cooling power 

developed by the cooling system (𝑄𝑐𝑝). The first one can be obtained online 

following the procedure in (Kalliski et al., 2019), comparing the model 

predictions with the measured values. Taking the cooling power as a parameter, 

the overall problem becomes a mixed-integer quadratic programming (MIQP) 

problem as it involves binary and continuous variables, and quadratic terms in 

the objective function. However, the cooling power by the surface condensers 

is now variable through the cooling water distribution (see equation (3.8)).  

 EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11 EV12 EV13 EV14 EV15 

𝒫1 ✓ ✓ ✓ ✓  ✓      ✓    

𝒫2     ✓  ✓ ✓   ✓ ✓ ✓   

𝒫3 ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

𝒫4  ✓  ✓            

𝒫5       ✓  ✓  ✓ ✓ ✓ ✓  
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At the same time, in the cooling-water distribution problem (3.13), 

the evaporation load is taken as a fixed parameter. However, both problems are 

coupled (see Figure 3.11) and should be solved together. This can be done 

following different alternatives.  

 

Figure 3.11. Relation between cooling-water distribution and load allocation problems 

 

In this thesis, we propose three different approaches: 

1. Solve both problems consecutively in an iterative way, using the results 

of one problem as the input data to the other one until convergence (see 

Figure 3.12). 

 

Figure 3.12. Sequential procedure scheme 

2. Combine both formulations into a single centralized optimization 

problem.  
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3. Address the optimization in a distributed fashion, i.e., adding the shared 

variables as a penalty in the objective function for each individual 

problem and including a coordination layer that compares the shared 

variables in each iteration and updates the resource prices (see Figure 

3.13). 

 

Figure 3.13. Distributed approach scheme 

 

How these different approaches are applied to this case is going to be 

explained hereunder. 

3.5.1 Sequential approach 

The first alternative is to solve both problems sequentially and 

iteratively. Hence, a first local problem can handle the plants evaporation load 

allocation, whereas a second one optimizes the water distribution, where only 

the magnitudes EC and Qcp are shared between both problems.  

The key idea is to solve the evaporation-load allocation problem 

(3.20) taking the Qcp as known (computed by (3.8) using the real-time measures 

of cooling water flow and temperature). Then, from the obtained solution, to 

take the values of the EC and solve the cooling-water distribution problem 

(3.13), getting a new set of values to compute the Qcp and so on (see Figure 

3.12). It will last until the solution of the problems does not change. The 

procedure is formalized in Algorithm 1. 
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The reader may note that, in the evaporation-load allocation problem, 

𝐸𝐶𝑒𝑣,𝑝 depends on the evaporation plant ev and the product p, meanwhile in 

the cooling-water distribution problem 𝐸𝐶𝑒𝑣 only depends on the evaporation 

plants. Nevertheless, such connection is just given by (3.21).  

𝐸𝐶𝑒𝑣 = ∑𝐸𝐶𝑒𝑣,𝑝

𝒫

𝑝

 (3.21) 

Finally, as the sub-problems are NLP and MIQP, the computational 

time to solve each of them is few seconds, so the time to reach a solution 

following the Algorithm 1 only depends on the number of iterations, that are 

also a few. Of course, following this strategy there is no global optimality 

guarantee.  

3.5.2 Centralized approach 

Another alternative consists in mixing both formulations in order to 

get a monolithic problem. Thus, the decision variables are the ones of each 

problem, i.e.: 

• 𝐸𝐶𝑒𝑣,𝑝 ∈ ℝ+: evaporation load of product p that the 

evaporation plant ev must achieve. 

• 𝑋𝑒𝑣,𝑝 ∈ {0,1}: links the plant ev to process product p. 

Algorithm 1. Sequential optimization 

1: Compute 𝑄𝑒𝑣
𝑐𝑝

 from current F̂𝑒𝑣 , T̂oev, T̂in and set 𝜉 = 1 

2: While 𝜉 > 0.001 do 

3:      Solve (3.20) and save the computed allocation 𝐸𝐶𝑒𝑣  

4:      Solve (3.13) using the 𝐸𝐶𝑒𝑣  from step 3  

5:      Compute  𝑸𝑒𝑣
𝑐𝑝

 from the 𝐹𝑒𝑣 and 𝑇𝑜𝑒𝑣 obtained in step 4 

6:      Compute 𝜉 =  ∑ ||𝑄𝑒𝑣
𝑐𝑝
− 𝑸𝑒𝑣

𝑐𝑝
||
2

2
ℰ
𝑒𝑣   

7:      Update  𝑄𝑒𝑣
𝑐𝑝
=  𝑸𝑒𝑣

𝑐𝑝
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• 𝐹𝑒𝑣 ∈  ℝ+: cooling-water flow that should go through the 

surface condenser attached to the evaporation plant ev. 

• 𝐹𝐿 ∈ ℝ
+: exceeding cooling water from source 1 that goes to 

subnet 2. 

The objective function to minimize comes from the operational cost 

of the overall network (live-steam and cooling-water consumption): 

𝐽 =  ∑(𝐴𝑆𝐶𝑒𝑣  Psteam

ℰ

𝑒𝑣

+ 𝐹𝑒𝑣 Pwater) (3.22) 

However, in contrast to the cooling-water distribution problem, 

equation (3.15) must be used here to compute the specific steam consumption 

instead of the increment of it. Hence, the absolute steam consumption is 

obtained using (3.10). 

The problem constraints are a collection of both problems:  

• Each plant can only process one spinbath at a time (3.16). 

• Total evaporation demand per spinbath must be fulfilled (3.17). 

• There are impossible connections between products and plants (3.18). 

• Evaporation load of each plant is bounded (3.19). 

• Total water consumption in each subnet must be lower than the 

available at the sources, considering that exceeding water can go from 

subnet 1 to subnet 2 but not backwards (3.13b)-(3.11c). 

• Cooling-water flows are also bounded, considering that if a plant has 

not got any product assigned, such flow should be zero. Thus, 

equation (3.11e) is modified as follows: 

                 Fev∑ 𝑋𝑒𝑣,𝑝
𝒫
𝑝 ≤ 𝐹𝑒𝑣 ≤ Fev∑ 𝑋𝑒𝑣,𝑝

𝒫
𝑝       𝑒𝑣 ∈ ℰ (3.23) 

• Outlet-water average temperature must be lower than a limit stated by 

the environmental regulation (3.11e), where the outlet temperature of 

each surface condenser is obtained using (3.6). 

The presence of discrete and continuous variables as well as the 

nonlinear dependency to compute the outlet-water average temperature and the 
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absolute steam consumption (the specific steam consumption is also nonlinear) 

makes the centralized problem an MINLP one. However, it is computationally 

affordable for real-time implementations with current computer power and 

branch & bound NLP solvers. 

3.5.3 Distributed approach 

The final alternative is to solve both problems independently but in a 

coordinated fashion, i.e., to address the optimization in a distributed way using 

Lagrangean decomposition and price-coordination schemes (see section 1.2.4). 

Thus, as in the sequential approach, there is a local problem which 

handles the plants evaporation load allocation and another which optimizes the 

water distribution. Nevertheless, instead of treating the shared magnitudes 

(𝑅𝑖,𝑗 ≔ {𝐸𝐶𝑒𝑣 , 𝑄𝑒𝑣
𝑐𝑝
}) as fixed parameters whose value depends on the solution 

of the corresponding problem, such magnitudes are handled as shared variables 

(R) between both problems. Then, a coordination layer must be added to 

progressively force both sets of decision variables to be equal in both local 

optimizations (see Figure 3.14).  

 

Figure 3.14. Distributed approach expanded scheme 
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First, the optimization problems (3.20) and (3.13) should add a 

constraint imposing that the shared variables (𝑅𝑖,𝑗 ) 1  must be equal to a 

reference (𝑹𝒊,𝒋). As usual in Lagrangean decomposition, the constraints will be 

added as a penalty in the respective objective functions multiplied by a shadow 

price for resource utilization (𝑝𝑖,𝑗). Thus, the new objective function (𝐽′) of 

each sub-problem will be as (3.24) shows. 

𝐽′𝑖 ≔ 𝐽𝑖 +
1

2
∑𝑝𝑖,𝑗(𝑅𝑖,𝑗 − 𝑹𝒊,𝒋)

2

𝐽

𝑗

 (3.24) 

Furthermore, as the shared variables are not exactly the decision 

variables of the sub-problems, it is needed to add the corresponding constraints 

that compute such shared variables. In the evaporation-load allocation problem, 

𝐸𝐶𝑒𝑣,𝑝 depends on the evaporation plant ev and the product p, meanwhile in 

the cooling-water distribution problem 𝐸𝐶𝑒𝑣 only depends on the evaporation 

plants, so in the evaporation-load allocation problem we need to add the 

constraint (3.21).  

 

Hence, the sub-problems to solve are: 

1. Evaporation-load allocation problem: 

min
𝐸𝐶𝑒𝑣,𝑝∈ℝ+

𝑋𝑒𝑣,𝑝∈{0,1}

𝑅1,𝑗∈ℝ+

    𝐽′1 ≔ ∑𝐴𝑆𝐶𝑒𝑣 Psteam

ℰ

𝑒𝑣

+
1

2
∑𝑝1,𝑗(𝑅1,𝑗 − 𝑹𝟏,𝒋)

2

𝐽

𝑗

 

(3.25) 

𝑠. 𝑡. :                  (3.16) − (3.19), (3.21) 

 

 

 

 

 

1 The sub-index i refers to the sub-problem, meanwhile the sub-index j refers 

to the shared variables, i.e., 𝑅1,1 = 𝐸𝐶𝑣1 in the load allocation subproblem. 
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2. Cooling-water distribution problem: 

min
𝐹𝑒𝑣∈ℝ+
𝑅2,𝑗∈ℝ+

   𝐽′2 ≔ ∑(𝐴𝑆𝐶𝑒𝑣  Psteam

ℰ

𝑒𝑣

+ 𝐹𝑒𝑣 Pwater)

+
1

2
∑𝑝2,𝑗(𝑅2,𝑗 − 𝑹𝟐,𝒋)

2

𝐽

𝑗

 
(3.26) 

𝑠. 𝑡. :                  (3.8), (3.11b) − (3.11e) 

In each iteration, the coordinator layer receives the values for the 

shared variables got by each sub-problem, compares them, and updates the 

reference values as well as the shadow prices for the next iteration according 

to the following rules:  

𝑝𝑖,𝑗
[𝑘+1] = 𝑝𝑖,𝑗

[𝑘] + 𝜇 [𝑘](𝑅𝑖,𝑗
[𝑘] − 𝑹𝒊,𝒋

[𝒌])
2

 (3.27) 

𝜇 [𝑘+1] = 𝜇 [𝑘] 𝜆 (3.28) 

𝑬𝑪𝒊,𝒆𝒗
[𝒌+𝟏] = 𝐸𝐶1,𝑒𝑣

[𝑘+1]
 (3.29) 

𝑸𝒊,𝒆𝒗
𝒄𝒑 [𝒌+𝟏]

= 𝑄2,𝑒𝑣
𝑐𝑝 [𝑘+1]

 (3.30) 

Where notation 𝑅𝑖,𝑗
[𝑘]

 denotes the values of shared variables  𝑅𝑗 , 

solution of sub-problem i at iteration k. Progressive hedging (Rockafellar & 

Wets, 1991) is used in (3.28) to update the factor 𝜇 in each iteration, via the 

user-defined parameter 𝜆. Nevertheless, there are many ways to update the 

prices, being parametric sensitivities based on Newton’s method (Ganesh & 

Biegler, 1987) one with the best results in terms of convergence speed.  

In this particular case, the references 𝑹𝒊,𝒋 are updated according to the 

sub-problem which optimizes such variables: the load allocation problem 

provides the evaporation load, and the cooling-water distribution problem 

provides the cooling-water flows used to obtain the cooling powers. 

Nonetheless, any other methodology from the literature can be applied, as the 

one proposed by (Martí, 2015) that minimizes the worst constraint violations 

that a modification of the local control inputs would cause. 
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The overall procedure is summarized in Algorithm 2. 

 

In this way, the sub-problems continue being MIQP and NLP but, due 

to the methodology used to update the prices and references, it is expected that 

improved optimality can be reached with this procedure in comparison to the 

sequential methodology. Note also that this strategy has computational benefits 

as well, as the sub-problems can be solved in parallel. 

3.5.4 Results and discussion 

For the sake of comparison/analysis, the same problem has been 

solved from a particular network situation following the three presented 

methods above, all coded in Pyomo/Python (Hart et al., 2011, 2017). For the 

sequential and distributed approaches, the solver used for the evaporation-load 

allocation problem is GUROBI (Gurobi Optimization, 2018), meanwhile the 

cooling water subproblem has been solved using IPOPT (Wächter & Biegler, 

2006). The centralized problem has been solved using two different solvers: 

based on a global-deterministic method, BARON (Sahinidis, 1996), and based 

on local-deterministic method, BONMIN (Bonami et al., 2008). For this 

problem, both solvers get practically the same solutions, which means that 

using the faster BONMIN for real-time purposes provides solutions near the 

global optimum. 

Table 2 and Figure 3.15 show the results of the evaporation load 

allocation and the cooling-water distribution obtained by the different 

approaches. Note that the label Real refers to the historical data used to run the 

optimizations and, as both results obtained with the centralized approach (the 

Algorithm 2. Distributed optimization 

1: Set 𝑹𝒊,𝒋 to current values from the plants and 𝑝𝑖,𝑗 = ξ = 0.1 

2: While ξ > 0.001 do 

3:      Solve problems (3.25) and (3.26), and get new values of 𝑅𝑖,𝑗 

6:      Compute ξ =  ∑ ||𝑅𝑖,𝑗 − 𝑹𝑖,𝑗||
2

2
ℰ
𝑒𝑣   

7:      Update prices 𝑝𝑖,𝑗 and references 𝑹𝑖,𝑗 
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ones obtained using BARON and the ones obtained with BONMIN) are 

practically the same, they are only once reflected to simplify the comparison 

between approaches. 

 
Table 2. Evaporation load allocation obtained with the different approaches 

 

Comparing the results of the evaporation load allocation, one can see 

that the product demand can be reached using only twelve plants, i.e., in 

addition to plant 12 and 15 that are not being used due to be in maintenance, 

the optimal operation is to have another plant in standby. This means that 

another maintenance task could be carried out or that the production could be 

increased. Furthermore, the sequential and the distributed approach give the 

same allocation with respect to the products, but the evaporation load of some 

plants varies.  

 

Figure 3.15. Cooling-water distribution obtained with the different approaches 

With respect to the cooling water distribution showed in Figure 3.15, 

one can see that it changes with respect to Figure 3.9, as now the evaporation 

load allocation is optimal for the new water distribution. Nevertheless, the total 

amount of cooling water used is once again the maximum available, as the 

EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10 EV11 EV12 EV13 EV14 EV15

F 
[m

3 /
h

]

Real
Sequential
Centralized
Distributed
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price of the cooling water is lower than the price of the live steam, so its high 

usage compensates the reduction of live-steam consumption. But this situation 

may change in the future. 

 

Finally, Table 3 shows a brief summary of the computational time and 

the value of the objective function for each alternative in order to compare the 

obtained results. Comparing the values of the objective function for the 

different cases, the conclusion is that, as expected, the three approaches give 

significant savings with respect to current practices in Lenzing. Nevertheless, 

the centralized problem reaches the best solution (savings around 25%), 

meanwhile the sequential and distributed approaches get a solution more than 

a 10% worse (savings around 17% and 10%, respectively). The difference 

between the solutions obtained with the global-deterministic based solver and 

the local based one is negligible, but the computational time is not.  

 
Table 3. Operation cost and computational effort for the three approaches. 

 
Total CPU time2 

(s) 

Operation cost 

(€/h) 

Real - 501.96 

Sequential 33.4 416.11 

Centralized (BARON) 7908 379.08 

Centralized (BONMIN) 7.78 379.34 

Distributed 293 452.95 

 

A suitable time window between real-time optimizations in this 

network is about 30 minutes, so the centralized approach solved with a global 

method is not suitable. Hence, any of the other approaches could be admissible. 

As the centralized formulation solved with BONMIN gives the best results, it 

is the selected to be the best option. However, consider that, if the problem 

grows by considering fouling predictions over time (fouling models) or by 

including more parts of the factory (the water network is larger and also serves 

 

 

2 Over an Intel® i7-7700CPU machine with 32Gb of DDR4 RAM memory. 



CHAPTER 3: OPTIMAL OPERATION OF THE EVAPORATION NETWORK 75 

 

to other processes, and the heat-recovery network also interacts with the 

evaporation one), the centralized solution may be far for getting solutions 

within the required time period.  

3.6 Summary and conclusions 

In this chapter, a problem on resource efficiency has been addressed. 

First, different black-box models have been obtained which allow not only to 

know the relation between key process variables, but also to execute an 

automatic monitoring of the surface condensers fouling state based on real-

time measurements. Moreover, as typical regression procedures are quite 

sensitive to disturbances in the data and sensor noises, a more sophisticated 

modeling routine to improve the computation of these curves was described.  

Such models have been incorporated to the mathematical formulation 

that describes the cooling system of the Lenzing’s evaporation network. The 

resulting network model is then used in an RTO scheme that solves an NLP 

problem according to the current production constraints and the plants fouling 

states. The aim of the RTO is supporting the network operators to take better 

decisions in real time by an optimal cooling-water distribution, which 

minimizes the resource utilization cost. 

Nevertheless, the instantaneous RTO does not take into account any 

prediction of the fouling effect, so the proposed control actions may be 

suboptimal in the long term if they affect the fouling process. Furthermore, 

there are out-of-range situations due to the limited experiments done to get the 

training data in the black-box model development.  

Finally, as the surface condensers network is attached to the 

evaporation one, the cooling-water distribution problem and the evaporation-

load allocation problem are coupled. Thus, it is mandatory to solve them jointly 

in order to get the optimal operation of the overall system.  

Both models have been incorporated in three different optimization 

schemes, analyzing the convenience of the decomposition approaches versus 
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the centralized one. In this case study, the three tested approaches solve the 

problem in acceptable CPU time for real-time purposes, although the 

centralized approach has arisen as the most efficient one, getting the best 

solution. Apparently, the sequential and distributed approaches do not have any 

advantage here: the predicted cost is higher, and they elapse more time than 

the centralized formulation solved with a local-search MINLP algorithm. This 

is because the centralized problem is not so large scale in this case, many 

constraints are affine in the decision variables, and the advantages of parallel 

computation cannot be exploited with just two local optimization subproblems. 

Nevertheless, formulating two effortless independent problems (MIQP and 

NLP) will clearly beat the centralized formulation if the problem is extended 

to consider uncertainty in an explicitly way via, for instance, two-stage 

stochastic optimization. Comparing the two decompositions approaches one 

can conclude that the formulation based on price-coordination gives worse 

results and elapses more time. Thus, although it is less sophisticated, for this 

case study the sequential approach results a better option. This may be due to 

the characteristics of the problems, as usually price-coordination is used only 

for problems without discrete variables. 

It is worth mentioning that using any of both RTO developed schemes 

(the one for the cooling water distribution and the one that also considers the 

load allocation) in a real plant will be very beneficial. Comparison the 

operation between the historical data and the provided solution for the same 

conditions shows that if the solutions were implemented significant saving 

would be obtained. Thus, implementing the scheme in the plant will reach the 

aim of supporting the operators to take better decisions on how to operate the 

networks. Nonetheless, as the cooling water distribution RTO only considers 

the cooling water cost, it would be more worthy the implementation of RTO 

scheme formulated with the centralized approach for the whole system. 

The work presented in this chapter has been presented in a national 

and two international congresses: the development of the data driven models 

and the cooling system optimization are addressed in (M. P. Marcos, Pitarch, 

Jasch, et al., 2018; M. P. Marcos, Pitarch, Prada, et al., 2018) , meanwhile the 
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study of the different formulations for the joint optimization of the cooling 

system and the evaporation network is broached in (M. P. Marcos, Pitarch, 

Jasch, et al., 2019). 
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Chapter 4                               

Optimal operation of the 

heat-recovery network 

This chapter is focused on the heat-recovery network of the Lenzing 

site described in Chapter 2. In here, the modeling of the network and the 

development of a real-time optimization are addressed, taking explicit 

consideration of the state of fouling in the heat exchangers. In order to do that, 

models for the heat-transfer coefficients of each equipment have been 

developed as well. 

First, a more detailed description of the network is presented in 

Section 4.1 and the main objectives for this case study will be listed in Section 

4.2. Specific domain knowledge on heat transfer is used together with machine 

learning in Section 4.3 to build gray-box models for heat exchangers. After that, 

in Section 4.4 the mathematical formulation of the optimization problem for 

the optimal operation of the network is described. Section 4.5 analyzes the 

optimal operation of the heat-recovery network jointly with the evaporation 

network. Finally, in Section 4.6, the most important aspects found, and goals 

achieved in this chapter are summarized. 
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4.1 Problem identification 

The heat-recovery network must heat up some of the spinbath 

concentrated streams after the evaporation network (called product streams 

hereinafter) as it was described in Chapter 2. The fifteen heat exchangers that 

form the network, should be able to heat up the products to the desired 

temperatures in order to be reintroduced in the spinning machines, Four 

different hot streams are used as utilities to this aim. However, as each one has 

traces of different chemical components, they cannot be mixed, so, each heat 

exchanger can only be working with one heat source at a time, despite most of 

them can be connected to more than one (see Figure 4.).  

 

Figure 4.1. Scheme of the network layout. W represents heat exchangers while S heat sources. 

Thick lines are the product streams meanwhile thin lines are the heat sources streams. Green 

outlets from exchangers in Block 1 can be reused to feed exchangers in Block 3. The products of 
cyan heat exchangers are connected in parallel, meanwhile the product of the dark blue heat 

exchangers goes in series. 
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The available heat sources are: 

• Alkaline wastewater, called S1 hereinafter, represented in purple 

in Figure 4.1. 

• Alkaline wastewater from source S1 that has been already used in 

an exchanger belonging to Block 1. It will be treated as a virtual 

heat source denoted by S2 hereinafter and represented by the 

green pipes in Figure 4.1. 

• Vapor condensate, called S3 hereinafter, represented in red in 

Figure 4.1. 

• Acid wastewater, called S4 hereinafter, represented in yellow in 

Figure 4.1. 

Note that, as these streams come from other processes and are shared 

among other parts of the plant, the use of these sources involves a cost 

(pumping and maintenance plus the shadow cost of utilization for other 

purposes) and its availability is limited too.  

The heat exchangers can be grouped, depending on their connectivity 

to sources (see Figure 4.1). The possible connections between heat sources and 

heat exchangers are given by Table 4. 

 

Table 4. Allowed source connections to heat exchangers 

Block Heat exchanger Heat source 

ℬ1 w1, w2 w3, w4, w5 S1 

ℬ2 w6, w7 S1, S3 

ℬ3 w8, w9, w10, w11 S1, S2, S3 

ℬ4 w12, w13 S3, S4 

ℬ5 w14, w15 S4 

 

From the point of view of the heat-exchanger connections, the 

network can be divided into two groups. The first one involves the heat 

exchangers being connected in parallel, i.e., each one heats a different product 

and the heat sources feed these exchangers in parallel. These are the ones 

depicted in cyan in Figure , i.e., the exchangers w1 to w11. 
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The other group is composed of the heat exchangers connected in 

series from the point of view of product, i.e., the same product goes through all 

of them (represented in dark blue in Figure 4.1). Hence, the temperature 

setpoint of the product only has to be fulfilled at the outlet of w15. Note that 

the S4 source goes in series through these heat exchangers too, but backwards: 

first it goes to w15 and subsequently passes through w14, w13, and finally 

through w12. An important feature to take into account in this subset is that, as 

the product is connected in series, there is no need to use all the heat exchangers 

as long as the setpoint can be reached with just some of them. If one heat 

exchanger of the chain is not used, it means that there is not any source passing 

through it, so there will not be heat transfer and, consequently, the outlet 

temperature of the product stream will be assumed the same that the one at its 

inlet. This operation mode is possible because in the source inlet of each heat 

exchanger there is a bypass valve that can only be in two positions, open and 

closed. 

The efficiency of the heat exchangers depends on different factors, 

such as constructive materials, dimensionality factors or their operation 

conditions (Boccardi et al., 2010). The most important ones are the 

transmission area (i.e., exchanger size) and the fouling state. This network uses 

plate-type heat exchangers, i.e., they are composed of many thin, slightly 

separated plates that have very large surface areas so that alternate fluids (hot 

and cold) flow between them to maximize the heat transfer. The total heat-

transfer area in these heat exchangers depends on the number of plates. In 

addition, the heat exchangers suffer from fouling that increases their thermal 

resistance, so that their efficiency progressively reduces over time. 

Consequently, more flow from the heat source is needed to reach the product 

setpoint. Eventually, the exchanger needs to be cleaned in order to recover its 

nominal efficiency. The usual cleaning policy in the factories is exclusively 

based on operators experience, prioritizing first the heat exchangers being more 

days in operation since last cleaning. In this way it is hard to infer whether the 

taken decisions really lead to an optimal operation regarding economics. 
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It is noteworthy that, although the decisions to take may be repetitive 

and are within a well-defined and stable context, achieving an efficient network 

operation is a semi-structured decision problem, because there is a large 

number of decision alternatives regarding the network configuration and the 

cleaning policy (that are difficult to simultaneously manage by a human 

operator) and the implications of these are not well known, as prediction 

models for the heat transfer with fouling in these exchangers are not readily 

available.  

4.2 Objectives 

The main objective is improving the heat-recovery network operation 

by optimizing the resource utilization in real time while satisfying a set of 

production constraints and taking the fouling state of the equipment into 

explicit consideration.   

This requires knowing the dependence of the heat exchanger heat 

transfer on flows and temperatures of the streams that pass through them. With 

that purpose in mind, data-driven models of the heat transfer coefficient have 

been obtained, that must also consider the state of fouling and how it affects 

the heat transmission.  

Once the heat transfer models are obtained, they can be used on a 

bigger hybrid model which represents the heat-recovery network layout and all 

possible alternatives of operation. The problem can then be formulated as an 

optimization one, operating in real-time, with an objective function that reflects 

the operation costs to be minimized under the constraints imposed by the model 

and other process restrictions. The resulting RTO problem gives the optimal 

distribution of the heat sources among the heat exchangers.  

Furthermore, as the model takes explicit consideration of the state of 

fouling of the heat exchangers, the optimization problem also includes a 

suggestion of which heat exchanger should be cleaned.  

In summary, we aim: 
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• To obtain reliable data-driven models of the heat transfer 

coefficients of the heat exchangers.  

• To formulate an optimization problem to distribute the heat 

sources according to measured real-time conditions.  

• To include in the formulation of the problem a variable which 

suggests the next heat exchanger that should be cleaned. 

• To implement and test the proposed RTO solution. 

4.3 Modeling the heat transfer 

The aim of the heat-recovery network is to heat up some products with 

several heat sources. In order to obtain a mathematical model that represents 

the possible alternatives of network operation, the heat transmission in the heat 

exchangers must be studied.   

It is commonly admitted that the heat transfer through a heat 

exchanger (𝑄′) can be computed by:  

𝑄′ = 𝑈 · A ·  𝐿𝑀𝑇𝐷 (4.1) 

Where A is the total heat-transfer surface, LMTD is the logarithmic 

mean temperature difference between both inlet and outlet of the two streams 

through the heat exchanger, and 𝑈 is the overall heat-transfer coefficient. 

Once in operation, the overall heat-transfer coefficient is the key 

variable from which the exchanger efficiency depends on. However, it is not 

constant as it depends on the streams densities, viscosities, flow velocities, etc., 

i.e., it depends on the operating conditions. Moreover, the fouling in the 

exchanger surfaces also modifies the conduction coefficient. Since the aim of 

the proposed RTO is to compute the right flows through each heat exchanger 

for economic operation, a prediction model for 𝑈  with respect to these 

variables is required. 

Well established empirical laws based on dimensionless groups could 

be recalled for such a task. However, this approach requires a precise 

knowledge on the heat-exchanger dimensions and constructive materials, as 
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well as sensible data on the stream properties (dynamic viscosity, density, etc.), 

in order to find the more suitable correlation among the Nusselt number with 

the Prandtl, Reynolds or Peclet ones, plus with other of kinematic and 

geometric nature (Boccardi et al., 2010; Dorao & Fernandino, 2017). The 

drawbacks with this approach are twofold: 

Formulas for the convection coefficient are well known in the case of 

usual fluids, like water, steam, or most common refrigerants, but no significant 

studies are available for other scarcer fluids, mixture of several components at 

varying concentrations, like the acid spinbaths in this case study. Hence, 

laboratory experiments are required to collect the relevant data for regression. 

In dirty industrial environments, streams and heat-exchanger features 

vary with the time and operation conditions (concentrations, fouling, etc.), so 

the regressions gotten from the lab data may be quickly outdated if such data 

is not representative enough for the whole operating region, which barely can 

be. 

In addition, these highly non-convex models rely on empirical data in 

the end, but the only data available online in the plant are flows and 

temperatures. Therefore, it was decided to avoid this way choosing a more 

flexible data-driven approach.  

The idea is to build a data-based model for the clean exchanger 

gathering data from the plant historian in different operating conditions (flow 

ranges) but always after a cleaning task. Nevertheless, a data reconciliation 

must be done before building the black models in order to correct the raw data 

according to basic energy balances. 

The developed models will establish the relation between the overall 

heat-transfer coefficient and the flows and temperatures of the streams, without 

taking the fouling state into account.  

4.3.1 Data reconciliation 

Usually, raw plant data may present inconsistencies, for instance due to 

noisy or biased sensors, making it necessary to correct the raw data before its 
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further use to take decisions.  Thus, the first step is performing a reconciliation 

of the raw data collected from sensors using the basic first-principles laws (e.g., 

mass balances). The procedure is solving an optimization problem in which the 

objective function to minimize is the weighted sum of squares of the deviations 

between measured data with respect to their estimated (i.e., corrected) values, 

subject to the physical laws (process model) and other additional imposed 

relations (Sarabia et al., 2012). 

In this case, the measured variables that are necessary to correct are 

the inlet and outlet temperatures of the product streams (𝑇𝑖𝑛𝑐 , 𝑇𝑜𝑐), those of 

the heat sources (𝑇𝑖𝑛𝑠, 𝑇𝑜𝑠) and their respective flows (𝐹𝑐, 𝐹𝑠).  Thus, in the 

data reconciliation problem, for a given dataset of N different operating 

instants i after a cleaning task of the previous measured variables 𝑦�̂� ≔

{𝑇𝑖�̂�𝑐,𝑖 , 𝑇�̂�𝑐,𝑖 , 𝑇𝑖�̂�𝑠,𝑖 , 𝑇�̂�𝑠,𝑖, 𝐹𝑐,�̂�, 𝐹𝑠,�̂�}, there is an equivalent reconciliated variable 

𝑦𝑖 ≔ {𝑇𝑖𝑛𝑐,𝑖, 𝑇𝑜𝑐,𝑖 , 𝑇𝑖𝑛𝑠,𝑖 , 𝑇𝑜𝑠,𝑖𝐹𝑐,𝑖 , 𝐹𝑠,𝑖  } . It must be mentioned that the 

variables and parameters have been normalized in order to avoid that the 

variables that take higher values influence the optimization algorithms with a 

greater weight, as well as to facilitate their convergence. This normalization 

has been done through (4.2) where 𝜇𝑖  and 𝜎𝑖  are the mean value and the 

standard deviation of the variable 𝑦𝑖  respectively and 𝑌𝑖  is the value of the 

corresponding normalized variable. 

𝑌𝑖 =
𝑦𝑖 − 𝜇𝑖
𝜎𝑖

 (4.2) 

The objective function to minimize is the error between the variables 

that fulfill the constraints and the corresponding measured values (4.3). Note 

that in this case we are using least squares, but the fair function (3.2) could be 

also used for a more robust estimation. 

Finally, data reconciliation is constrained to the energy balance in the 

heat exchanger (4.4) where, assuming that there is no heat loss to the ambient, 

the heat that the heat source gives (𝑄𝑠) has to be equal to the heat that the 

product gains (𝑄𝑐). Both heat magnitudes can be computed using (4.5) where 
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ρ and Cp are the density and the specific heat of the stream respectively, and 

Δ𝑇 is the difference between the inlet and the outlet flow temperatures3.  

The optimization problem for the data reconciliation of the collected 

data of each heat exchanger is: 

min
𝑌𝑖 

       𝐽 =∑  

N

𝑖

(
�̂�𝑖 − 𝑌𝑖

�̂�𝑖
)

2

 (4.3) 

s.t.:       𝑄𝑠,𝑖 = −𝑄𝑐,𝑖 (4.4) 

𝑄𝑘,𝑖 = 𝐹𝑘,𝑖  ρk 𝐶𝑝𝑘  Δ𝑇𝑘,𝑖              ∀𝑘 ∈ {𝑠, 𝑐} (4.5) 

Note that in this formulation the sub-index s and c correspond to the 

heat source and product stream respectively, and the sub-index i for the 

operating point. 

A sample of the results of the data reconciliation is shown in Figure 

4.2, where the product flow data obtained from measurements and the values 

corrected by reconciliation are compared. From the analysis of the 

reconciliation results, one can realize the existence of inconsistencies in the 

data. In this case there are two facts that may cause inconsistencies in the data: 

on one hand the presence of a bypass valve after the location of the inlet 

product flowmeter that makes that the real flow could be lower than the 

measured, on the other hand the heat-source flowmeter becomes saturated 

beyond a value, so the real temperature could be higher than the measured. 

 

 

 

 

 

3 Note that the minus sign in (4.4) is to compensate for the negative value of 

Δ𝑇, as 𝑇𝑜𝑢𝑡𝑐 is greater than 𝑇𝑖𝑛𝑐. Consequently, 𝑄𝑐 will also be negative. 
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Figure 4.2. Comparison between the measured and corrected values for 𝐹𝑐 

4.3.2 Regression models 

Once reliable data have been obtained, the overall heat-transfer 

coefficient in each operating point (𝑈𝑖) can be estimated through (4.1) which 

is rewritten as (4.6), where the heat transferred (𝑄′) is the heat that the heat 

source gives (𝑄𝑠) computed with (4.5).  

𝑈𝑖 =
Fc,i ρc 𝐶𝑝𝑐  (Toc,i − Tinc,i)

𝐴 · LMTD
 (4.6) 

LMTD =
(Tins,i − Tinc,i) − (Tos,i − Toc,i)

ln (
Tins,i − Tinc,i
Tos,i − Toc,i

)
 

(4.7) 

Note that the temperatures and flows used to compute the heat-

transfer coefficient are the obtained with the data reconciliation instead of the 

measured ones. 

Now, with the computed values of 𝑈 , the aim is to find an 

experimental relationship (black-box model) between the overall heat-transfer 

coefficient (𝑈) and the flows and temperatures of both streams, 𝑈 = 𝑓(𝐹, 𝑇). 

For this goal,  𝑓:ℝ → ℝ is constrained to be a polynomial in its arguments, 

such that SOS-constrained regression (see section 1.2.2) can be used both to fit 

the data and to enforce coherent physical model responses.  
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The best model obtained4 is (4.8), a third-degree polynomial where 

the overall heat-transfer coefficient depends just on the flows, as the 

temperature influence has resulted to be negligible in our case study.  

𝑈 = 𝛾0 + 𝛾1 𝐹𝑠 + 𝛾2𝐹𝑐 + 𝛾3𝐹𝑠
2 + 𝛾4  𝐹𝑠  𝐹𝑐  +  𝛾5 𝐹𝑠

3 (4.8) 

The model parameters  𝜃 = {𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5} are independent of 

the operation conditions, but they depend on the heat-exchanger features. 

Hence, the exchangers have been grouped in three sets according to their sizes 

(small, medium and large heat-transfer areas) so that the procedure had to be 

repeated to get, at least, three different sets of values for the model parameters.  

 

 

Figure 4.3. Goodness of fit for 𝑈 : estimated values by data reconciliation (blue) with their 

corresponding model predictions (red). 

 

In order to give an insight of the goodness of fit, Figure 4.3 shows 

some values of 𝑈 estimated by data reconciliation and their corresponding ones 

predicted by (4.8), for a medium-size heat exchanger. 

 

 

 

4  Best according to the selected regularization coefficients to limit an 

excessive model complexity. 
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4.3.3 Fouling contribution 

As mentioned before, the heat-transfer capacity of a heat exchanger is 

limited by the fouling. Therefore, as the regression models (4.8) have been 

fitted using data from clean heat exchangers, the actual 𝑈 over time will always 

be lower than the predicted one. To tackle this issue, (4.8) has been corrected 

by adding an additional term, 𝐾ℎ, that accounts for the state of fouling of the 

heat exchangers. Indeed, the state of fouling 𝐾ℎ can be monitored online by 

just comparing the actual heat transfer with the predicted by the clean model 

(Lenzing, 2019). In this way, and assuming that the fouling state does not 

evolve significantly during a few hours, measurements in real time can be used 

to update the bias parameter 𝐾ℎ in (4.5) from day to day. 

𝑈 = 𝛾0 − 𝐾ℎ + 𝛾1 𝐹𝑠 + 𝛾2𝐹𝑐 + 𝛾3𝐹𝑠
2 + 𝛾4  𝐹𝑠  𝐹𝑐  +  𝛾5 𝐹𝑠

3 (4.9) 

4.4 Optimal operation 

Once the data-driven models for the heat-transfer coefficient have 

been obtained, they can be added to a hybrid model that represents the plant 

operation in mathematical programming terms.  The core of the model is based 

not only on first principles (mass and energy balances), but also considering 

logic statements and the gray-box models for the heat transfer. As many 

production changes within a day are scarce, and the system dynamics is fast 

enough to be neglected, the model focuses on representing the steady state 

reliably.  

As mentioned before, the model also includes other operational 

constraints that have to be taken into account. The objective function is to 

minimize the operation cost of the network given by the resource utilization 

(heat sources) and the decision variables are the distribution of the heat sources, 

that is, the amount of each heat source that goes through each heat exchanger 

able to fulfill the product temperature demand. All these components of the 

optimization problem will be described next. 
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4.4.1 Network model 

The first aim of the optimization is to distribute such sources among 

exchangers accounting all the allocation alternatives, in order to minimize the 

cost of the heat sources consumption. 

The following sets of entities and variables are previously defined to 

build a mathematical model of the network operation possibilities. 

The set 𝒲 is defined to contain all heat exchangers. From the point 

of view of heat-sources connectivity in each heat exchanger,  𝒲 has already 

been divided into five subsets  𝒲 = {ℬ1  ∪ ℬ2 ∪ ℬ3 ∪ ℬ4 ∪ ℬ5}  as Table 4 

shows. However,  𝒲 can also be split in other two different subsets, 𝒲 =

{𝒱1 ∪ 𝒱2} where 𝒱1 includes the heat exchangers with the products connected 

in parallel and 𝒱2  lists those where the product flows in serial connection 

through them.  

The set  𝒮 gathers all heat sources in the network. Note that there is 

not a set defined for product streams, as they are fixed for each heat exchanger, 

and they are just input data for the optimization. In the model constraints, 

parameters and input data are written in plain style whereas decision variables 

are written in italics. 

The sets of decision variables employed in the model are: 

• 𝑋𝑠,𝑤 ∈ {0,1}: Binary variables that link the heat source 𝑠 to 

the heat exchanger 𝑤, when active (𝑋𝑠,𝑤 = 1). 

• 𝐹𝑠,𝑤 ∈ ℝ
+: Continuous variables that set the flow of heat-

source 𝑠 to heat exchanger 𝑤. 

Once sets and variables are defined, we can write the constraints that 

describe the network operation. They are based on first principles and logic 

statements, in addition to the production goals. 

1. Demand: the outlet product temperatures (𝑇𝑜𝑐,𝑤) have to reach certain 

setpoints (SPw). Note that, these constraints will affect only the heat 
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exchangers connected in parallel and the last heat exchanger in the chain 

of those connected in series: 

𝑇𝑜𝑐,𝑤 ≥  SP𝑤           ∀ 𝑤 ∈  𝒱1 ∪ w15 (4.10) 

2. Exclusivity: since the heat sources cannot be mixed, the heat exchangers 

can only use a single source (if any) at a time: 

∑𝑋𝑠,𝑤

𝒮

𝑠

≤  1            ∀ 𝑤 ∈  𝒲 (4.11) 

3. Flow bounds: if a heat source is not connected to a heat exchanger, its 

flow is zero, otherwise it is bounded by an upper limit Fw (different upper 

bound may be set up for each heat exchanger): 

𝐹𝑠,𝑤 ≤ Fw 𝑋𝑠            ∀ 𝑤 ∈  𝒲 (4.12) 

4. Non feasible connections: not all heat exchangers can be physically 

connected to all heat sources (just the ones described in Table 4), so there 

must be a constraint in the model that blocks the non-existent links from 

sources to heat exchangers, denoted by the set ℐ in (4.13).  

𝑋𝑠,𝑤 = 0             ∀𝑠, 𝑤 ∈ ℐ (4.13) 

5. Energy balances: analogous to the data reconciliation problem, the 

energy balances in each heat exchanger must be fulfilled, equations (4.1)-

(4.5). Nevertheless, as now there may be more than one heat source able 

to feed an exchanger, these equations are expanded as follows: 

∑𝑄𝑠,𝑤

𝒮

𝑠

= −𝑄𝑐,𝑤              ∀𝑤 ∈ 𝒲 (4.14) 

𝑄𝑘,𝑤 = 𝐹𝑘,𝑤 ρk 𝐶𝑝𝑘  Δ𝑇𝑘,𝑤        ∀𝑘 ∈ {𝑠, 𝑐} (4.15) 

𝑄𝑠,𝑤 = 𝑈𝑠,𝑤  Aw 𝐿𝑀𝑇𝐷𝑠,𝑤    ∀𝑠 ∈ 𝒮, ∀𝑤 ∈ 𝒲 (4.16) 

Where the experimental expression for 𝑈 obtained in Section 4.3.3, 𝑈𝑤, 

is recalled to compute the heat transferred in each heat exchanger. 

Moreover, in order to fulfill (4.14) when the source 𝑠 is not used in the 
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heat exchanger 𝑤 (i.e., 𝑄𝑠,𝑤 = 0), the term (𝛾0,𝑤 – 𝐾ℎ𝑤) is multiplied by 

𝑋𝑠,𝑤. Thus, in combination with (4.12) which forces the flow to be zero 

when 𝑋𝑠,𝑤 = 0, 𝑈𝑤 and the heat transfer will be forced to be zero too.  

𝑈𝑠,𝑤 = (𝛾0𝑤 − 𝐾ℎ𝑤)𝑋𝑠,𝑤 + 𝛾1𝑤  𝐹𝑠,𝑤 + 𝛾2𝑤𝐹𝑐,𝑤 + 𝛾3𝑤𝐹𝑠,𝑤
2

+ 𝛾4𝑤𝐹𝑠,𝑤𝐹𝑐,𝑤 + 𝛾5𝑤  𝐹𝑠,𝑤
3       ∀𝑠 ∈ 𝒮, ∀𝑤

∈ 𝒲 

(4.17) 

6. Mass balances: the maximum flow available at the heat sources (MFs) 

cannot be exceeded. For the source S4, as it is connected in series, the 

flow in every exchanger has to be lower than the maximum available:  

{
∑𝐹𝑠,𝑤

𝒲

𝑤

≤ MFs            ∀𝑠 ∈ {S1, S2, S3}

𝐹𝑠,𝑤 ≤ MFs              ∀ 𝑤 ∈  𝒲  ∀𝑠 = S4

 (4.18)  

7. S2-source considerations: the total amount of heat source S2 (𝑀𝐹S2) 

depends on the amount of used S1 in the heat exchangers 𝒲1 (see Figure 

4.):  

𝑀𝐹S2  =  ∑𝐹S1,𝑤

𝒲1

𝑤

 (4.19) 

Consequently, the inlet temperature of source S2 depends on the S1 

temperatures at the outlet of exchangers 𝒲1:  

𝑇inS2 = 
∑ 𝑇𝑜S1,𝑤 𝐹S1,𝑤
𝒲1
𝑤

∑ 𝐹S1,𝑤
𝒲1
𝑤

 (4.20) 

In addition to this constraint, other two must be added, that allude to 

the series connection. The different connection possibilities of the heat source 

S4 in 𝒱2 are modeled by the following constraints, taking into account that the 

bypass valves can switch between feeding the exchanger or not, see Figure 

4.4.a). 
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(a) (b) 

Figure 4.4. Detail of the heat exchangers connected in series. Grey dots represent the location of 
the bypass valves. (a) Shows the possible connections. (b) Presents the layout when w12, w13 and 

w14 are connected but w15 is not. 

Firstly, the S4 flow must be the same in all connected heat exchangers. 

To state this constraint, we formulate the system of equations shown in (4.21), 

where 𝑀 is a big enough value (for instance 𝑀 can be set to three times  MFS4). 

∑ 𝐹𝑆4,𝑤

𝒱2

𝑤≠𝛽

≤ 𝐹𝑆4,𝛽 ∑ 𝑋𝑆4,𝑤

𝒱2

𝑤≠𝛽

+𝑀(1 − 𝑋𝑆4,𝛽)    ∀𝛽 ∈ 𝒱2 (4.21) 

With (4.21) the model has the possibility of switching off any of the 

exchangers from w12 to w15, ensuring that the ones in operation get the right 

heat flow in series through them.  

To clarify this last constraint, consider for instance that heat 

exchangers w12, w13 and w14 are connected but w15 is not (see Figure 4.4.b). 

Then, by developing (12): 

➢ for β = w12:         𝐹𝑆4,𝑤13 + 𝐹𝑆4,𝑤14 ≤ 𝐹𝑆4,𝑤12 2 + 𝑀 (4.22) 

➢ for β = w13:         𝐹𝑆4,𝑤12 + 𝐹𝑆4,𝑤14 ≤ 𝐹𝑆4,𝑤13 2 + 𝑀 (4.23) 
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➢ for β = w14:         𝐹𝑆4,𝑤12 + 𝐹𝑆4,𝑤13 ≤ 𝐹𝑆4,𝑤14 2 + 𝑀 (4.24) 

➢ for β = w15:         𝐹𝑆4,𝑤12 + 𝐹𝑆4,𝑤13 + 𝐹𝑆4,𝑤14 ≤ 𝑀     (4.25) 

Thus, leading to the only possible solution of: 

𝐹𝑆4,𝑤13 = 𝐹𝑆4,𝑤14 = 𝐹𝑆4,𝑤12 (4.26) 

 

Secondly, the inlet temperatures for both product and heat source 

depend on the outlet of the previous heat exchanger in the stream direction. For 

the product stream, as it goes through all the exchangers, the inlet temperatures 

can be computed directly by (4.27). If a heat exchanger of the chain is not 

working, the heat gained by the product stream will be zero, and so is Δ𝑇𝑝,𝑤. 

𝑇𝑖𝑛𝑐,𝑤+1 = 𝑇𝑜𝑐,𝑤             ∀𝑤 ∈ 𝒱2 (4.27) 

For the hot-stream side, if a heat exchanger is not connected, the heat 

source through it will be zero, so Δ𝑇𝑠,𝑤 can take any value in the formulation. 

However. the inlet temperature will depend on the outlet of the previous but 

connected heat exchanger:  

𝑇𝑖𝑛𝑆4,𝑤 = ∑ (𝑇𝑜𝑆4,𝑗𝑋𝑆4,𝑗 ∏ (1 − 𝑋𝑆4,𝑗+1)

𝑤−1

𝑗=𝑤15

)

𝑤−1

𝑗=𝑤15

+ 𝑇𝑖𝑛𝑆4,𝑤15 ∏ (1 − 𝑋𝑆4,𝑗)

𝑤−1

𝑗=𝑤15

∀𝑤 ∈ 𝒱2 

(4.28) 

An illustrative example of this constraint is presented below, where it 

is developed for the w13 inlet temperature, which depends on w14 using S4 as 

heat source. If not, it depends on w15 working with S4. Otherwise, the 

temperature will be directly the one at the source S4. 

𝑇𝑖𝑛𝑆4,𝑤13 = 𝑇𝑜𝑆4,𝑤14𝑋𝑆4.𝑤14 + 𝑇𝑜𝑆4.𝑤15𝑋𝑆4.𝑤15(1 − 𝑋𝑆4,𝑤14)

+ 𝑇𝑖𝑛𝑆4,𝑤15(1 − 𝑋𝑆4,𝑤15)(1 − 𝑋𝑆4,𝑤14) 
(4.29) 

In this mathematical representation of the heat recovery network, the 

scalars A, ρ, Cp, and Fw, as well as the coefficients 𝑎𝑖 are known fixed values. 
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The values of the parameters Fp,w, SPw, Tins and MFs change over time, but 

they can be read from the information system of the factory in real time. 

4.4.2 Optimization problem 

The optimization aim is to minimize the normalized cost of operation 

per time unit. This cost comes from the consumption of each source (i.e., the 

total used flow) times its price5 (P𝑠). Note that, for the sources connected in 

parallel, the total flow is the sum of the flows used in each heat exchanger, 

meanwhile for S4 the consumption is just the flow that goes through one of the 

connected exchangers.  

𝐶𝑜𝑠𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑∑𝐹𝑠,𝑤 P𝑠

𝒲

𝑤

𝒮\𝑆4

𝑠

+max(𝐹𝑆4,𝑤) P𝑆4 (4.30) 

Hence, the optimization problem is to minimize (4.30) subject to 

(4.10)-(4.21), (4.27) and (4.28). Note that this is a MINLP problem, as there 

are discrete decisions (𝑋𝑠,𝑤) and 𝐿𝑀𝑇𝐷(·), 𝑈(·), are nonlinear functions. Once 

the problem is formulated, it has been coded in Pyomo-Python and solved 

using the NLP-based branch and-bound algorithm BONMIN (Bonami et al., 

2008). 

The problem size is 195 decision variables (40 binaries) with 421 

constraints, and a solution with zero relative gap is proven in about 30 seconds 

over an Intel® 7-7700 CPU machine with 32Gb of DDR4 RAM memory. The 

optimization has been tested offline with plant historical data and some results 

are shown in Table 5. 

 

 

 

 

5 Note that S2 gets zero cost, as it is reused from S1. 
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Table 5. Example of the result for the optimal heat-sources distribution 

 
Heat 

exchanger 

FS1 

[m3/h] 

FS2 

[m3/h] 

FS3 

[m3/h] 

FS4 

[m3/h] 

ℬ1 

w1 19.94 0.00 0.00 0.00 

w2 33.85 0.00 0.00 0.00 

w3 49.62 0.00 0.00 0.00 

w4 54.43 0.00 0.00 0.00 

w5 61.97 0.00 0.00 0.00 

ℬ2 
w6 0.00 0.00 32.27 0.00 

w7 0.00 0.00 32.69 0.00 

ℬ3 

w8 0.00 165.02 0.00 0.00 

w9 0.00 0.00 50.95 0.00 

w10 0.00 0.00 25.11 0.00 

w11 0.00 38.76 0.00 0.00 

ℬ4 
w12 0.00 0.00 0.00 17.76 

w13 0.00 0.00 0.00 0.00 

ℬ5 
w14 0.00 0.00 0.00 0.00 

w15 0.00 0.00 0.00 0.00 

 

In this case, as there is enough availability in the hot sources, the 

optimization decides to connect each heat exchanger to the cheaper source 

within its allowed links. We can observe that, for ℬ3 (w8 to w11), the RTO 

tries to connect as many exchangers as possible to S2, as this source is cost 

free. For the heat exchangers connected in series (w12 to w15), the RTO shows 

that the product temperature setpoint can be reached with just one heat 

exchanger connected. 

Finally, note that, as model (4.9) can predict the efficiency of a heat 

exchanger according to its actual fouling state, it is possible to compare the 

current heat transfer with the one given by the heat exchanger if fully clean, in 

order to suggest if it should be cleaned. To add such suggestions into the 

optimization problem, the objective function must also take into account the 

cost of the cleaning tasks, that must be normalized to be comparable with the 

operation cost. 
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Therefore, the resulting optimization problem not only gives the 

optimal allocation of the heat sources according to the real-time conditions but 

also suggests the heat exchangers that should be cleaned, providing the best 

global economic trade-off.  

4.4.3 Suggestions on cleaning tasks 

The problem described above takes into account the performance 

degradation due to fouling, as (4.17) includes the parameter 𝐾ℎ𝑤  which 

accounts for the state of fouling. In addition, by monitoring the state of fouling, 

we can not only decide over the hot-sources distribution, but also suggest 

which heat exchanger should be cleaned according to an economic trade-off 

criterion. 

To do that, the previous formulation is extended with a new set of 

binary variables: 

• 𝑌𝑤 ∈ {0,1} : Binary variables that activate ( 𝑌𝑤 = 1 ) or 

deactivate (𝑌𝑤 = 0) the cleaning in heat exchanger w. 

Thus, the fouling factor 𝐾ℎ𝑤  can be multiplied by (1 − 𝑌𝑤) in order 

to provide the model with the ability to compare between operating exchanger 

𝑤 with the actual efficiency or with the nominal one, as if it would be freshly 

clean. Therefore, (4.17) is extended to: 

𝑈𝑠,𝑤 = (𝛾0𝑤 − 𝐾ℎ𝑤(1 − 𝑌𝑤)) 𝑋𝑠,𝑤 + 𝛾1𝑤 𝐹𝑠,𝑤 + 𝛾2𝑤𝐹𝑐,𝑤 + 𝛾3𝑤𝐹𝑠,𝑤
2

+ 𝛾4𝑤𝐹𝑠,𝑤𝐹𝑐,𝑤 + 𝛾5𝑤  𝐹𝑠,𝑤
3       ∀𝑠 ∈ 𝒮, ∀𝑤 ∈ 𝒲 

(4.31) 

Moreover, the objective function must also consider the cost of the 

potential cleaning tasks to perform. However, the cleaning tasks have a fixed 

cost, 𝑃𝐶 , which must be normalized to be comparable with the instantaneous 

operation cost of the network. Hence, 𝑃𝐶  must be amortized over the operation 

time of the heat exchanger since its last cleaning, 𝑡𝑤. Thus, the normalized cost 

of the cleaning tasks will be:  
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𝐶𝑜𝑠𝑡𝑐𝑙𝑒𝑎𝑛 ∶=  ∑
𝑌𝑤   𝑃𝑐
𝑡𝑤

𝒲

𝑤

 (4.32) 

In this way, the economic objective function defines an instantaneous 

trade-off between operation and cleaning, where the cleaning cost is 

depreciated over time whilst the cost of operation progressively increases due 

to fouling (more heat flow is needed to reach the product temperature setpoints). 

Note that, if the optimization sets 𝑌𝑤 = 1 for some heat exchanger 𝑤, 

it is considered that such exchanger performs as it was fully clean by (4.31) 

and its corresponding costs of cleaning are included in the objective function 

by (4.32). This way, the optimization problem provides suggestions for 

cleaning in real time, which aim to provide the best global economic trade-off.  

In summary, the optimization problem to be solved in real time is: 

min
𝐹𝑠,𝑤,𝑋𝑠,𝑤,𝑌𝑤,𝐹𝑆4

   𝐶𝑜𝑠𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑜𝑠𝑡𝑐𝑙𝑒𝑎𝑛 +  𝜏∑∑𝑋𝑠,𝑤

𝒲

𝑤

 

𝒮

𝑠

 

(4.33) 
s.t.:           model constraints (4.10)-(4.16), (4.18)-(4.21), 

(4.27), (4.28). (4.31) 

𝐹𝑠,𝑤 , 𝐹𝑆4 ∈ ℝ
+ 

𝑋𝑠,𝑤, 𝑌𝑤 ∈ {0,1} 

Where an additional term in the objective function (𝜏 > 0  user-

defined weight) is included to penalize the connection of serial heat exchangers 

if it is not strictly necessary to reach the product setpoints. In this way, 𝛼 serves 

as a tuning parameter to control the nervousness (Dalle Ave et al., 2019) of the 

RTO solutions. 

This optimization involves 211 decision variables (75 binaries) and 

425 constraints. It is solved with the NLP-based branch-and-bound algorithm 

BONMIN (Bonami et al., 2008) elapsing about 120 seconds average in an 

Intel® 7-7700 CPU workstation with 32Gb of DDR4 RAM memory to get a 

solution with zero relative gap. Therefore, as this RTO runs in an hourly basis 
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(sensible frequency to account for realistic changes in setpoints or available 

source flows), the computational time does not represent a major issue. 

The problem was tested with the same data as the used in the previous 

section, in order to be able to compare the solution with the suggestions of 

cleanings. Unfortunately, since the fouling state was not monitored in the past, 

we do not have values for 𝐾ℎ𝑤 recorded in the plant historian, but, based on 

preliminary data monitoring of one exchanger, we found that a good enough 

initial approximation is to set 𝐾ℎ𝑤 as the double of the operation time since last 

cleaning, 𝐾ℎ𝑤 = 2𝑡𝑤 . Of course, this rough approximation is just for 

evaluation purposes, and it will be replaced by actual data when the monitoring 

system will be fully implemented. 

Comparing the results of Table 6 with the ones showed in Table 5, we 

can observe that the heat-source distribution is the same. However, by cleaning 

heat exchangers w2 and w7, the needed flow of the heat sources to reach the 

product temperature setpoint is lower (4.3% and 6.2% lower respectively).  

Although the cleaning tasks involve a cost, the reduction of the utility 

consumption is beneficial from an economic point of view. Indeed, the total 

cost will decrease about 0.5% if the cleaning tasks are performed. 

Such results also show that the best policy not always is to clean the 

dirtiest (w8, w13). Instead, the suggestion is to clean w2 and w7. This can be 

explained taking into account that the source used in w8 is cost free and w13 

is not being used, so no operation cost is incurred for these two. 
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Table 6. Results considering the suggestions of cleanings. 

 W 
FS1 

[m3/h] 

FS2 

[m3/h] 

FS3 

[m3/h] 

FS4 

[m3/h] 

Cleaning 

suggestion 

𝑲𝒉 

[W/(m2K)] 

ℬ1 

w1 19.94 0.00 0.00 0.00 0 20 

w2 32.40 0.00 0.00 0.00 1 30 

w3 49.62 0.00 0.00 0.00 0 10 

w4 54.43 0.00 0.00 0.00 0 0 

w5 61.97 0.00 0.00 0.00 0 6 

ℬ2 
w6 0.00 0.00 32.27 0.00 0 6 

w7 0.00 0.00 30.68 0.00 1 34 

ℬ3 

w8 0.00 167.82 0.00 0.00 0 44 

w9 0.00 0.00 50.95 0.00 0 12 

w10 0.00 0.00 25.11 0.00 0 24 

w11 0.00 38.94 0.00 0.00 0 2 

ℬ4 
w12 0.00 0.00 0.00 17.76 0 18 

w13 0.00 0.00 0.00 0.00 0 36 

ℬ5 
w14 0.00 0.00 0.00 0.00 0 22 

w15 0.00 0.00 0.00 0.00 0 24 

 

To test the consistency of the solutions, i.e., to evaluate the so called 

nervousness level, the optimization was rolled out offline for several 

consecutive days, updating the input data with the actual plant state in each 

run: each day the fouling state is updated according to the operation and the 

inlet stream temperatures vary within a maximum of 3℃ with respect to the 

actual measurements (i.e., to make the test reasonably demanding, it is assumed 

that the inlet temperature will be modified by a random number between ±3℃). 

In addition, we assume that the cleaning tasks suggested are performed on the 

day, thus resetting the operation time and the fouling state for the next 

execution.  

Remark that this is not a maintenance-prediction scheduling, which is 

out of the scope of this work, as there is not a single optimization for a set of 

future days (time horizon), but several RTO runs done sequentially, one per 

day. The evolution for fifteen consecutive days is shown in Figure 4.5. 
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Note that the heat-sources allocation changes over time, clearly seen in blocks 

ℬ3 and ℬ4 where the heat source used in each heat exchanger needs to adapt to 

the operation conditions of the day. The most significant changes related to the 

solution nervousness are the ones observed in the heat exchangers connected 

in series, where the solution shows that not only the heat source but also the 

heat exchanger used changes. This is because the product heat demand in these 

exchangers is not high (usually due to a low input flow) in comparison with 

the total heating capacity of these four exchangers, so the optimization tries to 

switch between the less fouled ones in order to save a bit of the flow of source 

usage. Nonetheless, this behavior, if unacceptable, can be easily attenuated by 

increasing the value of the tuning parameter α in the objective function of 

problem (4.33).  

4.5 Plant-wide optimization 

The heat-recovery network is related to the evaporation network 

whose optimal operation has been discussed in Chapter 3, as the products that 

must be heated up in the heat-exchanger network are the concentrated products 

obtained after the evaporation process (see Figure 4.6). Hence, the input 

temperatures of the products at the heat-recovery network depend on the 

performance of the evaporation network (including the cooling system). 

 

Figure 4.6. Relation between the different networks 
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Thus, one might think that a plant-wide optimization of the three 

networks together (the evaporation, the cooling system, and the heat-recovery 

one) would lead to the optimal operation of the whole process. Nevertheless, it 

is not necessary as one may conclude by doing an engineering analysis of the 

behavior of the different systems.  

In order to increase the temperature of the concentrated product (to 

reduce the use of heat sources in the heat-recovery system), it is needed to 

increase the live steam consumption. Note that the live steam is used in the 

evaporation plant to heat up the product (see Figure 4.7). However, the price 

of the live steam is much bigger than the price of the heat sources (about 20 

times bigger), so it would be self-defeating.  

 

Figure 4.7. Scheme of an evaporation plant 

The live-steam consumption is the key utility from an economic point 

of view and it does not depend on the heat-recovery network. Hence, the global 

optimal operation can be achieved by performing the local optimizations 

presented in this chapter: running the evaporation network (including the 

cooling system) optimization, and, with the resulting conditions, running the 

heat-recovery optimization subsequently.  
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4.6 Summary and conclusions 

In this chapter the problem of optimal operation of a heat-recovery 

network has been addressed considering the efficiency of the heat exchangers 

and the use of shared resources simultaneously. The key operational decisions 

are how to allocate and distribute the heat sources (utilities) among the heat 

exchangers that compose the network.  

First, the heat transfer through the heat exchangers has been studied 

and a gray-box model that relates the overall heat transfer coefficient with the 

operation conditions has been developed. Such model has been obtained based 

on experimental data collected under suitable plant conditions. Nevertheless, 

to guarantee the reliability of the data points, a data reconciliation has been 

done. 

Such gray-box models have been incorporated into a rigorous 

mathematical model of the network, which is the core of an MINLP 

optimization accounting for the current production constraints. Besides, as the 

model also takes into account the equipment fouling states, the optimization 

problem has been extended to provide suggestions on cleaning tasks. In this 

way, the proposed RTO will support the plant operators in such a complex 

decision-making process in real time, saving resources and reducing the 

personnel workload.  

The preliminary evaluation showed that the decisions proposed by the 

RTO outperformed those taken by the human operator. A relevant outcome 

from this evaluation is that the current cleaning policy of dirtiest first has been 

proven not to be the best in all cases. Indeed, knowing which heat exchanger 

should be cleaned for optimal economic performance is not an easy task, as it 

depends a lot on different interconnected factors. Hence, the proposed RTO 

not only improves the heat-source distribution, but also helps to configure the 

cleaning schedule. 

Nevertheless, this is an instantaneous RTO which does not predict the 

future evolution of the fouling, so the proposed maintenance actions may be 
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suboptimal in the long term. In return for this, the proposed RTO solution does 

not suffer from the always undesirable turnpike effect (Carlson & Haurie, 

2013) typically arising in dynamic optimization and scheduling solutions over 

a finite future time horizon. 

Finally, the operation of the heat-recovery section jointly with the 

evaporation network has been discussed. The inference obtained from the 

analysis is that the evaporation process is the resource-intensive process, as the 

live-steam consumption is the most expensive utility. Thus, as the heat-

recovery section does not directly affect the evaporation process, the procedure 

for an optimal operation is first, performing the optimization of the evaporation 

network based on the actual conditions of the plant and, after that, performing 

the heat-recovery optimization with the resulting conditions. 

 

The work presented in this chapter led to three scientific papers, one 

in a national congress (M. P. Marcos, Pitarch, & Prada, 2019), one in an 

international conference (M. P. Marcos et al., 2020a), and one published in a 

Q1 JCR-indexed journal (M. P. Marcos et al., 2020b). 



Chapter 5                      

Integrated process re-design 

This chapter goes beyond joint operation of the interconnected 

evaporation and cooling-system networks by incorporating process design 

decisions as well. In this regard, the previous mathematical formulation to 

solve the real-time optimization problem described in Chapter 3 is twofold 

extended: a) to include the possibility of attaching heat pumps to the cooling 

system in order to improve the overall resource efficiency; and b) incorporating 

uncertainty in future operation conditions. 

First, the problem identification for the re-design of the cooling 

system in the evaporation network is presented in Section 5.1, where all the 

configuration possibilities of heat-pump incorporation are described. It is 

followed by the main objectives of the chapter in Section 5.2. After that, in 

Section 5.3 the mathematical formulation of the optimization problem for the 

re-design of the network is described. Then, the integration of uncertainty in 

the formulation and the analysis of the results are presented in Section 5.4. The 

daily optimal operation of such network through an RTO tool is shown in 

Section 5.5. Finally, in Section 5.6, the most important aspects achieved in this 

chapter are summarized. 
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5.1 Problem identification 

As we have concluded after the results obtained in Chapter 3, the 

surface condenser must be working at maximum cooling power (i.e., using the 

maximum cooling water available) to reduce the steam consumption in the 

evaporation process. In addition, as the cooling water after the surface 

condensers goes back to the river, the distribution of it among the surface 

condensers must be done in a way that its temperature does not exceed the 

maximum allowed by environmental legislation. A solution to increase the 

efficiency of the network under such constraint is placing a group of heat 

pumps that take part of the outlet cooling water from the surface condensers to 

cool it down. Hence, it could be reused again at the surface condensers inlet as 

a way of recovering energy and limiting the temperature of the water flowing 

to the river. 

Recall that a heat pump is a thermal machine that extracts heat from 

a fluid and transfers it to another (see Figure 5.1). In this case, they would 

remove heat from the desired streams, and such heat might be used for other 

purposes. Nevertheless, in this thesis, possible uses for such heat are left out of 

the scope, even though they would bring extra savings. 

 

Figure 5.1. Scheme of a heat pump 

Thereupon, the task here is to investigate which is the best way to 

incorporate the heat pumps in the cooling network such that the cooling power 

is improved (hence, operability margins in the evaporation section will 
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improve too) while fulfilling environmental regulations, but without incurring 

in an excessive time lag between investment and payback6. 

Specifically, there are three main questions to answer: 

• How many heat pumps are needed to be installed? 

• Which is the best installation layout? I.e., connections among them. 

• How should the heat pumps be incorporated into the actual network 

layout? In this regard, connection among heat pumps can be: 

 

o In series: the input flow of a heat pump is the output of the 

previous one (see Figure 5.2.a). 

o In parallel: all heat pumps receive an inlet from the same 

stream (see Figure 5.2.b). 

o Hybrid: a combination of the above as a matrix of heat pumps, 

where some heat pumps are arranged in series forming blocks 

that are connected in parallel (see Figure 5.2.c). 

 

 

(a) 

 

(c) 
 

(b) 

Figure 5.2. Schematic sketch of the three ways to connect the heat pumps. (a) shows a series 

configuration. (b) presents parallel structure. (c) reflects the hybrid configuration. 

 

 

6 Note that the payback in this context is the period of time elapsed before the 

investment is recouped without considering the useful life of the heat pumps (supposed 

to be long enough). 
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With respect to the outlet flow from the heat-pump system, there are 

two main configurations: 

• To be mixed with the remaining outlet flow from the SCs (amount that 

is not directed to the heat pumps), in order to decrease the temperature 

of the water flow that goes to the river (see Figure 5.3.a).  

• To be mixed with the inlet flow of the surface condensers, i.e., as if it 

was an additional water source (see Figure 5.3.b). However, note that 

this option is only possible for the evaporation plants in Subnet 2, 

because circulation of water from Source 2 to Subnet 1 is forbidden. 

Nevertheless, both options can be happening simultaneously, if a 

flow-control valve is placed at the output of the heat-pump superstructure to  

divide the flow. Thus, part of the flow can be used to cool down the stream that 

goes to the river, and the rest is used as an additional source (see Figure 5.3.c). 

In summary, there are quite a few decisions to take from the heat-

pump integration design side, added to those related to the operation of the 

existing evaporation network (Chapter 3). Furthermore, these decisions must 

not be taken separately, but integrated considering the future conditions at 

which the re-designed network will operate. 
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(a) 

 

(b) 

 

(c) 

Figure 5.3. Possible configuration of the cooling system with heat-pump incorporation. (a) Shows 

the layout when the heat pumps are used to cool down the temperature flow that goes to the river. 

(b) Shows the option of recirculating the output flow of the heat pumps as a new source to the 

cooling system. (c) Combines (a) and (b) options if the output flow can be split. 
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5.2 Objectives 

The general aim is incorporating a superstructure of heat pumps to 

model all alternatives in order to improve the evaporation process efficiency. 

For such aim, the different possibilities described in the previous section are 

going to be mathematically modeled into what is known as a superstructure. 

Such hybrid model must also consider the physical laws of the process and the 

operation constraints. It is going to be the core of an optimization problem 

whose objective function considers the operation cost of the network, 

computing in addition the optimal number of heat pumps to use and their 

connection layout.  

Such optimization problem must include different scenarios 

according to the expected future operation conditions. Therefore, the problem 

must also consider the uncertainty of some initial conditions. However, the 

complexity of the resulting optimization problem could turn out to be excessive 

to have a solution in acceptable time, especially if the designer would like to 

evaluate different payback horizons. Hence, a balance between complexity and 

easiness of solution must be taken into account. 

Finally, once the optimal number of heat pumps to purchase and their 

configuration have been computed, the RTO which seeks for the best operation 

conditions must be updated to integrate the heat pumps.  

In summary, we aim: 

• To model the network including the superstructure of the heat-

pump integration.  

• To formulate an optimization problem which seeks for the best 

operation conditions and the optimal heat-pump integration.  

• To incorporate the uncertainty of some initial conditions. 

• To update the RTO with the heat-pump integration and test it. 
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5.3 Optimization problem for re-design 

The heat pump add-on is to be designed in such a way that optimizes 

the operation of the complete system in the more usual situations along the 

year. In this regard, although there are detailed models and performance studies 

on heat pumps available in the research literature (Chua et al., 2010), only 

nominal features are often considered at the industrial design level. Then, it is 

assumed that the heat pumps are arranged in such a way that they operate at 

(or close to) design conditions. Therefore, with the aim of not adding 

unnecessary complexity to the mathematical formulation, in this chapter its 

dynamics are neglected, and a heat pump is simply characterized by: 

• Its capacity, i.e., the heat flow that is able to transfer from one fluid to 

the other (𝑄) in nominal conditions. 

• Its energy efficiency ratio (𝐸𝐸𝑅), that is the ratio between the capacity 

and the electrical power consumption required to achieve it. 

• The nominal flow 𝐹𝐵, for which the heat pump achieves its capacity in 

steady state. 

Hence, in this case study, the heat-pump model is based on its energy 

balance (5.1), where Cp and ρ  are the specific heat and density of the cooling 

water through the heat pump respectively, and 𝛥𝑇 is the temperature difference 

between the inlet and outlet on the heat pump. Note that 𝐶𝑝 and 𝜌 are the same 

as the ones used in Chapter 3 referring to the cooling water. 

Q = FB ρc Cpc Δ𝑇ℎ𝑝 (5.1) 

5.3.1 Network hybrid model 

The formulation of the mathematical model which represents the 

superstructure of the network operation is based on the centralized formulation 

described in Chapter 3 (Section 3.5.2). Here, it is adapted in order to 

incorporate the decisions about heat-pump integration, according to the layout 

showed in Figure 5.4. 
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Figure 5.4. General layout of the cooling system with heat pump integration 

Therefore, the different sets now are: 

• 𝑒𝑣 ∈ ℰ: set of all the evaporation plants. This set is divided 

into two subsets ℰ =  {ℰ1 ∪ ℰ2}  according to the existing 

surface condenser subnet arrangement, i.e., those that have 

access to cooling-water Source 2 or not.  

• 𝑝 ∈ 𝒫: set of the different products. 

• 𝑏 ∈ ℬ: set of the blocks of heat pumps, to be connected in 

parallel. 

• ℎ𝑝 ∈ ℋ: set of the heat pumps connected in series within 

each block, considering that all blocks have the same length. 

The variables that relate the above introduced sets are now defined: 

• 𝐸𝐶𝑒𝑣,𝑝 ∈  ℝ
+ : evaporation load of product 𝑝 that plant 𝑒𝑣 

must achieve. 

• 𝑋𝑒𝑣,𝑝 ∈ {0,1}: indicates if product 𝑝 is treated in plant 𝑒𝑣. 

• 𝐹𝑒𝑣 ∈  ℝ
+: cooling-water flow that goes to plant ev. 

• 𝐹𝐿 ∈ ℝ
+: remaining cooling water from source 1 that goes to 

subnet 2. 

• 𝑌𝑏,ℎ𝑝 ∈ {0,1}: indicates if a heat pump hp in block b is in 

operation (𝑌𝑏,ℎ𝑝 = 1) or not (𝑌𝑏,ℎ𝑝 = 0) 
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• 𝐹𝑀 ∈ ℝ
+: recirculated flow to the surface condensers after 

the heat pumps. 

• 𝐹𝑁 ∈ ℝ
+: flow that goes to the river after the heat pumps. 

The constraints of the model that represent the operation of the 

evaporation network in steady state are based on first principles and some logic 

statements, detailed below. As well as in the previous chapters, in this 

formulation, italic symbols represent variables and sets whilst plain ones are 

known values (i.e., inputs or parameters) for the optimization. 

1. An evaporation plant only can process one product at a time: 

∑𝑋𝑒𝑣,𝑝

𝒫

𝑝

 ≤ 1            ∀𝑒𝑣 ∈ ℰ (5.2) 

2. Some connections between plant and products are not allowed (see 

Table 1): 

𝑋𝑒𝑣,𝑝 = 0            (𝑒𝑣, 𝑝) ∈  ℳ (5.3) 

3. The connection in series of the heat pumps imply that, in order to use 

the next heat pump of the chain, the previous one must be connected7: 

𝑌𝑏,ℎ𝑝+1 ≤ 𝑌𝑏,ℎ𝑝            ∀𝑏 ∈ ℬ, ∀ℎ𝑝 ∈ ℋ\{ℎ𝑝|ℋ|} (5.4) 

4. In the same way, to avoid different solutions with the same number of 

heat pumps it is forced to connect a heat pump of a block only if the 

heat pump of the previous block in the same position in the chain is 

connected: 

𝑌𝑏+1,ℎ𝑝 ≤ 𝑌𝑏,ℎ𝑝            ∀𝑏 ∈ ℬ\{𝑏|ℬ|}, ∀ℎ𝑝 ∈ ℋ (5.5) 

5. The outlet flow from the heat-pump blocks can be recirculated to the 

SCs inlet or delivered to the river stream: 

 

 

7 Having an ordered set 𝑥 ∈ 𝒳 ≔ {1, 2,… , 𝑛}, notation 𝑥|𝑥| refers to the last 

element in such set, i.e. 𝑥|𝑥| = 𝑛 in this example. 
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𝐹𝑀 + 𝐹𝑁 = FB ∑𝑌𝑏,1 

ℬ

𝑏

            ∀𝑏 ∈ ℬ (5.6) 

In (5.6), FB is the flow that goes through each block of heat pumps, 

whose value is the same for all the heat pumps (all the heat pumps to 

be purchased will be of same characteristics) and it is set by the 

nominal specifications of the heat pumps. As it is a known parameter, 

to ensure that there is flow passing through the block, it is multiplied 

by the sum of 𝑌𝑏,1. Note that, because (5.5), if any heat pump of a 

block is connected the first heat pump such block must be connected 

too. 

 

6. The evaporation demand for each product must be fulfilled: 

∑𝐸𝐶𝑒𝑣,𝑝

ℰ

𝑒𝑣

 ≥ SPp             ∀𝑝 ∈ 𝒫 (5.7) 

Where SPp denotes the evaporation setpoint for product p required by 

the factory to fulfill the demand. 

 

7. The evaporation load in each plant is bounded due to actual equipment 

features: 

ECev 𝑋𝑒𝑣,𝑝 ≤ 𝐸𝐶𝑒𝑣,𝑝 ≤ ECev 𝑋𝑒𝑣,𝑝            ∀𝑒𝑣 ∈ ℰ, ∀𝑝 ∈ 𝒫 (5.8) 

Where ECev and ECev state the minimum and maximum evaporation 

load for a plant to operate correctly. Multiplying by 𝑋𝑒𝑣,𝑝, it can be 

assured that 𝐸𝐶𝑒𝑣,𝑝  takes zero value for the products not linked to 

plant ev.  

 

8. The cooling water flow through the surface condenser is also 

bounded: 
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Fev  ∑𝑋𝑒𝑣,𝑝

𝒫

𝑝

≤ 𝐹𝑒𝑣 ≤ Fev  ∑𝑋𝑒𝑣,𝑝

𝒫

𝑝

             ∀𝑒𝑣 ∈ ℰ (5.9) 

Where Fev and Fev states the minimum and maximum cooling-water 

flow that could pass through the surface condenser attached to the 

evaporation plant ev. Like the previous constraint, the cooling water 

flow is forced to be zero if there is not any product linked to the 

evaporation plant, in this case through 𝑋𝑒𝑣,𝑝 added for all products. 

 

9. The total flow that feeds the surface condensers in Subnet 1 must be, 

as maximum, the available flow of Source 1 (MF1) minus the flow 

that goes to Subnet 2 (𝐹𝐿). In Subnet 2, now there are three inputs of 

cooling water: Source 2 (MF2), remaining water from Source 1 (𝐹𝐿), 

and the flow recirculated from heat pumps (𝐹𝑀).  

∑𝐹𝑒𝑣

ℰ1

𝑒𝑣

 ≤ MF1 − 𝐹𝐿 (5.10) 

∑𝐹𝑒𝑣

ℰ2

𝑒𝑣

 ≤ MF2 + 𝐹𝐿 + 𝐹𝑀 

(5.11) 

10. Energy balance for each heat pump: 

Q 𝑌𝑏,ℎ𝑝 = FB Cp ρ ∆𝑇𝑏,ℎ𝑝       ∀𝑏 ∈ ℬ, ∀ℎ𝑝 ∈ ℋ (5.12) 

Where Q, FB, Cp and ρ are as in (1), and 𝛥𝑇𝑏,ℎ𝑝 is the temperature 

difference between the flow inlet and outlet in each heat pump. Note 

that such temperature difference is set by (5.12), so it can be rewritten 

as in (5.13) where the outlet water temperature at each heat pump 

(𝑇𝑏,ℎ𝑝) can be computed from the inlet one. That is directly the outlet 

of the previous heat pump connected in series (𝑇𝑏,ℎ𝑝−1). 
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{
 
 

 
 𝑇𝑏,ℎ𝑝 = 𝑇𝑏,ℎ𝑝−1 −

Q 𝑌𝑏,ℎ𝑝

FB Cp ρ
  ∀𝑏 ∈ ℬ, ∀ℎ𝑝 ∈ ℋ{1}

𝑇𝑏,ℎ𝑝 = 𝑇𝑂𝑇 ≔
∑ 𝑇𝑜𝑒𝑣
ℰ
𝑒𝑣  𝐹𝑒𝑣
∑ 𝐹𝑒𝑣
ℰ
𝑒𝑣

  ∀𝑏 ∈ ℬ, ℎ𝑝 = 1

 (5.13) 

By this way, if a heat pump is not connected (𝑌𝑏,ℎ𝑝 = 0), the outlet 

temperature is the same as the inlet one. Note that for the first heat 

pump in each block, 𝑇𝑏,1 is the temperature resulting from the mixture 

of flows leaving the surface condensers (𝑇𝑂𝑇). 

The outlet water temperature from each surface condenser (𝑇𝑜𝑒𝑣) is 

computed with the data-based model (3.6) developed in Chapter 3, 

section 3.3.2, according to the inlet water temperature at the time the 

experiments were carried out (T𝑖𝑛𝑒𝑣
𝑒𝑥𝑝

), the inlet water temperature to 

the surface condenser (𝑇𝑖𝑛𝑒𝑣), the flow (𝐹𝑒𝑣) and the state of fouling 

(Kfev) of the surface condensers, this last being monitored online.  

Note that, now, 𝑇𝑖𝑛𝑒𝑣  depends not only on the known water source 

temperatures (TMF1  and TMF2 ), but also on the temperature of the 

water potentially recirculated from the heat pump superstructure 

(mixture of the outlets from each heat pump block that is chosen to 

recirculate water via 𝐹𝑀): 

𝑇𝑖𝑛𝑒𝑣 = TMF1            ∀𝑒𝑣 ∈ ℰ1 (5.15) 

𝑇𝑖𝑛𝑒𝑣 =
𝐹𝐿 TMF1+(∑ 𝐹𝑒𝑣

ℰ2
𝑒𝑣 −𝐹𝐿−𝐹𝑀 )TMF2+𝑇𝑀 𝐹𝑀

∑ 𝐹𝑒𝑣
ℰ2
𝑒𝑣

         ∀𝑒𝑣 ∈ ℰ2 (5.16) 

𝑇𝑀 =
∑ 𝑇𝑏,ℎ𝑝|ℋ|𝑌𝑏,1
ℬ
𝑏

∑ 𝑌𝑏,1
ℬ
𝑏  

             ∀𝑒𝑣 ∈ ℰ2 (5.17) 

 

11. The stream temperature that goes to the river (𝑇𝑟) should be lower that 

the maximum temperature allowed by environmental regulation 

(MTO): 

𝑇𝑜𝑒𝑣 = (𝑓(𝐹𝑒𝑣) − T𝑖𝑛𝑒𝑣
𝑒𝑥𝑝
) + 𝑇𝑖𝑛𝑒𝑣 − Kfev (5.14) 
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𝑇𝑟 ≤ MTO (5.18) 

Such stream can be computed from the mixture between the surface-

condenser outlet flows that do not feed the heat pumps, and the outlet 

of the heat-pump blocks that is not recirculated to the inlet, i.e., the 

stream 𝐹𝑁, whose temperature is the same as the recirculated one 𝑇𝑀, 

(see Figure 5.4): 

𝑇𝑟 =
(∑ 𝐹𝑒𝑣

ℰ
𝑒𝑣  − 𝐹𝑀 − 𝐹𝑁 )𝑇𝑂𝑇 + 𝐹𝑁 𝑇𝑀

∑ 𝐹𝑒𝑣 
ℰ
𝑒𝑣 − 𝐹𝑀 

 (5.19) 

 

Once the mathematical model which represents the system has been 

described, objective function must be defined representing the operational cost, 

but accounting for the desired payback time for the purchased equipment as 

well. 

5.3.2 Objective function 

The operation cost of the network could be computed as the sum of 

three different terms: the cost due to the steam consumption in the evaporation 

plants; the one associated to the cooling-water consumption; and the cost of 

the electricity consumed by the heat pumps. 

Once again, the steam consumption can be computed using the 

adapted model developed by (Kalliski et al., 2019) already described in  

Chapter 3, Section 3.5. 

𝑆𝑆𝐶𝑒𝑣 = a1ev 𝐾𝑣𝑒𝑣  +  a2ev 𝑄𝑒𝑣
𝑐𝑝
+ a3ev  𝐸𝐶𝑒𝑣  (5.20) 

𝐴𝑆𝐶𝑒𝑣 = 𝑆𝑆𝐶𝑒𝑣  ∑𝐸𝐶𝑒𝑣,𝑝

𝒫

𝑝

 (5.21) 

The steam-consumption contribution to the total cost (𝐶𝑜𝑠𝑡𝑠𝑡𝑒𝑎𝑚) is 

computed then as the overall ASC times the price of generating a unit mass of 

live steam in boilers (Psteam ). In the same way, the cooling-water cost 

(𝐶𝑜𝑠𝑡𝑤𝑎𝑡𝑒𝑟) is the net amount of water consumed from the sources times the 
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cost of pumping and pipes operation (Pwater). The electric power consumed by 

the connected heat pumps is known from their capacity Q and their Energy 

Efficiency Ratio (EER).  

𝐶𝑜𝑠𝑡𝑠𝑡𝑒𝑎𝑚 ≔ Psteam   ∑𝐴𝑆𝐶𝑒𝑣 

ℰ

ev

 (5.22) 

𝐶𝑜𝑠𝑡𝑤𝑎𝑡𝑒𝑟 ∶=  Pwater  (∑𝐹𝑒𝑣 − 𝐹𝑀 

ℰ

𝑒𝑣

) 
(5.23) 

𝐶𝑜𝑠𝑡𝑒𝑙𝑒𝑐𝑡   ≔  Pelect  
Q 

EER
 ∑∑𝑌𝑏,ℎ𝑝

ℋ

ℎ𝑝

ℬ

𝑏

  
(5.24) 

Thus, the objective function to minimize is the operation cost, which 

is given by the sum of the three terms: 

𝑂𝐹 ≔ 𝐶𝑜𝑠𝑡𝑠𝑡𝑒𝑎𝑚 + 𝐶𝑜𝑠𝑡𝑤𝑎𝑡𝑒𝑟 + 𝐶𝑜𝑠𝑡𝑒𝑙𝑒𝑐𝑡 (5.25) 

Furthermore, the amortization of the heat pumps must also be 

considered. Hence, a new constraint is needed to consider the payback time 

(RP), that must be, at most, the one required by the company. Note that the 

company does not limit the initial investment, but the time needed to recoup it. 

The payback time is computed as the price of a heat pump8 (PHP) divided by 

the savings over a year, where such savings can be computed as the difference 

between the operation cost of the current network (OF ̂ ) and the new cost with 

heat pumps predicted by the model (𝑂𝐹). 

PHP   ∑ ∑ 𝑌𝑏,ℎ𝑝
ℋ
ℎ𝑝

ℬ
𝑏    

OF ̂ − 𝑂𝐹
≤ RP (5.26) 

Note that the potential savings obtained by using heat pumps could be 

higher than the values shown in this thesis, as the heat removed from the outlet 

stream might be used in other section of the plant. 

 

 

8  According to (de Kleijn Energy Consultants & Engineers, 2014) a 

reasonable price for this kind of heat pumps is 40 000€ each one (PHP). 
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5.3.3 Model parameters 

In many of the above model constraints there are parameters whose 

value is fixed and known, and measurable inputs which depend on the 

operating conditions. 

The prices of steam, cooling water and electricity are calculated 

internally in the company, so their values are omitted here due to 

confidentiality agreements.  

The heat-pumps selected capacity (Q = 500 kW ) and the energy 

efficiency ratio (EER = 4) were taken from the spec sheets provided by the 

manufacturers of this equipment (Danfoos Engineering Tomorrow, n.d.; de 

Kleijn Energy Consultants & Engineers, 2014; Ochsner Energie Technik, n.d.). 

Note that the number of heat pumps to use and their layout are decision 

variables in the model, but the maximum number of heat pumps to install 

depends on the elements stated for sets ℬ and ℋ. For this case study, the first 

estimation is with |ℬ| = 15 and |ℋ| = 3 (thus, there are up to 45 heat-pump 

slots), which provides enough design flexibility to find optimal solutions. If the 

results of the optimization would indicate that either all heat pumps in a block 

or fifteen blocks in parallel are required, such sets would be expanded. 

Finally, water availability at the two sources and their temperatures, 

the state of fouling of each evaporation plant, and the demand of each product, 

can change over time. Thus, different scenarios have been proposed 

accordingly, in order to consider different expected operation conditions. Note 

that the cost of operating the network without heat pumps also depends on the 

value of these parameters and conditions so, to be fair, it would be computed 

also via the proposed model forcing the no inclusion of heat pumps.  

 

 



122 ADVANCED DECISION SUPPORT THROUGH RTO IN THE PROCESS INDUSTRY 

 

5.4 Two-stage stochastic formulation 

The aim of stochastic programming is to find optimally robust 

decisions in problems that involve uncertainty.  

In this case, the main objective is to know how many heat pumps to 

buy, considering that there are some input variables in the model whose future 

evolution is uncertain. Hence, different scenarios arise depending on the values 

assigned to such time-varying parameters or model inputs. Table 7 summarizes 

the scenarios that have been considered for this case study, according to the 

model inputs that may take different values in future uncertainty realizations. 

 
Table 7. Scenarios defined according to expected operating conditions. Most probable values 

are in plain text whilst the fewer probable ones are colored in red. 

 

The eight scenarios have been selected according to the most common 

conditions observed over a year of operation, adding the worst possible cases. 

In the table, 𝜑 indicates the percentage realization probability of each scenario 

respect to the rest. OF̂ is the computed operating cost without heat pumps.  

Note that there are two scenarios (nº 7 and nº 8) where it is not 

possible to fulfill all the constraints without heat pumps for the given operation 

conditions (infeasible problems). Thus, the payback computation via (5.26) 

cannot be performed for these scenarios ( OF̂  cannot be computed). 

Nevertheless, note that they will be included in the design optimization anyway 

(in the objective function and rest of model constraints). Moreover, as the sum 

ℐ 
MF1 

[m3/h] 

TMF1 

[ºC] 

MF2 

[m3/h] 

TMF2 

[ºC] 

MTO 

[ºC] 

SPA 

[t/h] 

SPB 

[t/h] 

SPC 

[t/h] 

SPD 

[t/h] 

SPE 

[t/h] 

φ 

[%] 

OF̂ 

[€/h] 

1 680 10.0 690 9.00 30.0 42.2 13.9 66.0 15.6 14.2 20.0 386 

2 680 16.0 690 18.0 30.0 42.2 13.9 66.0 15.6 14.2 20.0 516 

3 680 13.0 690 13.5 30.0 20.5 24.7 33.0 43.2 12.9 20.0 358 

4 680 13.0 690 13.5 30.0 38.2 29.3 62.3 18.2 15.4 20.0 515 

5 580 13.0 620 13.5 30.0 42.2 13.9 66.0 15.6 14.2 11.0 457 

6 680 13.0 690 13.5 27.0 42.2 13.9 66.0 15.6 14.2 6.00 448 

7 580 16.0 620 18.0 30.0 42.2 13.9 66.0 15.6 14.2 2.20 - 

8 680 16.0 690 18.0 27.0 42.2 13.9 66.0 15.6 14.2 0.700 - 
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of their realization probability is lower than 3%, excluding them from the 

payback constraint will not vary the economic estimations significantly. 

The two-stage stochastic approach distinguishes two types of decision 

variables: the first-stage ones correspond to the sizing of units or structure 

selection of the process, which has to be selected so that the process can cope 

with the constraints imposed by the different scenarios. And then, the set of 

second-stage variables is tailored to each scenario, so that they can be used to 

adapt the effect of the first-stage ones to the particular needs of each scenario. 

These variables correspond normally to operational or control actions and 

represent the adaptation that these systems might have against a particular 

scenario. Hence, they provide extra flexibility to the optimization, which is 

able to compute fewer conservative solutions. 

Following such approach, in this case only the number of heat pumps 

to purchase (𝑁) is the first-stage variable (here and now decision) and the rest 

of variables in the model are of second stage, as they can be adapted to each 

uncertainty realization (recourse variables). Thus, all these variables and the 

involved constraints are extended with a new sub-index 𝑖 ∈ ℐ that refers to the 

scenario numbers listed in Table 7 (e.g., the evaporation load now will depend 

on the evaporation plant ev, the product p, and the scenario 𝑖: 𝐸𝐶𝑒𝑣,𝑝,𝑖). 

5.4.1 Monolithic formulation 

It may happen that the optimal number of heat pumps to switch on in 

a particular scenario could be lower than the purchased heat pumps, i.e., using 

all the installed heat pumps could not be economically optimal if water 

availability and temperature are favorable, for instance. Hence, a new variable 

𝑁 must be defined which can be computed as the maximum number of heat 

pumps used in all scenarios:  

𝑁 ∶= max
𝑖
∑∑𝑌𝑏,ℎ𝑝,𝑖

ℋ

ℎ𝑝

ℬ

𝑏

 (5.27) 
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To define the payback constraint, different approaches can be 

followed depending on the desired robustness level. It is clear that the payback 

time horizon has to be computed with the number of purchased heat pumps, 

but this constraint could be applied for each scenario (hence it would consider 

the worst case) or just once, computing the weighted average for the different 

cases according to the probability 𝜑 assigned to each one. In this case, the 

proposed formulation follows this second approach, less conservative. Thus, 

(5.26) is rewritten as (5.28). 

PHP 𝑁

∑ 𝜑𝑖(OF̂𝑖 − 𝑂𝐹𝑖)
ℐ\{7,8} 

𝑖

≤ RP (5.28) 

Finally, the objective function to minimize is the weighted sum of the 

operation cost for each scenario according to its probability. Therefore, the 

resulting two-stage stochastic optimization problem is summarized by: 

min
𝑋𝑒𝑣,𝑝,𝑖,𝐸𝐶𝑒𝑣,𝑝,𝑖,𝐹𝐿𝑖 ,𝐹𝑒𝑣,𝑖,𝑌𝑏,ℎ𝑝,𝑖,𝐹𝑀𝑖 ,𝐹𝑁𝑖

𝐽 ≔∑𝑂𝐹𝑖  𝜑𝑖

ℐ

𝑖

 

𝑠. 𝑡. : (5.2) − (5.18), (5.28) 

(5.29) 

The results of the optimization will give the optimal number of heat 

pumps to purchase, as well as, for each scenario: the heat pumps to be used and 

their connection layout, the cooling-water distribution, and the product 

allocation to plants. Everything ensuring the average payback time RP in (5.28) 

is fulfilled. 

Nevertheless, the presence of discrete and continuous variables as 

well as the nonlinear dependency among them in many constraints, make 

(5.29) be a non-convex mixed-integer nonlinear programming (MINLP) 

problem, with a high number of decision variables (defining set ℬ with 10 

elements (|ℬ| = 10)  and set ℋ  with 5 elements (|ℋ| = 5) , there are 218 

variables for scenario, 125 binaries, so for the 6 feasible scenarios there will be 

1 308 variables). In order to overcome the typical issues of slow solution 

convergence and high computational demands in a centralized formulation, a 

suitable problem decomposition is proposed. 
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5.4.2 Decomposed formulation 

The reader may have noted that the only shared variable among all 

scenarios in the optimization problem (5.29) is the number of heat pumps to 

buy (N), arising in the payback complicating constraint. Thus, removing (5.28), 

the optimization of each scenario minimizing (5.29) subject to (5.2)-(5.18) can 

be solved independently for a given N, hence computed in parallel. Therefore, 

the key is to develop an upper-layer master problem to select the proper value 

of N that ensures the payback constraint. 

The payback time can be computed once the results of each scenario 

are obtained, and then be compared with the upper RP value. However, this 

simple calculus does not ensure that the constraint is fulfilled. To solve this, an 

iterative procedure could be applied. First, each scenario is solved 

independently for the same initial value N and, with the locally obtained results, 

(5.27) and (5.28) can be computed. If (5.28) is fulfilled, that is it, an optimal9 

solution is reached. If not, it means that the number of heat pumps to purchase 

needs to be lower than the computed in the current iteration k. To impose this, 

it is necessary to incorporate a new constraint set (5.30) onto the model that 

forces the maximum number of heat pumps to use being lower than a 

predefined parameter N[𝑘] ∈ ℕ, whose value has been obtained by (5.27) in the 

previous iteration (𝑘 − 1) and updated to N[𝑘] = N[𝑘−1] − 1. 

∑∑𝑌𝑏,ℎ𝑝,𝑖

ℋ

ℎ𝑝

ℬ

𝑏

≤ N[𝑘]             ∀i ∈ ℐ (5.30) 

In the next iteration, we will have the results of each scenario 

according to this constraint, so the master problem can check again if (5.28) is 

fulfilled. This iterative procedure is formalized in Algorithm 3 below.  

 

 

 

9 Of course, the provided guarantees are just for local optimality if gradient-

based MINLP solvers are used, as the problem is non-convex. 
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Algorithm 3. Decomposed iterative optimization 

1: Set 𝑘 = 0 and minimize subject to (5.2)-(5.18) for all scenarios 

2: Compute N[𝑘] through N defined in (5.27) 

3: While (5.28) is not fulfilled do: 

4:      N[𝑘] = N[𝑘−1] − 1 

5:      Minimize (5.25) subject to (5.2)-(5.18) and (5.30) for all scenarios 

6:      Compute the overall weighted operation cost of (5.30) from the  

        scenario costs obtained in Step 5 

7:      Go back to Step 2 

 

Note that this decomposition approach provides (local) optimality 

guarantees because: parameter 𝑁[𝑘] only can take non-negative integer values; 

and RP is monotonic with respect to 𝑁[𝑘], i.e., the payback time increases with 

the number of purchased heat pumps. This is because (5.28) is affine in N and 

the savings increment provided per year attenuate with the number of 

purchased heat pumps, see results in next section. In fact, thanks to these 

features, Algorithm 3 converges to a solution in a finite number of iterations, 

at most  N[0] iterations.  

Note that this procedure is equivalent to the stochastic centralized 

formulation (5.30) but the computational demand and time to obtain a solution 

is significantly reduced, as the scenario optimizations in each iteration are 

solved independently, in a simultaneous fashion if parallelized. Thus, the 

computation time in each iteration is the one of the most demanding scenario, 

but now the size of each independent problem is of 218 variables (for a set ℬ 

with 10 elements and set ℋ with 5 elements). The maximum time to get a 

solution with zero relative gap of an iteration is ~10 minutes, and the 

computational time to solve the whole algorithm over an Intel® i7-7700 CPU 

machine with 32Gb of DDR4 RAM memory is ~15 minutes. 

5.4.3 Results and discussion 

Following the methodology described in the previous section, results 

showed in Figure 5.5 and Figure 5.6 have been obtained, where the percentage 

of savings is the difference between the operation cost of the current network 
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(OF̂ ) and the new cost with heat pumps predicted by the model (𝑂𝐹 ), 

normalized by the operation cost OF̂.  

The behavior of the system is that, as more cooling water goes through 

the surface condensers the more efficient the evaporation plants are and, 

consequently, the less steam consumption is needed by the evaporation plants. 

Therefore, the more heat pumps, the more cooling water may be recirculated 

being available to use in the cooling system. Nevertheless, at some point, the 

savings for the reduction of steam consumption are not high enough to 

compensate the electricity costs to switch on many heat pumps. Hence, each 

scenario has a different amount of heat pumps on to reach optimal operation, 

i.e., the lowest operation cost.   

In this regard, the numbers in Figure 5.5 show how the percentage of 

savings obtained in each scenario increases with the number of purchased heat 

pumps, but only until such optimal number of heat pumps switched on is 

reached. Thus, when the number of purchased heat pumps exceeds the number 

of those that are optimal for a scenario, the savings remain constant. 

 

Figure 5.5. Savings percentage according to the purchased heat pumps for each scenario. 
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Figure 5.6. Payback time according to the number of purchased heat pumps. 

If we focus in the payback time, showed in Figure 5.6, it decreases 

with the number of purchased heat pumps, as expected due to the monotonic 

behavior of (5.28) with respect to N. Although buying more heat pumps 

increases the savings, they progressively loose influence to compensate the 

increased initial investment, so that the payback time also increases. In addition, 

this relation is not linear, as when a scenario reaches the highest possible 

savings, increasing the purchased heat pumps will only increment the payback 

time. 

Note that Figure 5.5 and Figure 5.6 depict values in a range 𝑁 ∈

[1,10] . This is because the first iteration applying Algorithm 3 already 

computed 𝑁[0]  = 10, i.e., the highest number of heat pumps suggested to be 

used was 10, obtained for scenario i4. Therefore, purchasing more heat pumps 

does not make sense because it does not translate in more steam savings, as the 

trends in Figure 5.5 clearly show. From that upper value, the proposed 

procedure has been followed, decreasing N in each iteration until 𝑁 = 1 just 

to show a complete view of the system behavior. For the actual case, where RP 

must be 3 years as maximum, the number of heat pumps to buy is six, stopping 

the algorithm after five iterations. This choice predicts obtaining 22.7% of 

steam savings. Note that some scenarios would obtain more savings with more 
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heat pumps, but their realization probability is not enough to compensate the 

required investment to be amortized in three and a half years. Nonetheless, the 

door to buy additional heat pumps in the future is open if conditions vary. 

Note importantly that scenarios i7 and i8, which are not included in 

the payback computation because they are infeasible with the current system, 

would be indeed feasible with the heat pump integration. In this way, investing 

in the heat pump integration can ensure not only mere resource savings but also 

that the site would keep production capacity in extreme conditions, that is not 

possible currently. 

Remark that, although the optimal number of heat pumps to purchase 

is six, the optimal number of them to switch on will vary with time, according 

to the operation conditions. 

With respect to the installation layout, for scenarios i1 to i6 the 

optimizer chooses to connect all suggested heat pumps in parallel (Figure 5.7.a). 

Nevertheless, for scenarios i7 and i8, the layout would be: 

• Scenario i7: four heat pump blocks in parallel where two of them 

have two heat pumps connected in series (Figure 5.7.b). 

• Scenario i8: five heat pump blocks in parallel, with only one of 

them having two heat pumps connected in series (Figure 5.7.c). 

 

(a) (b) (c) 

Figure 5.7. Installation layout according to the different scenarios: (a) represents the 
superstructure with all the heat pumps connected in series; (b) shows the layout for four heat 

pumps connected in parallel and two in series; (c) reflects the configuration for five heat pumps 

connected in parallel, one in series. Dashed lines indicate existing connection but not used in the 
scenario. Yellow lines indicate the outlet flow from a heat pump which is used as inlet for another 

(serial connection).  
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Therefore, the proposed installation layout is a matrix of six heat 

pumps, initially connected in parallel, but with two of them having the 

possibility to drive its outlet into the inlets of other two, in order to connect 

these heat pumps in series. This piping configuration is easily implementable 

with on/off valves in the inlets and outlets of the involved heat pumps 

(represented with black circles in Figure 5.7). 

Finally, the only question that remains open is how the heat pumps 

should be incorporated into the actual network layout, regarding what to do 

with the outlet flow from the heat pump section. For most scenarios, suggestion 

for such flow is complete recirculation to the inlet of Subnet 2. Nonetheless, 

when the inlet temperature from the sources is quite high, or in the hypothetical 

cases where the maximum temperature allowed by the environmental 

regulation (MTO) decreases, the computed results suggest recirculating only 

part of such flow as the most beneficial course of action. The remaining part 

will join the water going to the river. Therefore, the optimal installation design 

is to incorporate a flow control valve at the outlet of the heat pump section, 

able to modify the flow that goes each way, i.e., the values of FM and FN in 

Figure 5.4. 

5.5 Network optimal operation 

After the incorporation of the new equipment into the network, the 

only remaining issue is to operate the network in the best efficient way. In 

addition to knowing the evaporation load that each evaporation plant must 

process regarding the demand of the different products, and the cooling water 

distribution according to the availability of the sources, now it is also needed 

to know how many heat pumps to switch on, as this depends on the actual 

conditions arising in real time.  

Therefore, the solution provided in Chapter 3 must be widen in order 

to take into account the incorporation of heat pumps. The increment of 

available cooling water due to the heat pumps, not only would change the 

cooling-water distribution, but also might change the evaporation load 
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allocation. Furthermore, one needs to incorporate the decision on how many 

heat pumps to connect in the RTO formulation. 

To do that, the mathematical formulation of the previous section is 

reused to develop an RTO tool that determines the optimal operation setpoints 

according to the real-time conditions. The optimization problem to solve is the 

same as the one in the decomposed approach for a particular scenario, i.e., to 

minimize the total cost of operating the network subject to (5.2)-(5.18) and 

(5.30), taking into account that in (5.30), the total number of heat pumps (N) is 

now fixed to six. Furthermore, to speed up the resolution, the number of useless 

decision variables is decreased by setting that the set ℬ  only includes 6 

elements (|ℬ| = 6)  and set ℋ  will include just 3 elements (|ℋ| = 3) , 

according to the layout configuration of Figure 5.7.  

The parameters and input values which depend on the operation 

conditions (the availability of the cooling water sources and their inlet 

temperatures, the state of fouling of each plant, and the demand of the different 

products) will be supplied to the RTO by the site information technology (IT) 

system. Currently, as the purchase of heat pumps is not materialized yet, the 

RTO has been tested offline, accessing to historical plant data. Nevertheless, 

the idea is that each time the end-user wants to execute the optimization, it 

automatically gets the real-time values of the needed parameters and inputs. 

Using six heat pumps, the number of decision variables in the RTO is 

186, from which 93 are binary, and there are 320 constraints. As an RTO 

requires obtaining solutions in short time periods, the algorithm used to solve 

the problem is NLP-based branch-and-bound algorithm BONMIN (Bonami et 

al., 2008), at the price of possibly reaching a local optimum from time to time.  

With this setup, the time to get a solution with zero relative gap is ~40 

seconds (depends on the scenario input data) over an Intel® i7-7700 CPU 

machine with 32Gb of DDR4 RAM memory. This computational time is 

considered suitable, as the frequency to account for sensibly observable 

changes in the evaporation demand or sources availability is more than twenty 

minutes. 



132 ADVANCED DECISION SUPPORT THROUGH RTO IN THE PROCESS INDUSTRY 

 

Finally, Figure 5.8 and Figure 5.9 show a comparison between the 

historical data (used to perform the optimization), the results obtained with the 

centralized formulation described in Chapter 3, and the results obtained in the 

case that six heat pumps were integrated according to the layout above 

mentioned.  

 

Figure 5.8. Comparison of the cooling water distribution 

 

Figure 5.9. Comparison of the steam consumption 

As it was expected, increasing the amount of cooling-water 

availability, the steam consumption decreases. Such decrease compensates the 

electricity cost of the heat pumps, being the total operational cost of the 

evaporation process 9.8% lower than without heat pumps (32% lower than the 

historical one). It confirms that the integration of heat pumps will be very 

beneficial once they are amortized. 
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5.6 Summary and conclusions 

This chapter revisited two important problems in process systems 

engineering from a holistic perspective: the optimal design for the 

incorporation of new equipment into an existing facility, and the optimal 

operation of the modified system.  

Considering the evaporation system, whose optimal operation has 

been discussed in previous chapters, a rigorous mathematical model of the 

network has been developed including all the possible layouts of the new 

equipment to be incorporated, as well as their potential connections. Based on 

this hybrid model, an optimization problem that indicates the optimal layout of 

the equipment such that the operation cost of the whole network is minimum, 

has been formulated. However, as the results depend on the operation 

conditions, whose future realizations are somehow uncertain, a two-stage 

stochastic formulation has been built for different scenarios that intend to cover 

reasonably the plausible operation conditions. The first approach was to 

formulate the optimization problem in a monolithic way, but due to the 

characteristics of the resulting optimization problem (MINLP problem), an 

equivalent decomposed approach was proposed. Such approach was selected 

because the individual formulations for each scenario are only linked by a 

single constraint (payback time horizon) involving a shared variable (number 

of heat pumps to purchase). Moreover, as the shared variable is an integer 

positive number and the payback-time constraint is monotonic with such 

variable, the solution is proven to be obtained in few iterations with the 

proposed decomposition algorithm.  

Analyzing the solutions, the best configuration is gotten considering 

the payback time that the company considers acceptable. In general, the 

benefits increase with the number of used heat pumps, up to an extent, as more 

recirculated water involves lower steam consumption. However, at some point 

the reduction cost of steam does not compensate the electrical cost of installing 

more heat pumps. It is worth mentioning that the optimal number of heat 

pumps to use and its layout depend on each scenario. 
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Consequently, once the optimal design is found assuming optimal 

operating conditions, the daily operation should be addressed accordingly. For 

such a task, an RTO was built based on the same model of the network, already 

developed. From current plant situation (real-time collected data), the RTO 

suggests the optimal connection of heat pumps, the evaporation-load allocation 

and the cooling-water distribution according to an economic criterion. 

Consequently, the proposed system architecture is able to quickly react to 

disturbances or evaporation load changes. 

 

The core of the work presented in this chapter has been published in 

an indexed peer reviewed journal  (M. P. Marcos et al., 2021) 



Chapter 6                          

Decision support systems 

In the previous chapters, the reader may have realized the difficulties 

associated to the operation of different sections of a plant due to the complexity 

given by the large number of feasible alternatives. Different RTO schemes 

have been developed to indicate the best setpoints for the manipulated variables, 

in order to give the lower operational cost. Such RTOs have been designed to 

be used as the base of two Decision Support Systems (DSS), which help 

operators in the decision-making process on how to operate the heat-recovery 

and the evaporation network respectively.  

In this chapter, a brief introduction of DSS is given, followed by the 

implementation of the different components that compose the DSS. Then, the 

interfaces developed for the corresponding DSS are explained. After that, how 

the DSS are integrated with the plant control system is briefly described. 

Finally, some conclusions are presented. 
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6.1 Introduction 

In 1965, with the emergence of digital computers, building 

management information systems in large corporations became more practical 

and cost-effective. Thus, model-oriented decision support systems (DSS) 

became practical in order to help decision makers to simulate different 

possibilities and select the best course of action (Rashidi et al., 2018). 

Nowadays, due to the increased level of structural complexity of 

industrial problems, decision making in a plant is more complicated for human 

operators and managers than it was in the past. Furthermore, if an error or bad 

decision is taken, a chain reaction of magnification of costs can occur. Hence, 

DSSs have experienced a noticeable attention growth, not only in industry but 

also in academia over the past two decades (Rashidi et al., 2018). 

A DSS is defined by (Sprague, 1980) as "interactive computer-based 

systems, which help decision makers utilize data and models to solve 

unstructured problems". Another simplified and less restrictive definition of a 

DSS can refer to any computer-based system that provides information that 

enables to make decisions. According to (Aronson et al., 2005) there are four 

phases in the decision-making process: (i) the intelligence phase where the 

problem identification is carried out; (ii) the design phase, where the alternative 

options are generated; (iii) the choice phase, where, after an analysis of the 

alternatives, an option is chosen and; (iv) the implementation of the chosen 

alternative, i.e., the solution and its monitorization in order to guarantee the 

successful response. It is noteworthy that, usually, the final system cannot be 

fully automated, as a perfectly processed information and an optimum model 

is needed. However, in industry, models are simplified representations of 

reality and, consequently, subject to uncertainty. Therefore, the end user is still 

the one in charge of taking decisions, but combining its expert knowledge with 

the valuable suggestions given by the DSS. 

The two main DSS types that we can find in industry are data-based 

DSS and model-based ones. The first type just analyzes high amount of data 

(current and past) from different sources, usually stored in a database, i.e., what 



CHAPTER 6: DECISION SUPPORT SYSTEMS 137 

 

nowadays is called Big Data (Camargo-Vega et al., 2015). The extracted 

information from the analysis of these large data pools helps managers in 

making better decisions. On the other hand, the model-based DSS helps 

managers to perform simulations and what-if analysis based on a reliable 

model which represents all the feasible alternatives of a system. 

This last kind of DSS consists of three main components (see Figure 

6.1): (i) a database or data management, which includes not only the data from 

the process, but also the knowledge in form of a model or expert system that 

synthesize knowledge of the manager and operators; (ii) a software system 

based on mathematical or analytical models, used to simulate the alternatives 

and to give an output; and (iii) a user interface where such output is displayed 

in order to give the end user an appropriate view of the recommended actions 

(Haag & Cummings, 2009). 

 

Figure 6.1. Scheme of a DSS 

According to the type of model used in the software system 

component, they can be classified as: statistical models, sensitivity analysis 

models, optimization analysis, forecasting models, and backward analysis 

sensitivity models (Power, 2002). The optimization-analysis ones are used to 

find optimum values for target variables under given circumstances. Its widest 

use is to help in the decision-making process of optimal use of resources. Hence, 
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an RTO could be the software system component of a DSS where the 

optimization analyzes the best values for the decision variables, and the results 

are displayed in the user interface.  

Indeed, in the literature there are many examples of specific DSS 

concepts based on mathematical programming, not only in industrial 

applications (Galan et al., 2021) but also in other areas as medical routines 

(Kandakoglu et al., 2019), disaster response (Cavdur & Sebatli, 2019) or 

transportation (Erdoğan et al., 2019). 

6.2 Implementation 

In the particular case of DSS developed in this thesis, the first 

component is the data base which contains information of two types: the one 

from expert knowledge, more static with time and directly reflected by a model 

(e.g., physical laws, possible connections of heat sources to exchangers, etc.); 

and the operation data that changes over time (inlet stream temperatures, 

temperature setpoints, the state of fouling, prices, etc.).   

The second component is the core of the DSS, the DSS software 

system. In this thesis, two DSS have been developed and their respective cores 

are the optimization problems described in Chapter 4 and Chapter 5. The first 

one determines the optimal operation of the heat-recovery and the second one 

the optimal operation of the evaporation network including the cooling-water 

system. As described in the previous chapters, such optimization problems 

have been coded in Pyomo-Python (Hart et al., 2017), a toolbox for efficient 

numerical optimization and control.  

Nevertheless, to be able to solve the optimization problems according 

to the real time conditions, they need to be supplied continuously with plant 

data. Thus, the DSS software must be integrated with the information 

technology (IT) infrastructure of the plant as well as with the operation one 

(OT). For this purpose, we made use of PIconnect (PIconnect · PyPI, n.d.), a 

Python interface to the OSIsoft Plant Information system of the plant (OSIsoft, 
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2020), to access (and periodically update) the relevant data in order to feed the 

DSS software system in real time, i.e., before each optimization run.  

Despite proposing an RTO software, the loop was not closed, as 

perfectly processed plant-model information cannot be assured. Therefore, the 

human manager is still the one in charge of taking decisions based on expert 

knowledge, but now helped by the valuable suggestions provided by the DSS.  

Finally, the DSS was completed with a user interface which gives not 

only the results of the optimization but also a suitable overview with relevant 

information of the process during production. Thus, a friendly interface where 

the results of the optimization translate also into clear directives to be 

performed by the human is needed. By this way, the person in charge can take 

a look at the presented suggestions and combined with his/her expert 

knowledge, decide how to proceed.  

According to the plant personnel preferences, the interface was 

designed in MS Excel. It displays the important information and suggested 

actions, previously computed by the RTO in the backend. The connection 

between Python and MS Excel is done via OpenPyXL (E. Gazoni and C. Clark, 

2020). It is noteworthy that this is a bi-level interface, where plant engineers 

have further access to modify some optimization parameters, model 

coefficients and equations in case that something in the network layout changes 

(for example the incorporation of another heat pump). 

Figure 6.2 depicts a scheme of the proposed workflow, showing the 

interactions of information between the DSS components and end users. Only 

the plant engineers will have access to the backend (i.e., to the DSS software 

system) in case model parameters need to be updated, or some constraints need 

to be modified or added. For example, to include a constraint to set up a 

minimum operation time before cleaning or limiting the number of heat 

exchangers that can be cleaned at once for the DSS of the heat-recovery process. 
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Figure 6.2. Proposed workflow within the DSS components and the end users 

6.3 Interfaces 

The results obtained with the RTO need to be presented in a simple 

and understandable way to the human operators and plant managers. 

Consequently, friendly DSS interfaces tailored to the end-users' background 

and responsibility level (e.g., plant operators versus maintenance personnel or 

plant managers), need to be provided (Rashidi et al., 2018).  

Remark that the developed interfaces allow to interpret the given 

solution of the RTOs, but the end user is who decides whether to follow the 

recommendations or not.  

6.3.1 Heat recovery network interface 

For helping in the decision-making process of the heat recovery 

network operation, the operators and managers are supplied with the dashboard 

concept shown in Figure 6.3, which displays both the computed optimal 

solution for the current time (the optimization problem described in Chapter 4) 

and the process data used to obtain it. 
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Figure 6.3. Designed concept for the DSS dashboard, tailored to plant operators. 

 

The heat exchangers present in the network will be ordered in rows, 

where each column will then represent the features of the heat-exchanger 

streams, which can be separated in four sections. The first column lists the heat 

exchangers while the second set of columns provides information about the 

cold streams to be heated: the flow, inlet temperature, setpoint to achieve and 

outlet temperature. The third section gives information about the heat sources 

with the suggested connections to exchangers (they will be highlighted in green, 

and the no feasible connection between source and exchanger will be in dark 

gray, see Figure 6.4). The last columns devote to the cleaning suggestions: the 

operation time since last cleaning, the estimated state of fouling (in a red scale 

as it increases), and the exchangers recommended to clean (a green tick if the 

heat exchanger should be cleaned or a red cross otherwise, see Figure 6.4). 

Moreover, to clearly differentiate the data read from the PI system 

from the results computed by the RTO, the first are displayed in blue italics 

and the second one in black plain text. Furthermore, in the case that the 

optimization problem resulted infeasible for any reason (i.e., some heat 

exchangers would not fulfill the product temperature setpoints), the computed 

values below the demanded temperature will be highlighted in red. With this 

visual design, the end user can quickly identify the recommendations given by 

the RTO and analyze them at a glance. 

Figure 6.4 shows an example of how the interface looks with the 

results obtained by optimizing for some conditions read from historical data. 
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Figure 6.4. Interface for the DSS of the heat-recovery section 

 

6.3.2 Evaporation-process interface 

The interface developed for the evaporation process extends the one 

that Lenzing already has to manage the plants evaporation load. It shows the 

solution obtained with the RTO on a panel but, in addition to the evaporation 

load allocation, it also incorporates information about the cooling-water 

distribution and the heat-pump connections.  

Figure 6.5 shows how the interface will look when the integration of 

the six heat pumps will be realized. Note that the reflected data are the results 

obtained for some conditions read from the historian, as the updated tool has 

not been implemented yet. 
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Figure 6.5. Designed interface for the evaporation process. 

As Figure 6.5 shows, the interface is divided in different sections. 

The first panel reflects the evaporation-load allocation and the 

cooling-water distribution, where columns represent the evaporation plants. 

The first row indicates the evaporation load in t/h. The next five rows 

correspond to the products assignment to the evaporation plants. The optimal 

evaporation load assignment arises in the green boxes, meanwhile dark gray 

boxes indicate forbidden connections. Finally, the last row displays the cooling 

water to each surface condenser in m3/h.  

There is a two-column panel at the right side. The first column 

indicates the total evaporation load processed by all the plants, and the second 

one is the evaporation demand for each product. These two need to match for 

the allocation to be right.  

At the bottom, three more display panels are included. The first one 

on the left indicates if each heat pump should be switched on (also in green) 

and how it should be connected, displaying a P if the connection is in parallel 

or an S if it is in series. If the heat pump should be off, the cell will be in dark 

gray. The next panel shows the flow that should go to each side after the heat 

pumps (to be recirculated or to be mixed with the outflow that goes to the river). 

Finally, the right-side panel shows the total cost of operating the 

network in the current conditions versus the cost predicted with the proposed 
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distribution. Moreover, the savings that will be presumably achieved by 

applying the optimized distribution are explicitly displayed in order to 

encourage the operator to follow the recommendations proposed by the tool 

(Kujanpää et al., 2017).  

6.4 Integration with the control system 

The developed DSSs suggest the values of the manipulated variables 

(cooling-water flow and evaporation load for each plant, and heat-sources flow 

to heat exchangers in the heat-recovery process) so that the controlled variables 

(total evaporation demand and product temperatures respectively) would 

ideally reach the desired setpoints according to the models.  

However, note that none of the models in this thesis include dynamics, 

so the actual implementation must be driven by the existing distributed control 

system (DCS). Moreover, this control system is necessary to correct the 

probable plant-model mismatch in the formulated optimization problems. Thus, 

the integration of the DSS recommendations with the existent DCS is as 

follows: the RTO computes feasible decisions (according to the model) 

regarding to the allocation of sources to heat exchangers for the heat-recovery 

process and the assignment of the evaporation load and the cooling-water flow 

to surface condensers at minimum cost, such that this provides the plant PID 

controllers with reachable setpoints.  

Regarding the heat-recovery network, as temperature dynamics is 

normally slower than the fluid-mechanics one, a minor modification of the 

existent DCS is proposed to include a cascade-control structure. In there, the 

internal PID loop sets the flow of heat source (good initial guess given by the 

DSS) and the external PID loop just modifies such flow setpoint if necessary 

to reach the temperature setpoint, compensating thus any small plant-model 

mismatch. In this way, the proposed implementation allows a faster response 

against operation changes in real time. 
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6.5 Conclusions 

Once the RTO schemes for the optimal operation of the different 

networks are developed, the proposed solution is to incorporate them in 

specific DSSs that keep the human operator in the loop. Therefore, such DSSs 

are based on rigorous mathematical models of the networks, which are the core 

of an MINLP optimization accounting for the current production constraints 

and the equipment fouling states in each case.  

The DSSs should be fed in real time by the plant PI system and present 

the results of the optimization through a simple interface, designed according 

to the operator visualization preferences (Excel in this case). In this way, the 

proposed DSSs will support the plant operators in such a complex decision-

making process in real time, saving resources and reducing the personnel 

workload. This work is a proof that DSSs based on mathematical models and 

mixed-integer nonlinear optimization can unlock the potential benefits 

associated to complex combinatorial problems arising in the daily management 

of industrial sites.  

A drawback of the proposed DSSs is relative to the ease of 

adaptability and flexibility. Ideal DSSs should be formed of simpler pieces 

such that end users could be able to build and modify them easily. This does 

not mean that the proposed DSSs in this thesis are rigid black boxes, but the 

complexity of the underlying models requires to be adapted by process experts, 

with assistance from qualified engineers on mathematical optimization. 

Consequently, future development can focus on developing a library of 

components with models for the individual equipment and a method to provide 

plug and play features to ease the inclusion and modification of the model 

constraints.  

 

The interfaces presented in this chapter can be also found in (M. P. 

Marcos et al., 2020b) for the case of the heat-recovery network DSS and in (M. 

P. Marcos et al., 2021) for the evaporation process one. 
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Chapter 7                               

Contributions, final 

conclusions & outlook 

 In the process industry, optimal energy and resource operation is key. 

However, the optimal operation in real time of systems having a wide variety 

of alternatives is very complex, as it is widely discussed in the related literature. 

Despite this, after a deep study of the literature published on the topic, one can 

find out that current research often provides academic case studies to develop 

and prove their formulations and algorithms. Hence, on the one hand, when 

one tries to apply such methods to a real industrial case, they often do not fit 

properly or do not get the expected results. This is because the formulations 

are too generic or do not scale well enough. On the other hand, the industrial-

size cases reported in the literature are very specific for a particular 

environment, so it is not feasible to apply them directly in other contexts. 

There is a wide variety of industrial environments and the complexity 

of each one makes nearly impossible to find a single approach. Consequently, 

every situation has to be studied to choose the best-suited methodology and 

formulation for every case. In addition, some of the most common problems 
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regarding optimal operation in the process industry are related to the 

development of the models that represent the real behavior of the systems, and 

the coordination and implementation of the obtained solutions.  

This thesis is the last result of years of collaboration between 

academia and an industrial company, dealing with these problems in a real case 

study, providing innovative solutions and efficient formulations for the system 

considered. Hence, this thesis contributes to the development of the field in 

Process Systems Engineering and in the implementation of the principles and 

aims of the so-called Industry4.0. 

Nevertheless, even though the proposed solutions and technologies 

are customized to some existing problems in a viscose fiber-production plant, 

other process and food industries have similar equipment and issues (heat-

exchanger networks, allocation of products to plants, equipment degradation, 

etc.). Therefore, the ideas and developments here described can be adapted and 

extended to similar scenarios with reduced effort. 

7.1 Thesis contributions 

The core contribution of this thesis is the formulation of RTO-DSS 

solutions related to the optimal operation of different sections (an evaporation 

network, a cooling-water network and a heat-recovery one) on a viscose fiber 

production site, where there are several products to process, shared resources, 

varying equipment efficiencies (also over time) and multiple arrangement 

alternatives. The end goal is improving the resource efficiency by better 

coordination of the operation, current and future. 

With regard to the proposed objectives for this thesis, mentioned in 

Chapter 1, the main contributions have been: 

• To study the problems of optimally operating different sections of a 

plant in real time incorporating discrete and continuous decision 

variables, as well as the extra issues derived from equipment 
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degradation, fouling in heat exchangers in this case. Such topics have 

been covered in Sections 3.1 and 4.1 for the different case studies. 

• To develop data-driven models for some difficult to fit by first 

principles relations among process variables (the cooling-water 

temperature leaving the surface condensers with respect to the flow, 

the specific-steam consumption with respect to the cooling power, and 

the overall heat transfer coefficient in the heat exchangers with respect 

to the stream flows). All the details can be found in Sections 3.3 and 

4.3. 

• To expand the developed data-driven models to explicitly consider 

current fouling states. This is also addressed in Sections 3.3 and 4.3. 

• To develop efficient hybrid models for the optimal operation of the 

different networks in real time, dealing with limited shared resources. 

The formulations of the different optimization problems can be found 

in Sections 3.4 and 4.4. 

• To incorporate suggestions on maintenance tasks according to the 

efficiency loss due to fouling. It was included in the model for the 

optimal operation in Section 4.4. 

• To study and develop different formulations for the coordination of 

the operation of two plant sections. The different approaches are 

explained in Sections 3.5 and 4.5. 

• To analyze the incorporation of new equipment in order to increase 

the efficiency of a section. Such topic has been covered in Section 5.1. 

For this aim, the primary RTO formulation is expanded with a 

superstructure that models the operation of the network in every 

possible configuration of the new equipment. This is presented in 

Section 5.3.  

• To further elaborate the formulation to tackle the uncertainty in future 

operation conditions when doing re-design of an existing system.  

• To provide efficient ways to solve the complex and/or large-scale 

optimizations derived from the addressed problems. In particular 

providing alternatives to the usual monolithic approach that are based 
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on decomposition strategies. Coordination of plant sections is 

addressed in Section 5.3, and decomposition of stochastic 

optimization for process re-design is in Section 5.4. 

• To develop DSS interfaces to properly show the results of RTOs to 

plant operators and managers. Such interfaces have been described in 

Section 6.3. 

• To validate the proposed methods and algorithms with industrial data, 

and to guide the implementation of the developed RTO schemes via 

DSSs and the existing DCS in the plant (with minor modifications in 

some cases). The results of the validation have been presented at the 

end of Sections 3.4, 4.4 and 5.5, and the implementation as part of the 

DSS in Section 6.2. 

The research work performed within the framework of this thesis has 

led to several publications in peer-reviewed national and international 

conferences as well as in indexed JCR journals, listed hereunder: 

 

• Marcos, M. P., Pitarch, J. L., & de Prada, C. (2021). Integrated 

Process Re-Design with Operation in the Digital Era: Illustration 

through an Industrial Case Study. Processes, 9(7), 1203. 

• Marcos, M. P., Pitarch, J. L., & de Prada, C. (2020). Decision support 

system for a heat-recovery section with equipment degradation. 

Decision Support Systems, 137, 113380. 

o Marcos, M. P., Pitarch, J. L., & de Prada, C. (2020). Modelling and 

real-time optimisation of a heat-exchanger network. 21st IFAC World 

Congress 53(2), (pp. 11780-11785). Berlin, Germany. 

o Marcos, M. P., Pitarch, J. L., & de Prada, C. (2019). Real-time 

optimisation for a heat recovery section with equipment degradation. 

XL Jornadas de Automática, (pp. 513-519). Ferrol, Spain. 

o Marcos, M. P., Pitarch, J. L., Jasch, C., & de Prada, C. (2019). 

Optimal distributed load allocation and resource utilisation in 
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evaporation plants. Computer Aided Chemical Engineering, 46, 

(pp.979-984). Eindhoven, The Netherlands. 

o Marcos, M. P., Pitarch, J. L., de Prada, C., & Jasch, C. (2018). 

Modelling and real-time optimisation of an industrial cooling-water 

network. International Conference on System Theory, Control and 

Computing (ICSTCC), (pp. 591-596). Sinaia, Romania.  

o Marcos, M. P., Pitarch, J. L., de Prada, C., & Jasch, C. (2018). 

Modelado para operación óptima de un sistema de refrigeración 

industrial. XXXIX Jornadas de Automática, (pp. 702-709). Badajoz, 

Spain 

The developments and solutions in this thesis have been motivated 

and applied mainly thanks to the European H2020 project Improved energy 

and resource efficiency by better coordination of production in the process 

industries (CoPro), which intends for a better resource usage in the European 

process industry, contributing to reduce the climate footprint. This is in line 

with the two national research projects in which the author also collaborated: 

Integración de optimización y control en plantas de procesos [Optimization 

and control integration in process plants] (INOPTCON) and Integrated plant 

wide control and optimization for Industry4.0 (InCO4In). Both aim at 

providing solutions to the theoretical and practical challenges that the 

implementation of the Industry 4.0 concepts in the process industry brings. 

7.2 Author’s conclusions 

Here below my main conclusions from the different technologies 

developed and presented in this thesis are exposed, as well as some limitations 

that I personally think that need to be further addressed: 

• The gray-box models developed allow to avoid the typical problems 

of first-principles models when applied in industry (excessive complexity and 

lack of flexibility when not all data is available), but still imposing some 

physical coherence to the relations between process variables, the main 
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weakness of black-box models. However, such models are still sensitive to 

disturbances and noise error present in the data used to obtain them, so two 

compatible solutions have been proposed: a modeling routine to improve the 

computation of the models and performing a data reconciliation when there is 

redundancy on data or due to additional algebraic constraints. 

• Although the formulated problems are MINLP due to the intrinsic 

systems characteristics, the proposed approaches are able to provide results in 

relative short periods of time. This is positive not only from an implementation 

point of view, where results must be obtained faster than the actual process 

changes, but also from a usability point of view since end users will be more 

willing to use tools if they do not have to wait for long time periods to obtain 

results. Nevertheless, it must be borne in mind that this quick solution only can 

be obtained using a local-deterministic method, which may lead to not globally 

optimal solutions that depend on the initial guess.  In the author’s opinion, the 

best option is to use the real-time conditions of the plant as initial guess. How 

to systematically set a good initial guess for unmeasured variables, rather than 

based on expertise, is still a topic which has room for improvement. 

• The proposed RTO schemes have been successfully tested with 

historical plant data. It has been predicted that operating costs can be reduced 

if the solutions proposed by the RTO are executed. These results reflect the 

complexity of the decision-making process and how an adequate tool can help 

humans in such task. However, even though their potential benefit has been 

shown, the on-site implementation of such tools must address other challenges 

like software integration and maintenance. 

• The suggestions of the cleaning tasks provided by the heat 

exchanger network DSS have proven that the current policy of dirtiest first is 

not the best in all cases. The decisions about maintenance to keep performance 

from an optimal economic point of view are not an easy task, as they depend a 

lot on different interconnected factors. Note that, the developed models allow 

to monitor the fouling effect, but they do not predict the future evolution of the 

fouling, so the proposed actions may be suboptimal in the long term. 
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• The study of the different formulations to coordinate the two RTO 

schemes referred to the evaporation network has proven, on the one hand that  

solving each scheme independently gets sub-optimal solutions, and on the 

other hand that the best formulation for the coordination depends on the 

particular problem. Although the three presented approaches solve the problem 

in acceptable CPU time for real-time purposes, in this case the centralized 

formulation has arisen as the most efficient one, getting the best solution (lower 

cost) and being the quickest. However, this may be not the case for instance 

considering time dynamics and/or different scenarios of the uncertain 

conditions, so each case needs to be studied in depth to be addressed in the 

more convenient way. In the author’s opinion, standardized solutions are not 

able to unlock the true savings potential in complex process plants. 

• The hybrid model developed for the re-design of the cooling-system 

network shows the actual complexity of such problem as there are so many 

operation and layout alternatives. In addition, not only the payback time must 

be considered with current conditions, but the probably different future 

conditions in which the network must be able to work.  

• The uncertainty on such future operation conditions for the re-

design of the network has been explicitly considered with the two-stage 

stochastic optimization. This was a case where a monolithic formulation was 

not practical to solve due to the high amount of CPU time required. This is a 

usual drawback with stochastic simulation and optimization problems. Thus, 

the problem was decomposed developing a formulation, tailored to the 

particular characteristics of the problem, that were exploited after a good 

previous analysis of the case study.  

• The decomposed formulation for process re-design allows to solve 

each scenario independently. The solution is proven to be obtained in a finite 

number of iterations, where the resolution time of each iteration only depends 

on the worst scenario. These are nice features for a decomposition approach, 

especially when involving non-convex optimization. 

• The proposed software architecture presented in Chapter 6 is an 

example to illustrate a possible industrial implementation of the RTO schemes 
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as part of DSS. It allows to directly connect the optimization problem to the PI 

system in order to get the necessary data to compute a solution based on real-

time conditions, and to show the results in a suitable interface. Thereby, the 

common problems of implementing RTO as part of the automatic control 

system are partially avoided as the loop with the plant is not fully closed. The 

end user is the one that must take the decisions based on the information 

provided by the DSS. This also allows to use the proposed tool for other 

purposes, like operator training or What-if analysis. 

• Finally, it should be noted that, although the models represent the 

actual behavior of the different networks in the best case, they must be updated 

in the future for sure. The technology proposed in this thesis has been proven 

to be able to get significant benefits if it is correctly used, but if the models do 

not represent well the systems behavior, the optimal operation point provided 

by the optimizations will be far from the real one, leading to the progressive 

abandonment of the DSSs by the operators and plant managers. Hence, an 

important open issue is model upkeep: monitoring the goodness of model 

predictions and automatically update models when deviations exceed 

acceptable thresholds. 

7.3 Open research & development lines 

This thesis focused on the optimal operation of different networks in 

real time and considers one of the most common problems of the operation in 

process industry: the fouling. But as it was concluded before, the developed 

models do not predict the future evolution of the fouling. Thus, future research 

can focus on extending the problem formulation to include a prediction of the 

fouling dynamics over time, hence allowing the computation of a full 

production-maintenance schedule of the networks over a suitable time horizon. 

However, it requires a dynamic model to predict the fouling state with time 

and, possibly, with respect to the flows fed to the surface condensers or the 

heat exchangers, depending on the network, but in both cases they are decision 

variables. Furthermore, an estimation of the future operation conditions will be 

required too, but these estimations are uncertain over a large time horizon, so 
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robust scheduling formulations are foreseen somehow mandatory. In any case, 

the computational complexity of these MINLP optimization problems will 

increase exponentially, so decomposition and convexification techniques will 

be required to cast the problems in a more tractable form. 

On the other hand, importance of maintaining the models over time 

has been remarked. In order to ease such update, they should be formed of 

simpler pieces where each piece could be monitored and modified easily. 

Consequently, future work should be developing a components library with 

models for the individual equipment and a method to provide plug-and-play 

features to ease the inclusion and modification of the model constraints. 

Moreover, automatic routines of model-quality monitoring, parameter 

estimation, as well as constrained regression to update the black-box 

submodels when consistent plant-model deviations are detected, will be a 

fundamental pillar to support and generate acceptance of the RTO technologies 

proposed in this thesis. 
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