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Abstract
Data centers are a fundamental infrastructure in the Big-Data era, where applications 
and services demand a high amount of data and minimum response times. The inter-
connection network is an essential subsystem in the data center, as it must guarantee 
high communication bandwidth and low latency to the communication operations of 
applications, otherwise becoming the system bottleneck. Simulation is widely used 
to model the network functionality and to evaluate its performance under specific 
workloads. Apart from the network modeling, it is essential to characterize the end-
nodes communication pattern, which will help identify bottlenecks and flaws in the 
network architecture. In previous works, we proposed the VEF traces framework: a 
set of tools to capture communication traffic of MPI-based applications and generate 
traffic traces used to feed network simulator tools. In this paper, we extend the VEF 
traces framework with new communication workloads such as deep-learning train-
ing applications and online data-intensive workloads.

Keywords Data center networks · Modeling and simulation · Data center 
workloads · Performance evaluation

 * Francisco J. Andújar 
 fandujarm@infor.uva.es

 Miguel Sánchez de la Rosa 
 miguel.sanchez@uclm.es

 Jesus Escudero-Sahuquillo 
 jesus.escudero@uclm.es

 José L. Sánchez 
 jose.sgarcia@uclm.es

1 Computing System Department, Universidad de Valladolid, Campus Miguel Delibes, Paseo de 
Belén, 47011 Valladolid, Spain

2 Computing System Department, Universidad de Castilla-La Mancha, Avda. de España s/n, 
02071 Albacete, Spain

http://orcid.org/0000-0001-8884-7334
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04692-0&domain=pdf


 F. J. Andújar et al.

1 3

1 Introduction

Societal challenges in fields such as Climate, Medicine, Energy, Astrophys-
ics, Media content consumption, Social Networks, Security, and Smart Cities 
are driving the technological evolution of Digital Technology. Data center users 
worldwide demand instantaneous access to vast amounts of data, generating tril-
lions of requests that must be analyzed and processed, returning valuable informa-
tion within an acceptable time frame. The International Data Corporation (IDC) 
forecasts that the global data-sphere will grow from 33 ZB in 2018 to 163 ZB 
by 2025. In this context, information technologies (IT), such as 5G, Internet of 
Things (IoT), business and artificial intelligence (BI and AI), or Cloud Comput-
ing, need data center infrastructures offering data storage capacity and computing 
power several times larger than these currently available. In the last few years, 
the world’s largest Cloud platforms (e.g., Microsoft, Google, Facebook, or Ama-
zon) are upgrading their data centers to anticipate the unprecedented growth of 
required space and power, requiring important innovations in hardware and soft-
ware to cope with increasingly complex applications and real-time user demands.

The interconnection network (or data center network, DCN) is an essential ele-
ment in the data center architecture, which communicates thousands of comput-
ing and storage nodes. DCNs are composed of Network Interface Cards (NICs), 
switches, bridges and cables. NICs plug into the server nodes through the PCIe 
subsystem, which communicates CPU, NIC and memory controller. Externally, 
NICs communicate end nodes with switches. Moreover, switches and bridges 
interconnect the data center servers utilizing cables, creating specific network 
topologies, such as the non-blocking CLOS topology, commonly used in many 
data centers. In general, the DCN architecture needs to be fault-tolerant, cost-
effective, scalable and offers high inter-node communication bandwidth and low 
response time (latency) in data transmission. Moreover, the design of the DCN 
must consider the communication requirements of the data center applications, 
otherwise becoming the system bottleneck.

Nowadays, there are critical use cases [1] that subject the DCN to high com-
munication rates among the end-nodes. Among these critical use cases, we can 
distinguish four types: online data-intensive applications (e.g., large search web-
sites), deep learning (e.g., instant image analysis), distributed storage and Cloud 
Computing services. These use cases (or workloads) generate in the DCN a vast 
amount of user requests that need to be processed immediately, since these users 
expect to receive a response in an imperceptible fraction of time. Note that, this 
is a common goal shared with traditional applications in high-performance com-
puting (HPC) clusters. In contrast to HPC applications, which are optimized to 
minimize data movement in the network and whose results are expected in a pre-
dictable time. Unfortunately, the critical use cases for DCNs are more compli-
cated to optimize, since the communication operations on the DCN are unpredict-
able and variable over time. Hence, the DCNs workloads depend on the number 
of requests performed by the users interacting with services worldwide, and it 
may be difficult to predict the amount of traffic generated by these applications 
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and their communication patterns in the DCNs. As the critical use cases impact 
negatively on the DCN performance, they need to be thoroughly considered when 
designing the DCN architecture.

Simulation is a popular method to evaluate the behavior and performance of 
IT systems, such as HPC clusters or data centers, and has been extensively used 
to model and evaluate new designs for high-performance interconnection networks, 
such as those used in data centers. There are many simulation tools proposed to 
model interconnection networks, such as OMNet++-based [2] simulators (e.g., 
INET model, ib_model or SAURON), NS-3 [3], SST [4] or CODES [5]. In general, 
these simulators are able to model the network components and their architecture, 
with different levels of detail or abstraction. Apart from the interconnection network 
architecture, another important aspect that network simulators need to offer is the 
ability to reproduce realistic workloads in the interconnection network. In many 
cases, the simulation frameworks only model ad hoc or synthetic traffic patterns, 
which do not reproduce the behavior of the communication operations observed in 
the DCNs of real data centers.

In previous works, we presented the VEF traces framework [6, 7], which com-
prises several tools that allow the simulation tool developers to model network 
workloads based on MPI applications. One of these tools is the VEF-Prospector, 
which captures the application MPI calls, and gathers them in trace files using a spe-
cial format (i.e., VEF). These traces are used to reproduce the application behavior 
in network simulation tools, as long as this simulator uses another VEF framework 
tool: the VEF-TraceLib library. This library is independent of the network simulator 
and can be integrated with any simulator tool. VEF-TraceLib is in charge of reading 
the VEF trace and generates the corresponding messages that can be inserted in the 
simulated NICs, so that the simulator injects them into the network. The library is 
also responsible of collecting the packets received by the end-node NICs and fin-
ishes the communication operations. Moreover, VEF-TraceLib also permits running 
several applications (i.e., traces) simultaneously in the same simulation, configuring 
the task mapping of jobs to nodes or choosing a different implementation of an MPI 
collective communication algorithm. Most importantly, the VEF traces framework 
allows network simulators to reproduce the application behavior in a completely 
agnostic way, meaning that the node architecture and timestamps of the system gath-
ering a VEF trace are not stored in the trace, but only the information of communi-
cation operations (e.g., source, destination, prior message dependency, etc.).

However, in data center systems, there are different types of network workloads 
other than those generated by MPI-based applications. As mentioned above, there 
are mainly four critical use cases that threaten the performance of DCNs, such as 
online data-intensive (OLDI) services used in applications such as web search, 
social networks, streaming, or the traffic generated on the computing-intensive train-
ing phases of deep learning services.

Therefore, modeling the workloads generated by these critical use cases in the 
DCN is also a cornerstone for network simulator developers, and it is also a chal-
lenge for the VEF traces framework. In this paper, we extend the VEF traces frame-
work to model the DCN traffic, generated by some of the critical use cases, such 
as OLDI services and deep-learning training applications. First, we have included 
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a new trace format, compatible with the previous one, to easily model the commu-
nication operations of different online data-intensive workloads. These workloads 
are modeled based on data published by different companies using large data center 
facilities, such as Facebook and Google. Next, we have extended VEF-TraceLib to 
run the extended traces and reproduce their behavior in a simulation tool. Note that, 
we have not made any modification in the library interface with simulators, so that 
we preserve backward compatibility with the previous version of the library. There-
fore, VEF-TraceLib users can simply update the library and simulate the new traces 
modeling the DCN workloads. Note that, all the features of VEF-TraceLib are also 
available for the new traces, thereby the extended VEF traces can be used in combi-
nation with the original MPI-based VEF traces.

2  Background

Data centers are the fundamental infrastructure nowadays, where real-time ser-
vices and applications, such as augmented reality, voice recognition, and contex-
tual searching, demand immediate responses to meet the user demands. In the data 
centers, the interconnection network must guarantee unprecedented levels of perfor-
mance, scale, and reliability to meet these real-time demands [8]. As we have men-
tioned above, we can classify the workloads stressing the data center network (DCN) 
performance into four critical use cases, such as large-scale On-Line Data Intensive 
(OLDI) services (e.g., automated recommendation systems for online shopping, 
social media, and web searches), high-performance deep learning services (e.g., for 
image processing), distributed storage (e.g., high-speed distributed pools of Non-
Volatile Memory Express (NVMe) storage), and Cloud Computing applications.

From a network designer perspective, the characterization of DCN workloads is 
crucial to identifying network bottlenecks generated by communication operations. 
It consists of analyzing a set of properties of communication operations, such as 
size, source/destination distribution, and frequency of communications over time. 
The data obtained from traffic characterization aid the network designers in develop-
ing traffic models used to feed network simulator tools. These traffic patterns must 
generate the communication operations happening in a real DCN inside the sim-
ulator, so that the simulation infrastructure can reproduce a realistic environment, 
which will be very helpful for the network design process. In this regard, it is very 
typical to analyze the behavior of the new network designs using the mentioned sim-
ulation frameworks.

On the one hand, there are proposals for modeling DCN workloads which use 
information publicly released by some data center owners. For instance, recent pro-
posals model the network traffic observed in some of Facebook’s data centers [9]. 
They assume a workload is a set of traffic flows from different applications and ser-
vices generated within a given time fraction. A traffic flow is a bunch of information 
transferred from a given source host to another throughout the network. As each 
application or service may generate multiple traffic flows, it is common to group 
these flows in separate traffic classes, and each traffic class may generate flows of 
different sizes at different time instants. Besides, source and destination end-nodes 
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of traffic flows may be different, depending on the application or service (i.e., the 
traffic class). Therefore, each traffic class has a different communication pattern, 
which may correlate with a specific distribution of destinations. This approach is 
efficacious, as it allows to configure a set of parameters to vary the DCN workloads.

Other proposed traffic models [10], which follow a similar idea to that described 
above, are based on a collection of data center applications at Google and Facebook 
data centers. The workloads characterization focuses on the measurements of appli-
cations based on request-response protocols, which generate tiny messages of a few 
hundred bytes or less. For instance, this happens in typical remote procedure call 
(RPC) use cases, where the request or the response is a short traffic flow.

Apart from the OLDI workloads, other DCN workloads are worth mentioning, 
such as those based on Deep Learning services. Disciplines such as computer vision, 
speech recognition, or social network filtering, among others, apply Deep Learning 
algorithms. A current trend for processing large sets of data is the use of Deep Neu-
ral Networks (DNNs) [11] to learn, via a process called “training” to handle each 
new problem, instead of coding a different custom program to solve that problem in 
a specific domain.

Training a DNN is a highly parallel procedure [1] requiring specialized comput-
ing devices to supply high throughput and low latency. However, the communication 
overhead in the training process can offset the gains of using these devices. In par-
allel training, massive data sets are split into chunks and shared among the worker 
nodes in the data center. These servers process these chunks and send the temporary 
results to the aggregator nodes, and this process repeats in each DNN layer until it 
computes the correct output and returns the exact result. The communication over-
head introduced by this algorithm is the bottleneck of the training process, so that 
characterization and modeling of deep learning training traffic are required to ana-
lyze its behavior in the DCN.

The traffic patterns mentioned above can be modeled in simulation tools in sev-
eral ways, such as using instrumentation tools to capture the communication calls of 
the applications running in the data center, or using mathematical models to repro-
duce the distribution and parameters of the generated traffic flows. The first approach 
is followed by several frameworks such as Vampir [12], Score-P [13], Scalasca [14], 
DUMPI [15] or Extrae [16]. However, these frameworks leverage in general the 
hardware performance counters (e.g., provided by the PAPI library) and several dis-
tributed/shared memory profiling tools to generate enormous traffic traces, which 
are difficult to handle by network simulation tools. Note that, apart from the traces 
size, the network simulation tools only need that the traces store the communication 
operations calls in order to generate network traffic. The second approach to model 
network traffic patterns is based on using mathematical expressions to generate traf-
fic patterns. For instance, there are numerous studies which use these mathematical 
expressions [10] to model realistic workloads. Actually, there are numerous micro-
benchmarks, such as OSU [17] or Intel MPI [18], which measure the performance of 
single communication operations, such as the message passing interface (MPI) calls.

The VEF traces framework [6, 7] was conceived as an easy way to capture the 
network traffic generated by MPI calls and record this information in traffic traces 
smaller than those generated by other traces frameworks (e.g., Extrae or Scalasca), 
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since VEF traces only store the information related to communication operations, 
while preserving the dependencies of these operations. However, the VEF traces 
framework does not support the approach of using mathematical expressions to 
reproduce the communication operations generated data center applications. In this 
paper, we extend the VEF traces framework to model several data center workloads, 
such as those described above. In addition, a brief description of the framework has 
been included in Sect. 1 of the Supplementary Information.

3  Extended VEF‑traces model description

In this section, we describe the extensions included in the VEF traces framework 
to model DCN workloads. We have modeled three new traffic patterns: generic and 
configurable workloads based on publicly available information, workloads mod-
eling traffic flows grouped into different traffic classes, and workloads based on the 
Horovod deep learning training framework [19, 20]. Note that, the Horovod frame-
work uses MPI so that it would be possible to run Horovod-based applications and 
generate VEF traces. However, these traces would have a fixed number of MPI tasks, 
not being possible to scale the number of MPI tasks. For this reason, we have ana-
lyzed the communication operations generated by the Horovod framework in order 
to reproduce its behavior, regardless the network size, based on a set of parameters.

First, we have modified the VEF trace format to include the proposed extensions. 
We have called this new traces as extended VEF traces. Specifically, the new trace 
format has at least two records: the trace header and the extended VEF header. The 
following records depend on the traffic model selected. Code listing 1 shows the 
extended VEF trace format. 

The first line in the trace is the header, which has not varied with respect to the 
previous format version. The fields of the trace header are the following:

• VEF3 is the start of the trace header.
• #Task is the number of tasks that the application runs in parallel.
• #Msgs is used to limit the amount of generated messages, depending on the type 

of extended trace.
• The #COMM, gGComm, lGCom and oSFlag are for communicators and collec-

tive communication definition in MPI-based VEF traces. These are not used in 
the models we propose in this paper.

• clock is the clock resolution measured in picoseconds. If this field is omitted, 
the clock resolution is 1000 ps.
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The second line in the trace file shown in code listing 1 is the extended VEF header, 
which indicates the traffic model. The fields of the extended header are the follow-
ing: EXT indicates that the trace is an extended trace and type indicates the traffic 
model. Currently, type can take these possible values:

• DCNW: DCN workloads based on the traffic model using information publicly 
available (see Sect. 3.1).

• CDCNW: The traffic model is the same as the previous one, but in this case, the 
trace format allows the user to specify the message size distribution, instead of 
using a predefined message size distribution of DCNW model.

• FLOWS: DCN workloads using traffic flows grouped into traffic classes (see 
Sect. 3.2).

• HOROVOD: Traffic patterns from the Horovod deep learning training framework 
(see Sect. 3.3).

In the following subsections, we describe the new traffic models included in the VEF 
traces framework.

3.1  DCNW traffic model

This traffic pattern models different DCN workloads based on publicly available 
information of real workloads measured. We have modeled a selection of traffic 
patterns based on workloads from real application-level logs. Most of them were 
measured in real data centers from applications at Google and Facebook. These 
workloads have also been used to evaluate other transport protocols for data center 
networks, such as HOMA [10]. Code listing 2 shows the simple third record to be 
added for configuring the DCNW traffic model. 

In this trace record, the model, destination_dist (i.e., destination distri-
bution) and LOAD l are used to adjust the generation rate of the messages. Both 
destination_dist and LOAD l are optional parameters, while model is a 
mandatory parameter. These parameters can take the following values:

• model specifies the message size distribution based on a set of different appli-
cations data publicly available [10]. Currently, there are available the following 
traffic models: Web search workload based on DCTCP work [21]; a collection 
of memcached servers at Facebook for Key-Value stores [22]; Facebook Cache 
Follower, Facebook Web Server and Hadoop nodes at Facebook cluster [23]; 
aggregated workload from applications running in a Google data center [10]; and 
search application at Google cluster. [10].
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• destination_dist indicates the distribution of the destination task of the 
messages. Currently, there are available a uniform distribution, a Poisson dis-
tribution and a Gaussian distribution.

• LOAD l can be used to adjust the generation rate of the messages. l is a float-
ing number that indicates the Gbps generated per each trace task. If LOAD is 
not set, the generation rate is set to 1 Gbps per task.

Code listing 3 shows an example of a VEF trace configuring the DCNW trace 
model. This trace configures a 128-task application based on the aggregated 
workload of Google data center, generating 2,000,000 messages, the Gaussian 
destination distribution and generating 0.5 Gbps per task. The clock resolution is 
set to 1 nanosecond (i.e., 1000 picoseconds). 

Finally, we have also implemented a variation in the DCNW traffic model, 
called Custom DCNW traffic. This trace format allows to specify a message distri-
bution file, which can be defined by the user.

Due to the lack of space, a detailed descriptions of the destination distribu-
tions, the message size distribution of each model, and the arrival distribution, 
are included in Sect. 2 of the Supplementary Information. Moreover, in Sect. 3 of 
the Supplementary Information, we also included a the complete description of 
how to configure the traces for using the DCNW and Custom DCNW models.

3.2  FLOWS traffic model

This model, called FLOWS, allows us to model different traffic classes, each of 
them grouping a variety of traffic flows according to the model described in [9]. 
To select this model, we need to add the FLOWS value to the second trace record 
(i.e., EXT FLOWS). In this model, the trace header param #Msgs indicates the 
number of traffic flows. After that, the third line of the trace includes a record to 
specify the number of traffic classes, the generation time and the default destina-
tion distribution. Code listing 4 shows the format of this register. The meaning of 
each of the fields required to configure this traffic model is the following: 
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• CLASSES c indicates the number of traffic classes. The parameter c must be 
an integer greater than 0. This parameter is mandatory.

• TIME t indicates the maximum generation time. All the flows will be gener-
ated between cycle 0 and cycle t. The time between two consecutive flows is 
modeled using a exponential distribution with �=t/#Msgs. The parameter t 
must be an integer greater than 0. This parameter is mandatory.

• destination_dist indicates the default destination task distribution. The 
option is the same as in the DCNW traffic model. This parameter is optional. 
If it is not set, the default distribution is set to uniform distribution.

After this common configuration, a new line must be added to configure each 
traffic class. Code listing 5 shows the class configuration format. All the param-
eters are mandatory except destination_dist. The traffic class configura-
tion must start with the class identifier (id), but the remaining parameters can be 
specified in any order. The meaning of these fields is the following: 

• id is the traffic class identifier. It must be an integer in the range [0, c-1]. The 
line must start with the traffic class identifier.

• MAX max is the maximum flow size measured in Kbytes. The flow sizes are 
generated using an uniform distribution between min and max.

• MIN min is the minimum flow size measured in Kbytes.
• PERC p is the percentage of flows generated by this traffic class. The param-

eter p must be a float between 0 and 100.
• destination_dist: destination distribution for this traffic class.

Code listing 6 shows a VEF trace example of the FLOWS model. This VEF trace 
models a 128-task application, with 2M flows (i.e., #Msgs parameter in the VEF 
header), two traffic classes, a generation time of 200M cycles and the uniform 
distribution set as default distribution. The first traffic flow generates 80% of the 
flows and its messages have a size between 1 and 10 KB. The second traffic flow 
generates 20% of the flows, its messages have a size between 1 and 10 MB, and it 
uses the gaussian distribution instead of the default distribution. 
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3.3  HOROVOD traffic model

Currently, it is possible to leverage large and Deep Neural Networks (DNNs) to solve 
complex problems in multiple disciplines. These artificial neural networks can han-
dle large amounts of data and perform a high number of operations on top of them. 
Thus, DNN-based applications require a vast amount of computing power and a large 
storage capacity for the training, validation, and inference processes. Hence, as data 
centers meet these computational and storage requirements, they have become highly 
demanded to run Machine- and Deep-Learning applications. Indeed, the reliance on 
data centers for DNN-based applications has been growing significantly in recent years.

The Horovod library [19] for distributed training has grown rapidly in popular-
ity, since it requires minimal changes to the training program to make it distributed. 
Horovod is a Python package that implements versions of different Deep Learning 
frameworks for execution with MPI. From the publicly available Horovod source 
code [20], all the processes run an “endless” loop, called “negotiation phase,” and 
the main actions in each iteration are the following: 

1. The workers send MPI_Request for tensors to master.
2. The master gets message lengths from every worker (MPI_Gather), computes 

offsets and collects the tensor indexes from every worker (MPI_Gatherv).
3. The master creates a vector of tensors ready to be reduced and performs an opti-

mization (Tensor Fusion), assembling a single response for tensors with the same 
response type.

4. The indexes of the tensors reduced are broadcast to all workers by using MPI_
Bcast operation.

5. Finally, the all-reduce operation (MPI_Allreduce) is executed on all tensors 
ready to be reduced.

In order to implement this behavior, we have created in the VEF traces framework a 
new model called HOROVOD. To choose this model, we have configured the VEF 
trace file so that the different parameters of a Horovod-based application can be con-
figured using a few number of records in the VEF trace header. To select the HORO-
VOD model in the VEF trace file, we need to add the HOROVOD value to the second 
record of the trace (i.e., EXT HOROVOD). After that, in the third line of the trace, a 
record is included to specify the number of training batches and the number of the 
DNN layers. After this common configuration, a fourth record must be included in 
the VEF trace to provide a default configuration for all the layers. Code listing 7 
shows the format to establish the initial configuration of the DNN traffic. 
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After the word DEFAULT, all the fields in the default layer must be included, but 
the fields can be specified in any order. We assume that all the parameters must be 
integers greater than zero, except for those parameters that are specified otherwise. 
The meaning of each of these fields is the following:

• COMPUTE_MS c_ms is the average time, measured in milliseconds, that a 
worker is only performing computation at the beginning of a layer, before start-
ing the negotiation phase. c_ms must be a float number greater than 0.

• NEGOTIATION_LOOP_MS nl_ms is the average time, measured in millisec-
onds, that a worker spends between each loop iteration of the negotiation phase. 
The parameter nl_ms must be a float number greater than 0.

• GATV_BYTES gb is the average size of the MPI_Gatherv message, meas-
ured in bytes, that the workers send to the master process for communicating the 
tensors indexes that must be reduced.

• GATV_TOTAL_BYTES is the size, measured in bytes, that the master must 
receive at least in several MPI_Gatherv messages to consider that a worker 
has sent all its tensor indexes to be reduced in the master process.

• GATV_PROB gprob is the probability that a worker sends tensor indexes to the 
master in any iteration. gprob must be a float number between 0 and 1.

• BCAST_BYTES bb is the size of the MPI_Bcast operation that the master 
sends to all the workers when it has received from them all the tensor indexes.

• ARED_KBYTES akb is the size of the MPI_Allreduce operation that the 
master performs in the last step to update all the tensor indexes in all workers.

Apart from the configuration of the default layer, each layer can be independently 
configured in the VEF trace. For this purpose, the record format is the same as for 
the default layer, changing the word DEFAULT by the layer identifier. This identifier 
must be an integer in the range [0, l − 1] . 

Code listing 8 shows a VEF trace example of the HOROVOD model. In this 
example, we can observe that this model works in the following way: 

1. All the workers spend 20 ms in average performing only computation.
2. After that, all the workers start the negotiation phase. First, the workers send the 

master an MPI_Gather of 4 bytes indicating the vector size of tensor indexes. 
All the workers have a probability of 0.01 of sending tensor indexes. If a worker 
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has tensor indexes to be sent to the master, it performs an MPI_Gatherv of 
average size of 60 bytes. In other case, it sends a empty message to the master via 
MPI_Gatherv of 25 bytes.

3 If the master has received at least 600 bytes of tensor indexes from each worker, 
the update step is performed: 

3.1 The tensor update is not carried out. The master performs two MPI_Bcast 
of 4 and 25 bytes to communicate that there are no tensors to update. The 
execution continues in step 2 after 1.5 milliseconds in average.

3.2 The tensor update is carried out. The master performs two MPI_Bcast of 4 
and 1000 bytes (or 2000 bytes in layer 3) to communicate the tensor indexes 
to update. The execution continues in step 4.

4 An MPI_Allreduce of 50 MB is performed to update the tensors. Note that, 
the MPI_Allreduce performed in layer 3 has a size of 150 MB.

5 The number of layers completed in the current training batch is updated, and also 
the number of batches if all the layers are completed. When all the batches are 
completed, the simulation finishes. In other case, the simulation of the current 
layer of the current batch continues in step 1.

4  Extended traces use cases

The aim of this section is to show how extended traces work by using series of use 
cases (or tests). These tests are obtained with a network simulator that uses VEF-
TraceLib and extended VEF traces. To perform the simulations, we have used an 
open-source interconnection network simulator called Hiperion (HIgh PERfor-
mance InterconnectiOn Network) [24], which integratesVEF-TraceLib. Since the 
goal of this study is not to evaluate different configurations of the interconnection 
network, we have chosen a simple switch architecture to evaluate how the different 
network loads generated affect the network performance.

For this study, we have considered a single Input Queued (IQ) switch [25] with 
Virtual Cut-Through (VCT) switching [26], a credit-based flow control at link level, 
and a two-stage allocation algorithm composed of a round-robin virtual channel 
allocator and a round-robin switch allocator. The input-port buffer size is 1024 flits, 
and the flit size is 16 bytes, i.e., the buffer size is 16 KB. Each buffer has one virtual 
channel, and the packet size is 8 flits. Each switch port is connected to a multi-core 
node by means of a network interface (NIC). The number of switch ports and the 
number of node cores depend on the extended trace considered and will be specified 
in the following sections.

Moreover, to properly calculate the average results of the performance metrics, 
each simulation test has been run 30 times. We have considered the following per-
formance metrics:

• Execution time (cycles) shows the time instant when all the traffic generated by 
the extended VEF trace has been received in all the computing nodes.
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• Average flit end-to-end latency and average flit network latency (cycles) show 
the average time spent in the network by the all the flits. The end-to-end 
latency also includes the queuing delay in the source node.

• Average throughput (flits/cycles/NIC). This is the amount of information 
that the network in total delivers to all the connected nodes. The maximum 
throughput reachable is 1, i.e., each NIC receives one flit each cycle.

DCNW model use cases
For testing the behavior of the DCNW model, we have used the trace shown in 

Listing 3 as a reference. Since this trace has 128 tasks, the switch has 8 ports and 
the nodes have 16 cores, being a total amount of 128 cores. We have compared 
different traces to show how the changes in trace configuration affect the achieved 
performance. Specifically, we have tested four VEF traces:

• ref: Trace shown in Listing 3 setting the load to 1 Gbps.
• task256: ref trace with 256 tasks, a 16-port switch and 16-core nodes.
• gauss: Same trace as ref but using the Gauss distribution.
• load: Same trace as ref but setting the load to 0.5 Gbps.

Figure  1 shows the results obtained. First, when the number of tasks of ref 
configuration is doubled (task256 configuration), we can observe that the execu-
tion time is reduced. Since the number of tasks is higher, the required amount 
of time to generate the same number of messages is lower. However, the higher 
the amount of messages simultaneously traveling throughout the network, the 
higher the degree of contention. Hence, this slightly worsens the latencies and 
throughput. When the Uniform destination distribution is changed to a Gaussian 
distribution (see the gauss bar), the execution time and latencies increase, while 
the throughput decreases. Since the destination nodes where all the application 
tasks send traffic are concentrated around the task 64, the network congestion 
increases and the network performance is reduced. Finally, when the message 
generation load rate is halved (see the load bar), a large increase in execution 
time is observed because the system takes twice as long as for the ref configu-
ration to generate the same number of messages. Moreover, since the network 
load is reduced, there is a significant reduction in end-to-end and network latency. 
Therefore, according to the experimental results, the observed network perfor-
mance is the expected one for the DCNW model.

FLOWS use cases
In this subsection, we test the behavior of the FLOWS model using as a refer-

ence the trace shown in Listing 6 . The switch has 8 ports and the nodes have 16 
cores. Specifically, we have tested four VEF-trace configurations:

• ref: Trace shown in Listing 3, but both classes use the Uniform distribution.
• task256: ref trace with 256 tasks, a 16-port switch and 16-core nodes.
• gauss: ref trace but both classes use the Gauss distribution.
• perc: ref trace but each class generates the 50% of flows.
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Figure 2 shows the results obtained using the FLOWS model. The conclusions 
are very similar than obtained in Sect. 4 . For configuration task256, increasing the 
number of tasks reduces the execution time and slightly worsens the performance, 
while for the configuration gauss, concentrating the traffic in fewer tasks increases 
the contention and reduces the network performance. For the configuration perc, a 
large increase in execution time is observed, due to 30% of flows change from class 
0 (message size ∈ [1 − 10] KB) to class 1 (message size ∈ [1 − 10] MB). Moreover, 
note that, the execution time for the different configurations is different than that 
observed in Fig. 1, since the amount of generated messages in total differs from that 
of the DCNW model. Interestingly, despite the increased load, there is hardly any 
impact on latencies and throughput. It is worth noting that we used a simple switch 
architecture model (e.g., virtual channels are not used to attempt to reduce the con-
tention). Therefore, the switch is already working on saturation for the configuration 
ref, and then, increasing the message size simply increases the execution time but 
does not affect to the latency and throughput.

HOROVOD use cases
Finally, we test the behavior of the HOROVOD model. In first place, we obtained 

a VEF trace running a real DNN training application using Horovod and the training 
model AlexNet [27], running the application with 98 tasks. The trace has been col-
lected using the GALGO High Performance Computing Cluster [28]. After that, we 
have tried to replicate its behavior using the HOROVOD model. This task is espe-
cially complicated since the optimizations introduced by Horovod software, such as 
the Tensor Fusion technology [19], make it difficult to find a repeating pattern.

Despite these drawbacks, we have managed to create a trace with a similar behav-
ior than the original AlexNet trace, which is shown in Sect. 4 of the Supplementary 

Fig. 1  Evaluation results for DCNW model

Fig. 2  Evaluation results for FLOWS model
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Information. The amount of traffic generated has a little reduction of 5% (from 249 
to 239 GB), but the runtime is very similar (the difference is less than 1%). Since 
our goal is not to exactly model the same trace, this trace is accurately enough to 
test the HOROVOD model. The switch configuration has been modified accordingly 
to have 98 cores. Now, the switch has 7 ports and the nodes have 14 cores. We have 
compared these five traces:

• alexnet: VEF trace obtained from a execution of AlexNet model in GALGO.
• ref: Horovod trace shown in Sect. 4 of Supplementary Information.
• allreduce: ref trace, but the size of AllReduce in all the layers is duplicated.
• compute: ref trace, but dividing by 10 all the compute times.
• loop: ref trace, but dividing the negotiation loop time by 2, being the final time 

equal to 0.7 ms.

Figure  3 shows the results obtained using the HOROVOD model. When com-
paring ref and alexnet traces, we can see that execution time and the throughput 
are practically the same in both traces, but the end-to-end and the network latency 
are slightly different. Since the amount of traffic generated is lowered, the situations 
where contention appears is also reduced, decreasing the network latencies. In the 
other three cases, the results are the expected ones. Note that, by doubling the size 
of All_Reduce communications (see the allreduce configuration), the execution 
time and latencies increase, and also the throughput. When the compute time is 
reduced (compute configuration), the execution time is slightly lowered, although 
it does not have the same impact as reducing the negotiation loop time. Since now 
the compute time is closer to the negotiation loop time, in some NICs, there may be 
communications in the DNN in which the computation of the previous layer over-
laps with the first communication of the next layer, thus slightly increasing the net-
work and end-to-end latency. Furthermore, decreasing the time of the negotiation 
loop (loop configuration) has a great impact on the execution time, and therefore, 
on the network throughput. The execution time reduction is almost 50%, doubling 
the throughput. Note that, the loop and allreduce throughput is practically the same. 
For the loop configuration, the execution time is halved, while for the allreduce 
configuration, the amount of traffic in the network is doubled. Also, as the message 
generation is the same as in ref (the loop time only affects the time between nego-
tiation loops, not communications within a negotiation loop), there is no impact on 

Fig. 3  Evaluation results for HOROVOD model
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latencies. As we can see, our HOROVOD model allows us to replicate the behavior 
of DNN models, and it works as expected.

5  Conclusions

In previous works, we have presented the open-source VEF traces framework to 
model the workloads generated by HPC applications in high-performance intercon-
nection network simulators. This framework provides two main tools: VEF-Prospec-
tor and VEF-TraceLib. The first one is used to capture the communication operations 
generated in the network by MPI applications and generate trace files storing these 
operations. The second is used to feed an interconnection network simulator with 
the workloads stored in the traces. The main problem with the VEF traces frame-
work is that it was only focused on MPI-based applications, although there are other 
interesting workloads to feed the network simulation tools, such as those generated 
by data-center applications (e.g., deep-learning training or online data-intensive).

In this work, we have extended the VEF traces framework to model Data-Center 
Network (DCN) workloads and reproduce them in DCN simulators. These work-
loads have been modeled according to the information publicly available, such as 
that of workloads generated in Facebook and Google data centers. Moreover, we 
have also extended the VEF traces framework with deep-learning training appli-
cations workloads. The VEF-TraceLib has been also updated to run the Extended 
VEF traces, although no modifications on the library interface are required. This 
preserves the backward compatibility with the previous version of the library and 
allows the VEF-TraceLib users to use the new workloads simply by updating the 
library from the repository. In addition, users can still use all the VEF-TraceLib fea-
tures with the new traces. Finally, in order to validate the proposed models, we have 
simulated several configurations for the new traffic models. The obtained results 
show that the modeled traffic patters reproduce realistic DCN workloads in the sim-
ulation tools using the new traffic models included in the VEF traces framework.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11227- 022- 04692-0.
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