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Abstract

We consider a family of population game dynamics known as Best Experienced Payoff Dynamics. Under 
these dynamics, when agents are given the opportunity to revise their strategy, they test some of their 
possible strategies a fixed number of times. Crucially, each strategy is tested against a new randomly drawn 
set of opponents. The revising agent then chooses the strategy whose total payoff was highest in the test, 
breaking ties according to a given tie-breaking rule. Strict Nash equilibria are rest points of these dynamics, 
but need not be stable. We provide some simple formulas and algorithms to determine the stability or 
instability of strict Nash equilibria.
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1. Introduction

Most dynamics in Evolutionary Game Theory can be neatly seen as a combination of a pop-
ulation game and a revision protocol (Sandholm, 2010). The population game assigns to each 
population state a vector of payoffs, one for each strategy in the population. The revision proto-
col specifies how agents, using the payoff assigned to each strategy, update their current strategy. 
A crucial assumption embedded in this framework is that, at any population state, there is one 
single payoff assigned to each strategy. In population games where agents are matched to play a 
symmetric normal form game, the payoff assigned to each strategy is often the expected payoff 
the agent will obtain when using that strategy. But how can agents know this expected payoff? 
Unless there is complete matching, agents somehow know the exact population state, or agents 
are explicitly communicated the precise expected payoff for each strategy, it seems unrealistic to 
assume that they will all share exactly the same expectations for any given strategy. From this 
point of view, it is noteworthy that many evolutionary dynamics from the economics literature 
are informationally demanding in one important respect: they require agents to be fully informed 
about the population’s current aggregate behavior. This assumption seems rather strong in the 
large-population contexts to which evolutionary models are most naturally applied.

In many situations, it seems more natural to assume that agents acquire information by in-
teracting with only a sample of the population, rather than assuming that they have access to 
accurate statistics of the whole population. There are two distinct lines of research that follow 
this approach while keeping the assumption that agents respond optimally to the information 
they have.

The first line assumes that agents take samples of the actions being played in the population, 
and they use these samples to make inferences about the distribution of actions in the whole 
population, and to best respond to the estimates thus formed. This is the approach followed by 
Sandholm (2001), Kosfeld et al. (2002), Osborne and Rubinstein (2003), Kreindler and Young 
(2013), Oyama et al. (2015), Heller and Mohlin (2018), Salant and Cherry (2020), and Sawa and 
Wu (2021). Under this approach, note that agents must be aware of the population game they are 
playing, so they can best reply to their point estimates of the population distribution of actions.1

A second approach –significantly less demanding on agents’ informational and computa-
tional skills– was pioneered by Osborne and Rubinstein (1998) and Sethi (2000). Here, revising 
agents try out a subset of the available strategies by playing them against randomly drawn coun-
terparts, and then choose the strategy that performed best in the test. Crucially, each game is 
played against new randomly drawn counterparts, so sub-optimal strategies may be selected in 
the test if they happened to be lucky in the random sampling of co-players. In this approach, 
note that agents do not even need to know that they are playing a game. Agents who follow 
this revision protocol have been called procedurally rational agents (Osborne and Rubinstein, 
1998), and the evolutionary dynamics they produce are the so-called payoff-sampling dynamics

1 The dynamics induced by this protocol have been termed sampling best response dynamics (see e.g. Oyama et al. 
(2015)) and action-sampling dynamics (see e.g. Sethi (2021); Arigapudi et al. (2021, 2022)).
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(Sethi, 2021; Arigapudi et al., 2021, 2022) or, more generally, Best Experienced Payoff (BEP) 
dynamics (Sandholm et al., 2019).2 These dynamics are the main object of study in this paper.

The procedurally rational agents described before, and their associated BEP dynamics and 
equilibria, have been used in a variety of applications including consumer choice procedures 
and product pricing strategies (Spiegler, 2006a), markets with asymmetric information (Spiegler, 
2006b), trust and delegation of control (Rowthorn and Sethi, 2008), the Traveler’s Dilemma 
(Berkemer, 2008), market entry (Chmura and Güth, 2011), ultimatum bargaining (Miȩkisz and 
Ramsza, 2013), use of common-pool resources (Cárdenas et al., 2015), contributions to pub-
lic goods (Mantilla et al., 2020), the Centipede game (Sandholm et al., 2019; Izquierdo and 
Izquierdo, 2021), the Prisoner’s Dilemma (Arigapudi et al., 2021), and coordination problems 
(Izquierdo et al., 2022). Sethi (2021) studies the equilibria of these processes in symmetric, 
finitely repeated games, with several applications.

Under BEP dynamics, strict Nash equilibria of a game correspond to states that are rest points, 
but they may not be stable. Sandholm et al. (2020), building on Sethi’s (2000) pioneering work, 
provide several sufficient conditions for instability and for asymptotic stability of strict equilibria 
under BEP dynamics. Arigapudi et al. (2021) refine one of the most general sufficient stability 
conditions in Sandholm et al. (2020), providing a tighter one. While many of the stability and in-
stability conditions in Sandholm et al. (2020) are really simple and can be immediately checked 
from the payoffs of the game, the most general stability condition (Theorem 2 II in Arigapudi et 
al. (2021)), and the most general instability condition (Proposition 5.4 in Sandholm et al. (2020)) 
are –if taken at face value– actually difficult to check, as they state a condition over all sets in 
a certain power set, or require finding a subset of strategies that satisfies some condition. Here 
we show that these general stability and instability conditions can be checked by conducting a 
simple analysis, whose complexity is equivalent to carrying out an iterated elimination of domi-
nated strategies, and which admits a simple interpretation. We also provide some tighter tests for 
specific BEP dynamics.

The rest of the paper is structured as follows. Section 2 contains a short introduction to Best 
Experienced Payoff processes and their dynamics. In Section 3 we summarize previous results 
on stability of strict equilibria, indicating also the new contributions in this paper. Section 4
presents the new stability tests and formulas, Section 5 shows an application of our results to 
tacit coordination games, and in Section 6 we state some conclusions. The proofs, and some 
additional information, have been grouped in an appendix. All figures in this paper can be easily 
replicated with open-source freely available software which also performs exact computations of 
rest points and exact linearization analyses (EvoDyn-3s (Izquierdo et al., 2018) for Figs. 1–4 and 
BEP-TCG (Izquierdo and Izquierdo, 2022) for Figs. 5-8).

2. Best experienced payoff protocols and dynamics

For notational simplicity, we keep our presentation to p-player symmetric games played in 
one population, but all our results can be easily extended to asymmetric games played in p popu-
lations. Following Sandholm et al. (2020), we consider a unit-mass population of agents who are 
matched to play a symmetric p-player normal form game G = {S, U}. This game is defined by 

2 The term payoff-sampling dynamics is used when revising agents test all their available actions. Sandholm et al. 
(2019) generalized payoff-sampling dynamics, allowing revising agents to consider subsets of their available actions. 
This generalization led to the so-called family of Best Experienced Payoff (BEP) dynamics.
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a strategy set S = {1, . . . , n}, and a payoff function U : Sp → R, where U(i; j1, . . . , jp−1) rep-
resents the payoff obtained by a strategy i player whose opponents play strategies j1, . . . , jp−1. 
Our symmetry assumption requires that the value of U not depend on the ordering of the last 
p − 1 arguments. When p = 2, we sometimes write Uij instead of U(i; j).

Aggregate behavior in the population is described by a population state x in the simplex 
X = {x ∈ Rn+ : ∑

i∈S xi = 1}, with xi representing the fraction of agents in the population using 
strategy i ∈ S. The standard basis vector ei ∈ X represents the pure (monomorphic) state at which 
all agents play strategy i.

We consider Best Experienced Payoff (BEP) protocols defined by a triple (τ, κ, β). Under 
BEP protocols, agents occasionally revise their current strategy by conducting tests of alternative 
strategies.

The first parameter, namely the test-set rule τ , indicates how the set of strategies to be tested is 
chosen. Specifically, here we consider the test-set rule τα , under which the revising agent, when 
considering whether to change his current strategy, will also test other α − 1 randomly selected 
strategies in S (besides testing his current strategy). Naturally, α ∈ N and 1 < α ≤ n. If all the 
strategies in S are tested, i.e. if α = n, then we have the test-all rule, denoted by τ all.

The second parameter, called the number of trials κ ∈ N , specifies the number of times that 
each strategy will be played in the test. Thus, each strategy in the test set will be played by the 
revising agent over κ matches, with each match requiring a new independent sampling of p − 1
co-players.

The last parameter in the BEP protocol, namely the tie-breaking rule β , indicates the rule 
used to decide which strategy is selected when the best result (i.e. the greatest total payoff) in 
the tests is obtained by more than one strategy. We will omit the last parameter when our results 
are independent of the tie-breaking rule. Otherwise, we will focus on two tie-breaking rules. The 
uniform-if-tie rule, βunif, selects any of the strategies that obtain the best total payoff in the tests, 
each of these strategies with equal probability. This is the rule that has been considered in almost 
all cases in the literature. The stick-if-tie rule, βstick, chooses to keep using the current strategy 
if it obtains the best total payoff in the tests, and, otherwise, it breaks ties by random uniform 
selection among the strategies that obtained the best total payoff.

Well-known results of Benaïm and Weibull (2003) show that the behavior of a large but fi-
nite population following the procedure above is closely approximated by the solution of the 
associated mean dynamic, a differential equation which describes the expected motion of the 
population from each state. This mean dynamic for BEP processes is (Sethi, 2000):

ẋi = wi(x) − xi (1)

where wi(x) is the probability with which strategy i is selected by a revising agent, i.e., the 
probability that it is tested, it obtains the best total payoff, and, if there are ties, it is selected by 
the tie-breaking rule. The calculation of the term wi(x), i.e. the mean dynamic, for BEP(τα, κ, β)

processes, was formalized by Sandholm et al. (2020).

3. Stability and instability under BEP dynamics. Antecedents and contribution

3.1. Background on stability and linear stability

Consider a C1 differential equation ẋ = V (x) defined on X whose forward solutions (x(t))t≥0
do not leave X. State x∗ is a rest point or equilibrium of the dynamics if V (x∗) = 0, so that the 
unique solution starting from x∗ is stationary.
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A rest point x∗ is Lyapunov stable if for every neighborhood O of x∗, there exists a neighbor-
hood O ′ of x∗ such that every forward solution that starts in O ′ ∩ X is contained in O . If x∗ is 
not Lyapunov stable it is unstable.

A rest point x∗ is attracting if there is a neighborhood O of x∗ such that all solutions that 
start in O ∩ X converge to x∗. If a rest point x∗ is Lyapunov stable and attracting, it is asymptot-
ically stable. In this case, the maximal (relatively) open3 set of states in X from which solutions 
converge to x∗ is called the basin of attraction of x∗. If the basin of attraction of x∗ contains 
int(X), we call x∗ almost globally asymptotically stable; if it is X itself, we call x∗ globally 
asymptotically stable.

By the definition of the derivative, the value of V in a (relative) neighborhood O ∩X of a rest 
point x∗ can be approximated via

V (x) = 0 + DV (x∗)(x − x∗) + o(|x − x∗|)
where DV (x∗) is the Jacobian matrix of V (more precisely, the Jacobian of a C1 extension of 
V to Rn such that the first-order partial derivatives of the component functions of the extension 
are defined at x∗) evaluated at state x∗. The stability of x∗ can be analyzed by considering the 
eigenvalues of DV (x∗) corresponding to those eigenvectors lying in the tangent space TX =
{z ∈ Rn : ∑

i zi = 0}. If all such eigenvalues have negative real parts, then x∗ is linearly stable. 
If any of those eigenvalues has positive real part, then x∗ is linearly unstable. A linearly stable 
rest point is asymptotically stable, and solutions starting near the rest point converge to it at an 
exponential rate (Perko, 2001; Sandholm, 2010).

3.2. Linear stability analysis of strict Nash equilibria under BEP dynamics

Focusing now on the BEP dynamics (1), consider a strict strategy s in a symmetric p-player 
game, i.e., a strategy s such that the strategy profile (s, s, ..., s) is a strict Nash equilibrium of 
the game. Following Osborne and Rubinstein’s (1998) pioneering study of rest points of the 
BEP(τ all, κ, βunif) dynamic, and Sethi’s (2000) stability analysis of the BEP(τ all, 1, βunif) dy-
namic, Sandholm et al. (2020) show that the linear stability analysis of a strict Nash equilibrium 
state es – a monomorphic state where all players use the same strict strategy s – under any 
BEP(τ, κ, β) dynamic, can be reduced to the analysis of an n × n matrix V κ,s = (v

κ,s
ij ) of total 

payoffs vκ,s
ij , defined by

v
κ,s
ij = (κ − 1)U(i; s, s, ..., s) + U(i; j, s, ..., s)

To simplify the notation, we will drop the superindex s when it is clear that we are referring
to a specific equilibrium strategy s, in which case we will use V κ and vκ

ij . The Jacobian of 
the dynamics at the equilibrium es can be calculated from the terms in V κ . The term vκ

ij is the 
total payoff to strategy i when, over its κ trials, it meets exclusively players using the strict 
Nash strategy s, except in one trial, where exactly one of the (p − 1) co-players uses strategy j . 
The reason why these are the only relevant payoffs for a linear stability analysis is that, in the 
proximity of the strict equilibrium, where xs = 1 − ε, the probability of any random sample of 
α κ (p − 1) co-players with more than one co-player choosing a strategy other than s is O(ε2).

Thus, when α strategies are tested, the relevant sampling events –those whose probability is 
O(1) or O(ε), but is not O(ε2)– are:

3 A set is relatively open in X if it is the intersection of X with an open set in Rn .
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i) Those in which all the α κ (p − 1) randomly sampled co-players use strategy s. In this case, 
a test of strategy s provides the total payoff vκ

ss and a test of strategy i 	= s provides the total 
payoff vκ

is . Since s is a strict Nash strategy, vκ
ss > vκ

is , so, if strategy s is in the test set, then 
it will be selected.

ii) Those in which all but one of the sampled co-players use strategy s and exactly one co-player 
(the “deviating co-player”) uses strategy j 	= s. Assuming all strategies are tested:
• If, in a battery of tests (for which n κ (p −1) co-players are sampled), the single deviating 

co-player using strategy j is met when testing strategy s, the total payoffs in the battery of 
tests are vκ

sj (when testing s) and {vκ
is}i∈S�{s} (when testing the other strategies). Defining 

S2 ≡ argmaxi 	=s vκ
is = argmaxi 	=s U(i; s, s, ..., s), we have that either the selected strategy 

belongs to S2, or the selected strategy is s, depending on the comparison of vκ
sj and vκ

ts ≡
maxi 	=s vκ

is . In case of equality, the tie-breaking rule would apply.
• If the deviating co-player is met when testing strategy i 	= s, the total payoffs are vκ

ss , 
vκ
ij and {vκ

ks}k∈S�{s,i}. Since every element in {vκ
ks}k∈S�{s,i} is less than vκ

ss , the selected 
strategy is either s or i, depending on the comparison of vκ

ss and vκ
ij . In case of equality, 

the tie-breaking rule would apply.

To analyze the stability of a strict equilibrium state es , Sandholm et al. (2020) consider a 
change of variables that takes es to the origin 0 (by eliminating the coordinate xs , given that ∑n

i=1 xi = 1) and show that the Jacobian of the dynamics at the origin is DW(0) = DW+(0) −
I(n−1), where DW+(0) is a matrix of non-negative terms that can be easily calculated from the 
terms in V κ , following the previous discussion.

3.3. Instability results

A series of instability results (i.e. sufficient conditions for instability) can be derived from 
the analysis of V κ by considering that the Perron-Frobenius eigenvalue of DW+(0) is at least 
as large as the Perron-Frobenius eigenvalue of any principal submatrix of DW+(0), which is in 
turn bounded from below by the minimum sum of the elements in each of its columns (or rows). 
If the Perron-Frobenius eigenvalue of DW+(0) is greater than 1, then DW(0) has a real positive 
eigenvalue4 and, consequently, es is unstable. A general condition that guarantees instability 
following this approach is provided by Proposition 5.4 (ii) in Sandholm et al. (2020), which states 
that es is linearly unstable under any BEP(τα, κ, β) dynamic if, for some nonempty J ⊆ S � {s},

(p − 1)κ
α − 1

n − 1

(∑
i∈J

1[vκ
ij > vκ

ss] + 1[S2 ⊆ J ]1[vκ
sj < vκ

ts]
)

> 1 for all j ∈ J, (2)

where 1[·] denotes a Boolean function that takes the value 1 if the condition in the brackets is 
met, and the value 0 otherwise. Under BEP(τ all, κ, β) dynamics (i.e., for α = n) and given a 
subset of strategies J ⊆ S � {s}, this result considers a tight bound on the column sums of the 
submatrix of DW+(0) corresponding to the strategies in J ,5 and it is, up to our knowledge, the 
most general available result that guarantees instability under BEP(τ all, κ, β) dynamics (for any 
tie-breaking rule) with either κ > 1 or p > 2. And the result applies to BEP(τα, κ, β) dynamics 
as well.

4 If λ is an eigenvalue of DW+(0), then (λ − 1) is an eigenvalue of DW(0) = DW+(0) − I .
5 See note at the beginning of appendix A.2.
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3.4. Stability results

A series of stability results (i.e. sufficient conditions for stability) can also be derived from 
the analysis of V κ by considering that, if DW+(0) is a triangular matrix, its eigenvalues are its 
diagonal elements. If the eigenvalues λi of DW+(0) are all less than one, then the eigenvalues 
of DW(0), which are λ′

i = λi − 1, are all negative and, consequently, es is stable. This can be 
used to show, for instance, that, under any BEP(τα, κ, β) dynamics, any strict equilibrium state 
is asymptotically stable if the number of trials is larger than a certain threshold (Sandholm et al., 
2020, Corollary 5.8).

Under BEP(τ all, κ) dynamics, the most general condition that guarantees that the Jacobian of 
DW+(0) can be arranged as a triangular matrix whose diagonal elements are 0 is the existence 
of an ordering of the strategies in S such that, for all i, j 	= s with i ≥ j we have: vκ

ss > vκ
ij and, 

if i ∈ S2, vκ
sj > vκ

is . This is a refinement of Proposition 5.9 in Sandholm et al. (2020) that can be 
shown to be equivalent to the sufficient condition for asymptotic stability in Theorem 2 (II) in 
Arigapudi et al. (2021).

Arigapudi et al. (2021) focus on the BEP(τ all, κ) dynamic and on a family of games that 
satisfy a specific genericity requirement, which here we term κ-generic games (Arigapudi et al., 
2021, Definition 4). They show that their sufficient condition for asymptotic stability of strict 
Nash equilibria is both sufficient and necessary in κ-generic games with either more than two 
players (p > 2) or more than one test of each strategy (κ > 1). However, their stability condition 
is difficult to check if followed literally, since it involves testing a requirement on each and every 
set in the power set of S � {s}. The requirement of having a κ-generic game can also be too 
stringent in practical cases, as it may not be satisfied even by two-player games with generic 
payoff matrices. As an illustration, none of the more than 20 numeric examples in Osborne and 
Rubinstein (1998), Sethi (2000), Sandholm et al. (2019, 2020), Sethi (2021) and Arigapudi et al. 
(2021) are κ-generic.

3.5. Contribution

In this paper we:

i) Show that the general sufficient condition for instability of strict equilibria indicated above 
(Sandholm et al., 2020, Proposition 5.4 (ii)), which applies under any BEP(τα, κ) dynamics, 
can be checked using a simple algorithm. The complexity of this algorithm is equivalent to 
performing an iterated elimination of dominated strategies.

ii) Show that a similarly simple algorithm can be used to check the general sufficient condi-
tion for asymptotic stability of strict equilibria under BEP(τ all, κ) dynamics indicated in 
Section 3.4,6 i.e., the most general condition that guarantees, under any tie-breaking rule, 
a triangular Jacobian DW(0) with all diagonal values (eigenvalues) equal to −1. We also 
provide a tighter stability test under the specific tie-breaking rule βstick, a rule that favors 
stability under BEP(τ all, κ) dynamics.

iii) Discuss conditions under which the sufficient condition for asymptotic stability in ii) is 
also necessary for stability, for different BEP(τ all, κ) dynamics. This extends the results of 
Arigapudi et al. (2021) by removing the constraint that the game be κ-generic.

6 As indicated before, this is equivalent to the sufficient condition for asymptotic stability in Arigapudi et al. (2021), 
Theorem 2, II.
7
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iv) Apply our results to explore the predictive power of BEP dynamics in tacit coordination 
games. In these games, most game theoretical models do not correspond well with experi-
mental evidence.

4. Stability and instability tests

4.1. s-Stabilizing and potentially s-stabilizing strategies

In this section, we define s-stabilizing and potentially s-stabilizing strategies in subsets 
J ⊆ S � {s}. Informally, a s-stabilizing strategy in J is a strategy that, under a BEP(τ all, κ) 
dynamic, does not contribute to the growth of the fraction of players using the strategies in J , 
when the population state is close to the strict equilibrium state es . In contrast, if a strategy is 
not potentially s-stabilizing in J , it is associated to at least some minimum contribution to the 
growth of the fraction of players using the strategies in J , when the population state is close to 
the strict equilibrium state es , under any BEP(τα, κ) dynamic.

Definition (s-stabilizing and potentially s-stabilizing strategies). Let s be a strategy such that 
the strategy profile (s, s, ..., s) is a strict Nash equilibrium of the game. Let S2 be the set of 
strategies that obtain the second-best payoff, vκ

ts , when playing against s-players, i.e., S2 ≡
argmaxi 	=s vκ

is = argmaxi 	=s U(i; s, s, ..., s), and vκ
ts ≡ maxi 	=s vκ

is . Let J be a non-empty set 
J ⊆ S � {s}. A strategy j ∈ J is s-stabilizing in J , for a number of trials κ , if

• vκ
ij < vκ

ss for all i ∈ J , and
• If S2 ∩ J 	= ∅, then vκ

sj > vκ
ts .

A strategy j ∈ J is potentially s-stabilizing in J , for a number of trials κ , if

• vκ
ij ≤ vκ

ss for all i ∈ J , and
• If S2 ⊆ J , then vκ

sj ≥ vκ
ts . �

Clearly, every s-stabilizing strategy in J is potentially s-stabilizing in J . To understand the 
previous conditions, consider a test of each strategy by a revising agent who, when sampling 
the required n κ (p − 1) co-players, meets just once a deviating co-player not using strategy s, 
but using strategy j ∈ J instead. The condition vκ

ij < vκ
ss guarantees that, if the deviating j -

player is met when testing strategy i ∈ J , the total payoff vκ
ij to strategy i is less than the total 

payoff vκ
ss to strategy s, so strategy s is selected. Similarly, the condition ((S2 ∩ J 	= ∅) ⇒ vκ

sj >

vκ
ts ) guarantees that, if the deviating j -player is met when testing strategy s (in which case the 

maximum of the payoffs obtained by all the strategies is either vκ
sj or vκ

ts ), no strategy i ∈ J is 
selected. Intuitively, in a neighborhood of es , if j is s-stabilizing in J then we could say that j
does not help any other strategy in J (including itself) to destabilize es .

With relation to the analysis of the Jacobian of the BEP(τ all, κ) dynamics at es , if a strategy 
j is s-stabilizing in a subset of strategies J , then j has a null contribution (on the column cor-
responding to j ) to the principal submatrix of DW+(0) associated to J . And if, starting from 
J1 = S�{s}, a process of iterative elimination of s-stabilizing strategies (see appendix A.1) elim-
inates all strategies in S � {s}, then DW+(0) can be arranged (by reordering the strategies) as a 
triangular matrix with a zero diagonal (so the eigenvalues of DW+(0) are 0, and the eigenvalues 
of DW(0) are −1), proving asymptotic stability of es .
8
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Note that if, for a number of trials κ0 and some subset of strategies J , a strategy j ∈ J is 
s-stabilizing in J , then j is s-stabilizing in J for any κ > κ0.

In contrast, if a strategy j is not potentially s-stabilizing in some subset of strategies J (such 
that j ∈ J ), then the (positive or destabilizing) contribution of j to the principal submatrix of the 
Jacobian of the dynamics corresponding to the strategies in J , in the column corresponding to 
j , is guaranteed to be above a certain threshold value, under any BEP(τα, κ) dynamic. If there is 
some subset of strategies J such that every strategy j ∈ J is not potentially s-stabilizing in J , the 
fact that the sum of the terms in every column of the principal submatrix of DW(0) associated 
to J is above a threshold value can be used to obtain a lower bound for the Perron–Frobenius 
eigenvalue of DW(0), and to guarantee instability of the equilibrium.

Note that if, for a number of trials κ0 and some subset of strategies J , a strategy j ∈ J is not 
potentially s-stabilizing in J , then j is not potentially s-stabilizing in J for any κ < κ0.

4.2. Instability under BEP(τα, κ) dynamics

Our first proposition shows that a tight sufficient test for instability of strict equilibria under 
any BEP(τα, κ) dynamics can be carried out by analyzing the iterated elimination of potentially 
s-stabilizing strategies in S� {s}. Although the process of iterated elimination may be considered 
evident, a formal description can be found in appendix A.1. All the proofs have been relegated 
to appendix A.2.

Note that if a strategy j ∈ J ⊆ S�{s} is potentially s-stabilizing in J , then j is also potentially 
s-stabilizing in any subset of J containing j . As a consequence, the order in which potentially 
s-stabilizing strategies are iteratively eliminated does not alter the final set of surviving strategies.

Proposition 4.1. Let es be a strict equilibrium. If for a number of trials κ0 > n−1
(p−1)(α−1)

some 
strategy survives the iterated elimination of potentially s-stabilizing strategies in S � {s}, then 
state es is unstable under any BEP(τα, κ) for any κ satisfying n−1

(p−1)(α−1)
< κ ≤ κ0.

Corollary 4.2. Let es be a strict equilibrium. If for a number of trials κ0 some strategy survives 
the iterated elimination of potentially s-stabilizing strategies in S � {s}, then state es is unstable 
under any BEP(τ all, κ) for any κ with 1 < κ ≤ κ0, and, if p > 2, for any κ ≤ κ0.

Example 4.1. Consider the game with payoff matrix

Uij = V κ=1 =
⎛
⎝ 3 0 0

2 0 0
2 0 0

⎞
⎠ , which leads to V κ=2 =

⎛
⎝ 6 3 3

4 2 2
4 2 2

⎞
⎠ .

Corollary 4.2 shows that the equilibrium state e1 is unstable under BEP(τ all, κ = 2) dynamics. 
This can be proved by noting that, for κ = 2, strategies 2 and 3 survive the iterated elimination 
of potentially 1-stabilizing strategies, since none of them is potentially 1-stabilizing in J = S �

{s} = {2, 3}. This is so because, for s = 1 and j ∈ J , we have that S2 = {2, 3} ⊆ J but vκ=2
1j =

3 < 4 = vκ=2
t1 . However, for κ = 2, this game satisfies the necessary conditions for asymptotic 

stability in Theorem 2 in Arigapudi et al. (2021), which are not sufficient in this case, since the 
game is not κ-generic. Thus, Corollary 4.2 (and Proposition 4.1, more generally) can be used to 
prove the instability of strict equilibria on which Theorem 2 in Arigapudi et al. (2021) remains 
silent.
9



S.S. Izquierdo and L.R. Izquierdo Journal of Economic Theory 206 (2022) 105553
Fig. 1. BEP(τ all, 2, β) dynamics in the game of Example 4.1 for two tie-breaking rules: βunif (left) and βstick (right). In 
the figures, isolated rest points are represented with circles: red (or dark grey) if the rest point is asymptotically stable, and 
white if it is unstable. Connected components of rest points are represented with lines: purple (or dark grey) if Lyapunov 
stable, and white if unstable. In the colored version, colors represent speed of motion: red is fastest, blue is slowest.

Fig. 1 shows the BEP(τ all, 2, β) dynamics in the game of Example 4.1 for two tie-breaking 
rules: βunif (left) and βstick (right). As proved above for any tie-breaking rule, it can be seen that 
state e1 is unstable under both dynamics. �

4.3. Asymptotic stability under BEP(τ all, κ) dynamics

Proposition 4.3. Let es be a strict equilibrium. If for a number of trials κ0 no strategy survives 
the iterated elimination of s-stabilizing strategies in S� {s}, then state es is asymptotically stable 
under any BEP(τ all, κ) with κ ≥ κ0.

As before, note that if a strategy j ∈ J ⊆ S � {s} is s-stabilizing in J , then j is also s-
stabilizing in any subset of J containing j . As a consequence, the order in which s-stabilizing
strategies are iteratively eliminated does not alter the final set of surviving strategies. For a fixed 
κ , the stability condition in Proposition 4.3 can be shown to be equivalent to the stability condi-
tion in Arigapudi et al. (2021) [Theorem 2, II],7 so the former can be seen as a quick and easy 
way of checking the latter. In terms of the complexity of checking these conditions according to 
their formulation, Proposition 4.3 involves checking the existence of s-stabilizing strategies in at 
most n − 1 subsets of S, while a direct check of the stability condition in Arigapudi et al. (2021)
involves checking an existence condition in 2n−1 subsets of S (in all the subsets of S � {s}). If, 
for instance, the number of strategies is n = 11, the difference would be checking 10 subsets 
using Proposition 4.3 versus checking 210 = 1024 subsets otherwise.

7 It is not difficult to show that the sufficient condition for stability in Arigapudi et al. (2021) can be equivalently 
formulated in terms of iterated elimination of strategies that are not weakly supported (according to their definition) by 
any other strategy. This is so because if a strategy j is not weakly supported by any strategy in a set J that includes j , 
then j is not weakly supported by any strategy in any subset of J that includes j .
10
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Example 4.2. Consider the coordination game with payoff matrix

Uij =

⎛
⎜⎜⎜⎜⎜⎜⎝

U11 0 0 ... 0
0 U22 0 ... 0

0 0
. . .

...
...

... U(n−1)(n−1) 0
0 0 ... 0 Unn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

with Uss > 0 for all s ∈ S, so all strategies are strict Nash strategies. In this game, for i, j ∈
S � {s} and i 	= j , we have vκ,s

ss = κUss , vκ,s
sj = (κ − 1)Uss , vκ,s

ii = Uii and vκ,s
ij = 0. Therefore, 

strategy j ∈ J ⊆ S � {s} is s-stabilizing in J if and only if the following two conditions are 
satisfied:

• vκ
ij < vκ

ss for all i ∈ J ⇔ Ujj < κUss ⇔ κ >
Ujj

Uss

.

• If S2 ∩ J 	= ∅ then vκ
sj > vκ

ts ⇔ (κ − 1)Uss > 0 ⇔ κ > 1.

Thus, j ∈ J ⊆ S � {s} is s-stabilizing in J if and only if κ > max
(

Ujj

Uss
,1

)
. Similarly, it is 

easy to check that strategy j ∈ J ⊆ S� {s} is potentially s-stabilizing in J if and only if κ ≥ Ujj

Uss
.

Now, let Umax = maxi∈S Uii be the highest possible payoff and let Smax = {i ∈ S | Uii =
Umax} be the set of strategies that obtain the highest possible payoff in the game when playing 
against themselves.

Applying Proposition 4.3, we can deduce that, for any strict strategy s ∈ S, state es is asymp-
totically stable under any BEP(τ all, κ) for every κ > Umax

Uss
, since this condition guarantees that 

all strategies are s-stabilizing, so no strategy survives the iterated elimination of s-stabilizing 
strategies. In particular, if s ∈ Smax, es is asymptotically stable for every κ > Umax

Umax
= 1.

Applying Corollary 4.2, we can deduce that if s /∈ Smax, state es is unstable under any 
BEP(τ all, κ) for every 1 < κ < Umax

Uss
, since this condition guarantees that any strategy i ∈ Smax is 

not potentially s-stabilizing in any subset that contains it, so it survives the iterated elimination 
of potentially s-stabilizing strategies in S � {s}.

So, to sum up, in coordination game (3) with Uss > 0 for all s ∈ S, under any BEP(τ all, κ) 
with κ > 1, es is asymptotically stable for κ > Umax

Uss
and es is unstable for 1 < κ < Umax

Uss
.

The stability of es in the remaining cases, i.e. for κ = 1 and for κ = Umax
Uss

(if Umax
Uss

∈ N), 
depends on the tie-breaking rule.

Fig. 2 illustrates these results by showing the BEP(τ all, κ, βunif) dynamics in the coordination 
game (3) with n = 3 strategies and Uii = i. For κ = 2, e1 is unstable (since 1 < κ < Umax

Uss
= 3

1 =
3), e2 is asymptotically stable (since κ > Umax

Uss
= 3

2 = 1.5), and e3 is asymptotically stable (since 

s = 3 ∈ Smax and κ > 1). For κ ≥ 4, e1 becomes asymptotically stable too (since κ > Umax
Uss

=
3
1 = 3). �

4.4. Stability under BEP(τ all, κ, βunif) dynamics

In this section we study whether the lack of fulfillment of the sufficient condition for asymp-
totic stability in Proposition 4.3 can guarantee instability. Arigapudi et al. (2021) show that,
11
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Fig. 2. Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τ all, κ, βunif) dynamics, for κ = 2 (left) 
and κ = 4 (right).

for BEP(τ all, κ) dynamics with either κ > 1 or p > 2, a sufficient stability condition that is 
equivalent to Proposition 4.3, is both sufficient and necessary in κ-generic games. However, 
the requirement of being κ-generic can be quite restrictive in practice, as pointed out in Sec-
tion 3.

Here we remove the genericity condition and focus on BEP(τ all, κ, βunif) dynamics in any 
game, given that this is the family of BEP dynamics considered in most previous studies in 
the literature. In the next section, we will also consider BEP(τ all, κ, βstick) dynamics, as this 
alternative tie-breaking rule can be regarded as more natural in many cases.

For BEP(τ all, κ, βunif) dynamics, we show that the sufficient condition for asymptotic stability 
in Proposition 4.3 is also necessary for stability for any κ > n; more tightly, for any κ >

|S2|+1
p−1 . 

If the second-best payoff when playing against s-players is obtained by a single strategy (i.e., if 
|S2| = 1),8 then this property holds for any κ > 2 (for any κ , if p > 3).

Our next result (i.e. Proposition 4.4) is also relevant because it shows that under BEP(τ all, κ,

βunif) dynamics, beyond some small values of κ , and as κ grows, we will find either permanent 
asymptotic stability or a single transition from instability to permanent asymptotic stability. A 
transition from stability to instability can only happen within the small values of κ indicated in 
the proposition.

Proposition 4.4. Let es be a strict equilibrium and let S2 = argmaxi 	=s U(i; s, s, ..., s). If for a 
number of trials κ0 no strategy survives the iterated elimination of s-stabilizing strategies in 
S � {s}, then state es is asymptotically stable under BEP(τ all, κ, βunif) dynamics for any κ ≥ κ0. 
Otherwise:

• State es is unstable under BEP(τ all, κ, βunif) dynamics for any κ satisfying |S2|+1
p−1 < κ ≤ κ0, 

and also for any κ > 2
p−1 satisfying 

v1
ss−minj∈S�{s} v1

sj

v1
ss−v1

ts

< κ ≤ κ0.

8 Note that the condition |S2| = 1 is much weaker than the condition that a game has to satisfy in order to be κ-generic.
12
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• State es is unstable under BEP(τα, κ, βunif) dynamics for any κ satisfying n−1
α−1

min(|S2|+1,α)
p−1 <

κ ≤ κ0.

Example 4.3. Consider the BEP(τ all, κ, βunif) dynamics on the coordination game with payoff 
matrix (3), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =
Umax}.

In addition to what we inferred in Example 4.2 for any BEP(τ all, κ) dynamic, applying Propo-
sition 4.4 we can address the stability of es /∈Smax for κ = Umax

Uss
under BEP(τ all, κ, βunif). We could 

not do this using Corollary 4.2 because this stability depends on the tie-breaking rule. Here we 
deduce that if s /∈ Smax, state es is unstable under BEP(τ all, κ, βunif) for any κ ≤ Umax

Uss
, assuming 

κ > 2.
In Example 4.2 we showed that, in this game, j ∈ J ⊆ S � {s} is s-stabilizing in J if and 

only if κ > max
(

Ujj

Uss
,1

)
. Thus, if s /∈ Smax and κ ≤ Umax

Uss
, any strategy i ∈ Smax survives the 

iterated elimination of s-stabilizing strategies in S � {s} so, applying Proposition 4.4 and noting 

that 
v1
ss−minj∈S�{s} v1

sj

v1
ss−v1

ts

= Uss−0
Uss−0 = 1 and p = 2, we can state that es is unstable for any κ ≤ Umax

Uss
, 

assuming κ > 2
p−1 = 2.

Fig. 2 shows the BEP(τ all, κ, βunif) dynamics in the coordination game (3) with n = 3 strate-
gies and Uii = i. For κ = 3, e1 is unstable (since κ ≤ Umax

Uss
= 3

1 = 3), while for κ ≥ 4, e1 is 

asymptotically stable (since κ > Umax
Uss

= 3
1 = 3). �

4.5. Stability under BEP(τ all, κ, βstick) dynamics

For BEP(τ all, κ, βstick) dynamics, here we provide an improved sufficient condition for 
asymptotic stability, tighter than Proposition 4.3, and prove that this sufficient condition for 
asymptotic stability is also necessary for stability for any κ >

|S2|
p−1 . If the second-best payoff 

when playing against s-players is obtained by a single strategy (i.e., |S2| = 1), then this con-
dition holds for any κ > 1 (for any κ , if p > 2). To show this, first we need to define weakly 
s-stabilizing strategies.

Definition (Weakly s-stabilizing strategies). We say that a strategy j ∈ J is weakly s-stabilizing 
in J , for a number of trials κ , if

• vκ
ij ≤ vκ

ss for all i ∈ J , and
• If S2 ∩ J 	= ∅, then vκ

sj ≥ vκ
ts . �

Any s-stabilizing strategy in J is weakly s-stabilizing in J , so if the iterated elimination of 
s-stabilizing strategies in S2 � {s} eliminates all strategies (proving stability under BEP(τ all, κ) 
dynamics), so does the iterated elimination of weakly s-stabilizing strategies. The second pro-
cess, however, can prove stability under BEP(τ all, κ, βstick) dynamics in additional cases. We 
illustrate this fact in Example 4.4 (also, compare Fig. 3(i) vs Fig. 4(ii)).

Proposition 4.5. Let es be a strict equilibrium and let S2 = argmaxi 	=s U(i; s, s, ..., s). If for 
a number of trials κ0 no strategy survives the iterated elimination of weakly s-stabilizing 
strategies in S � {s}, then state es is asymptotically stable under BEP(τ all, κ, βstick) for any 
13
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Fig. 3. Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τ all, κ, βunif) dynamics, for κ = 3 (left) 
and κ = 4 (right).

κ ≥ κ0. Otherwise, it is unstable for any κ with |S2|
p−1 < κ ≤ κ0, and also for any κ > 1

p−1 with 
v1
ss−minj∈S�{s} v1

sj

v1
ss−v1

ts

< κ ≤ κ0.

Note that, if |S2| = 1, then the condition κ >
|S2|
p−1 holds for any κ > 1 (for any κ , if p > 2).

Example 4.4. Consider the BEP(τ all, κ, βstick) dynamic on the coordination game with payoff 
matrix (3), with Uss > 0 for all s ∈ S. Recall that Umax = maxi∈S Uii and Smax = {i ∈ S | Uii =
Umax}.

In Example 4.2 we showed that, in this game, j ∈ J ⊆ S � {s} is s-stabilizing in J if and only 

if κ > max
(

Ujj

Uss
,1

)
. Following the same reasoning, it is easy to check that j ∈ J ⊆ S � {s} is 

weakly s-stabilizing in J if and only if κ ≥ Ujj

Uss
.

Applying Proposition 4.5, we can then deduce that state es is asymptotically stable for ev-
ery κ ≥ Umax

Uss
, since this condition guarantees that all strategies are weakly s-stabilizing, so 

no strategy survives the iterated elimination of weakly s-stabilizing strategies. In particular, if 
s ∈ Smax, es is asymptotically stable for every κ ≥ Umax

Umax
= 1. If s /∈ Smax and κ < Umax

Uss
, any 

strategy i ∈ Smax is not weakly s-stabilizing, so it survives the iterated elimination of weakly s-

stabilizing strategies in S � {s}. Therefore, noting that 
v1
ss−minj∈S�{s} v1

sj

v1
ss−v1

ts

= Uss−0
Uss−0 = 1 and p = 2, 

we can state that es is unstable for any κ such that 1
p−1 = 1 < κ < Umax

Uss
.

To sum up, under BEP(τ all, κ, βstick), es is asymptotically stable if κ ≥ Umax
Uss

, and unstable if 

1 < κ < Umax
Uss

. In particular, if s ∈ Smax, then es is asymptotically stable for every κ .

Fig. 4 shows the BEP(τ all, κ, βstick) dynamics in the coordination game (3) with n = 3 strate-
gies and Uii = i. For κ = 2, e1 is unstable (since 1 < κ < Umax

Uss
= 3

1 = 3), e2 is asymptotically 

stable (since κ ≥ Umax
Uss

= 3
2 = 1.5), and e3 is asymptotically stable (since s = 3 ∈ Smax). For 

κ ≥ 3, e1 is also asymptotically stable (since κ ≥ Umax = 3 = 3). �

Uss 1

14
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Fig. 4. Coordination game (3) with n = 3 strategies, where Uii = i, under BEP(τ all, κ, βstick) dynamics, for κ = 2 (left) 
and κ = 3 (right).

5. Application: tacit coordination games

5.1. Introduction

In this section, we apply our results to the tacit coordination games studied by Van Huyck 
et al. (1990).9 These games formalize a symmetric situation where a group of individuals must 
decide how much effort to put into a common project. If everyone works equally hard, the return 
obtained by each of the individuals per unit of effort exceeds its cost. Thus, the more effort they 
collectively put, the greater the profit (i.e. payoff) they will obtain. However, the output of the 
project depends solely on the minimum effort made by any of the individuals; thus, if any one 
works less than the rest, the extra effort put by the others goes to waste.

Formally, tacit coordination games are symmetric p-player games with strategy space S =
{1, ..., n} (denoting the player’s effort or contribution) and payoff function

U(i; j1, . . . , jp−1) = a min(i, j1, . . . , jp−1) − b i,

where a > b ≥ 0 are two parameters controlling the return and the cost of effort units, respec-
tively.

Note that every homogeneous pure strategy profile (i, i, ..., i), in which all the p players 
choose the same strategy i, is a Nash equilibrium, and these equilibria are strictly Pareto ranked, 
with their rank preference growing with i. However, at any given situation, selecting the lowest 
strategy chosen by the rest of the players is always a best reply. This means that, at any equilib-
rium (i, ..., i), if any player deviates to a lower strategy j < i, then, following suit and changing 
to strategy j is always a best response. This creates a tension that can induce players to lower 
their strategy or “effort” as soon as any other player does –or as soon as they believe that any 
other player may do it.

9 We thank an anonymous reviewer for suggesting the application of our stability results under BEP dynamics to these 
coordination games, which combine an interesting structure with available experimental evidence, and illustrate a nice 
feature of BEP dynamics.
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Table 1
Payoff matrices for a p-player tacit coordination game with three strategies (n = 3). Left: general 
case. Middle: a = 2 and b = 1. Right: a = 1 and b = 0.

min of others’ strategies
1 2 3

1 a − b a − b a − b

2 a − 2b 2a − 2b 2a − 2b

3 a − 3b 2a − 3b 3a − 3b

min of others’ st.
1 2 3

1 1 1 1
2 0 2 2
3 −1 1 3

min of others’ st.
1 2 3

1 1 1 1
2 1 2 2
3 1 2 3

Table 1 represents the payoff function for the 3-strategy case (n = 3). The row headings on 
the payoff matrices in Table 1 indicate the strategy chosen by the player that receives the payoff. 
The column headings indicate the minimum value of the strategies chosen by the other (p − 1)

players.
For b > 0, the unique best reply to any (partial) pure strategy profile (j1, . . . , jp−1) used by the 

other players is the minimum of their contributions, i.e. min(j1, . . . , jp−1). The monomorphic 
states ei , with i ∈ {1, ..., n}, are consequently the only pure-strategy Nash equilibrium states of 
the game, and they are all strict. Strategy 1 (the maxmin strategy) is called the secure strategy, 
while strategy n is called the efficient strategy because, if adopted by everyone, it corresponds to 
the efficient equilibrium profile (n, ..., n). For b = 0, the efficient strategy n is weakly dominant 
(see Table 1, right matrix) and en is the only strict Nash state.

All symmetric strict Nash equilibria satisfy most equilibrium refinements and correspond to 
evolutionarily stable states, according to the standard definition of evolutionary stability (Weibull, 
1995).10 However, experimental evidence clearly shows that human subjects do discriminate 
between different strict equilibria in these games. Van Huyck et al. (1990) present and discuss 
neat experimental evidence on these games with n = 7 strategies, repeatedly played within (fixed) 
groups of different sizes. Their most striking findings are summarized below:11

• Games with b > 0. The behavior of human subjects in these games clearly depends on the 
number of players. When the game is played in very small groups (i.e., p = 2 players), 
there is a clear tendency to choose the efficient strategy.12 In contrast, in groups with several 
players (p ≈ 15), the distribution of strategies is initially diverse, and then the vast majority 
of players approach the lowest effort (i.e. the secure strategy 1) fairly quickly –in ten periods 
or less–, even when the experiment is repeated with the same group of co-players: “most 
people appear to consider the highest effort a good bet in small groups, but not in large 
groups” (Crawford, 1991). Note that this clear pattern of discrimination between strict Nash 
equilibria, dependent on the number of players and against the payoff-dominance criterion 
in the case of large groups, cannot be explained along the lines of traditional game theory 
(Crawford, 1991).

• Games with b = 0. In between two rounds of repeatedly playing the stage game with b > 0
within a large group (at both of which nearly all subjects ended up choosing the lowest ef-
fort; even faster and more sharply in the second round), Van Huyck et al. (1990) put the 

10 Crawford (1991) provides a detailed analysis of these games and shows that the only equilibrium state that satisfies a 
finite-population definition of evolutionary stability is the secure state e1.
11 We refer to each play of the stage game as one period, and we use the term round for several consecutive periods.
12 Van Huyck et al. (1990) also present results on setups where players were randomly paired after every period. In that 
case, they did not find any stable pattern of behavior.
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Fig. 5. Tacit coordination game with n = 3 strategies and a = 2b > 0 (see Table 1) under BEP(τ all, κ = 1, βstick) dy-
namics, for number of players p = 2 (left), p = 3 (middle) and p = 15 (right).

same groups to play one round of the game with b = 0 for five periods. In stark contrast 
with the results for b > 0, in this intermediate round with b = 0, nearly all players chose the 
highest effort in virtually all periods. This suggests that the consistent results obtained with 
b > 0 (both before and after playing the repeated game with b = 0) were not due to players’ 
misunderstanding of the incentives structure, but to strategic uncertainty, i.e. players’ uncer-
tainty about how the other players may respond to the multiplicity of strict Nash equilibria 
(Crawford, 1991).

5.2. Results

Without aiming to provide an explanation for the regularities found by Van Huyck et al. 
(1990) – we refer the reader to Crawford’s (1991) insightful analysis for a discussion of pos-
sible explanations –, our goal in this section is to explore whether BEP dynamics can capture the 
discrimination between different strict Nash equilibria shown by humans in tacit coordination 
games, and its dependence on the number of players p. We include the most relevant results of 
this analysis below (proofs are included in the appendix).

The stability analysis of strict equilibria states under BEP dynamics is more interesting for low 
values of the number of trials κ , since for sufficiently large values of κ , every strict equilibrium 
is asymptotically stable.

a) Games with b > 0. The stability of the different strict Nash states is highly dependent on 
the number of players p. For two players, the efficient state en (maximum contribution) is 
Lyapunov stable under any BEP(τ all, 1), while (assuming that the number of strategies is 
greater than 1 + a

a−b
) the secure state e1 (minimum contribution) is unstable (see Fig. 5(i) 

for the three-strategy case). By contrast, for more than two players, the efficient state en

is unstable (under any BEP(τ all, 1) dynamic13), while the secure state e1 is asymptotically 
stable (under every BEP(τ all, κ) dynamics). Fig. 5 illustrates these results for a game with 
n = 3 strategies under BEP(τ all, 1, βstick) dynamics.
The fact that increasing the number of players favors the instability of en and the stability of 
e1 is in full accordance with experimental evidence.

13 Proposition 4.1 also shows that the efficient state en is unstable for every BEP(τα, 1) dynamics if p > n.
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Fig. 6. Tacit coordination game with n = 3 strategies, p = 3 players, a = 3, and b = 2 (see Table 1) under 
BEP(τ all, κ, βstick) dynamics, for number of trials κ = 1 (left), κ = 3 (middle) and κ = 5 (right).

Let us now analyze the stability of the intermediate strict Nash states e2, ..., en−1 for p > 2. 
We find three cases:

i) a < 2b. In this case, every intermediate state e2, ..., en−1 is unstable under BEP(τ all, κ <
a

a−b
) dynamics, and also under BEP(τα, κ < a

a−b
) dynamics if p > n, leaving e1 as the 

only asymptotically stable strict Nash state (this includes the cases κ = 1 and κ = 2, 
given that a

a−b
> 2). In turn, every intermediate state e2, ..., en−1 is asymptotically stable 

under every BEP(τ all, κ > a
a−b

) dynamics. The stability of the intermediate states in 
the borderline case κ = a

a−b
depends on the tie-breaking rule (instability under βunif, 

stability under βstick).
Fig. 6 illustrates these results for a game with n = 3 strategies under BEP(τ all, κ, βstick) 
dynamics. Note that, in the cases where the intermediate state is stable (i.e. κ > 2), its 
basin of attraction is rather small compared with the basin of attraction of the secure 
state e1.

ii) a = 2b. In this case, every intermediate state e2, ..., en−1 is unstable under BEP(τ all, κ =
1, βstick) dynamics for p > 3, leaving e1 as the only asymptotically stable strict Nash 
state. This is also the case under BEP(τ all, κ = 1, βunif) dynamics with p > 4, and under 
BEP(τα, κ = 1, βunif) dynamics with p ≥ 2n. For κ > 2, every intermediate state is 
asymptotically stable under every BEP(τ all, κ > 2) dynamics. The case κ = 2 depends 
on the tie-breaking rule (stability under βstick, instability under βunif).

iii) a > 2b. In this case, for p > 2, every intermediate state e2, ..., en−1 is asymptotically 
stable under BEP(τ all, κ) dynamics. Note, however, that the basin of attraction of these 
intermediate states is again rather small compared with the basin of attraction of the 
secure state e1, especially if p is large (see Fig. 7).

b) Games with b = 0. In this case, strategy n is weakly dominant and the efficient state en is the 
only strict Nash equilibrium state. For p = 2 players, this efficient state is almost globally 
asymptotically stable under both BEP(τ all, 1, βunif) and BEP(τ all, 1, βstick). Besides, for any 
number of players, en is asymptotically stable under BEP(τ all, κ > 1) dynamics, and also 
under the BEP(τ all, 1, βstick) dynamic.14 Fig. 8 illustrates these results for a game with n = 3
strategies under the BEP(τ all, 1, βstick) dynamic.

14 However, Proposition 4.4 shows that en is unstable under the BEP(τ all, 1, βunif) dynamic for p > 3, and under 
BEP(τα, 1, βunif) dynamics for p ≥ 2n..
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Fig. 7. Tacit coordination game with n = 3 strategies and a > 2b > 0 (see Table 1) under BEP(τ all, κ = 1) dynamics (for 
any tie-breaker), for number of players p = 5 (left), p = 10 (middle) and p = 15 (right).

Fig. 8. Tacit coordination game with n = 3 strategies and b = 0 (see Table 1) under BEP(τ all, κ = 1, βstick) dynamics, 
for number of players p = 2 (left), p = 3 (middle) and p = 15 (right).

Thus, in general terms (but also with a few exceptions –e.g. see footnote 14), BEP(τ all, κ) 
dynamics with a low number of trials κ seem to exhibit regularities similar to those observed in 
the experimental evidence for tacit coordination games, i.e.: (i) for b > 0, clear discrimination 
between strict Nash states, selecting the secure state e1 in large groups but not in games with two 
players, and (ii) for b = 0, a clear tendency to select the weakly dominant strategy.

5.3. Discussion

Strict Nash states are stable under most deterministic evolutionary dynamics (Sandholm, 
2014), such as all monotone imitative dynamics (e.g. the replicator dynamics (Taylor and Jonker, 
1978)), all sign-preserving excess payoff dynamics (e.g. the BNN dynamic (Brown and von 
Neumann, 1950)), and all pairwise comparison dynamics (e.g. the Smith (1984) dynamic). The 
intuition is that, in a small neighborhood of a strict Nash state es , the strict Nash strategy s is the 
unique best reply to every population state in terms of expected payoffs.

However, consider a population state in which most players use the strict Nash strategy s and 
a small fraction ε of players use strategy j 	= s. Under random matching, the probability that an 
s-player happens to be in a p-player group in which there is at least one j -co-player is approxi-
mately ε times the number (p − 1) of co-players (considering a first-order approximation). This 
means that, given a fixed fraction of j -players in a population, the larger the number of play-
ers p in a game, the larger the probability of finding at least one co-player using strategy j . If 
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agents revise their strategies based on the performance that those strategies provide when tested 
in specific groups of p (randomly drawn) players –instead of looking at the expected payoff of 
each strategy in the population–, then the number of players p can have a large influence on the 
population dynamics.

Experimental results in tacit coordination games constitute a clear example of the practical 
relevance of the number of players in the stability of different strict Nash equilibria, and BEP 
dynamics in tacit coordination games also illustrate this effect. Focusing on tacit coordination 
games with a < 2b and BEP(τ all, κ = 1) dynamics, suppose that most players (a fraction 1 − ε) 
use strategy s > 1 and a small fraction ε of players use strategy j < s. Most of the revising 
s-players who, when testing strategy s, happen to meet a j -co-player in their group, will then 
adopt some strategy lower than s (under test-all, they will likely adopt strategy s − 1, because, 
when testing strategies against a group of s-players, s − 1 is the second-best reply, after s). As 
discussed before, the number of such revising agents is roughly proportional to the number of 
co-players (p − 1).15 To be specific, they will be approximately (1 − ε) ε (p − 1). In turn, most 
of the ε j -players will adopt strategy s when revising. Thus, if (1 − ε) ε (p − 1) > ε, i.e. if 
p > 2−ε

1−ε
, state es is unstable. This is the intuition why, for a sufficiently large number of co-

players (p > 2 under τ all; p > n under τα), the efficient and the intermediate strict Nash states 
become unstable.16

Note that BEP dynamics capture the effect that the number of players p can have in the sta-
bility of a strict Nash state in tacit coordination games, via the probability of meeting a deviating 
j -co-player in a group of p players, which is an increasing function of p. This increasing prob-
ability of meeting a deviating j -co-player is also likely to be an important factor to explain the 
effect of the number of players in the experimental results, as pointed out by Van Huyck et al. 
(1990, p. 236). In any case, it is important to emphasize that many experimental designs in the 
literature do not readily fit in the evolutionary framework we have assumed here, and one would 
expect additional factors to be at play in those experimental studies (see Crawford (1991)).

6. Conclusions

Strict Nash equilibria correspond to rest points under Best Experienced Payoff dynamics, 
but these rest points may be unstable. In this paper we provide a simple test, with a simple 
interpretation, that guarantees asymptotic stability under BEP(τ all, κ) dynamics. We also provide 
a related simple test that guarantees instability of strict equilibria under the more general family 
of BEP(τα, κ) dynamics.

Focusing on BEP(τ all, κ, βunif) dynamics, which is the family of BEP dynamics prevalent in 
the literature, and for values of the number of trials κ above a small threshold value κ1 ≤ n, our 
stability test proves either asymptotic stability or, otherwise, instability. We also show that, for 
κ > n and as κ increases, any strict equilibrium is either always asymptotically stable or there 
is a single transition from instability to asymptotic stability, within a bounded range of values 
of κ .17 Similar results are obtained for the BEP(τ all, κ, βstick) dynamic, for which we present an 
even tighter asymptotic stability test.

15 In contrast, note that under best-response dynamics (in terms of expected payoff), no s-player would change strategy 
for sufficiently low ε.
16 Similar arguments can be applied for the other sampling dynamics, i.e. sampling best response dynamics or action-
sampling dynamics, under which strict Nash states can also be unstable (Sandholm, 2001).
17 Sandholm et al. (2020) provide bounds on the values of κ that can correspond to instability.
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Finally, in order to illustrate our results and to explore the predictive power of BEP dynamics, 
we have conducted a detailed analysis of the stability of strict equilibria in tacit coordination 
games. In these games, experimental evidence is at odds with the predictions of most game 
theoretical analyses.

Data availability

The software we developed and used to create the figures (EvoDyn-3s (Izquierdo et al., 2018) 
for Figs. 1-4 and BEP-TCG (Izquierdo and Izquierdo, 2022) for Figs. 5-8) is open source and 
freely available.

Appendix A

A.1. Iterated elimination of strategies

Definition (Survivors of iterated elimination of strategies satisfying condition C in a finite set 
�). Let J 0 ≡ � and define Jm recursively by

Jm = {i ∈ Jm−1 | i does not satisfy condition C in Jm−1}.
The (potentially empty) set J |�| is the set of strategies that survive iterated elimination of strate-
gies satisfying condition C in set �. An algorithm for this procedure is described in Algorithm 1.

Algorithm 1 Iterated elimination of strategies satisfying condition C in set �.
J ← �

while ∃j ∈ J | j satisfies condition C in J do
J ← J � {j ∈ J | j satisfies condition C in J }

end while � J at the end is the set of all surviving strategies after iterated elimination

A.2. Proofs

Note. Bound on the Perron-Frobenius eigenvalue of DW+(0) under BEP dynamics, based on 
the columns of the principal submatrices of DW+(0).

Under BEP(τ all, κ) dynamics, the inflow (positive) terms in column j of DW+(0) are associ-
ated to the terms 1[vκ

ij > vκ
ss], 1[vκ

ts > vκ
sj ], 1[vκ

ij = vκ
ss] or 1[vκ

ts = vκ
sj ], when the corresponding 

cases in the brackets hold, i.e., when the indicator function takes the value 1. The inflow as-
sociated to the last two terms, 1[vκ

ij = vκ
ss] and 1[vκ

ts = vκ
sj ], is 0 under tie-breaking rules that 

always select the agent’s current strategy if it is among the optimal tested strategies (such as 
βstick). In this case, the less favorable for the instability of s, the inflow (positive) terms in 
column j of DW+(0) are (p − 1) κ 1[vκ

ij > vκ
ss], at position DW+

ij (0), plus a total inflow of 
(p−1) κ 1[vκ

ts > vκ
sj ] distributed (according to the tie-breaking rule) among the rows of DW+(0)

corresponding to the strategies in S2. Consequently, given a subset J ⊆ S � {s} and considering 
its associated principal submatrix DW+

J (0), corresponding to the strategies in J , the largest 
value that we can guarantee (for every tie-breaking rule) for the sum of the terms in the col-
umn of DW+

J (0) corresponding to strategy j is (p − 1) κ
∑

i∈J 1[vκ
ij > vκ

ss], plus, if S2 ⊆ J , 

(p − 1) κ 1[vκ > vκ ]. Considering τα , for κ > n−1 (with τ all, either p > 2 or k > 2 are 
ts sj (p−1)(α−1)
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enough to satisfy this condition) it can be shown, following arguments similar to the proof of fact 
2 in Arigapudi et al. (2021), that proposition 5.4 (ii) in Sandholm et al. (2020), which is based on 
the bound discussed here (by columns), is more general than proposition 5.4 (i), which is based 
on a bound by rows that considers only the terms 1[vκ

ij > vκ
ss]. �

Proof of Proposition 4.1. Considering κ = κ0, if the iterated elimination of potentially s-sta-
bilizing strategies does not eliminate all strategies in S � {s}, then there is some non-empty set 
J ⊆ S � {s} which does not contain any potentially s-stabilizing strategies. This implies that for 
every j ∈ J , either ∃i ∈ J such that vκ

ij > vκ
ss or (S2 ⊆ J and vκ

sj < vκ
ts ). With these conditions, 

proposition 5.4 of Sandholm et al. (2020) guarantees instability of the strict equilibrium if κ >
n−1

(p−1)(α−1)
. The extension to κ < κ0 comes from the fact that if a strategy is not potentially s-

stabilizing in J for a number of trials κ0, then it is not potentially s-stabilizing in J for any 
κ < κ0. �
Proof of Proposition 4.3. Following Sandholm et al. (2020), consider a change of variables for 
the population state (x1, x2, ..., xn) that sends the equilibrium es to the origin 0, by eliminating 
the coordinate xs while keeping the labeling of the other coordinates. In this system, consider 
the Jacobian of the dynamics at the equilibrium, DW(0). Let DWJ(0) be the square submatrix 
of DW(0) whose rows and columns correspond to the strategies in J . If j is s-stabilizing in J
for κ = κ0, then the column of DWJ (0) corresponding to strategy j is made up (see Sandholm 
et al. (2020)) by zeros in all non-diagonal positions, with a value −1 at the diagonal position. 
Let (j1, j2, ..., jn−1) be an ordering of the (n − 1) strategies in S � {s} that iteratively elimi-
nates s-stabilizing strategies. Then the column of DW(0) corresponding to strategy j1 is made 
up by zeros in all non-diagonal positions, with a value −1 at the diagonal position. Considering 
the cofactor expansion of the determinant of the Jacobian along the column corresponding to 
j1, and denoting by DW−{j1}(0) the submatrix of DW(0) obtained by eliminating the column 
and row corresponding to j1, we have that |DW(0)| = (−1) |DW−{j1}(0)|. Now, the column of 
DW−{j1}(0) corresponding to strategy j2 is made up by zeros in all non-diagonal positions, with 
a value −1 at the diagonal position. Proceeding sequentially with the other strategies we obtain 
|DW(0)| = (−1) |DW−{j1}(0)| = (−1)2 |DW−{j1,j2}(0)| = ... = (−1)n−1, i.e., all the eigenval-
ues of the Jacobian have negative real parts, which implies asymptotic stability of the equilibrium. 
The result for κ ≥ κ0 follows from the fact that if a strategy is s-stabilizing in J for a number of 
trials κ0, then it is s-stabilizing in J for any κ > κ0. �
Proof of Proposition 4.4. The stability part comes from Proposition 4.3. For the instability part, 
first consider κ = κ0. If the iterated elimination of s-stabilizing strategies does not eliminate all 
strategies in S � {s}, then there is some non-empty set J ⊆ S � {s} which does not contain any 
s-stabilizing strategies. This means that for every j ∈ J , either ∃i ∈ J such that vκ

ij ≥ vκ
ss or 

(S2 ∩ J 	= ∅ and vκ
sj ≤ vκ

ts ). Considering this and Lemma A.1 below, which is a direct adaptation 

of proposition 5.4 in Sandholm et al. (2020) for the BEP(τα, κ, βunif) dynamics, we have that the 
minimum possible value of the left hand side on Equation (4) is (p − 1)κ 1

|S2|+1 , so the condi-

tion κ >
|S2|+1
p−1 guarantees instability under BEP(τ all, κ, βunif) dynamics. If 

v1
ss−minj∈S�{s} v1

sj

v1
ss−v1

ts

< κ , 

then vκ
sj > vκ

ts for all j 	= s and the minimum possible value indicated before is (p − 1)κ 1
2 , so 

the condition κ > 2
p−1 guarantees instability. The adaptation of these results to BEP(τα, κ, βunif) 

dynamics is immediate considering Equation (5). The extension to κ < κ0 comes from the fact 
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that if a strategy is not s-stabilizing in J for a number of trials κ0, then it is not s-stabilizing in J
for any κ < κ0.

Lemma A.1. Let es be a strict equilibrium, let S2 = argmaxi 	=s U(i; s, s, ..., s), and let t ∈ S2. 
Under any BEP(τ all, κ, βunif) dynamic, state es is linearly unstable if, for some nonempty J ⊆
S � {s}, the following condition holds for all j ∈ J :

(p − 1)κ

(∑
i∈J

1[vκ
ij > vκ

ss] + 1
2

∑
i∈J

1[vκ
ij = vκ

ss]
)

(4)

+ (p − 1)κ |S2 ∩ J |
(

1
|S2|1[vκ

sj < vκ
ts] + 1

|S2|+1 1[vκ
sj = vκ

ts]
)

> 1

And under any BEP(τα, κ, βunif) dynamic, letting b = min(|S2|, α − 1), state es is linearly 
unstable if, for some nonempty J ⊆ S � {s}, the following condition holds for all j ∈ J :

(p − 1)κ
α − 1

n − 1

(∑
i∈J

1[vκ
ij > vκ

ss] + 1
2

∑
i∈J

1[vκ
ij = vκ

ss]
)

(5)

+ (p − 1)κ
α − 1

n − 1
|S2 ∩ J |

(
1
b

1[vκ
sj < vκ

ts] + 1
b+1 1[vκ

sj = vκ
ts]

)
> 1 �

Proof of Proposition 4.5. The stability part comes from adapting the proof of Proposition 4.3 to 
the BEP(τ all, κ, βstick) dynamic, considering that the Jacobian DW(0) for the BEP(τ all, κ, βstick)

dynamic has components (Sandholm et al., 2020):

DWij (0) =
{

(p − 1)κ 1[vκ
ij > vκ

ss] − 1[j = i] if i /∈ S2,

(p − 1)κ
(

1[vκ
ij > vκ

ss] + 1
|S2|1[vκ

is > vκ
sj ]

)
− 1[j = i] if i ∈ S2.

For the instability part follow the steps in the proof of Proposition 4.4, noting that if a non-
empty set J ⊆ S� {s} does not contain any weakly s-stabilizing strategies, then, for every j ∈ J , 
either ∃i ∈ J such that vκ

ij > vκ
ss or (S2 ∩ J 	= ∅ and vκ

sj < vκ
ts ). Note also that the equivalent of 

Equation (2) for the BEP(τ all, κ, βstick) dynamic is

(p − 1)κ

(∑
i∈J

1[vκ
ij > vκ

ss] + |S2 ∩ J |
(

1
|S2|1[vκ

sj < vκ
ts]

))
> 1 �

Proofs of statements in Section 5.2 (Results on Tacit Coordination Games). For the anal-
ysis of the stability of the strict Nash states of a p-player tacit coordination game under BEP 
dynamics, we calculate the values vκ,s

ij , which in this case are:

v
κ,s
ij = (κ − 1)U(i; s, s, ..., s) + U(i; j, s, ..., s)

= (κ − 1) a min(i, s) − κ b i + a

{
min(i, j) if p = 2

min(i, j, s) if p > 2
.

The n × n matrices V κ=1,s for p = 2 and for p > 2 are shown in Tables 2 and 3 respectively. 
Note that V κ=1,s for p = 2 (Table 2) is the payoff matrix Uij . Matrices V κ,s for κ > 1 can be 
easily calculated from the corresponding matrix V κ=1,s by adding, to every column in V κ=1,s , 
column s of V κ=1,s times (κ − 1).
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Table 2
Matrix V κ=1,s for tacit coordination games with p = 2
players. This is also the payoff matrix of the game if p = 2.

1 2 3 . . . n

1 a − b a − b a − b . . . a − b

2 a − 2b 2a − 2b 2a − 2b . . . 2a − 2b

3 a − 3b 2a − 3b 3a − 3b . . . 3a − 3b

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

n a − nb 2a − nb 3a − nb . . . na − nb

Table 3
Matrix V κ=1,s for tacit coordination games with more than two players (i.e. p > 2).

1 2 . . . s − 1 s s + 1 . . . n

1 a − b a − b . . . a − b a − b a − b . . . a − b

2 a − 2b 2a − 2b . . . 2a − 2b 2a − 2b 2a − 2b . . . 2a − 2b

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

s − 1 a − (s − 1)b 2a − (s − 1)b . . . (s − 1)(a − b) (s − 1)(a − b) (s − 1)(a − b) . . . (s − 1)(a − b)

s a − sb 2a − sb . . . (s − 1)a − sb s(a − b) s(a − b) . . . s(a − b)

s + 1 a − (s + 1)b 2a − (s + 1)b . . . (s − 1)a − (s + 1)b sa − (s + 1)b sa − (s + 1)b . . . sa − (s + 1)b

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

n a − nb 2a − nb . . . (s − 1)a − nb sa − nb sa − nb . . . sa − nb

a) Games with b > 0.
Results about the stability of the efficient state en and of the secure state e1.
– For p = 2, the efficient state en is Lyapunov stable under any BEP(τ all, 1).

Proof. Direct application of Proposition 5.11(i) in Sandholm et al. (2020), noting that 
Unn > Uij for all i, j 	= n (see Table 2). �

– For p = 2 and n > 1 + a
a−b

, the secure state e1 is unstable under any BEP(τ all, 1).

Proof. Direct application of Proposition 5.4(i) in Sandholm et al. (2020), considering the 
subset of strategies J = {n, n − 1} and noting that, if n > 1 + a

a−b
, then U11 < Uij for 

i, j ∈ J (see Table 2). �
– Proposition 4.1 shows that the efficient state en is unstable under any BEP(τ all, 1) dynamic 

if p > 2, and under every BEP(τα, 1) dynamics if p > n.

Proof. Table 3 shows matrix V κ=1,s for p > 2. For s = n we have S2 = {n − 1} and 
v

1,s
s(n−1) = (n − 1) a − n b < (n − 1)(a − b) = v

1,s
ts . Consequently, strategy (n − 1) is not 

potentially n-stabilizing in any set that contains it, and Proposition 4.1 shows that en is 
unstable under the BEP(τ all, 1) dynamic for p > 2, and under every BEP(τα, 1) dynamics 
for p > n. �

– Proposition 4.3 shows that the secure state e1 is asymptotically stable under every 
BEP(τ all, κ) dynamics if p > 2.
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Proof. Table 3 shows matrix V κ=1,s for p > 2. For s = 1 and κ = 1, the condition vκ=1
ij <

vκ=1
ss = s (a − b), which implies satisfaction of part of the conditions for s-stabilizing 

strategies, holds for all i, j 	= s. Looking at matrix V κ=1,s=1, we have S2 = {2} and v1,s
sj =

a − b > a − 2b = v
1,s
ts . Consequently, all strategies are 1-stabilizing in S � {1} for κ = 1, 

and we can apply Proposition 4.3 to state that the secure state e1 is asymptotically stable 
under every BEP(τ all, κ). �

Results about the stability of the intermediate strict Nash states e2, ..., en−1.
i) a < 2b. Proposition 4.1 shows that every intermediate state e2, ..., en−1 is unstable under 

BEP(τ all, κ < a
a−b

) dynamics for p > 2, and under every BEP(τα, κ < a
a−b

) dynamics 
for p > n. Conversely, if κ > a

a−b
, then Proposition 4.3 shows that every intermediate 

state is asymptotically stable under every BEP(τ all, κ > a
a−b

) dynamics for p > 2. The 
case κ = a

a−b
depends on the tie-breaking rule. For p > 2, Proposition 4.4 shows that 

every intermediate state is unstable under BEP(τ all, κ = a
a−b

, βunif), and Proposition 4.5

shows that every intermediate state is stable under BEP(τ all, κ = a
a−b

, βstick).

Proof. Table 3 shows matrix V κ=1,s for p > 2. For s ∈ {2, ..., n −1}, the condition vκ
ij <

vκ
ss = κ s (a − b), which implies satisfaction of part of the conditions for s-stabilizing 

strategies, holds for all i, j 	= s. Given that a < 2b, we have S2 = {s − 1}.
We can now compute vκ,s

s(s−1) = κs(a − b) − a, and vκ,s
ts = v

κ,s
(s−1)s = κ(s − 1)(a − b). 

Therefore, the condition vκ,s
s(s−1) ≥ v

κ,s
ts holds if and only if κ ≥ a

a−b
.

Thus, if κ < a
a−b

, then vκ,s
s(s−1) < v

κ,s
ts , so strategy (s − 1) is not potentially s-stabilizing 

in any set that contains it, and Proposition 4.1 shows that every intermediate state es ∈
{e2, ..., en−1} is unstable under BEP(τ all, κ < a

a−b
) dynamics for p > 2, and under every 

BEP(τα, κ < a
a−b

) dynamics for p > n.
Conversely, if κ > a

a−b
, then vκ,s

s(s−1) > v
κ,s
ts , so strategy (s − 1) is s-stabilizing in S �

{s}. After eliminating strategy (s − 1), all the other strategies are s-stabilizing in J =
S � {s, s − 1}, since vκ

ij < vκ
ss = κ s (a − b) for all i, j 	= s and S2 ∩ J = ∅. Thus, no 

strategy survives the iterated elimination of s-stabilizing strategies, and we can apply 
Proposition 4.3 to state that every intermediate state es ∈ {e2, ..., en−1} is asymptotically 
stable under every BEP(τ all, κ > a

a−b
).

The case κ = a
a−b

> 2 depends on the tie-breaking rule.18 For p > 2, Proposition 4.4

can be applied to prove that every intermediate state is unstable under BEP(τ all, κ =
a

a−b
, βunif),19 and Proposition 4.5 can be applied to prove that every intermediate state 

is asymptotically stable under BEP(τ all, κ = a
a−b

, βstick).20 �
ii) a = 2b. Proposition 4.5 shows that every intermediate state e2, ..., en−1 is unstable under 

BEP(τ all, κ = 1, βstick) dynamics for p > 3. Proposition 4.4 shows that they are also 

18 Given that a < 2b, we have a
a−b

> 2.
19 In this case, strategy (s − 1) is not s-stabilizing in any set that contains it and |S2|+1

p−1 = 2
p−1 < 2 if p > 2.

20 In this case, strategy (s − 1) is weakly s-stabilizing in S � {s}. After eliminating strategy (s − 1), all the other 
strategies are weakly s-stabilizing in J = S � {s, s − 1}, since vκ

ij
< vκ

ss = κ s (a − b) for all i, j 	= s and S2 ∩ J = ∅. 
Thus, no strategy survives the iterated elimination of weakly s-stabilizing strategies.
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unstable under BEP(τ all, κ = 1, βunif) dynamics for p > 4 and under every BEP(τα, κ =
1, βunif) dynamics for p ≥ 2n.
Conversely, if κ > 2, then Proposition 4.3 shows that every intermediate state is asymp-
totically stable under every BEP(τ all, κ > 2) dynamics for p > 2.
The borderline case κ = 2 depends on the tie-breaking rule. For p > 2, Proposition 4.4
shows that every intermediate state is unstable under BEP(τ all, κ = 2, βunif), and Propo-
sition 4.5 shows that every intermediate state is stable under BEP(τ all, κ = 2, βstick).

Proof. Table 3 shows matrix V κ=1,s for p > 2. For s ∈ {2, ..., n −1}, the condition vκ
ij <

vκ
ss = κ s (a − b), which implies satisfaction of part of the conditions for s-stabilizing 

strategies, holds for all i, j 	= s. Given that a = 2b, we have S2 = {s − 1, s + 1}, and 
v

κ,s
ts = v

κ,s
(s−1)s = v

κ,s
(s+1)s = κ (s − 1)(a − b). We also have vκ,s

s(s−1) = κ s (a − b) − a and 
v

κ,s
s(s+1) = κ s (a − b). Thus, vκ,s

s(s−1) > v
κ,s
ts if and only if κ > a

a−b
= 2; and it is always 

the case that vκ,s
s(s+1) > v

κ,s
ts .

Therefore, if κ > a
a−b

= 2, then vκ,s
s(s−1) > v

κ,s
ts , so strategies (s − 1) and (s + 1) are 

both s-stabilizing in S � {s}. After eliminating both of them, all the other strategies are 
s-stabilizing in J = S� {s, s −1, s +1}, since vκ

ij < vκ
ss = κ s (a −b) for all i, j 	= s and 

S2 ∩J = ∅. Thus, no strategy survives the iterated elimination of s-stabilizing strategies, 
and we can apply Proposition 4.3 to state that every intermediate state es ∈ {e2, ..., en−1}
is asymptotically stable under every BEP(τ all, κ > a

a−b
= 2) if p > 2.

The case where κ ≤ a
a−b

= 2 depends on the tie-breaker. Let us start with βunif. If κ ≤
a

a−b
= 2, then vκ,s

s(s−1) ≤ v
κ,s
ts , so strategy (s − 1) is not s-stabilizing in any set that 

contains it. Thus, Proposition 4.4 can be applied to prove that every intermediate state is 
unstable under BEP(τ all, κ = 1, βunif) if p > 4, under BEP(τ all, κ = 2, βunif) if p > 2, 
and under every BEP(τα, κ = 1, βunif) dynamics for p ≥ 2n.21

Let us now focus on βstick. If κ = a
a−b

= 2, then vκ,s
s(s−1) = v

κ,s
ts , so strategies (s − 1)

and (s + 1) are both weakly s-stabilizing in S � {s}. After eliminating both of them, 
all the other strategies are weakly s-stabilizing in J = S � {s, s − 1, s + 1}, since 
vκ
ij < vκ

ss = κ s (a − b) for all i, j 	= s and S2 ∩ J = ∅. Thus, no strategy survives the 
iterated elimination of weakly s-stabilizing strategies, and we can apply Proposition 4.5
to state that every intermediate state es ∈ {e2, ..., en−1} is asymptotically stable under 
every BEP(τ all, κ = 2, βstick).
If κ = a

a−b
< 2, then vκ,s

s(s−1) < v
κ,s
ts , so strategy (s − 1) is not weakly s-stabilizing in 

any set that contains it. In this case, Proposition 4.5 shows that every intermediate state 
es ∈ {e2, ..., en−1} is unstable under BEP(τ all, κ = 1, βstick) dynamics for p > 3.22 �

iii) a > 2b. Proposition 4.3 shows that every intermediate state e2, ..., en−1 is asymptotically 
stable under every BEP(τ all, κ) dynamics for p > 2.

Proof. Table 3 shows matrix V κ=1,s for p > 2. For s ∈ {2, ..., n −1}, the condition vκ
ij <

vκ
ss = κ s (a − b), which implies satisfaction of part of the conditions for s-stabilizing 

strategies, holds for all i, j 	= s. Given that a > 2b, we have S2 = {s + 1}.

21 Note that |S2|+1
p−1 = 3

p−1 < 1 if p > 4; |S2|+1
p−1 = 3

p−1 < 2 if p > 2; and n−1
α−1

min(|S2|+1,α)
p−1 < 1 if p ≥ 2n.

22 Note that |S2| = 2 < 1 if p > 3.

p−1 p−1
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We can now compute vκ,s
s(s+1) = κ s (a−b), and vκ,s

ts = v
κ,s
(s+1)s = κ (s (a−b) −b). There-

fore, the condition vκ,s
s(s+1)

> v
κ,s
ts always holds. Thus, strategy (s + 1) is s-stabilizing in 

S � {s}. After eliminating strategy (s + 1), all the other strategies are s-stabilizing in 
J = S � {s, s + 1}, since vκ

ij < vκ
ss = κ s (a − b) for all i, j 	= s and S2 ∩ J = ∅. Thus, 

no strategy survives the iterated elimination of s-stabilizing strategies, and we can apply 
Proposition 4.3 to state that every intermediate state es ∈ {e2, ..., en−1} is asymptotically 
stable under every BEP(τ all, κ). �

b) Games with b = 0.
– For p = 2 players, the efficient state en is almost globally asymptotically stable under both 

BEP(τ all, 1, βunif) and BEP(τ all, 1, βstick).

Proof. Direct application of Proposition 5.11(ii) in Sandholm et al. (2020), noting that 
if s = n, for all i, j 	= s, we have Usj = a j ≥ min(Uij , Uis) = min(a min(i, j), i a) =
a min(i, j) (see Table 2). �

– For p ≥ 2, Proposition 4.3 shows that en is asymptotically stable under every BEP(τ all, κ>

1) dynamics, and Proposition 4.5 shows that en is asymptotically stable under every 
BEP(τ all, κ, βstick) dynamics.

Proof. For s = n and i, j 	= s, we have vκ
ij = (κ − 1) i a + a min(i, j), and vκ

ss = (κ −
1) n a + a n = κ n a. Thus, vκ

ij < vκ
ss for all i, j 	= s, which implies satisfaction of part of 

the conditions for s-stabilizing strategies and for weakly s-stabilizing strategies.
Looking at matrix V κ=1,s=n, we have S2 = {n − 1}. We can now compute vκ,s

s(n−1) =
v

κ,s
n(n−1) = (κ − 1) a n + a (n − 1), and vκ,s

ts = v
κ,s
(n−1)n = (κ − 1) a (n − 1) + a (n − 1). 

Therefore, condition vκ,s
s(n−1)

> v
κ,s
ts holds if κ > 1, and condition vκ,s

s(n−1)
≥ v

κ,s
ts holds if 

κ ≥ 1. Thus, strategy (s + 1) is s-stabilizing in S � {s} if κ > 1 and weakly s-stabilizing 
in S � {s} for κ = 1. After eliminating strategy (n − 1), all the other strategies are s-
stabilizing in J = S � {s, n − 1} for any κ , since vκ

ij < vκ
ss for all i, j 	= s and S2 ∩ J = ∅.

Thus, if κ > 1, no strategy survives the iterated elimination of s-stabilizing strategies, and 
we can apply Proposition 4.3 to state that en is asymptotically stable is asymptotically 
stable under every BEP(τ all, κ > 1).
Similarly, if κ = 1, no strategy survives the iterated elimination of weakly s-stabilizing 
strategies, and we can apply Proposition 4.5 to state that en is asymptotically stable under 
every BEP(τ all, κ, βstick). �

– Proposition 4.4 shows that, under BEP(τ all, 1, βunif) dynamic, en is unstable for every 
number of players p > 3, and under every BEP(τα, 1, βunif) dynamics for p ≥ 2n.

Proof. Looking at matrix V κ=1,s=n, we have S2 = {n − 1}. We can now compute 
v

κ=1,s
s(n−1) = v

1,n
n(n−1) = a (n −1), and vκ=1,s

ts = v
1,n
(n−1)n = a (n −1). Therefore, vκ,s

s(n−1) = v
κ,s
ts . 

Consequently, strategy (n − 1) is not n-stabilizing in any set that contains it, and Propo-
sition 4.4 shows that en is unstable under the BEP(τ all, 1, βunif) dynamic for p > 3, and 
under every BEP(τα, 1, βunif) dynamics for p ≥ 2n.23 �

23 Note that |S2| = 2 < 1 if p > 3; and n−1 min(|S2|+1,α) = n−1 2 < 1 if p ≥ 2n.

p−1 p−1 α−1 p−1 α−1 p−1
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