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I Resumen 
 

Actualmente, el creciente uso del automóvil, junto con la preocupación por el medio 

ambiente fomenta la investigación en los vehículos eléctricos. Por ello, la industria del 

VE ha crecido enormemente durante los últimos años, planteando nuevos problemas a la 

sociedad. 

 

Este trabajo tiene como objetivo desarrollar un algoritmo basado en precios dinámicos 

para la carga de  VE. Se trata de paliar la demanda en horas punta, beneficiando la 

economía del consumidor y de los operadores de recarga. 

Primeramente, se introduce la base técnica de este proyecto. Después, se define la 

metodología utilizada para el modelo algorítmico, señalando las entradas, la función 

objetivo y los posibles algoritmos vinculados a la inteligencia artificial que pueden dar 

solución. 

 

Finalmente, utilizando la herramienta MATLAB Simulink, se ha realizado una 

simulación implementando el algoritmo, analizando posteriormente su efectividad, 

llegando a determinadas conclusiones a partir de los resultados y proponiendo futuras 

líneas de trabajo relacionadas.  

 

Palabras clave: Vehículos eléctricos, precios dinámicos, aprendizaje automático, estado 

de la red, algoritmo 
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II Abstract 
 

Nowadays, the increasing use of automobiles, together with environmental concerns and 

the development of intelligent systems, encourages the research in the field of electric 

vehicles. Therefore, the electric vehicle industry has grown enormously during the last 

recent years, posing new problems to society. 

 

This work aims to develop an algorithm based on dynamic pricing for charging electric 

vehicles at public charging stations. It attempts to alleviate the high demand at peak hours, 

benefiting both the consumer's economy as well as the charging operators' profit.  

The structure of this project is divided into several sections. Firstly, an introduction of the 

technical basis for this project is given. Secondly, the methodology carried out for the 

algorithm model is defined, pointing out the inputs, the objective function and the possible 

algorithms linked to artificial intelligence that can help to solve it. 

Finally, using a block diagram model with the MATLAB Simulink tool, a simulation has 

been carried out implementing the algorithm, through which its effectiveness has been 

analyzed, reaching certain conclusions from the results obtained and future lines of work 

related to this field have been proposed. 

 

Key words: Electric vehicles, dynamic pricing, machine learning, state of the grid 
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1 Introduction 
In recent decades, the concepts of sustainable development and sustainability have been 

high on the public and political agenda as an approach to address climate change and its 

impacts. To this end, new legislation and policies worldwide are guiding companies and 

citizens towards sustainability. In particular, large multinational companies operating in 

highly polluting industries have a major impact on climate change. One example of these 

industries is the automotive industry. 

The automotive industry has become one of the most important industries worldwide, not 

only economically but also in terms of research and development efforts. On the one hand, 

the number of vehicles on the road has increased over time, simplifying the transportation 

of people, and making it more comfortable and faster. On the other hand, this has caused 

a large increase in air pollution levels due to the emission of gases such as carbon dioxide 

(CO2), nitrogen oxides (NO𝑥), carbon monoxide (CO) or unburned hydrocarbons (HC). 

Moreover, according to an European Union report, the transport sector generates almost 

27% of carbon dioxide emissions (EPA, 2022), 70% of which come from road transport 

resulting in 682 million tons of CO2 (Bundesamt, 2020).  

As a result, authorities in most countries are vigorously promoting the use of electric 

vehicles (EVs) with significant investments and incentives to avoid the concentration of 

CO2 pollutants, thus making EVs a key element of the energy transition. This will lead to 

changes in energy distribution, reducing demand for fossil energy sources such as diesel 

or natural gas, while creating greater pressure on the energy distribution grid.  

 

To put this in perspective, during 2021 the total annual electricity consumption was 536,5 

million kWh, assuming an average of 6,451 kWh per capita. It is observed how 87,5% of 

the energy is used in the country itself, exporting more than 78 MM kWh to neighbouring 

countries.  In 2021, renewable energies accounted for about 52% of total real consumption 

in Germany (Statista Research, 2022). 

As well, the electric vehicle industry has grown tremendously, especially in recent years, 

starting in 2010, when the German government proposed a target of reaching 1 million 

electric vehicles on German roads by 2020. 

Thanks to this action, the number of pure electric vehicles driven in Germany reached its 

peak in 2021, registering more than 300.000 electric vehicles. The increase in the 

proportion of newly registered plug-in electric vehicles is surprising, given the huge 

demand for diesel and gasoline vehicles in Germany. Of the 52.275.833 vehicles on the 

road, approximately 13.5% of the vehicles sold in 2020 were plug-in electrics (Statista 

Research, 2022). 



 2 

 

The federal government is taking the necessary steps to create a regulatory environment 

in which electric vehicles can thrive and has been offering incentives to boost demand for 

electric vehicles for years. 

In late August 2014, the federal government announced some plans to introduce non-

monetary incentives through new legislation that came into effect in early 2015. The 

measures include certain privileges for electric vehicles, such as allowing these vehicles 

to drive on bus lanes or have free and reserved parking spaces where charging points are 

available. 

In 2015 the Bundestag passed the Electric Vehicle Act, mandated by the local government 

in March, to grant these non-monetary incentives. In it, it also registered the issuance of 

identification plates to prevent abuse of such privileges.  

Also, the Bundesrat approved on May 12, 2017, a regulation amending the Federal 

Ministry of Economic Affairs and Climate Action's charging station ordinance II. The 

new regulations provide for not having to participate in the internal billing system of the 

electricity supplier, with the EV user being able to pay for electricity at charging stations 

with a common payment system. 

 

The Federal Ministry of Economic Affairs and Climate Action has long advocated several 

measures to accelerate the development of the EV market, focusing primarily on three.  

Firstly, the federal government is backing the purchase of EVs. It has thus earmarked up 

to 600 million euros to support the purchase of at least 300,000 EVs by 2019, with 

manufacturers contributing the same amount. On the other hand, a bonus of 4,000 EUR 

was established for the purchase of a new all-electric car and 3,000 EUR for plug-in 

hybrid vehicles. In addition, work is underway to expand the charging infrastructure, as 

the federal government has earmarked 300 million euros to facilitate the deployment of 

standard and fast charging points (Action, 2022). 

Finally, the public sector is committed to electric vehicles, including the purchase of 

electric vehicles in its fleet, and intended to increase the number of EVs to at least 20 

percent by 2019. To this purpose, the government allocated 100 million euros. 

 

Despite all these improvement measures for the integration of electric vehicles in our 

daily lives, there are still different problems that create rejection towards innovation in 

this sector. 

  

 

 

1.1 Problem 
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The challenges posed by climate change and the quest for sustainability are prompting 

the development of alternative technologies with low carbon emissions. The use of 

renewable energies for power generation has positioned electrification as one of the 

measures to reduce pollution. 

In terms of mobility, the development of electric vehicles is growing exponentially 

despite being considerably more expensive, compared to the same model powered by 

fossil fuels.   

Therefore, another important point that does not allow the customer to make up his mind 

is the vehicle's battery. It does not provide sufficient autonomy, being the market average  

250 km, while a conventional vehicle can reach 1000 km. To this problem is added its 

difficult recycling, since lithium batteries are not harmless to the planet, creating an 

ecological problem. 

Electric vehicles are expected to become widespread in the near future, with a great 

impact on the recharging infrastructure for electric vehicles. Today there are 45,000 

chargers available, but soon will be insufficient for the large volume of cars.  

Currently, another visible improvement environment is that charging stations use static 

prices that vary according to the energy supply, leaving aside many other variables such 

as demand, charging time, type of charging or vehicle idle time. 

Therefore, in this work we will develop an algorithm for the dynamization of the charging 

prices of electric vehicle chargers in order to optimize the energy of the network so that 

there is no energy waste by adjusting the prices at the charging stations according to the 

actual circumstances, allowing the customer to reduce their costs as well as the operator 

of the electric charger to increase its profit depending on the circumstances. 

 

For this purpose, different algorithms already in use today will be studied and compared 

with each other. Thus, after their analysis, an efficient charging pricing algorithm will be 

developed. 

 

 

 

1.2 Objective 

 

Firstly, the general objective is to develop an optimization model to standardize a pricing 

model for charging electric vehicles, by means of optimization tools and simulation 

models. MATLAB and Simulink tools will be used for its implementation. 

 

With the achievement of the general objective, we want to solve the following specific 

objectives. First, it is intended to solve the problem of block of electric vehicle charging 
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stations according to their location, in order to redistribute the vehicles throughout the 

geographical area. Moreover, it is also intended to solve management problems of electric 

vehicles, in order to reduce the coincidence in hours of high demand. Finally, it is set as 

a specific objective to develop a dynamic pricing algorithm to provide an answer to all 

the previously mentioned objectives. 

 

 

 

1.3 Approach 

 

Due to the fact that this project is an academic one and with a significant time limitation 

for its development, factors such as, for example, the update of the energy demand or the 

real-time market price will not be taken into account, leaving an open and extensive field 

in which to continue the development and improvement of the algorithm. 

 

The approach of this project is briefly described below, indicating the points contained in 

this report: 

 

• Technical overview necessary for the work: lists the different parts considered in 

the charging of an electric vehicle, methods of payment and operation of the 

electrical network. 

• Design, using modelling and simulation software (MATLAB®/Simulink), of the 

dynamic EV charging algorithm. 

• Results and discussion based on the data obtained from the previous model.
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2 Basis 
 

Several electric vehicles charging planning models have been proposed in the literature 

in recent years, finding very detailed works such as (Bernal, Olivares, Negrete-Pincetic, 

& Lorca, 2020) on current optimization methods for EV charging infrastructures. 

 

In relation to the centralized charging strategy, the planning decisions are carried out by 

a control system in a centralized way looking for the optimal solution. In this way, despite 

the driver decides the time to connect the vehicle to the charger, the system will be 

responsible for deciding the start and end time of charging, seeking mutual benefit for the 

customer and the distribution company (Wang Q. Z., 2015). 

Regarding to the literature review, previous works have different objectives and points of 

view. In the case of (Wang Q. Z., 2015) it is prioritized to minimize the cost first, while 

in other cases they look for maximizing the owners' satisfaction (Bernal, Olivares, 

Negrete-Pincetic, & Lorca, 2020) or the parking operator's profit (M. J Mirzaer, 2014). 

Another interesting objective is to minimize the difference between the energy purchased 

in the market and the energy consumed by the EVs.  

Focusing on what is related to this work, (Joskow & Wolfram, 2012) uses a demand-side 

management mechanism through dynamic pricing to shift the load from peak to off-peak 

periods and thus minimize the purchase of electricity. 

To work with dynamic pricing, we find several different schemes. The most common is 

time-of-use (ToU) (Yang, Dong, Wan, & Ng, 2013), where the price of electricity varies 

depending on whether the current time zone is on-peak or off-peak. Another example of 

a different scheme would be, by hourly variations (Wang Q. Z., 2015). 

 

In general, electricity pricing systems are evolving towards real-time pricing, which is 

more economically efficient as it directly reflects supply and demand. 

 

 

 

2.1 Technical basics standards 

 

It is important to identify the different components, their functions, and characteristics, 

involved in our model for a correct adjustment to reality. In Figure 1 it is appreciated a 

very simplified scheme of the elements involved in the charging of an EV car. The energy 

coming from the grid, which can sometimes be supported by additional local sources as 

in type 2, travels to the charging terminals. There, there are specific charging 

infrastructures, which, thanks to artificial intelligence, can solve the problem of charging 



 6 

 

EVs in the most efficient way. In the following, the mentioned parts will be described one 

by one. 

 
Figure 1 Energy structure of an EV charging system (Benysek, 2012). 

• Electrical grid 

The city's electricity grid, which provides power for EV batteries, gets its energy in 

different ways. According to a 2020 study in Europe, it is estimated that 38% of the 

electricity comes from renewable energies, followed by fossil energies with 37% and 

finally nuclear with 25% (Pita, 2021). 

 

• Charging infraestructure 

This electric transport system, like any other transport system, requires an infrastructure 

that allows access to the recharging service or access to a source that powers its engine. 

In this case it is electricity, this is a challenge for the insertion of electric vehicles due to 

the need to have a reliable, accessible and convenient service for the end user (Ministry 

of Industry & IDAE, 2012). Currently there are three different types of charging, slow, 

semi-fast and fast, the first one being mostly located in homes and the second two for 

public charging. This parameter will be of important relevance when setting prices 

(Armijos, 2021). 

 

https://pdf.sciencedirectassets.com/271969/1-s2.0-S1364032111X00096/1-s2.0-S1364032111004059/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEMr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIBPeLEkYQy36%2FTryku0Bd6vspaw8%2FClbyk%2BPFuXzwMB0AiBYVPCyQx6hVtQwrQlyTxOpGw6wVzDZ67siKRPWRVCQ3SrbBAij%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAQaDDA1OTAwMzU0Njg2NSIM%2B7d%2BO5zBgdyrVfPYKq8Egnbg3K91xgnsEAK%2B9Uy5%2B%2Fk1t12YLZX0SfPmyOiWHDANOFb4mjH%2FTCalkW5z5CBwZdarNT0yTvktQDZKMgrauSQN5xKrucCAVVwpOnKDsD0rIHcJN%2By%2F50M2MCiNsBBK8%2F%2FW3gW%2BifcPi1aMfv5wi8DQq7zXg36ddhzvVrM3qppEuwU6RRBa%2FKligbGfWh43MsnI3t8DtnPM%2BaikZ2Cy1xhO0gtzk%2Ft3U%2FxAjUMDl%2FBwsiZxLgiA%2Fo3hcUUwdlfk%2BmuB%2BJ%2BRNNAYweaeA%2FJzeRl4ln2q18Q6xS2DyqTOzfb%2B8fO6lBxKfCdkWNUlhBVTvKPD84EhCNi76UTt8KhkQP8qaM5Z%2F9VCXoN1WTDov9D7EY0ZuH5h0XMvX0pJWXsg%2B4JiFznqJveTXJOiKev5rOA1GxQTwi8n6WsXtqx%2BSHfIpYIBojwtHNsg0sRgHkMk4zrWZbe4SO%2BN5dVkTCEg6CTJDQvoLkQITXYLXLN0g0%2FTgFBUApWIoeC16evdzK%2FQDgS6sT5kiyNQjBDx01uhL1tqvfDc18yCmCybO0IBKHuoGEIMSGGo1ko4rhiDNtteHT3EmTFWIL95iA7QWKIbs9O1Z6aZOu0xBWMEFoa4s8cf5ejLyVo7jFqd8FroYcQ8c7GWN1ND6KYMgpvR7x7WxfnnFcSjFwlEH4xKDRHXRxH3Iumo6DTI%2F7AenoDN3SPIPXV5yyGB4xHwkz8iCY9EFr7o%2BAsJA4IjwdkkFS3fOjDVuoiUBjqqAfgXfciHJ%2BCOBWjPKEj6811QeC38po4LjqwtnKUQ8QMHGQJdSp3Cm%2FIzqxSFPu7CudkVcoIL%2B21yYESmn7SGfu%2BPfb5hClvU8IRlV7GvQEMh2W37AeIXYWxv1mz96EHN%2FVMPlUZ4JJGxpk%2BHQ8h0Xo8vxxinDEtKwDsi70FwoJdmZi%2FWqSUTzfrQk4VKd3gfxG3ZKUchmsydWDgMcRRe2rrphnXjBHplohc0&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220516T104825Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYS5W7C3VW%2F20220516%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=20f8d0cdce9ba99cadad7e4ae3d6d0f4b5a424e10bb5c144b5f8ed2f3e46007e&hash=58a50a0ca5104a9637f058905324a34ef7ea8f387f219789d385780e0d4c582b&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1364032111004059&tid=spdf-fba6441e-ed55-437a-a4a5-1154bf34c196&sid=4deac4916395534bf15a836-8880907e2c8cgxrqb&type=client&ua=4d5e03555803565b515a&rr=70c38a7548549b9b
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Table 1 Distint charging modes and their characteristics (Adil Amin, 2020) 

 

• Artificial intelligence 

Artificial intelligence is used to optimize resources and make the most of renewable 

energies. In this way, electricity can be distributed efficiently through the available 

infrastructures. The design of vehicles also requires greater driving autonomy, faster 

recharging, and durability, and this is where artificial intelligence comes in, allowing 

drastic reductions in development and research times.  

 

• Electric Vehicle 

The EV is the main component of the chain, as it is the consumer of the energy coming 

from the grid. The following is a brief definition of the three main components of an 

electric vehicle as shown in Figure 2. They will be the electric motor, responsible for 

converting the electrical energy into mechanical energy which will be transferred to the 

vehicle's transmission and will turn the wheels. Another element to consider is the vehicle 

control unit or controller, which is responsible for controlling the starting, running, 

forward and reverse rotation, speed and stopping of the vehicle components. Finally, the 

main component of an electric car is its battery, which receives and stores energy from 

the charger. It is currently a decisive element in the decision to choose an electric vehicle. 

C://Users/aligu/Downloads/sustainability-12-10160.pdf
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Figure 2 Electric vehicle components (Cavagnis, 2021) 

 

 

 

2.2 Software and standards 

 

Once the necessary elements for charging an electric car have been analyzed, the 

connections between all of them will be specified.  

ISO 15118 Road vehicles -Vehicle to grid communication interface is an international 

standard that specifies the communication between an electric car and its charging point. 

The standard defines aspects that influence the identification, association, control, and 

optimization of charging or discharging, payment, load levelling, cybersecurity and 

privacy for high-level communication (HLC) conductive and wireless communication 

between the electric vehicle communication controller (EVCC) and the supply equipment 

communication controller (SECC).This is not only limited to message encryption and 

user authentication, but also allows energy data to be transferred between EVs and the 

charging station. In this way, better charging management decisions can be made 

(Ampcontrol, 2021).  

 

In this case, the car would send the battery state of charge to the charging station, 

transmitting the actual amount of energy requested and specifying the intelligent charging 

output. With this improvement, we avoid problems such as charging the EV with an 

insufficient amount of energy, inefficient optimization of inter-vehicle charging or 

complicated solutions requiring too many time resources to do so.  

Once the vehicle energy data has been sent to the charging station, this data must be 

transmitted by the CPO to the central charging management system (CMS) via the Open 

Charging Point Protocol (OCPP). The protocol is responsible for communicating the EV 
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charging station and a central management system, it describes the messages that the 

charging stations and the IT backend send to each other to authenticate new EV users, 

track energy meter values or give charging orders. 

With ISO 15118 and OCPP 2.0, the vehicle sends the requested amount of energy to the 

charging point, and the charging point forwards this information to the backend system, 

so that vehicle charging can be planned as optimally as possible.  

 
Figure 3 Connection via ISO 15118 and OCPP 2.0 (Ampcontrol, 2021) 

 

 

 

2.3 Payment concepts 

 

Nowadays the payment method has evolved drastically, being able to pay with our phone 

or even with a watch. The billing model for charging an electric vehicle can follow several 

different formats. There are some charging stations that can be used free of charge, but 

this is less occasional. In general, a small initial connection fee is usually charged to 

initiate charging of the electric car. Subsequently, it can be billed either by time in minutes 

or by consumption in kWh.  

The payment model may vary depending on the supplier and can be made with a credit 

card or on the basis of a subscription model in which the account is billed.  

Regardless of the billing method used, payments are usually processed in a similar way 

using a physical credit or debit card terminal. It is necessary to take into account the 

qualities that it must have, since the environments in which they will be available are 

usually outdoors and the customer will want to make the transaction as quickly as 

possible.  

In order to go deeper into the subject, different concepts related to the payment method 

will be defined below: 

 

• Payment gateway:  Allows acceptance of credit cards and other alternative payment 

methods. This authorizes the transfer of funds between the customer and the 

https://www.ampcontrol.io/post/iso-15118-and-ocpp-2-0-the-dream-team-for-smart-charging
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electrical load provider. This gateway can be created through a web portal, mobile 

application, or contactless point-of-sale devices. 

 

• Card payment: Carrying cash is becoming less and less popular, so PIN terminals 

or contactless technology is being implemented to make it quicker and easier for 

drivers to refuel. 

 

• E-Commerce: In this case drivers can go to their brand's website or app and pay for 

a charge when needed, so secure online transfers can be made with the credit card. 

 

2.4 Grid parameters 

 

Power distribution networks are made up of three main components, the generating plants 

that produce electricity from fossil or renewable fuels, the transmission lines that carry 

the electricity from the generating plants to the demand centres, and the transformers that 

reduce the voltage so that the distribution lines can deliver power to the end consumer. 

Generally, power distribution networks employ electrical circuits that operate with AC 

alternating current, which means that both the voltage and the current of the circuit vary 

sinusoidally in time, with a given angular frequency. The nominal frequency in Germany 

of the distribution system is set at 50Hz. This level should be kept as constant as possible, 

allowing a tolerance of 0.050 Hertz. 

When there is a potential difference between two points across a conductor, a flow of 

electrons occurs. The charge from the point with the higher potential is transferred to the 

lower one until its electric potential is equalized, thus creating an electric current. This 

parameter gives us the information in which direction the electricity flows.  In this way 

we can know if the energy is being required by the network or on the contrary demanded 

by the consumer. This can be high voltage, medium voltage or low voltage. 

First of all, high voltage installations are used to transport energy over long distances. For 

this purpose, it is necessary to raise the voltage in order to reduce the current flowing 

through the line and thus avoid energy losses due to heating of the conductor cables and 

electromagnetic phenomena. This group includes installations that exceed a voltage of 

36Kv. 

Next, once the energy is at its destination, it passes through an electrical substation to be 

transformed into medium voltage energy, with voltages between 1 and 36kW. And finally 

there is the low voltage when the electricity finally reaches the consumer being the least 

dangerous, below 1 kW. 

If a lot of electricity feeds the grid in relation to the amount consumed, the electrical 

frequency increases, exceeding 50Hz. Since power plants are designed to operate with a 
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certain frequency range, there is a risk that they will disconnect from the grid after a 

period. 

On the other hand, if we supply too little power to cope with the demand, the frequency 

drops. From 49 Hz, automatic load shedding plan is activated to avoid power outages. 

This is because, if the frequency drops too much, the voltage plants are shut down one 

after the other, until there is a complete collapse of the grid, which is known as power 

blackout. 

In the case of Germany, 45% of grid energy consumption was obtained through renewable 

sources, mainly from biomass plants and volatile sources such as wind and solar PV 

during the 2020 period. As a result, it is undergoing a major transformation, causing a 

disruption in the traditional electricity supply chain.  

Currently, Germany has a total transmission grid length of about 35,000 kilometers, 

transmitting power with maximum voltages between 220 and 380kV, usually through 

alternating current. Although it is true that the new lines between northern and southern 

Germany, which are expected to be completed in 2025, will be more efficient using high 

voltage direct current (HVDC) technology. (Russell, 2021). 
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3 Methodology 
 

An algorithm is a set of instructions that specify the sequence of operations to be followed 

to solve a problem. It is independent of both the programming language in which it is 

expressed and the computer on which it is executed. (Rodriguez, 2002). As a condition, 

an algorithm must be generally precise and easy to understand when indicating the steps 

to be performed.  In addition, it must be predictable when starting from the same initial 

conditions since the same results must be obtained. The algorithm must be finite it must 

end up in a fine without ending in a loop (Nuñez Camacho, 2017). 

In this paper, a rule-based algorithm for EV charging price estimation is developed for 

simulations in MATLAB. The algorithm uses input parameters such as wind, solar and 

biomass energy production, charger occupancy, energy consumption and grid status. 

With this information the model calculates and assigns a certain price per kWh.It has been 

decided to use MATLAB mathematical software because of its simple and easy to use 

environment. The software has its own programming language, M-Code, which allows 

working with matrices, functions, algorithm development or even communicating with 

other programming languages such as Java or C++. 

The main program also has many extensions with a wide variety of ToolBoxes, such as 

Modbus Explorer, PID Tuner or Simulink, which is the extension used for the simulation 

of our model.  

Simulink is a graphical programming environment mostly used for modeling, simulation, 

and analysis of dynamic systems. The platform allows us to implement many different 

blocks within its library. In it we can simulate both continuous and discrete systems, being 

able to have a large number of applications, especially in the fields of automatic control 

and signal processing. In addition, like MATLAB, BlockSets can be added, which are 

different extensions to larger ones. 

 

In this section the steps followed for the design of the model will be developed. First, the 

inputs of our model (3.1) are explained, followed by the constant parameters necessary 

for its development. Next, the objective function (3.2), in which our algorithm is 

promoted with its relevant constraints, is presented. Finally, different machine learning 

related algorithms are proposed (3.3). 
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3.1 Inputs 

 

All algorithms are composed of three main sections: the inputs, where the data are 

entered, the process, which is the set of operations to be performed to provide a solution 

to the problem, and the output, where we obtain the final result after the process.  

Below is a summary of the inputs and outputs of the algorithm. In this case the inputs are 

given as xls files created in Excel. We will now analyze the different fields to be studied 

according to the variables.  

 
Figure 4 Algorithm inputs  
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• Radiation 

The energy supply comes from different 

sources. Among them we find solar energy.  

Photovoltaic systems generate energy that 

converts light into electricity using 

semiconductor materials. The photons 

contained in the sun's rays strike the 

photovoltaic cell, exciting the electrons in 

the cell due to charge separation in the 

absorber material. The movement of the 

electrons creates a small voltage producing 

direct current, which is stored in batteries 

and through a voltage inverter can be 

converted into alternating current.  

To analyze it, we must study the amount of 

solar irradiation and according to this the 

energy obtained depending on the location 

and the period of the year at that time.  

The user must choose the latitude and 

longitude of the location to perform the study, to obtain the location and be able to 

download the irradiance data in that area (Trujillo, 2015). Subsequently, the user must 

choose the day and month to continue with the study. With the data, a date is obtained, 

from which an average is made of the same date in previous years for which there is a 

record. In this way we manage to homogenize the data. 

The result of this block is an irradiance curve (W/m2) throughout the day. A bell shape is 

observed due to the hours of daylight presence during the day. 

For its analysis we will start from the data collected in 2009, measured in W/m2, with a 

total of more than 35,000 data in total, with a difference of 15 minutes between each 

measurement. The solar irradiance for each month during 2009 is illustrated above. 

 

Figure 5 Necessary parameters for irradiation 

curve 
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Figure 6 Chart of solar energy by month 

 

• Wind 

In case of wind energy, the analysis will be similar 

to the solar irradiation one, since being the kinetic 

energy of the wind, the data will depend both on the 

location and the period of the year in which the study 

is to be carried out. In this way we can obtain the 

average wind speed according to these parameters 

(Faiella & Gesino, 2002). 

𝑃
𝑤𝑖𝑛𝑑= 

1
2∗𝑝∗𝑣3∗𝜋∗𝑟2  

This expression indicates that the maximum wind 

power available from the wind is proportional to the 

density of the air, the area exposed perpendicularly 

to the wind flow and the cube of the wind speed 

(Francisco Eraso-Checa, 2018). 

In reality, not all kinetic energy can be converted into 

useful energy. The Betz limit, aerodynamic and 

mechanical frictions, electric generator efficiency, 

etc. will only allow us in practice, in the best case, to 

obtain 40% of the available wind power. 
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• Biomass 

By origin and properties, biomass includes a heterogeneous group of organic materials. 

In terms of energy, the term biomass is used to refer to renewable energy based on the 

use of organic matter formed biologically in the near past or derived from it. 

Biomass is characterized as a renewable energy source, and its energy content ultimately 

comes from solar energy fixed by plants during photosynthesis.  During the combustion 

or gasification process, the bonds of organic compounds are broken, releasing energy and 

producing carbon dioxide and water (Fernandez, 2003). 

After prior sorting of the waste, it is fed to the boilers for combustion. The boiler water is 

then converted into steam, which is preheated in the feed tank by heat exchange with the 

combustion gases from the boiler itself. 

As in other conventional thermal power plants, the steam obtained in the boiler passes 

through the steam turbine connected to the electric generator where the electrical energy 

is produced. Power outputs of up to 50 MW can be obtained. 

For this project it is not important the amount of waste materials available, but rather the 

number of biomass plants available and their performance. 

 
Figure 8  Necessary parameters for biomass power curve 

• Demand curve 

It is necessary to know the demand for vehicles requiring electric recharging points, as a 

random variable for the study. In this case, to find the demand we have used a collection 

of data on the power consumed. 

In many cases, demand is affected by different factors. Some of the issues that affect 

demand are location, as the volume of vehicles that a charger in a shopping mall receives 

is not the same as one on the outskirts of the city. 

It is also affected by the availability of free places to charge the car and in turn by the 

number of chargers in the same place, since if the customer knows that there are several, 

the probability that one is free is higher. 
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Finally, demand is also affected by the type of vehicle charging, since if a charging center 

does not have fast or moderate charging, it would be reducing its customer base. 

• State of the battery 

Below, the calculation of charging time for each vehicle is analyzed. In order to do this, 

it is necessary to know the SOC (state of charge of the battery) both at the beginning and 

at the end of the recharge and, in turn, the capacity of the vehicle's battery. 

These data allow to calculate the charging time as the capacity to be charged divided by 

the power of the charger. The capacity will be the difference between the final capacity 

minus the initial, which in turn, is calculated as the corresponding SOC, by the capacity 

of the battery. 

It must be considered that for a correct use of the battery and to take advantage of its 

maximum useful life and charge cycles, the batteries must not be completely discharged, 

but according to the manufacturer they must respect the DOD, minimum depth of 

discharge. For lithium-ion batteries, which are the most common, this value is around 

80%. (Masoum AS, 2011).  

 
Figure 9 Flow chart to obtain the loading time 

 

 

 

3.2 Aim 

 

Globally, the intention to reduce carbon (CO2) emissions has motivated the extensive 

practice of EVs. However, uncoordinated charging and uncontrolled integration of EVs 

into the distribution grid deteriorates system performance in terms of power quality 

issues. 
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Furthermore, it is difficult to store large amounts of electrical energy. Consequently, the 

consumption of electrical energy should be equal to the production at any time. This 

requires an accurate forecast of the consumption so that the planned production 

corresponds to the actual subsequent consumption as much as possible.  

 

The purpose of this work is to optimize the energy grid, both in terms of price, 

maximizing the profit while using dynamic pricing, and time. To achieve this, energy 

demand and supply must be in balance, thus avoiding moments of overproduction or 

energy shortage. For stability, the power generated must be equal to the power consumed.  

For this, the network must be able to respond to the volatility of voltage and frequency 

disturbances. This requires adjustments to balance frequency disturbances and power 

outages. An example may be the use of batteries to overcome these problems. 

Mathematically, the power potencial can be represented as the sum of all power 

generation sources minus the demanded power as a function of frequency, according to 

the following equation. The sum in the power flow must be equal to zero for each hour 𝑖 

(Rodríguez, 2020). 

In my theoretical case I have designed a microgrid where energy is obtained from 

different sources. First, solar energy is obtained from a field of solar panels. There are 

also electric windmills to obtain wind energy as well as a biomass plant and a hydraulic 

press and several fuel cells, where energy is obtained. On the other hand, in a real case 

such as a mini-city, the energy required will depend on the inhabitants of the city, through 

the expenditure in their daily lives in their homes, industries, the recharging of electric 

cars at public service stations and the relevant expenditure of the city's electrical lighting 

network. In our theoretical model, only the energy demanded through the charging of 

electric vehicles per hour in the microgrid has been taken into account, in order to simplify 

the subsequent calculations. 

 

∆𝑓(𝑃𝑖
𝐺𝑟𝑑) = 𝑓(𝑃𝑖

𝑅𝑎𝑑) + 𝑓(𝑃𝑖
𝐸𝑜) + 𝑓(𝑃𝑖

𝐵𝑖𝑜) + 𝑓(𝑃𝑖
𝑷𝒎) + 𝑓(𝑃𝑖

𝐹𝑢) − 𝑓(𝑃𝑖
𝐷𝑒) = 𝑓(𝑃𝑖

𝑁𝑒) − 𝑓(𝑃𝑖
𝐷𝑒) = 0 𝐻𝑧 

 

𝑃𝑖
𝐺𝑟𝑑 refers to the grid power , which is the sum of the energy obtained from solar radiation 

𝑃𝑖
𝑅𝑎𝑑, wind sources 𝑃𝑖

𝐸𝑜, biomass 𝑃𝑖
𝐵𝑖𝑜, pumped-storage power station 𝑃𝑖

𝑷𝒎, fuel cells 𝑃𝑖
𝐹𝑢 

and subtracting the power demanded 𝑃𝑖
𝐷𝑒. 

 

To check the state of the grid, we will look at the frequency as this depends on the power. 

The frequency of the grid will vary around the nominal frequency, so if the frequency is 

increasing and accelerating, it will indicate that the load is light, and decreasing when the 

grid is heavily loaded. As the price in turn depends on the state of the grid, this can help 

us predict whether the cost of charging an EV will be higher or not. 
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On the other hand, the values of the parameters that will be kept constant throughout the 

model must be defined. For this example, we have assumed: 

- Number of chargers available: 5 

- Maximum price kWh: 0.4204 €/kWh  

- Minimum price kWh: 0.2264 €/kWh 

- SOCf: 100% 

- SOCi; 20% 

- Market energy price: 0.3234 €/kWh 

• Objective Functions 

From the total energy needed, we can calculate the function of the total daily cost as a 

function of power for a charging service provider.  

In the case of our theoretical microgrid we will consider an hourly rate of λ𝑖, using time 

periods i equivalent to one hour unit, which will allow us to query the daily cost of energy 

𝐹𝑑, multiplying the electricity used by its price at that instant of time. We will use the 

following expression:   

𝐹𝑑 = ∑ λ𝑖 ∗ ∆𝑇(𝑖) ∗

24

𝑖=0

𝑃𝑖
𝑁𝑒𝑡 = λ𝑖 ∗ ∆𝑇(𝑖) ∗ (𝑃𝑖

𝑅𝑎𝑑 + 𝑃𝑖
𝐸𝑜+𝑃𝑖

𝐵𝑖𝑜 + 𝑃𝑖
𝑃𝑚 + 𝑃𝑖

𝐹𝑢) 

𝐹𝑑 = ∑ ∑ ∆𝑇(𝑖) ∗

24

𝑛∈𝑁

λ𝑖

24

𝑖∈𝐷

∗ 𝑃𝐸𝑉,𝑛
𝑁𝑒 ∗ S𝑖,𝑛 

From now on we will use the following nomenclature to refer to the parameters:  

 

𝐷  set of time i ∈ {𝑖0, . . . , 𝑖𝑗}; 

 

𝑁  set of all EV n ∈ {𝑛0, . . . , 𝑛𝑗}; 

 

λ𝑖   forecast electricity market price at time step by i ; 

 

𝛼𝑖   forecast electricity sales price at time step by i ; 

 

∆𝑇  length of a time step; 
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𝑃𝐸𝑉,𝑛
𝑁𝑒𝑡   rated charging power of the EV; 

 

S𝑖,𝑛  charging schedule of the nth EV at time step i; 

 

𝑅𝑛  revenued obtaines from n; 

 

𝐹𝑛   cost of charging n; 

 

q  quick charge; 

 

s  slow charge; 

 

𝑃𝑖
𝑚𝑎𝑥  maximum charging rate of vehicle n; 

 

𝐴𝑣(𝑡) availability of EV in time i; 

 

𝛼𝑖  selling price of energy in time i; 

 

𝛼𝑖𝑚𝑖𝑛
  minimum selling price of energy in time i; 

 

𝛼𝑖𝑚𝑎𝑥
 maximum selling price of energy in time i; 

 

𝑆𝑂𝐶𝑛(i)  battery state of charge of EV n in time i;  

 

𝑒𝑛
+(𝑖)  charged energy to vehicle n in time i; 

 

𝜇+  charging efficiency of vehicle i; 

 

𝑥𝑖  binary parameter to know the status of the loader in time i; 

 

The minimization of this objective function leads to a flattening of the load profile, which 

is favourable for system planners and operators, since most of the load is carried out in 

profitable time slots, reducing the electricity bill (Esmaili & Goldoust, 2015). 

To fully optimize the benefits of charging station operators, in addition to minimizing 

costs, the revenue from charging the various vehicles must be taken into account to 

optimize the profit. 
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The objective function to be maximized is shown below, where the profit of the charging 

station operators is reflected. It first considers the revenue obtained from charging electric 

cars (Rn) minus the cost of energy purchased from the grid. 

Max    ∑ 𝑅𝑛 ∈ 𝑁 𝑛
− ∑ 𝐹𝑖𝑖 ∈ 𝐷  

The income obtained will depend on the amount of energy demanded and in turn on the 

price we wish to set for electricity. In this case we are working with dynamic prices, so 

this will depend on different factors such as availability, the state of the grid or demand, 

among others. 

 The revenue per vehicle load is calculated as the energy times the load price for each 

type of load. In this paper we will differentiate only between fast charge (FC) q and slow 

charge (SC) s. 

𝑅𝑖 = ∑ 𝛼𝑖,𝑞𝑃𝐸𝑉,𝑛,𝑞
𝑁𝑒𝑡

24

𝑖=0

+ ∑ 𝛼𝑖,𝑠𝑃𝐸𝑉,𝑛,𝑠
𝑁𝑒𝑡

24

𝑖=0

 

 

To work as optimally as possible, as mentioned in equation 1, the power flow in the grid 

should be zero, being the demand equal to the electricity supply. 

Finally, the following function is available to calculate the dynamic price  

𝛼𝑖 =  𝑃𝑚𝑎𝑟𝑘𝑒𝑡 ∗ 𝑋𝑎𝑏𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑋𝑠𝑡.𝑜𝑓 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑*𝑋𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑡𝑦𝑝𝑒 ∗ 𝑋𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

It should be noted that the last two parameters mentioned have not been taken into account 

for the simulation of this model.  

For the description of the model, it is necessary to define a series of restrictions. In order 

to analyze them correctly, they have been separated into blocks according to their subject 

matter. 

• Market constraints 

o  Set a maximum power that can be supplied at the same time. 

𝐴𝑣(𝑡) ∗ 𝑃𝑚𝑎𝑥 = 𝑃𝑎𝑣
𝑚𝑎𝑥(𝑡)                        ∀ i ∈ D 

o Maximum price 

𝛼𝑖𝑚𝑖𝑛
≤ 𝛼𝑖 ≤ 𝛼𝑖𝑚𝑎𝑥

    ∀ i ∈ D 

o Chargers in use 

𝑥𝑖 = {
1 𝐶ℎ𝑎𝑟𝑔𝑒𝑟 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 
0  𝐹𝑟𝑒𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑟         

 

• Battery constraints 
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o How energy is stored in the battery ( 3ª) 

𝑆𝑂𝐶𝑛(𝑖 + 1) =  𝑆𝑂𝐶𝑛(𝑖) + 𝑒𝑛
+(𝑖) ∗ 𝜇+   ∀ i ∈ D;  n ∈ N 

o Battery charge limits (max, min) 

𝑆𝑂𝐶𝑜𝑖 = 𝑆𝑂𝐶𝑖(𝑡0)    ∀ i ∈ I 

𝑆𝑂𝐶𝑓𝑖 ≤ 𝑆𝑂𝐶𝑖(𝑡𝑓)  ∀ i ∈ I 

 

 

 

3.3 Search Algorithm 

 

The complex task of determining the right prices requires that a company know not only 

its own operating costs and availability of supply but also how much the customer values 

the product, what the future demand would be, where the energy comes from and several 

other variables. It is needed a wealth of information of its customers, of demand and 

supply, as well as of the weather for adjusting the prices at minimal cost. This has led to 

increased adoption of dynamic pricing and to increased interest in dynamic pricing 

research (Jaehyun Lee, 2020).  

Different AI-based models have been proposed for the algorithm developed in this work 

in order to obtain the optimal price and cost of electric car charging. In our case, it is 

necessary to quickly process large amounts of data using algorithms that change over time 

and improve in what they are intended to do, which is why we will now analyze different 

algorithms that would allow us to solve our model based on machine learning.  

Machine learning is an application of AI that allows systems to learn and improve 

automatically from experience without be expressly programmed to do so. This is a very 

important ability to make predictions, through the identification of patterns in a series of 

data. 

Machine learning models can be classified according to the way they establish patterns 

and rules, i.e., according to their learning process. We divide them into unsupervised 

supervised and hybrid models. (Hush & Horne, 1993). 

• Supervised:  This type of algorithm uses already classified training samples. In 

this way, rules and patterns will be established based on the distribution of features 

to categorize the observation. This block includes SVM algorithms, MLP and 

Näive Bayes neural networks (Antón, 2014). 
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Within this group we can make a further subclassification.  

On the one hand linear models, where a line of best fit is created to predict the 

data, giving as a solution a linear combination of features. Table 2 shows the most 

common algorithms of this group, with their different applications, advantages 

and disadvantages. 

 

Table 2 Examples of lineal models of supervised algorithms 

ALGORITHM DESCRIPTION APPLICATION  ADVANTAGES DISADVANTAGES 

Linear 

Regression 

Simple 

algorithm 

modeling linear 

relationship 

between inputs 

and a continuous 

numerical output 

variable 

-Prediction of 

stock or 

housing 

prices. 

 

 

-Easy to 

understand 

-Interpretable 

results by output 

coefficient 

-Assumes 

linearity between 

inputs and 

outputs. 

-Sensitive to 

outliers. 

Logistic 

Regression 

Similar to the 

previous one but 

a categorical 

output is 

obtained. 

-Customer 

churn 

prediction. 

 

-Easy to 

understand 

- Useful for 

multi-class 

predictions 

-Assumes 

linearity between 

inputs and 

outputs 

-Can be over-fit 

with small or large 

data 

Ridge 

Regression 

Penalizes 

features with low 

predictive scores 

-For 

classification 

or regression. 

-Predictive 

maintenance of 

vehicles. 

-Less prone to 

overfitting 

-Good fit to data 

with 

multicollinearity 

- Predictors are 

retained in the 

final model. 

- Does not perform 

feature selection 

Lasso 

Regression 

Same 

performance as 

ridge regression 

-Predicting 

housing 

prices. 

-Prediction of 

clinical data. 

-Less prone to 

overfitting 

-Can handle 

high 

dimensional 

data 

-It can maintain 

highly correlated 

variables. 

 

On the other hand, there are models based on decision trees, where "if-then" rules are used.  

Table 3 Examples of decision tree models of supervised algorithms 

Table 3 shows the most common algorithms of this group, with their different 

applications, advantages, and disadvantages. 



 24 

 

 

 

Table 3 Examples of decision tree models of supervised algorithms 

ALGORITHM DESCRIPTION APPLICATION  ADVANTAGES DISADVANTAGES 

DECISION 

TREE 

They produce 

preconditions 

through decision 

rules on features. 

-For 

classification 

or regression. 

- Credit score 

modeling 

-

Understandable 

-Can handle 

missing values 

-Prone to over-

adjustment 

 

-Sensitive to 

outliers 

RANDOM 

FORESTS 

Combines the 

output of 

different 

decision trees 

-Predicting 

housing prices 

-Reduced over-

adjustment 

-Higher accuracy 

than other 

models 

-High 

complexity of 

training 

-Not very 

interpretable 

XGBoost Efficient and 

flexible gradient 

boosting 

algorithm. 

-For 

classification 

or regression 

-Insurance 

claims 

processing 

-Accurate 

results 

-Capture non-

linear 

relationships 

-Adjustment of 

complex 

hyperparameters 

-Does not work 

well on sparse 

parameter set 

Regresor 

LightGBM 

Gradient bracing 

frame designed 

to optimize 

efficiency 

-Airline flight 

time 

prediction 

-Cholesterol 

levels 

prediction 

-Can handle 

large amounts 

of data 

-High 

computational 

training speed 

-Can be over-

adjusted 

-Hyperparameter 

adjustment can be 

complex 

• Unsupervised: A priori in these models it is not known what the set of features 

represents. The purpose of this algorithm is to find similarities between the data 

that allow them to be grouped according to their similarity. This block includes 

clustering algorithms such as k-means. Two subgroups can also be distinguished 

here. On the one hand clustering models that allow you to categorize records into 

a certain number of clusters and in this way be able to indentify natural groups in 

the data. In this group we find algorithms such as K-means, hierarchical clustering 

or Gaussian mixture models. On the other hand, we find the a priori association 

algorithms, based on rules that identify the most frequent set of elements in a data 

set. 

• Hybrids: The benefits of both supervised and unsupervised algorithms are 

combined. This is the case of radial basis function (RBF) neural networks. 
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After the analysis of all the different algorithms included in the machine learning 

discipline, it has been concluded that to solve the algorithm of this work the most 

recommendable are the Linear Regression or Lasse Regression, since both offer us 

predictions on the numerical variable that is the price in a fast way and with great volume 

of data. 

 

  



 26 

 

4 Results 
 

Although our model has both time and cost as outputs, in the practical part of this work 

we have only worked with cost for the simulation. 

 

In order to perform the algorithm, the market price of energy has been obtained first. For 

this purpose, a minimum and maximum price has been established according to the 

maximum power points found in the network. Then, the rest of the energy values have 

been interpolated to give an estimation of the market price.  

To obtain the values of the minimum and maximum kWh price when charging the car, 

the average price per kWh in Germany in December 2021 has been taken as a reference 

which is 0.3234 €/kWh.  

 

 

 

Figure 10 Daily price of the EPEX SPOT market in Germany  (AleaSoft, 2021) 

  

In Figure 10 we can observe the variation of prices throughout the first half of the year 

2021. We have taken this period as they are recent data in time and similar to the current 

ones, but without being affected by the war crisis. After analyzing the data, it has been 

concluded that the price should have a tolerance of 30% from the average price. In this 

way, the most significant data will remain relevant, but we will limit the outlier prices 

that are not beneficial to the study. The price limits have been calculated multiplying 

0.3234 €/kWh by 1.3 resulting in 0.4204 €/kWh for the maximum price and multiplying 

0.3234 €/kWh by 0.7 resulting in 0.2264 €/kWh for the minimum price. Figure 11 shows 

how the price variation would be between the stipulated limits. 
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Figure 11 Graph of the weighted price from the state of the grid 

 

The next parameter to take into account is the availability of space to charge the car.  We 

assume that the total number of chargers available is 5. For this purpose, we have created 

a uniform random variable whose output data are numbers between 0 and 5. Based on 

this, it has been decided to increase the price by 3% if more than three loaders are being 

used and the same discount if less than three are being used.  

¡Error! No se encuentra el origen de la referencia. shows a comparison of the price 

change after being altered:  

 

 
Figure 12 Graph comparing the market (yellow) and availability (blue) price. 
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Subsequently, another parameter to be taken into account was the state of the power grid. 

In this case, if the grid suffered overproduction, it was decided to discount the price by 

5% with respect to the market price. On the other hand, if there is an energy deficit in the 

grid, the price will increase by 5%. 

 

 
Figure 13 Graph comparing the availability (blue) and final dynamic prices (purple). 

 

It is interesting to compare how the price varies from the beginning. In yellow colour we 

find the market price, on the other hand in blue the price after suffering the availability 
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variations and the last one in purple after suffering variations due to the state of the 

network.  

 
Figure 14 Overall comparison of the prices obtained in this work 

 

Finally, once the new price has been calculated, it has been decided to see how this affects 

demand. In this case we observe how the demand increases when prices are lower or how 

it increase when it reaches the 2740 seconds, due to a drop in prices. 

   
Figure 15 Graph comparing demand with static and dynamic prices 
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Figure 16 Graph comparing market and dynamic price according to the load 

Next, we are going to study the different possible cases, depending on the state of the 

variables of our algorithm: 

 

Table 4 Different results while implementing the dynamic pricing algorithm 

RATE Number of 

chargers 

State of the 

grid 

Market 

Price 

Abailability 

Price 

Final 

Price 

Variation 

Price increase 4 -6100GW 0.3608 0.3716 0.400 10.86% 

Price dicrease 0 17.848 GW 0.2264 0.2196 0.2086 -8.53% 

Equal price 3 1107GW 0.2545 0.2545 0.2545 0% 

Price increases 

& decreases 

5 11584GW 0.2264 0.2332 0.2215 -2.21% 

Price decreases 

& increases 

0 -2730GW 0.3110 0.3017 0.3168 4.11% 
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In the first example the price 

rises by a total of 10.86%. 

This is due to the fact that 

first of all, the charging 

station ports are mostly 

occupied, with only one free 

port. This first parameter 

increases the price by 2.99%. 

Next, the grid is in deficit of 

electricity, which causes the 

price to increase by 7.46%, 

compared to the previous 

price.  

 

In the second example, both parameters benefit the consumer. It can be seen that out of 

the 5 loading ports, all of them are empty and there is a large overproduction in the 

network, which causes the price to decrease by 8.53%. 

 

 
Figure 18 Price decrease example 

 

For the third case, the price remains constant. This is because the standard parameter for 

charger availability has been set to 3. On the other hand, even though the grid state has 

1107 GW of overproduction, this does not influence the final price, since a tolerance has 

been set in the grid ranging from -2000GW to 5000GW, where the price remains constant.  

In the next two examples, we see how the parameters influence the price in opposite ways. 

In the first case there are no chargers available, so when a free slot is found, the next user 

Figure 17 Price increase example 
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will have a cost overrun as vehicle charging is in high demand, which causes the price to 

increase by 3%. On the other hand, in turn there is an overproduction in the network 

which causes the price to decrease by 5.2%. Finally, it is observed that the price has 

decreased with respect to the price established by the market, due to the fact that 

according to our criteria the variable of the state of the network has a greater weight 

compared to the availability of load.  

The second case is similar. It is observed that there are enough seats available, so a 

discount of 3.1% is made to the user. But on the other hand, there is a shortage of 

electricity in the network, which causes the final price to increase by 5%. 

               

Figure 19 Market price values 

 

Figure 20 Final price values 

From the signal statistics provided by MATLAB, we can draw different conclusions. 

 

First, it is observed that both the maximum price and the minimum price have a greater 

margin between them in the final price. Thus, in the case where there is load availability 

and there is an overproduction in the grid, the dynamic pricing algorithm would benefit 

the consumer economy by reducing the price of energy. On the contrary, if there is a 

deficit in the energy network and there are no available slots in the chargers, it would 

benefit the profit of the charging station operators.   

 

On the other hand, the difference between the maximum and minimum values is 

significantly higher in the second case, going from 1.496e-01 to 1.696e-01, since our 

algorithm works by increasing or decreasing the price depending on the conditions of the 

variables, creating a greater difference between the prices. 

 

As is logical, the mean, median and RMS are very similar in both cases, since despite the 

variations, the values are still in the same price bracket. What we can observe is that, in 

general, the conditions are usually beneficial for giving discounts to customers, since the 

final price is usually somewhat lower than the market price, since the values of the mean, 

median and RMS are somewhat lower in Figure 20.
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5 Discussion 
 

In this section the assumptions and results are analysed and discussed.  

The general hypothesis of the model was to establish an optimal price for charging electric 

cars. In this way, both the customer could reduce the cost of charging his car and the 

distribution companies could reduce the price risk, since the real market price would 

always be considered.  

The general idea of the model is good, since it contemplates many variables that influence 

the price directly or indirectly.  

In this case in the simulation, it was not possible to carry out the influence of the locations. 

Not taking into account whether there was a possibility to charge the car in the vicinity 

or on the contrary the customer had no other option to charge his vehicle than at the supply 

where it is located.  

On the other hand, the market price has been estimated based on established maximum 

and minimum values. This may not be the best solution, because of the variability of the 

price of electricity today. The ideal solution would be to have real time data on the market 

price. From there, we could implement the designed algorithm, obtaining an optimized 

and much more objective price, considering the rest of the variables.  
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6 Summary and outlook 
 

For the development of the algorithm for the charging of electric vehicles based on 

dynamic pricing, different variables such as the availability of the charger or the state of 

the network have been evaluated.  

Through a simulation, it has been observed how the application of the developed dynamic 

pricing algorithm can reduce the charging price of an electric vehicle by reducing its 

minimum price by 0.0178 €/kWh, as well as increase the maximum profit of the charging 

operators by 0.0316 €/kWh. 

In this way, it allows to calculate the optimal price for each circumstance, while using the 

state of the grid efficiently, trying to keep the power in it stable to avoid energy waste. 

Therefore, the effect of implementing the algorithm in dynamic pricing could have a 

positive impact on increasing the use of renewable energies, by using the resources we 

have more efficiently and reducing the amount of energy required.  

The expected future increase of electric vehicles requires a developed recharging system, 

which is why the implementation of the dynamic pricing algorithm will allow us to deter 

the demand of vehicles, between different schedules, avoiding peak hours in order to 

obtain a more affordable price. 

An idea for future studies continuing this line of work could be to insert the term vehicle-

to-grid (V2G). This would take advantage of the ability of vehicles to provide energy and 

services to the grid by charging and discharging their batteries. It would require the 

implementation of software that allows bi-directional charging and discharging of the 

batteries, as well as a special power electronics interface. 

This way, the efficiency of the distribution network can be improved by regulating the 

frequency, reactive power supply, balancing the load, reducing peak loads and creating 

revenue for both vehicle users and charging station operators according to their needs. 

Therefore, the dynamic pricing algorithm must be further developed to include the real-

time market price, in addition to other variables, such as location, which may affect the 

charging price. It is important to note that the results obtained highlight the advantages of 

using dynamic pricing for charging electric vehicles. Therefore, this should be studied 

further.  
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A Annex Function Code 
 

Draw maximum and minimum power in the network: 

 
plot(p1.time, p1.signals.values); %Obtain state of the grid graph on 

screen 

 
maxp1=max(p1.signals.values) %Obtain maximum power 

 
minp1=min(p1.signals.values) %Obtain minimum power 

 

Matlab function to interpolate prices as a function of power: 

 
function markprice = interpolar(u, pmin, pmax) 

 
   med=pmax-pmin/2; %Obtain average power 

 
   per=(pmax-u)/med;  

 
   cost=per*0.3234; %Convert to price     

 
   if cost<0.2264 %Establish minimum limit 

 
       cost=0.2264 

 

   else if cost>0.4204 %Establish maximum limit 

 
         cost=0.4204 

 
   else 

 
         cost 

 
       end 

 
   end 

 
markprice = cost; 

 

Price function according to availability variable: 

 
function abprice = fcn(data, b) 

 
if data<3 % 3 is established as the average value 

 
    pa=b*0.97 %If it is lower, the price is reduced 

 
elseif data>3 
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    pa=b*1.03 %If it is higher, the price increases 

 
else  

 
    pa=b 

 
    end 
abprice = pa; 

 

Function for dynamic final price: 

 
function g = fcn(s, data) 

 
if s>5000 %Superior tolerance for over-production 

 
    data=data*0.95  

 
elseif s<-2000 %Lower tolerance for power deficit 

 
    data=data*1.05  

 
else  

 
    data=data 

 
    end 

 

g = data; 

 

Function for final load: 
 
function y = fcn(cn, cv, load) 

 
if cv>cn; %Comparation of previous price and dynamic price 

 

 
    loadn=load*0.7;  

 
elseif cv<cn; 

 
    loadn=load*1.3; 

 
else 

 
    loadn=load; 

 
end 

 
y = loadn; 
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