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a b s t r a c t 

This paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration 

problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions 

the evaluation of spatial transformations, the regularization term, and their gradients for three different 

multimodal registration metrics, namely, normalized cross correlation, mutual information, and normal- 

ized mutual information. A sufficient condition on the metric gradient is provided for further extension 

to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced 

first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the 

corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The 

speed-up achieved by using convolutions instead of tensor products depends on the image size and the 

number of control points considered, the larger those magnitudes, the greater the execution time reduc- 

tion. Furthermore, the speed-up will be more significant when gradient operations constitute the major 

bottleneck in the optimization process. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Image registration plays a crucial role in the field of image pro- 

essing and constitutes the basis for many higher level applica- 

ions. This technique consists in aligning a pair or a set of images, 

or which spatial transformations have to be determined. A popu- 

ar approach to define these transformations in elastic registration, 

pecially for medical imaging applications, is the free-form defor- 

ations (FFD) paradigm [1,2] . This powerful geometric modeling 

echnique can be used to represent arbitrary deformations applied 

o objects [3] . An FFD model inherently gives rise to smooth de- 

ormation fields with appropriate selection of its basis functions. 

owever, these models are limited by large memory requirements 

nd high execution times needed to register large-scale images [4] . 

Recently, a novel and highly efficient implementation of group- 

ise image registration based on FFDs has been proposed [5] . This 

pproach replaces the classical FFD implementation based on ten- 

or products by a convolutional formulation, achieving large execu- 
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ion time reduction not only for evaluation of transformations, but 

lso for gradient calculation during the optimization process. The 

verage runtime reduction reported is above 90% and the registra- 

ion accuracy was properly demonstrated on different datasets. 

Interpolation using convolutions is a well-known topic [6–8] ; 

owever, the implementation of FFDs has been based on tensor 

roducts since its onset [1,9] and, to the best of our knowledge, 

eported implementations [10–14] have not made use of convolu- 

ions. As for the convolution-based implementation in [5] , it was 

ully developed for a monomodal registration metric only, namely, 

he sum of squared differences. 

In this paper, we propose the convolutional formulation of elas- 

ic pairwise registration on multimodal metrics and we focus on 

hree of them, specifically, normalized cross correlation (NCC), mu- 

ual information (MI) and normalized mutual information (NMI). 

nterestingly, the requirement stated in [5] for the metrics turns 

ut not to be a necessary condition for convolution-based problem 

ormulation. Albeit it is satisfied by NCC, it does not hold for either 

I or NMI but they both adhere to this formulation because of the 

nalytical expression of their gradients, for which a sufficient con- 

ition has been determined. Furthermore, both the regularization 
under the CC BY-NC-ND license 
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Fig. 1. Scheme of spatial transformations in 2D pairwise image registration. 
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erm and its gradient are also posed in terms of simple convolu- 

ions. 

The regularization term was not analyzed in [5] . The simple 

egularizer proposed in [15] was applied directly on the defor- 

ation coefficients. This term is a quadratic-like penalty function 

nd does not require additional B-spline interpolations. Therefore, 

here are no grounds for its convolutional reformulation. However, 

n this paper we have resorted to a popular regularization term, 

amely, the transformation Laplacian, as a simplified version of the 

D transformation bending energy [1,16,17] . It turns out that the 

onvolutional implementation of this term provides a significant 

eduction of the computing time with respect to its direct imple- 

entation. Analytical expressions are derived for both the metrics 

nd the regularization gradients. 

In order to accelerate the registration procedure, several effi- 

ient implementations on graphics processing units (GPU) have 

een proposed [18–23] , reporting significant speed-ups over CPU 

mplementations. Moreover, Deep Learning approaches have also 

een applied to the image registration problem [24–26] , providing 

ast solutions once the networks have been trained for a specific 

pplication. Our proposal leads to important execution time reduc- 

ions for the reformulated functions, both in CPU and GPU, as evi- 

enced by the empirical tests carried out. Since these functions are 

epeated at each iteration of the optimization process, the speed- 

p reached by the proposed approach in the overall registration 

rocedure will be more significant whenever those functions —and 

ore specifically, operations in which gradients are involved— con- 

titute a major bottleneck. 

The aim of this work is to provide an efficient alternative to 

ompute FFDs for any application of elastic image registration, in- 

luding multimodal scenarios, based on the convolution operator —

hich in turn is very efficiently implemented in many platforms—

nstead of on the tensor product operator. Hence, we will not fo- 

us on the comparative analysis of accuracy —or advantages and 

isadvantages— of different metrics. As a proof of concept, 2D 

airwise (PW) image registration has been explored on contrast- 

nhanced first-pass perfusion cardiac magnetic resonance images 

MRI). Our formulation applies naturally on 3D applications, as we 

howed in [5] . 

The remainder of this paper is structured as follows. 

ection 2 describes the methods. First, in Sect. 2.1 , 2D PW image 

egistration based on FFDs is revised and spatial transformations 

re reformulated in terms of convolutions. Then, Section 2.2 in- 

roduces NCC, MI and NMI. As stated above, the efficient con- 

olutional approach can also be applied to calculate the reg- 

larization term, as Section 2.3 describes. Gradient evaluation 

s described in Sect. 2.4 ). Results are shown and discussed in 

ection 3 . Section 4 summarizes the main conclusions of the pa- 

er. Finally, Appendix A provides a detailed description of gradi- 

nt calculations for the three multimodal metrics analyzed in this 

ork. 
c  

2 
. Methods 

.1. Convolutional pairwise registration 

In the case of PW image registration, two images are to be spa- 

ially aligned. In particular, a moving image ( I M 

) is registered to a 

xed image ( I F ) —or reference image— by means of a spatial trans- 

ormation T θ , parameterized by θ, that maps each point in I F into 

he corresponding point in I M 

(see Fig. 1 ). 

The registration process consists in finding the parameters θ, 

hich define the optimal spatial transformation T θ . Therefore, the 

roblem is posed as an optimization problem where a cost func- 

ion is minimized. Typically, the registration cost function is de- 

ned as 

(θ) = −S(I F (x ) , I M 

( T θ(x ))) + λ · R (θ) (1)

he first term in Eq. (1) represents the cost associated with image 

imilarity, i.e. the degree of alignment between both the fixed im- 

ge and the transformed moving image; the minus sign converts 

imilarity into a cost, so higher similarity implies less cost. In ad- 

ition, to constrain the deformation to be realistic, a regularization 

erm R (θ) , weighted by a λ factor, is included. The solution to this 

quation in θ is usually found by iterative optimization procedures. 

This paper focuses on elastic registration based on the FFD 

aradigm, which consists in locally deforming a given image by 

anipulating a grid of control points distributed across the image 

t an arbitrary mesh resolution [1] . B-spline functions are com- 

only used to define transformations; specifically, third-order B- 

pline basis functions provide a good balance between function 

moothness and region support [14] . Thus, FFD-based registration 

efines T θ through cubic B-spline interpolation from a lattice of 

ontrol points u by the following expression [1,9] 

 θ(x ) = x + 

∑ 

u ∈N (x ) 

( 

L ∏ 

l=1 

B 

(
x l − p u l 

�l 

)) 

· θu (2) 

here x represents a spatial point in the image domain X of di- 

ension L , N ( x ) is the set of all indices of control points in the

icinity of x , θu represents the control point displacements, p u l is 

he location of a given control point in X along dimension l, �l 

s the spacing in pixels between control points along dimension l, 

nd B stands for the third order B-spline function obtained through 

he Cox-DeBoor recursion formula as defined in [27] . 

As introduced in [5] , on the basis of the compact support of 

-spline functions and by assuming the FFD defined on a discrete 

artesian coordinate system, the classical tensor product formula- 

ion ( Eq. (2) ) can be implemented by means of convolutions. Thus, 

or a 2D domain problem, the spatial coordinates x = (x 1 , x 2 ) ∈ X 

ake on integer values, 1 ≤ x 1 ≤ N 1 and 1 ≤ x 2 ≤ N 2 , with N l the

mage size along dimension l. Furthermore, we assume the grid of 

ontrol points u = (u , u ) , with � = (� , � ) ∈ Z 

2 + spacing, lo-
1 2 1 2 
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ated on a subset of the (N 1 , N 2 ) points. Then, the 2D transforma-

ion can be expressed as 

 θ(x ) = x + 

N 1 ∑ 

q 1 =1 

B 

(
x 1 − q 1 

�1 

) N 2 ∑ 

q 2 =1 

B 

(
x 2 − q 2 

�2 

)
· �(q 1 , q 2 ) (3) 

here 

(q 1 , q 2 ) = δ(q 1 − ρ1 (q 1 )) · δ(q 2 − ρ2 (q 2 )) · θ(η1 (q 1 ) ,η2 (q 2 )) (4) 

ith δ denoting the Kronecker delta. Functions ρl and ηl are de- 

ned for convenience to cancel the contribution of any point q l 
hat is not a control point and to select the appropriate displace- 

ent 

l (q l ) = 

{
q l if ∃ u l : q l = p u l 

1 / 2 otherwise 
(5) 

l (q l ) = 

{
u l if q l = p u l 
0 otherwise 

(6) 

herefore, the 2D transformation can be reformulated as two con- 

ecutive 1D discrete convolutions with zero extension along each 

patial dimension 

 θ(x ) = x + B [ x 1 / �1 ] ∗ B [ x 2 / �2 ] ∗ �[ x 1 , x 2 ] (7)

urthermore, because of the definition of � (see Eq. (7) ), the first 

onvolution implemented can be evaluated only in those rows (or 

olumns) containing control points. The computational complexity 

f the proposed convolutional formulation is detailed in [5] for 3D 

ransformations. 

.2. Multimodal image similarity metrics 

Three different image similarity metrics are described here for 

ultimodal pairwise registration, namely, NCC, MI and NMI. 

.2.1. Normalized cross correlation 

The normalized cross correlation (NCC) between the fixed im- 

ge, I F (x ) , and the transformed moving image, I M 

(T θ(x )) , is de-

ned by 

CC = 

∑ 

x ∈X 
(I F (x ) − I F )(I M 

(T θ(x )) − I M 

) √ ∑ 

x ∈X 
(I F (x ) − I F ) 2 

∑ 

x ∈X 
(I M 

(T θ(x )) − I M 

) 2 
= 

A 

B 

(8) 

here I F and I M 

stand for the average gray-values of the cor- 

esponding images respectively, i.e., I F = 1 / |X | ∑ 

x ∈X 
I F (x ) and I M 

=
 / |X | ∑ 

x ∈X 
I M 

(T θ(x )) , where |X | is the number of pixels of the im-

ges. 

.2.2. Mutual information 

In the PW approach, mutual information (MI) is defined from 

hree entropy functions 

I = H(I F (x )) + H(I M 

(T θ(x )) − H(I F (x ) , I M 

(T θ(x )) (9)

here H(·) is the Shannon’s entropy 1 Then, MI can be calculated 

y normalized histograms of the images, 

I = 

∑ 

f∈L F 

∑ 

m ∈L M 
p( f, m | θ) · log 2 

[
p( f, m | θ) 

p F ( f ) · p M 

(m | θ) 

]
(10) 
1 Given the histogram, p(i ) , of an image I, the Shannon’s entropy is defined by 

(I) = − ∑ 

i p(i ) log 2 (p(i )) . 

R

3 
here L F and L M 

are discrete sets (bins) of intensity values of the 

xed and moving images, respectively, with bin centres ( f , m ) reg- 

larly spaced; p( f, m | θ) stands for the joint histogram, which can 

y expressed as follows based on the Parzen-window method 

p( f, m | θ) = 

1 

|X | 
∑ 

x ∈X 

[
K 

(
f − I F (x ) 

σF 

)
· K 

(
m − I M 

(T θ(x )) 

σM 

)]
(11) 

here K(·) is a kernel function. In this case, we use the cu- 

ic B-spline kernel as in [28] . The scaling factors σF and σM 

in 

q. (11) are the intensity bin widths in L F and L M 

. Note that if

he number of bins is too small, the estimated joint histogram will 

ave poor resolution, whereas computational cost increases with 

he number of bins. A good trade-off, empirically selected for med- 

cal images, is to use 64 bins to normalize both ranges of intensi- 

ies [29] . 

The fixed and moving marginal histograms, p F ( f ) and p M 

(m | θ) 

n Eq. (10) , can be estimated by summing p( f, m | θ) on the inten-

ity bins of the other image, i.e., over m and f , respectively. 

p F ( f ) = 

∑ 

m ∈L M 
p( f, m | θ) = 

1 

|X | 
∑ 

x ∈X 
K 

(
f − I F (x ) 

σF 

)
(12) 

p M 

(m | θ) = 

∑ 

f∈L F 
p( f, m | θ) = 

1 

|X | 
∑ 

x ∈X 
K 

(
m − I M 

(T θ(x )) 

σM 

)
(13) 

.2.3. Normalized mutual information 

The normalized mutual information (NMI) is defined as 

MI = 

H(I F (x )) + H(I M 

(T θ(x )) 

H(I F (x ) , I M 

(T θ(x )) 

= 

∑ 

f∈L F 
∑ 

m ∈L M p 
(

f, m | θ) · lo g 2 
[

p F ( f ) · p M 

(
m | θ)]∑ 

f∈L F 
∑ 

m ∈L M p 
(

f, m | θ) · lo g 2 
[

p 
(

f, m | θ)] = 

D 

E (14) 

ith the aforementioned joint and marginal histograms described 

n Eqs. (11) - (13) . As proposed in [29] , we use a specifically defined

econd order polynomial kernel function for NMI metric: 

(x ) = 

{ −1 . 8 | x | 2 − 0 . 1 | x | + 1 , if 0 ≤ | x | < 0 . 5 

1 . 8 | x | 2 − 3 . 7 | x | + 1 . 9 , if 0 . 5 ≤ | x | ≤ 1 

0 , otherwise 
(15) 

.3. Regularization term 

As stated above, it is advisable to include a regularization term 

n the cost function to obtain realistic deformations. In this paper, 

he second order spatial derivatives have been used to define R (θ) 

s 

 

(
θ
)

= 

1 

| X | 
∑ 

x ∈X 

( ∣∣∣∣∂ 2 T θ( x ) 

∂x 2 
1 

∣∣∣∣2 

+ 

∣∣∣∣∂ 2 T θ( x ) 

∂x 2 
2 

∣∣∣∣2 
) 

= 

1 

| X | 
∑ 

x ∈X 

(∣∣∣R 1 

(
x ; θ

)∣∣2 + 

∣∣R 2 

(
x ; θ

)∣∣2 
)

= 

1 

| X | 
∑ 

x ∈X 

{
R 

2 
1 , 1 

(
x ; θu , 1 

)
+ R 

2 
1 , 2 

(
x ; θu , 2 

)
+ R 

2 
2 , 1 

(
x ; θu , 1 

)
+ R 

2 
2 , 2 

(
x ; θu , 2 

)}
(16) 

ith R i,l the l-th component of the vector function R i (x ; θ) = 

∂ 2 T θ (x ) 

∂x 2 
i 

. Thus, we can use the same procedure applied for the refor- 

ulation of the transformation in Eqs. (3) - (7) to the partial deriva- 

ives in Eq. (16) 

 1 ,l (x ; θu,l ) = 

1 

�2 
1 

C 2 1 ∑ 

u 1 = C 1 1 

B 

′′ 
(

x 1 − p u 1 
�1 

) C 2 2 ∑ 

u 2 = C 1 2 

B 

(
x 2 − p u 2 

�2 

)
· θu ,l = 
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1 

�2 
1 

B 

′′ [ x 1 / �1 ] ∗ B [ x 2 / �2 ] ∗ �l [ x 1 , x 2 ] (17) 

here B ′′ stands for the second order derivative of the B-spline 

unction, which can be calculated analytically. A similar expres- 

ion can be obtained for the components of the partial derivative 

 2 (x ; θ) in Eq. (16) 

 2 ,l (x ; θu,l ) = 

1 

�2 
2 

B [ x 1 / �1 ] ∗ B 

′′ [ x 2 / �2 ] ∗ �l [ x 1 , x 2 ] (18)

herefore, the convolutional formulation has been extended here 

or evaluating efficiently not only the transformations but also the 

egularization term. 

.4. Gradient evaluation 

As previously stated, the optimal set of deformation parameters 

= { θu ,l } = { θ(u 1 ,u 2 ) ,l 
} , with l = { 1 , . . . , L } —see Eq. (2) —, are found

y minimizing the cost function in Eq. (1) 

ˆ = argmin 

θ

C(θ) = argmin 

θ

(
−S(θ) + λ · R (θ) 

)
(19) 

herefore, ∇C(θ) must be evaluated at each iteration of the opti- 

ization process. The derivative of the cost function with respect 

o each component θu,l is defined as 

∂C(θ) 

∂θu,l 

= −∂S(θ) 

∂θu,l 

+ λ · ∂R (θ) 

∂θu,l 

(20) 

Our formulation also permits gradient evaluation with convo- 

utions. However, only the gradient of the registration metric was 

ddressed in [5] , i.e., the first term in Eq. (20) , and it was fully

eveloped only for the sum of squares differences, which is a 

onomodal metric. Here, the convolutional approach to compute 

he gradient is applied to other multimodal registration metrics 

hat comply with a sufficient condition. Furthermore, we show 

ow the same procedure can be used to evaluate the gradient of 

he regularization term (second term in Eq. (20) ) as well. 

.4.1. Metric gradient 

The use of convolutions as a way to implement the gradient of 

he similarity function ( S(θ) ) between the images to be registered 

s possible whenever the derivative of the registration metric with 

espect to each component θu,l of the transformation parameters 

ncludes terms with the following structure 

 

 ∈X 
�S (I F (x ) , I M 

( T θ(x )) , �θ ) ·
∂ I M 

(T θ(x )) 

∂T θl 
(x ) ︸ ︷︷ ︸ 

V θl 
(x ) 

·∂T θl 
(x ) 

∂θu,l 

(21) 

here �S = 

∂S 
∂ I M 

, and �θ stands for a set of terms that are com- 

on ∀ x ∈ X . This is straightforwardly satisfied when the similarity 

unction can be expressed as a function of terms that take the form 

 

 ∈X 
S(I F (x ) , I M 

( T θ(x )) , �θ ) (22) 

hich is the case of SSD and NCC, as stated in [5] . However, other

unctions, such as MI and NMI do not satisfy Eq. (22) , although 

q. (21) is indeed satisfied. A detailed formulation for NCC, MI and 

MI is included in Appendix A to arrive at (21) . From this expres-

ion, as we introduced in [5] , it is possible to obtain the following

onvolutional formulation: 

∂S 
(
θ
)

∂θu,l 

= 

∑ 

x ∈X 
V θl 

( x ) B 

(
x 1 − p u 1 

�1 

)
B 

(
x 2 − p u 2 

�2 

)
= 
4 
s 12 ∑ 

 1 = s 11 

B 

(
x 1 − p u 1 

�1 

) s 22 ∑ 

x 2 = s 21 

B 

(
x 2 − p u 2 

�2 

)
V θl 

( x 1 , x 2 ) ︸ ︷︷ ︸ = 

�

s 12 ∑ 

x 1 = s 11 

B 

(
x 1 − p u 1 

�1 

)
�( x 1 , p u 2 ) ︸ ︷︷ ︸ 

�

(23) 

here s l1 = p u l − R l , and s l2 = p u l + R l , with R l the influence radius

f the control points. Functions � and � correspond to discrete 

D convolutions at control point u , in coordinates x 2 and x 1 re- 

pectively. Function V θl 
(x ) has been defined in Eq. (21) . Hence: 

∂S(θ) 

∂θu,l 

= B 

[ 
x 1 
�1 

] 
∗ B 

[ 
x 2 
�2 

] 
∗ V θl 

[ x 1 , x 2 ] 

∣∣∣
(p u 1 ,p u 2 ) 

(24) 

.4.2. Regularization term gradient 

As for the gradient of the regularization term R (θ) , similarly to 

he metric gradient, it can also be implemented with respect to the 

hole parameter set at once by means of convolutions. From the 

xpressions defined in Eqs. (16) - (18) 

∂R (θ) 

∂θu,l 

= 

2 

|X | 
∑ 

x ∈X 

(
R 1 ,l (x ; θu,l ) 

∂ R 1 ,l (x ; θu,l ) 

∂θu,l 

+ R 2 ,l (x ; θu,l ) 
∂ R 2 ,l (x ; θu,l ) 

∂θu,l 

)
= 

 

2 

|X | 
(∑ 

x ∈X 
D 1 ,l (x ; θu ,l ) + 

∑ 

x ∈X 
D 2 ,l (x ; θu ,l ) 

)
(25) 

he components of the term 

∑ 

D 1 ,l can be expressed as ∑ 

x ∈X 
D 1 ,l 

(
x ; θu ,l 

)
= 

1 

�2 
1 

s 22 ∑ 

x 2 = s 21 

B 

(
x 2 − p u 2 

�2 

) s 12 ∑ 

x 1 = s 11 

B 

’ ’ 
(

x 1 − p u 1 
�1 

)
R 1 ,l 

(
x 1 , x 2 ; θu ,l 

)
︸ ︷︷ ︸ = 

Y 

1 

�2 
1 

s 22 ∑ 

x 2 = s 21 

B 

(
x 2 − p u 2 

�2 

)
Y ( p u 1 , x 2 ) ︸ ︷︷ ︸ = 

ζ

1 

�2 
1 

B 

’ ’ 
[ 

x 1 
�1 

] 
∗ B 

[ 
x 2 
�2 

] 
∗ R 1 ,l [ x 1 , x 2 ] 

∣∣∣∣
( p u 1 ,p u 2 ) 

(26) 

unctions ϒ and ζ are the results of 1D convolutions evaluated at 

ontrol point locations, each of which along a different spatial di- 

ension. A similar expression can be obtained for the components 

f the term 

∑ 

D 2 ,l in Eq. (25) 

 

 ∈X 
D 2 ,l (x ; θu ,l ) = 

1 

�2 
2 

B 

[ 
x 1 
�1 

] 
∗ B 

′′ 
[ 

x 2 
�2 

] 
∗ R 2 ,l [ x 1 , x 2 ] 

∣∣∣∣
(p u 1 ,p u 2 ) 

(27) 

. Results and discussion 

All experiments have been run using MATLAB R2020a on a stan- 

ard PC workstation with Intel Core i7-4790 @ 3,6 GHz processor 

nd 16 GB RAM. GPU executions were carried out on a nVIDIA 

uadro RTX60 0 0 using MATLAB CUDA capabilities with no further 

arallelization work from our implementation. Throughout the ex- 

eriments, our aim is to compare FFD-based convolutional PW reg- 

stration with the implementation based on tensor products, on 

oth CPU and GPU. 
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Fig. 2. Graph of the experiment for empirical measurement of execution times on CPU and GPU as a function of image size and control point spacing for both the tensor 

products approach and our convolutional proposal. 

Fig. 3. Speed-up achieved using the proposed convolutional approach versus the tensor product approach (time prod./time conv.) for image sizes 256 × 256 (solid line) and 

512 × 512 (dashed line) for different resolutions of control point grid: (a) speed-up from Matlab executions on CPU; (a) speed-up from Matlab executions on GPU. 
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.1. Analysis of execution time as a function of image size and 

ontrol point grid resolution 

In this section we mean to gain insight on the computational 

avings that can be obtained from each component of our convo- 

utional formulation. The core of our proposal consists of the spa- 

ial transformation, T θ(x ) , described in Eqs. (2) - (7) , the regular-

zation term, R (θ) , —Eqs. (16) - (18) —, the metric gradient, ∇S , —

qs. (21) - (23) — and the gradient of the regularization term, ∇R , 

xpressed in Eqs. (25) - (27) . The actual metric used is involved in

S through the term �S . 
In [5] , the computational cost in terms of number of operations 

f both the tensor product and the convolutional approaches was 

nalytically derived. The obtained cost showed that the number of 

roducts needed for the proposed approach depends on the im- 

ge size as well as on the control point grid resolution and, conse- 

uently, on the number of control points. Bearing this in mind, the 

xecution times of the reformulated functions have been empiri- 

ally measured on CPU and GPU for different values of the involved 

arameters (see the graph of the experiment in Fig. 2 ). To this 

nd, arbitrary images and control point grids are used to evaluate 

he functions reformulated by convolutions in isolation. In order to 
5 
ake our analysis independent of the actual metric used, we have 

sed a random value for �S . Only one execution of the functions 

nvolved has been carried out, i.e., no iterations until convergence 

f the cost functions are measured in this experiment. 

Table 1 includes the measured execution times for the ten- 

or product formulation (prod.) and the convolutional formula- 

ion (conv.) for one execution of functions T θ(x ) , R (θ) , ∇S —

ith �S as indicated above— and ∇R . Different image sizes (256 

nd 512 pixels per dimension) and different control point spacings 

 � = { 8 , 12 } pixels) —which leads to different sizes of the control

oint grid— have been considered. The execution times have been 

btained by means of the timeit and gputimeit Matlab functions in 

PU and GPU, respectively. Both functions call the specified func- 

ion multiple times and returns the median of the time measure- 

ents. The figures in this table indicate that our proposal signifi- 

antly reduces execution times of the four functions, both on CPU 

nd GPU, showing a dependence on the problem magnitude, i.e., 

n the image and grid sizes. As can be seen, evaluations of both 

R and the ∇S constitute the most time-consuming functions in 

he optimization, excluded metric calculation. According to these 

ata, the greatest time reduction is achieved for ∇R , which also 

epresents the slowest function. 
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Table 1 

Empirical CPU and GPU execution times in milliseconds for those functions that can be reformulated in terms of convolution operations. 

Experiments include two sizes of image and two control point resolutions ( �, in pixels) leading to four different grids of control points. 

Times for the classical tensor product formulation (prod.) and the proposed convolutional approach (conv.) are shown, as well as the 

percentage of time reduction (R) and speed-up achieved using convolutions. 

Function 

Img. 

Size � Grid 

CPU Execution GPU Execution 

prod. (ms) conv. (ms) R Speed-up prod. (ms) conv. (ms) R Speed-up 

T θ (x ) 256 × 256 12 21 × 21 4.68 0.81 82.7% ×6 2.06 0.44 78.6% ×5 

8 31 × 31 5.06 0.90 82.2% ×6 2.10 0.43 79.5% ×5 

512 × 512 12 43 × 43 27.42 2.72 90.1% ×10 2.50 0.45 82.0% ×6 

8 63 × 63 28.18 3.18 88.7% ×9 2.47 0.45 81.8% ×5 

R (θ) 256 × 256 12 21 × 21 6.95 1.59 77.1% ×4 2.30 0.90 60.9% ×3 

8 31 × 31 7.15 1.83 74.4% ×4 2.28 0.96 57.9% ×2 

512 × 512 12 43 × 43 36.83 4.53 87.7% ×8 3.07 0.99 67.8% ×3 

8 63 × 63 37.70 5.34 85.8% ×7 3.09 1.04 66.3% ×3 

∇S 256 × 256 12 21 × 21 9.61 2.93 69.5% ×3 6.47 0.63 90.3% ×10 

8 31 × 31 10.78 2.89 73.2% ×4 7.63 0.64 91.6% ×12 

512 × 512 12 43 × 43 45.57 10.31 77.4% ×4 34.21 0.67 98.0% ×51 

8 63 × 63 50.88 9.90 80.5% ×5 39.94 0.65 98.4% ×61 

∇R 256 × 256 12 21 × 21 14.60 1.06 92.7% ×14 11.35 0.63 94.4% ×18 

8 31 × 31 15.90 1.24 92.2% ×13 12.75 0.61 95.2% ×21 

512 × 512 12 43 × 43 79.20 3.96 95.0% ×20 63.87 0.62 99.0% ×103 

8 63 × 63 85.40 3.44 96.0% ×25 70.93 0.62 99.1% ×114 

Fig. 4. Example of cardiac first-pass perfusion images. Short-axis view of a medial slice of the heart. From left to right: previous to contrast arrival; contrast reaches the 

right ventricle (RV) cavity; contrast reaches the left ventricle (LV) cavity; myocardium enhanced; and final frame of the dynamic perfusion sequence. 

Fig. 5. Graph of the experiment for the alignment of 2D cardiac perfusion MRI sequences by pairwise image registration. 

6 
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Fig. 6. Visual results for 2D sequential elastic pairwise (PW) registration of dynamic cardiac perfusion MRI: (a) Frame selected as optimal reference with vertical and 

horizontal profiles (dashed lines); (b) vertical and horizontal temporal profiles of the original sequence; (c) temporal profiles of the registered sequence using NCC metric; 

(d) temporal profiles of the registered sequence using MI metric; (e) temporal profiles of the registered sequence using NMI metric. 
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Additionally, Fig. 3 shows the speed-up achieved using convo- 

utions instead of tensor products on CPU ( Fig. 3 a) and on GPU 

 Fig. 3 b). These execution time accelerations have been empirically 

alculated from executions for different resolutions of the control 

oint grid by considering all the functions included in Table 1 . In 

ig. 3 , the variation of the convolutional improvement with respect 

o the image size and resolution of control point grid can be clearly 

ppreciated. For an image size of 256 × 256 pixels, again without 

aking into account the time for metric evaluation, each iteration 

f the optimizer is at least 5 times faster using the proposed ap- 

roach on CPU. The speed-up is even higher on GPU, with execu- 

ion time improvements above ×10. These values are significantly 

ncreased for smaller values of �, i.e., as a denser control point 

rid is considered and, therefore, the computational load of the 

ensor product approach increases. A similar trend is observed for 

he case of an image size of 512 × 512 pixels. In this case, the ex-

cution time improvement is greater, with figures above ×7 and 

30 faster on CPU and GPU, respectively. 

Although calculation of the registration metric has been ex- 

luded in the analysis presented here, it does play a key role in the 

omputational efficiency of a registration procedure, as we show 

ext. 

.2. 2D Cardiac perfusion magnetic resonance images 

The multimodal scenario used in this paper to analyze the pro- 

osed convolutional formulation for FFD based registration is the 

lignment of contrast-enhanced first-pass perfusion cardiac MRI, 

ereinafter referred to as cardiac perfusion MRI. 

Perfusion MRI uses a T 1 -weighted acquisition sequence and re- 

uires the injection of a contrast agent that gives rise to a short- 

ning of the T 1 relaxation time of the tissues. Thus, signal inten- 

ity increases when the contrast agent uptake by a given tissue 

akes place. Therefore, this translates to changes in the image in- 

ensities of the acquired image sequence (see Fig. 4 ). In particu- 

ar, cardiac perfusion MRI is used to study the blood supply to 

he myocardium in order to detect and evaluate myocardial is- 

hemia, for which a precise analysis of the temporal curves of 

ontrast concentration in different regions of the myocardium is 

arried out. The evaluation of these perfusion curves requires the 

orrect alignment of the image sequence, since several sources of 

otion, such as patient breathing and inaccuracies in the cardiac 

riggering during acquisition, may cause misalignment among the 

mages. 
7 
The test dataset used here includes 12 cardiac perfusion MRI 

equences acquired with a Philips Intera 1.5 T scanner using a fast 

eld echo MAG prepared gradient recalled sequence with spatial 

resaturation. All images have 288 × 288 matrix size, whereas the 

umber of frames ranges from 132 to 188 with spatial resolution 

rom 1.250 to 1.840 mm 

2 , depending on the subject. 

For each perfusion MRI study, the alignment procedure is car- 

ied out by registering each image frame to a preselected reference 

mage sequentially. Therefore, a total of N − 1 PW registrations are 

xecuted for each one of the perfusion sequences, with N the num- 

er of frames (see Fig. 5 ). For the reference selection, we use the 

nbiased template estimation method proposed in [30] . The spac- 

ng between control points is set to 15 mm, since this spacing 

howed the best results with this dataset in a previous work [31] . 

Furthermore, the optimizer used is the iterative non-linear con- 

ugate gradient algorithm [32] , with the maximum number of it- 

rations set to 100. It is worth mentioning that other alternatives 

ay be used to reduce the computational cost of the optimization, 

uch as undersampling strategies and the adaptive stochastic gra- 

ient descent algorithm. However, these additional optimizations 

ave not been considered in this work since we focus on the com- 

arative analysis of the efficiency achieved using the proposed con- 

olutional approach with respect to the formulation based on ten- 

or products. 

Figure 6 shows an example of the results of the sequential elas- 

ic PW registration of a cardiac perfusion MRI using the three mul- 

imodal metrics analyzed in this work: NCC, MI and NMI. Two 

emporal intensity profiles, marked with dashed lines on the ref- 

rence image ( Fig. 6 a), are shown for the registered sequence us- 

ng each metric ( Figs. 6 c- 6 e). Furthermore, the same profiles from 

he original non registered sequence are also included, in which 

he misalignments between consecutive frames can be appreciated 

 Fig. 6 b). Moreover, as Fig. 7 illustrates with an example, there are

o significant differences between the results for the convolution- 

ased PW registration and the classical implementation; the result- 

ng aligned images, as well as deformations and the correspond- 

ng pixel displacements, are virtually identical. Fig. 8 supports this 

tatement by showing boxplots of these differences; as can be 

een, in all cases the interquartile ranges of the differences are be- 

ow 0.2 pixels, and only one of the whiskers extends to the vicinity 

f 0.45 pixels, i.e., far less than half of a pixel. 

Table 2 includes specific execution times for the sequential PW 

egistration of each one of the cardiac perfusion MRI sequences 

sing NCC, MI and NMI with the classical formulation based on 

ensor products and the proposed reformulation based on con- 
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Fig. 7. Comparison between the proposed convolution-based registration and the classical tensor product methodology. 

Table 2 

Results for 2D sequential elastic pairwise (PW) registration of each cardiac perfusion MRI 

study (ID) by using three multimodal similarity metrics: NCC, MI and NMI. Matlab execu- 

tion times in minutes on CPU and GPU devices (Dev.) for the proposed convolutional ap- 

proach (conv.) and the tensor product formulation (prod.) of the overall registration proce- 

dure. Number of frames of each sequence (N); resolution of images in mm/pixel (Res.); grid 

size of control points (Grid). 

ID N Res. Grid Dev. 

NCC Metric MI Metric NMI Metric 

prod. conv. prod. conv. prod. conv. 

1 139 1.250 23 ×23 CPU 4.29 1.12 75.41 69.45 173.3 165.0 

GPU 2.79 0.69 9.49 6.00 15.06 10.31 

2 132 1.667 31 × 31 CPU 6.63 1.52 78.87 64.05 236.3 226.0 

GPU 4.44 0.94 10.70 6.68 21.32 14.89 

3 159 1.424 25 × 25 CPU 5.51 1.42 90.82 86.59 209.5 197.3 

GPU 3.54 0.84 11.66 7.14 19.05 13.04 

4 155 1.250 23 × 23 CPU 6.47 1.70 58.30 57.16 257.6 246.7 

GPU 4.39 1.07 7.61 4.81 22.68 16.00 

5 159 1.389 25 × 25 CPU 9.00 2.24 119.1 112.2 253.7 204.4 

GPU 6.24 1.40 14.58 8.91 24.61 16.37 

6 188 1.250 23 × 23 CPU 8.14 2.14 133.6 121.8 333.4 317.9 

GPU 5.39 1.29 16.73 10.17 26.47 18.49 

7 139 1.354 23 × 23 CPU 4.42 1.12 85.53 82.27 206.9 200.8 

GPU 2.99 0.72 11.10 6.78 17.53 12.06 

8 149 1.840 31 × 31 CPU 8.12 1.92 98.97 90.16 358.1 294.7 

GPU 5.70 1.19 12.28 7.67 32.35 21.75 

9 188 1.562 29 × 29 CPU 12.50 2.81 94.40 85.58 375.4 356.8 

GPU 8.72 1.76 12.60 7.21 36.54 24.39 

10 188 1.458 25 × 25 CPU 5.76 1.52 106.3 102.7 274.3 266.7 

GPU 3.93 0.95 13.46 8.49 24.44 16.40 

11 135 1.424 25 × 25 CPU 5.11 1.26 79.61 68.96 206.0 184.9 

GPU 3.45 0.82 10.30 5.88 16.46 11.70 

12 188 1.389 25 × 25 CPU 6.30 1.61 112.0 105.5 278.4 227.6 

GPU 4.21 0.99 14.15 8.66 25.49 17.98 

Conv. Time Reduction CPU 75.23% 7.64% 8.67% 

GPU 77.90% 38.90% 31.43% 
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olution operations, both on CPU and GPU. As can be seen, our 

onvolutional approach accomplishes lower registration times for 

ll the perfusion sequences and metrics on both CPU and GPU. 

owever, the execution time reduction is not uniform among the 

hree multimodal metrics used. The improvement of the convolu- 

ional approach in the overall registration time is lower for MI and 

MI metrics, as indicated by the mean reduction percentages high- 

ighted in the last two rows of the table. As discussed below, this 
8 
s due to the fact that the bottleneck in registration using MI and 

MI is the calculation of the metric itself. However, as for NCC, 

he bottleneck is the evaluation of those functions that can be effi- 

iently reformulated by means of convolutions and, hence, a great 

peed-up is observed. On the other hand, the time reduction per- 

entages of the convolutional approach with respect to the tensor 

roduct formulation (see last two rows in Table 2 ) indicate that 

he gain achieved on GPU is greater than the gain on CPU. 
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Fig. 8. Boxplot of differences (in pixels, for the set of frames in each sequence) between pixel displacements obtained with the proposed convolution-based algorithm and 

the classical tensor product methodology. 

Fig. 9. Boxplots of CPU execution times in milliseconds for evaluating the spatial transformation (black), the metric gradient (blue) and the regularization term together with 

its gradient (red): (a) execution times for the tensor product approach; (b) execution times for the proposed convolutional approach; (c) speed-up achieved by the proposed 

reformulation (time prod. / time conv.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Boxplots of GPU execution times in milliseconds for evaluating the spatial transformation (black), the metric gradient (blue) and the regularization term together 

with its gradient (red): (a) execution times for the tensor product approach; (b) execution times for the proposed convolutional approach; (c) speed-up achieved by the 

proposed reformulation (time prod. / time conv.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

9
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Fig. 11. Myocardial perfusion curves for the image in Fig. 6 a. The left scheme shows the standard zones considered for myocardial perfusion analysis: anteroseptal (AS), 

anterior (A), anterolateral (AL), inferoseptal (IS), inferior (I), and inferolateral (IL). The figures on the right show the mean perfusion curves for each zone. The original curves 

(red dashed lines) are included, as well as the curves obtained after image registration using the proposed method with NCC metric (blue solid lines). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Results for 2D sequential pairwise (PW) registration with the Elastix software using NCC metric: Temporal profiles of the registered sequence for comparison with 

the results in Fig. 6 , (a) vertical profile and (b) horizontal profile; (c) mean perfusion curves at blood-pool (black) and myocardium (blue) obtained after registration using 

the proposed method (solid lines) and Elastix (dashed lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Moreover, Table 3 shows the mean times per PW image regis- 

ration with the tensor product approach, using NCC, MI and NMI 

n CPU and GPU. The table includes the time percentages dedi- 

ated to evaluating the metric —including S and �S — (Metric), 

he spatial transformations, T θ(x ) , (Transf.), the metric gradients, 

S —excluding calculation of �S , since it is included in the metric 

ime, as commented above— (Grad.), the regularization term R (θ) , 

nd its gradient ∇R , (Reg.). The percentage of total time that can 

e reduced by means of the proposed convolutional formulation 

s indicated in each case (Reducible). As stated above, these data 

how that the weight of the metric evaluation in the overall regis- 

ration time is larger for MI and NMI, specially on CPU. 

Figures 9 and 10 show boxplots of the corresponding execu- 

ion times per call to the functions of interest. These functions 

re the following: (i) evaluation of spatial transformations (black 

oxes), i.e., T (x ) ; (ii) calculation of the metric gradient with re- 
θ

10 
pect to the set of control point displacements (blue boxes), ex- 

ept for the term �S , corresponding to the above mentioned ∇S; 

iii) and the estimation of the regularization term R and its gradi- 

nt ∇R with respect to θu (red boxes). Note that for this anal- 

sis the mean execution times of the aforementioned functions 

or each PW registration done during the registration process of 

ll images (ID = 1, ..., 12) using the three metrics under study 

ave been considered. Therefore, each boxplot has been created us- 

ng 5721 samples of time data, corresponding to 
∑ 12 

i =1 3 × (N i − 1) . 

igs. 9 (a) and 10 (a) show the function execution times for the ten- 

or product approach in CPU and GPU executions, respectively; 

hereas Figs. 9 (b) and 10 (b) show the corresponding times with 

he proposed convolutional approach. Additionally, Figs. 9 (c) and 

0 (c) illustrate the speed-up achieved by the proposed reformula- 

ion based on simple convolution operations with respect to the 

ensor product approach, i.e., prod. running time / conv. running 
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Table 3 

Mean times per pairwise (PW) registration for the cardiac perfusion MRI dataset us- 

ing the classical tensor product formulation. Total PW registration time in seconds 

(Total); percentage of total time dedicated to evaluating the registration metric S
and its gradient with respect to the transformed image �S (Metric); percentage 

of total time for spatial transformations T (x ) (Transf.); percentage of total time for 

calculation of metric gradient ∇S with respect to the set of control point displace- 

ments, θu , excluding �S (Grad.); percentage of total time for evaluating regulariza- 

tion term R and its gradient ∇R with respect to θu (Reg.); percentage of total time 

that can be reduced using the proposed convolutional approach (Reducible). Per- 

centages do not sum to 100 since additional operations (e.g., interpolations) have 

not been accounted for. 

Mean Times / 

Frame 

NCC MI NMI 

CPU GPU CPU GPU CPU GPU 

Total (seconds) 2.588 1.755 35.643 4.552 99.513 8.873 

% Metric ( S , �S ) 1.8 5.0 91.6 52.1 96.2 65.0 

% Transf. ( T (x ) ) 12.6 7.9 1.1 4.4 0.5 2.6 

% Grad. ( ∇S) 27.5 29.5 2.3 14.7 1.0 12.5 

%Reg. ( R , ∇R ) 51.9 49.0 4.4 24.3 2.0 17.3 

Reducible 92.0% 86.4% 7.8% 43.4% 3.5% 32.4% 
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ime. As expected, values depicted in these boxplots agree with 

hose previously showed in Sect. 3.1 (see Table 1 ), and execution 

ime reduction using convolutions is extremely significant for each 

ask separately. However, it is important to note that efficient im- 

lementations of MI and NMI are crucial to take full advantage of 

he proposed approach when these registration metrics are used, 

lthough those optimizations are not the goal of this paper. 

As we have already mentioned throughout this paper, a major 

imitation of the conventional image registration methods is the 

xecution time, and our proposal is aimed at lightening the com- 

utational cost. The above tests prove the efficiency of the convolu- 

ional formulation. However, registration accuracy is also an impor- 

ant aspect to take into account for the validation of the proposed 

ethodology. Thus, the perfusion curves corresponding to the im- 

ge in Fig. 6 (a) have also been analyzed. Fig. 11 shows the curves

epresenting mean image intensities along time at the six stan- 

ard zones considered for myocardial perfusion analysis, namely, 

nteroseptal (AS), anterior (A), anterolateral (AL), inferoseptal (IS), 

nferior (I), and inferolateral (IL). These regions have been defined 

n a segmentation of the reference image. The figures include both 

he original curves obtained before registration and the curves ob- 

ained from the registered sequence for their comparison. As can 

e seen, the appearance of both curves differs significantly. The 

otion reduction can be observed in the smoother curves obtained 

fter image registration (see blue solid lines). The remaining fluc- 

uations in the curves after alignment are due to the image noise. 

In addition, the perfusion MRI sequences were also registered 

sing Elastix 2 in order to compare our results with those obtained 

y a robust and widely validated registration tool. In this case, the 

lastix parameter file has been adapted to perform PW registra- 

ion of 2D images by using NCC metric, random coordinate un- 

ersampling strategy and adaptive stochastic gradient descent op- 

imization with a single resolution level, and without any regular- 

zation term. Fig. 12 shows an example of the results obtained by 

he Elastix registration. As can be observed, there are no visible 

ifferences with the results of the proposed registration method. 

herefore, we can conclude that both approaches achieve similar 

egistration accuracy. As for the registration times, the comparison 

f the proposed method with Elastix may be not fair, since it is ex- 

cuted from a compiled language, while our routines are executed 

n Matlab. Having said that, the mean Elastix runtime per each im- 

ge pair registered is 16.88 seconds, whereas the mean registration 

ime of the proposed convolutional CPU implementation in Matlab 
2 http://elastix.isi.uu.nl/ 

=

11 
s 0.64 seconds, which represents a reduction in registration time 

bove 96% for this configuration. However, further optimizations 

ould probably be done for the Elastix experiments. 

. Conclusions 

This paper describes a multimodal convolution-based formu- 

ation for efficient pairwise image registration with FFDs. In this 

ase, we been explored this type of registration on contrast- 

nhanced first-pass perfusion cardiac MRI. In particular, we show 

ow the gradient formulation by convolution operations can be 

dapted to three different multimodal metrics: NCC, MI and NMI. 

his, added to the convolutional formulation of the spatial trans- 

ormations as well as the regularization term and its gradient —

unctions that are independent of the metric used— allow us to 

chieve significant execution time reductions on the reformulated 

unctions on CPU and GPU. Therefore, the speed-up achieved by 

he proposed convolutional FFD approach in the overall registra- 

ion procedure is specially outstanding when the bottleneck of the 

ptimization process is the calculation of gradients. However, the 

mprovement will be smaller when the major part of registration 

ime is spent in the evaluation of the registration metric itself, as it 

s the case with metrics based on mutual information. Despite this, 

he proposed approach constitutes an alternative of interest for 

latforms in which the convolution operator is highly optimized 

as it is the case of Matlab) for any application of elastic registra- 

ion, also for multimodal images, and specially for processing large 

atasets or time series. 
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ppendix A. Gradients of Multimodal Registration Metrics 

1. NCC Gradient 

From the definition of NCC in Eq. (8) 

∂ NCC 

∂θu,l 

= 

∂A 
∂θu,l 

B − A 

∂B 
∂θu,l 

B 

2 
= 

1 

B 

∂A 

∂θu,l 

− A 

B 

2 

∂B 

∂θu,l 

(A.1) 

he partial derivative of A can be expressed as 

∂A 

∂θu,l 

= 

∑ 

x ∈X 
(I F (x ) − I F ) 

∂ I M (T θ (x )) 

∂T θl 
(x ) 

∂T θl 
(x ) 

∂θu,l 

−
∑ 

x ∈X 
(I F (x ) − I F ) ∇I M 

∂T θl 
(x ) 

∂θu,l 

= 

 

∑ 

x ∈X 
(I F (x ) − I F ) 

∂ I M (T θ(x )) 

∂T θl 
(x ) 

∂T θl 
(x ) 

∂θu,l 

−
∑ 

x ∈X 
I F (x ) ∇I M 

∂T θl 
(x ) 

∂θu,l 

+ |X | I F · ∇I M 
∂T θl 

(x ) 

∂θu,l 

http://elastix.isi.uu.nl/


R.-M. Menchón-Lara, F. Simmross-Wattenberg, M. Rodríguez-Cayetano et al. Signal Processing 202 (2023) 108771 

w

o

w  

m

w

�  

A

E

M

−

A

w

θ

=

=

+

=

=

w

F

g

 ) 

w

b

w

�

=

A

b

w

T

t

 

w

�

=

R

here the last two terms are cancelled out. Whereas the derivative 

f B is obtained by 

∂B 

∂θu,l 

= 

F 

B 

∑ 

x ∈X 
(I M 

(T θ(x )) − I M 

) 
∂ I M 

(T θ(x )) 

∂T θl 
(x ) 

∂T θl 
(x ) 

∂θu,l 

here F = 

∑ 

x ∈X 
(I F (x ) − I F ) 

2 . Therefore, the gradient of the NCC

etric takes on the following form 

∂ NCC 

∂θu,l 

= 

∑ 

x ∈X 
�NCC (I F (x ) , I M 

( T θ(x )) , A , B, F ) 
∂ I M 

(T θ(x )) 

∂T θl 
(x ) 

∂T θl 
(x ) 

∂θu,l 

(A.2) 

ith 

NCC (I F (x ) , I M ( T θ (x )) , A , B, F ) = 

1 

B (I F (x ) − I F ) − A 

F 
B 3 (I M (T θ (x )) − I M ) (A.3)

2. MI Gradient 

Departing from the definition of MI similarity metric in 

q. (10) 

I = 

∑ 

f,m 

[
p( f, m | θ) log 2 (p( f, m | θ)) 

]
︸ ︷︷ ︸ 

MI 1 

−
∑ 

f,m 

[
p( f, m | θ) log 2 (p F ( f )) 

]
︸ ︷︷ ︸ 

MI 2 

−

∑ 

f,m 

[
p( f, m | θ) log 2 (p M 

(m | θ)) 
]

︸ ︷︷ ︸ 
MI 3 

nd the partial derivatives of the terms in the expression above 

ith respect to a component θu,l of the transformation parameters 

are obtained by the following expressions: 

∂ MI 1 
∂θu,l 

= 

∑ 

f,m 

[
log 2 (p( f, m | θ)) + μ) 

]∂ p( f, m | θ) 

∂θu,l 

∂ MI 2 
∂θu,l 

= 

∑ 

f,m 

log 2 (p F ( f )) 
∂ p( f, m | θ) 

∂θu,l 

= 

∑ 

f 

log 2 (p F ( f )) 
∑ 

m 

∂ p( f, m | θ) 

∂θu,l 

= 

 

∑ 

f 

log 2 (p F ( f )) 

∂ 
∑ 

m 

p( f, m | θ) 

∂θu,l 

= 

∑ 

f 

log 2 (p F ( f )) 
�

�
��� 

0 
∂ p F ( f ) 

∂θu,l 

= 0 

∂ MI 3 
∂θu,l 

= 

∑ 

f,m 

[
log 2 (p M 

(m | θ)) 
∂ p( f, m | θ) 

∂θu,l 

+ μ
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p M 

(m | θ) 

∂ p M 
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∂θu,l 

]
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[
log 2 (p M 
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∂θu,l 

]
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m 

1 

p M 

(m | θ) 

∂ p M 

(m | θ) 

∂θu,l 

∑ 

f 

p( f, m | θ) = 
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[
log 2 (p M 

(m | θ)) 
∂ p( f, m | θ) 
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m 

∂ 
∑ 
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∂θu,l 

= 

 

∑ 
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[
log 2 (p M 

(m | θ)) + μ
]∂ p( f, m | θ) 

∂θu,l 

here μ = log 2 (e ) . Therefore, 

∂ MI 

∂θu,l 

= 

∑ 

f,m 

log 2 

(
p( f, m | θ) 

p M 

(m | θ) 

)
︸ ︷︷ ︸ 

G 

∂ p( f, m | θ) 

∂θu,l 

(A.4) 

urthermore, the partial derivative of the joint histogram p( f, m | θ) 

iven by Eq. (11) can be obtained by 

∂ p( f, m | θ) 

∂θu,l 

= α
∑ 

x ∈X 
K 

(
f − I F (x ) 

σF 

)
K ′ 

(
m − I M 

(T θ(x )) 

σM 

)
∂ I M 

(T θ(x )) 

∂T θl 
(x ) 

∂T θl 
(x

∂θu,l 

(A.5) 
12 
ith α = − 1 
σM |X | . Then, the derivative of mutual information can 

e expressed as 

∂ MI 

∂θu,l 

= 

∑ 

x ∈X 
�MI (I F (x ) , I M 

( T θ(x )) , G, σF , σM 

) 
∂ I M 

(T θ(x )) 

∂T θl 
(x ) 

∂T θl 
(x ) 

∂θu,l 

(A.6) 

here 

MI (I F (x ) , I M 

( T θ(x )) , G, σF , σM 

) = 

 α
∑ 

f∈L F 

∑ 

m ∈L M 
G · K 

(
f − I F (x ) 

σF 

)
· K 

′ 
(

m − I M 

(T θ(x )) 

σM 

)
(A.7) 

3. NMI Gradient 

From the expression of NMI in Eq. (14) , its gradient is obtained 

y 

∂ NMI 

∂θu,l 

= 

1 

E 
∂D 

∂θu,l 

− D 

E 2 
∂E 

∂θu,l 

(A.8) 

here 

∂E 
∂θu,l 

= 

∑ 

f,m 

∂ p( f, m | θ) 

∂θu,l 

( log 2 (p( f, m | θ)) + 

∑ 

f 

μ
�������� 

0 

∂ 
∑ 

m 

p( f, m | θ) 

∂θu,l 

) 

Then, the gradient expression can be simplified as follows 

∂ NMI 

∂θu,l 

= 

∑ 

f,m 

[ 
1 

E log 2 (p M 

(m | θ)) − D 

E 2 log 2 (p( f, m | θ) 
] 

︸ ︷︷ ︸ 
J 

∂ p( f, m | θ) 

∂θu,l 

(A.9) 

herefore, by substituting the expression of the p( f, m | θ) deriva- 

ive ( Eq. (A.5) ), the NMI gradient also takes the form 

∂ NMI 

∂θu,l 

= 

∑ 

x ∈X 
�NMI (I F (x ) , I M 

( T θ(x )) , J , σF , σM 
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(T θ(x )) 
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(A.10) 

ith 

NMI (I F (x ) , I M 
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