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Abstract: Drought is one of the key natural hazards impacting net primary production and tree
growth in forest ecosystems. Nonetheless, tree species show different responses to drought
events, which make it difficult to adopt fixed tools for monitoring drought impacts under
contrasting environmental and climatic conditions. In this study, we assess the response of
forest growth and a satellite proxy of the net primary production (NPP) to drought in peninsular
Spain and the Balearic Islands, a region characterized by complex climatological, topographical,
and environmental characteristics. Herein, we employed three different indicators based on
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in situ measurements and satellite image-derived vegetation information (i.e., tree-ring width,
maximum annual greenness, and an indicator of NPP). We used seven different climate drought
indices to assess drought impacts on the tree variables analyzed. The selected drought indices
include four versions of the Palmer Drought Severity Index (PDSI, Palmer Hydrological Drought
Index (PHDI), Z-index, and Palmer Modified Drought Index (PMDI)) and three multi-scalar indices
(Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI),
and Standardized Precipitation Drought Index (SPDI)). Our results suggest that—irrespective of
drought index and tree species—tree-ring width shows a stronger response to interannual variability
of drought, compared to the greenness and the NPP. In comparison to other drought indices
(e.g., PDSI), and our results demonstrate that multi-scalar drought indices (e.g., SPI, SPEI) are more
advantageous in monitoring drought impacts on tree-ring growth, maximum greenness, and NPP.
This finding suggests that multi-scalar indices are more appropriate for monitoring and modelling
forest drought in peninsular Spain and the Balearic Islands.

Keywords: normalized difference vegetation index; tree-rings; drought indices; forest
productivity; Spain

1. Introduction

Drought is a major hydroclimatic hazard that is difficult to quantify, analyze, monitor and, thus,
mitigate [1]. This is because drought has a complex nature, given that it is the result of the synergy
among a wide range of variables (e.g., precipitation, temperature, land use, human activities, etc.).
Additionally, assessing the impacts of drought on natural and human environments can vary among
regions and systems depending on their response and vulnerability. Furthermore, it is difficult
to prevent droughts, due to their slow and less evident onset compared to other natural hazards
(e.g., floods, landslides, volcanic eruptions), on one hand, and their serious and adverse socioeconomic
and environmental impacts, on the other hand [2,3].

Droughts may trigger forest decay and mortality episodes [4,5], which have increased over the
last decades in many regions worldwide [6,7]. The Mediterranean region has witnessed frequent
and severe drought episodes, inducing important impacts to forests [8,9] given that both primary
and secondary growth are constrained by water availability [10]. Some tree species and phenotypes
are more sensitive to drought-triggered growth decline and damage [11,12]. Local environmental
and climatic conditions can complicate further the response of forests to drought [13,14]. However,
assessing forest response to drought is a challenging task, as species [15], and even individuals [16],
differ in their sensitivity to this phenomenon. Moreover, spatial variability in climatic and topographic
conditions adds a finer grain to drought pattern predictions.

The Iberian Peninsula (IP) is characterized by a great heterogeneity of climate types, ranging
from a humid Atlantic climate in the northwest and north to semi-arid Mediterranean conditions
in the east and southeast [17]. As such, the response of forests to drought incidence vary
markedly over space. In this context, changing climatic conditions (e.g., abnormal low precipitation,
temperature rise), mostly during the previous winter of the growing season, cause a reduction in Net
Primary Production (NPP), growth decline, as well as forest die-off in some extreme cases [5,18–20].
In Mediterranean forests, radial growth sensitivity to drought intensity varies depending on soil
moisture and precipitation, both factors being highly variable in space and time in the region.
In particular, while tree growth responses at short time scales are more associated with consecutive
periods of dryness and moisture conditions, responses at longer time scales are linked to less
frequent, but more intense, drought events [10]. Some Mediterranean species experience a higher
recovery to pre-drought growth level at short-term than at long-term timescale, either for declining
or non-declining individuals [18]. Nonetheless, a general increase of crown defoliation trend has
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been observed in the IP over the last decades, especially in drier areas, where tree mortality is also
related to dynamic changes at the trophic level as a consequence of drought impacts related to climate
warming [21].

Forests are an important component of the terrestrial ecosystems dynamics, given its capital
role in the hydrological and carbon cycles [22,23]. Furthermore, forests are sources for minerals,
agricultural products, recreation and other benefits to mankind [4]. In this respect, Zhao et al. [24]
found that drought is the leading cause of global NPP depletion. The eco-physiological impacts
drought causes in vegetation are diverse [25], with some plant responses to drought stress related
to stomata regulation, osmotic adjustment, and anti-oxidative defense [26]. However, reduction of
photosynthesis is the ultimate impact of drought. Dramatic changes in primary metabolism lead to a
decline in leaf net carbon uptake as a consequence of a decrease in water availability [27]. A prolonged
reduced photosynthetic activity may lead to the decrease of molecular oxygen and the increase of
reactive oxygen species inducing important damage to the photosynthetic apparatus [28]. Accordingly,
the response of forests to drought has been a matter of interest in the scientific community [29–31].
In this context, a comprehensive assessment of the links between drought, NPP, and secondary growth
among different forest ecosystems is still lacking.

Dendrochronological techniques have quantified secondary growth over time in a wealth of tree
species [10,11,32,33]. Tree-rings provide short- to long-term information about annual radial growth,
a proxy of carbon uptake and NPP [34]. Tree-ring width data have been used to identify the effects of
drought on forest growth and vitality [20,35]. However, few dendrochronological studies have related
tree-ring width data with surrogates of primary growth and NPP at consistent temporal (long) and
spatial (broad coverage) scales [36]. Vegetation indices derived from satellite remote-sensing data,
have proven valuable to monitor forests from local [37–39] to global scales [40]. The Normalized
Difference Vegetation Index (NDVI) is commonly used to quantify the photosynthetic activity, which is
closely related to the total biomass production and the vegetation NPP [41,42]. In the same context,
a wide range of drought indices have been developed over the last decades [43,44]. These indices are
well-recognized as useful tools for assessing drought under different hydrological and agricultural
conditions [3,45–47].

The aims of this work are two-fold. First, it aims at comparing and assessing the performance
of a range of drought indices for monitoring the response of vegetation activity, as summarized
by tree-ring width, maximum annual greenness, and a surrogate of the NPP, to drought impacts.
Second, it assesses and contrasts the response of tree-ring width and NDVI to drought conditions for
different species. To accomplish this task, we linked seven widely used drought indices: Standardized
Precipitation Evapotranspiration Index (SPEI), Standardized Precipitation Index (SPI), Standardized
Palmer Drought Severity Index (SPDSI), and four Palmer-related drought indices (Palmer Drought
Severity Index (PDSI), Palmer Hydrological Drought Index (PHDI), Palmer Z-Index (Z), and Palmer
Modified Drought Index (PMDI)) with climatic, NDVI, and dendrochronological data for the IP and the
Balearic Islands for the period 1981–2015. As a result we should be able to assess the validity of these
drought indices to assessing and monitor the impacts of drought on forest growth and vitality [48–50].

2. Data and Methods

2.1. Datasets Description

We employed a daily dataset of meteorological variables (precipitation, maximum and minimum
air temperatures, wind speed, sunshine duration and relative humidity) provided by the Spanish
National Meteorological Agency (AEMET). The original dataset was subjected to a rigorous procedure
to ensure data quality and homogeneity. Daily records were aggregated to weekly data and gridded at
a 1.1 km resolution. Further details about data development are outlined in Vicente-Serrano et al. [51].
Based on the available input variables, we also calculated reference evapotranspiration (ETo) using
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the Penman-Monteith equation recommended by the FAO [52]. For this analysis, we aggregated the
weekly gridded data at monthly scale for the period 1981–2015.

2.2. NDVI Data

The Normalized Difference Vegetation Index (NDVI) is widely-used to assess vegetation activity,
with a good agreement with the photosynthetically-active radiation absorbed by vegetation [41,53].
Here, we employed NDVI data at 1.1 km resolution for the period 1981 to 2015 at a monthly time scale
aggregation [54]. The original data were obtained from the National Oceanic and Atmospheric
Administration (NOAA) polar orbiting satellites that used the Advanced Very High Resolution
Radiometer (AVHRR) sensors to provide daily satellite images. Our selection allowed to characterize
vegetation activity with more detailed spatial coverage and finer temporal resolution than other
publicly available data sets such as the Global Inventory Monitoring and Mapping Studies (GIMMS)
and the Moderate-Resolution Imaging Spectroradiometer (MODIS) [41,51,52]. In order to obtain
the final NDVI product, the original data were subjected to a series of data processing, including
radiometric calibration [55,56], geometric and topographic corrections [57,58], cloud cover removal [59]
to obtain semi-monthly composite images by maximum NDVI value (two images per month) [60].
A comprehensive explanation of this procedure is found in Vicente-Serrano et al. [54].

2.3. Tree-Ring Width Data

We compiled annual tree-ring width chronologies of 568 forest stands covering the majority of
forest areas across the IP and the Balearic Islands from 1981 to 2015 (Figure 1). Chronologies were
obtained using the basic dendrochronological protocol [34]. At least 10 dominant or codominant
trees located in undisturbed stands were selected and cored at 1.3 m using increment borers to obtain
2–3 cores per tree in each forest. The selected study sites represent a wide sample of conifers and
hardwood species subjected to different climatic and edaphic conditions along the Spanish territory.
Latitude, longitude, and mean elevation were recorded at each sample. Wood samples were air-dried
and sanded until rings were clearly visible and then visually cross-dated. Tree-ring width was
measured to at least the nearest 0.01 mm using binocular microscopes and measuring device systems
(Lintab, RinnTech, Heidelberg, Germany; Velmex Inc., Bloomfirld, NY, USA). In order to check the
accuracy of visual cross-dating and measurements, we used the COFECHA program, based on moving
correlations between each individual tree-ring series and the mean site series [61]. Additionally,
to remove the trends in tree-ring width due to tree aging and the enlargement of the stem, we used
traditional dendrochronological protocols [34]. Specifically, we detrended each individual tree-ring
width series by fitting negative exponential curves and then obtained the residuals through dividing
the observed values by the fitted ones. Then, we averaged the detrended series of tree-ring width
indices (hereafter TRWi) for each forest by computing bi-weight robust means. The mean site-level
chronology represents the average growth series of a variable number of trees of the same species
growing at the same forest stand. Since no autoregressive modelling was performed, we removed
the low- to mid-frequency variability, while keeping the high-frequency variability and the first-order
autocorrelation. The procedure of chronology building was implemented using the ‘dplR’ package
within the R platform [62]. Table 1 summarizes the main characteristics of the tree species used in
this study.



Forests 2018, 9, 524 5 of 20

Table 1. List of tree species, abbreviations, and number of the sampled forests stands; including the average mean annual temperature and precipitation of each tree
species location.

Gymnosperms Angiosperms

Tree Species Abbreviation
Number of

Sampled Forests
Stands

Mean Annual
Temperature

(◦C)

Annual
Precipitation

(mm)
Tree Species Abbreviation

Number of
Sampled Forests

Stands

Mean Annual
Temperature

(◦C)

Annual
Precipitation

(mm)

Abies alba ABAL 48 13.10 1439.98 Fagus sylvatica FASY 51 14.36 1212.98

Abies pinsapo ABPN 15 17.53 1467.33 Quercus
pyrenaica QUPY 34 16.20 878.27

Pinus halepensis PIHA 119 19.93 599.87 Quercus robur QURO 34 16.19 1484.53

Pinus sylvestris PISY 76 14.80 958.32 Quercus
faginea QUFA 19 16.89 975.97

Pinus nigra PINI 66 17.05 754.00 Quercus ilex QUIL 5 17.32 786.00

Pinus uncinata PIUN 39 10.11 1442.68 Quercus
petraea QUPE 7 15.58 1062.13

Pinus pinaster PIPI 20 18.52 705.30 Castanea sativa CASA 10 17.50 928.00
Pinus pinea PIPN 9 19.98 550.89
Juniperus thurifera JUTH 16 17.22 690.59
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indices account for supply-demand relationship of soil moisture using precipitation and air 
temperature data, our preference was to use a modification of the original methodology to limit the 
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The Standardized Precipitation Index (SPI) was developed by McKee et al. [67]. The SPI 
introduced for the very first time a new functional definition of drought based on the standardized 
precipitation and time scales to quantify precipitation shortages along time. The index is based on 
the conversion of the precipitation series using an incomplete Gamma distribution to a standard 
normal variable with the mean equal to zero and variance equal to one. The SPI is the universal 
reference meteorological index according to the World Meteorological Organization [68]. 
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Figure 1. Location of the sampled forest stands in the study domain. Note that the conifer forests
(n = 408 sites) dominate in the driest regions (Mediterranean climate) of Eastern and Southeastern Spain,
and also in mountainous terrain, while hardwood forests prevail in the wettest and temperate regions
(Atlantic climate) in Northwestern and Northern Spain (n = 160 sites).

2.4. Drought Indices

We computed the seven drought indices based on the monthly climate data for each location
to each sampled forest stand as the time of response to drought indices is not known beforehand,
described as follows.

2.4.1. Palmer Drought Severity Indices (PDSIs)

The Palmer Drought Severity Index (PDSI) is a well-known meteorological drought index
proposed by Palmer [63] along with the Palmer Hydrological Drought Index (PHDI), the Palmer
Moisture Anomaly Index (Z-index), and the Palmer Modified Drought Index (PMDI). While Palmer
indices account for supply-demand relationship of soil moisture using precipitation and air
temperature data, our preference was to use a modification of the original methodology to limit the
possible impact of lack of comparability between differentiated regions [64–66]. This issue was solved
by Wells et al. [62] who employed the self-calibrated Palmer indices algorithm, which automatically
determines the appropriate and spatially-comparable regional coefficients. Hereafter, we will use the
original acronyms to refer to the self-calibrated versions of Palmer drought indices. As opposed to
multiscalar drought indices (e.g., SPI, SPEI, SPDI), PDSIs are uni-scalar.

2.4.2. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was developed by McKee et al. [67]. The SPI introduced
for the very first time a new functional definition of drought based on the standardized precipitation
and time scales to quantify precipitation shortages along time. The index is based on the conversion of
the precipitation series using an incomplete Gamma distribution to a standard normal variable with
the mean equal to zero and variance equal to one. The SPI is the universal reference meteorological
index according to the World Meteorological Organization [68].

2.4.3. Standardized Precipitation Evapotranspiration Index (SPEI)

The Standardized Precipitation Evapotranspiration Index (SPEI) was proposed by
Vicente-Serrano et al. [69], accounting for the possible impact of reference evapotranspiration
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on drought. In particular, the SPEI is based on the computation of monthly climate water balances
(precipitation minus reference evapotranspiration) accumulated at different timescales. The resulting
values are later transformed to a normal standardized variable using a three-parameter log-logistic
distribution, allowing for direct comparison over space. The SPEI has been widely used in multiple
drought-related studies, with a main focus on evaluation of drought impacts, recurrence, variability,
or reconstruction.

2.4.4. Standardized Precipitation Drought Index (SPDI)

The Standardized Precipitation Drought Index (SPDI) was introduced by Ma et al. [70]. It is
defined as a combination of the PDSI and SPI. It also implements the timescale concept and the
statistical nature of the SPI and SPEI [71] as well as the water balance concept defined by Palmer [64].
For its calculation, the SPDI-accumulated values are transformed to a standard normal variable using
a generalized extreme value distribution.

Herein, the multi-scalar indices (i.e., SPEI, SPI and SPDI) were calculated at 1- to 12-, 18-,
and 24-timescale. It is noteworthy emphasizing that the monthly drought indices, for each sampled tree,
were detrended by fitting a linear regression with the time series. This procedure removes any possible
trend that can disturb the comparison among drought and tree-ring growth, given that tree-ring
series were already detrended. Finally, the residual of each series was obtained from linear models,
and summed to the average of the period to obtain the detrended drought indices.

2.5. Statistical Methods

We assessed the response of vegetation activity to the interannual variations of drought for
the common period of time 1981–2015. To achieve the mentioned purpose, three indicators were
considered: TRWi, maximum annual NDVI value (NDVI max) and annual integrated NDVI. The NDVI
max was obtained from the biweekly series of the NDVI, providing information on the maximum
potential vegetation activity in each sampled forest stand. As such, it is considered a reliable indicator
of the annual vegetation growth [72]. In this work, the annual cumulative NDVI (NDVI annual) is
used as a surrogate of NPP. This is simply because the NPP, defined as the net carbon accumulated by
plants per unit and time [73], is closely related to the amount of photosynthetically active radiation
(PAR) captured by green foliage. Thus, the NPP depends on the fraction of photosynthetically active
radiation (FPAR) absorbed by the canopy [74].

We computed the Pearson correlation coefficient between the TRWi, NDVI max, and NDVI annual
and each drought index for the common period 1981–2015. To keep consistency among all variables,
we also detrended the NDVI variables. Since the response of vegetation to drought is expected to
vary at different time scales [40], and the month when the vegetation is most susceptible to drought
is not known a priori, we correlated the 12 monthly series of each drought index with the annual
series of TRWi, NDVI max, and NDVI annual and kept the maximum correlation value for analyzing
spatial and temporal responses of tree variables to drought and the relationship between vegetation
variables and drought by species. We calculated the indices at 1- to 12-, 18-, and 24-month time-scales
for the multi-scalar indices (SPEI, SPI, and SPDI). This procedure resulted in 168 correlation values
(12 correlations for each time-scale) for the multi-scalar indices and 12 correlations for the uni-scalar
indices. We also calculated the climatic water balance as the difference between precipitation and
evapotranspiration (P—ETo) at each sampled forest stand.

3. Results

3.1. Spatial and Temporal Responses of Tree Variables to Drought

The magnitude of maximum Pearson correlations found between each of the selected drought
indices and the three tree variables (TRWi, NDVI max, and NDVI annual) varied considerably
between the two main groups of drought indices: multi-scalar vs. uni-scalar (Figure 2). In general,
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multi-scalar indices had higher correlations than for uni-scalar indices. Remarkably, TRWi had higher
correlations with drought indices than NDVI max and NDVI annual. This pattern was evident for all
drought indices (Figure 2). Correlation values averaged 0.60 for TRWi, and 0.45 and 0.40 for NDVI
annual and NDVI max, respectively. Among the uni-scalar drought indices, the Z-index showed the
highest correlations, particularly with TRWi, although a high percentage of correlations for the four
Palmer indices was statistically non-significant. Among multiscalar indices, SPEI showed the highest
correlations with TRWi and NDVI max, while the SPI correlated better with the NDVI annual (Table 2).
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black line corresponds to the median, the white asterisks denote the mean and dashed lines show the
significant level at p < 0.05 (light pink) and p < 0.01 (dark pink).

Table 2. Percentage of the sampled forest stands, with the maximum Pearson correlation coefficients
found for each forest variable and with each drought index.

TRWi NDVI Max NDVI Annual

SPEI 38.97 43.25 33.50
SPI 35.73 32.48 53.16

SPDI 25.30 24.27 13.33

The spatial distribution of maximum Pearson correlations between the seven drought indices and
vegetation variables in each sampled forest stand is shown in Figure 3. The three multi-scalar drought
indices showed similar spatial patterns, with higher values (r = 0.6–1.0) in forests located mostly in
dry areas of Eastern Spain and the Balearic Islands (Figure 3). In contrast, correlations were lower in
Northern Spain, where wet conditions prevail and hardwood forests dominate. The highest correlation
values for the Palmer drought indices showed spatial patterns similar to those of the multi-scalar
indices, albeit with lower magnitudes of correlation. Among the uni-scalar indices, Z-index and TRWi
showed the highest correlations followed by PMDI and TRWi, with values ranging between 0.4 and 0.6.
In contrast, PDSI and PHDI had the lowest correlations. The differences between PMDI–Z-index and
PDSI–PHDI results were less evident for other variables (i.e., NDVI max and NDVI annual), with low
(r = 0.2–0.4) and spatially homogeneous correlations. Similar results are found for the magnitude and
the distribution of the maximum correlations for the NDVI max and NDVI annual. Regarding the SPI,
higher correlations (r = 0.4–0.6) are found in Northwestern Spain for NDVI annual. The correlations
between the SPEI/SPDI and NDVI annual tend to be higher in Southeast Spain than for NDVI max.
Additionally, we noted that there are no clear spatial differences in the correlations found between the
Palmer drought indices and NDVI max and NDVI annual.
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Figure 3. Spatial distribution of the maximum Pearson correlation coefficients computed between
the seven drought indices and ring-width indices TRWi (a), NDVI max (b), and integrated annual
NDVI (c).

In general, it is evident that TRWi shows a higher response to the interannual variability of
drought than the NDVI max and NDVI annual. Figure 4 shows the relationship between the maximum
correlations obtained relating TRWi and drought indices and those obtained for the NDVI annual and
NDVI max. It can be noted that maximum correlations are much higher considering TRWi than NDVI
metrics. Moreover, there are no clear relationships between the spatial patterns of the correlations.
In particular, the highest correlations between drought indices and TRWi did not imply the highest
correlations with NDVi metrics. The highest percentages of maximum correlations between TRWi and
multi-scalar drought indices were in July (43.08%) and August (40.69%) (Table S1). SPEI correlated
better with TRWi in July (17.09%), while the SPI and SPDI showed better association with TRWi
in August (15.9% and 12.65%, respectively). In contrast, NDVI max showed highest percentage of
maximum correlations in April (63.16%) and May (32.99%); the three drought indices also correlated
most in April, with very similar percentages (SPEI: 21.28%, SPI: 21.11% and SPDI: 20.77%). For NDVI
annual, the majority of forests showed their best correlations in May (90.94%), particularly for the
SPEI (37.61%), the SPI (32.48%), and the SPDI (20.85%). Thus, two distinct temporal patterns could
be observed depending on the analyzed parameter, whereas secondary growth response to drought
severity reached a maximum in July and August, annual vegetation growth (NDVI max) and NPP
(NDVI annual) showed a much earlier response to drought in springtime (April and May).
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3.2. Relationship between Vegetation Variables and Drought by Species

Among tree species, there are no clear differences in the correlations between the multi-scalar
drought indices and NDVI annual and NDVI max (Figure 5). In contrast, the correlations with
TRWi show higher variability amongst tree species. Generally, the NDVI metrics suggest that species
characteristics of moist and cold regions (e.g., Abies alba and Pinus uncinata) tend to show lower
correlations than species of semi-arid climates (e.g., Pinus halepensis).
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Figure 5. Box plots showing maximum Pearson correlation coefficients computed between ring-width
indices (TRWi, (a)), NDVI max (b), NDVI annual (c), and the most correlated drought index for each
tree species. The solid black line corresponds to the median, green asterisks mark the mean and
dashed lines show the significance level at p < 0.05 (light pink) and p < 0.01 (dark pink). Species’ codes
correspond to those listed in Table 1.

Conifers from dry regions (Pinus halepensis, Pinus pinaster, and Juniperus thurifera) recorded the
highest correlation coefficients in the case of TRWi (r = 0.70); on the contrary, conifers (Abies pinsapo) and
hardwood species (Castanea sativa and Fagus sylvatica) from wet and temperate regions recorded lower
correlations (r = 0.45). The response of the species to NDVI max—SPEI relationship was more evident
for two species dominant in dry areas: Pinus halepensis and Quercus ilex (r = 0.5). In Figures S1 and S2
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are displayed the maximum correlations (S1) and Pearson’s partial correlations (S2) for the rest of the
indices and variables considered in the analysis for each tree species respectively.

According to Figure 6, the response to medium (4–6 months) to long (>6 months) drought
time-scales are frequently observed. Several tree species (e.g., Quercus ilex, Quercus faginea, Pinus
pinaster, Pinus pinea, Pinus halepensis, and Castanea sativa) exhibited similar long time-scale responses in
the three forest variables. It seems that the response of the interannual variability of tree metrics to
drought was not only driven by the differences among species, but also by the general hydro-climatic
conditions. Figure S3 illustrates the most correlated time-scale found for the rest of the multi-scalar
drought indices and variables considered in the analysis for each tree species respectively.
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Figure 6. Box plots showing the most correlated timescale found for ring-width indices (TRWi, (a)),
NDVI max (b), NDVI annual (c), and the most correlated drought index. The solid black line
corresponds to the median, green asterisks mark the means. Species’ codes correspond to those
listed in Table 1.

Figure 7 illustrates the relationship between the average annual hydro-climatic balance for
hardwoods and coniferous species and the correlation found between the most correlated drought
index and each of the three variables. As depicted, most conifer forests were characterized by negative
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annual hydro-climatic balances, while half of hardwood forests, mainly those located in humid and
mountainous regions, showed a positive hydro-climatic balance. Figures S6–S8 summarize this
relationship for each species and variable.Forests 2018, 9, x FOR PEER REVIEW  12 of 20 
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Figure 7. Scatter plots showing the relationship between maximum Pearson correlations found for
SPEI-TRWi, SPEI-NDVImax, SPI-NDVIannual, and the average annual water balance of hardwood
species (right, dark green) and conifers (left, light green). Solid red line corresponds to the fitted lines
of regression models.

4. Discussion

This study addressed the sensitivity of several drought indices to record responses of NDVI
metrics and tree growth to water shortage. In general, we found that multi-scalar drought indices
(e.g., SPI, SPEI) outperform uni-scalar drought indices (PDSIs) in terms of capturing the impacts of
water shortage on forest growth and NDVI metrics. Likewise, this study assesses the performance
of different drought indices to adequately monitor the impact of drought on forests under different
climatic and geographical conditions, and taxonomic origins. Our analysis is based on two promising
datasets covering the IP and the Balearic Islands. The first comprises tree-ring width data from a
dense network of 568 forests for 16 tree species [75]. The second includes a 1.1 km spatial resolution
NDVI dataset that allows for detecting the growth and NDVI signal in each forest stand, reducing the
interferences associated with the non-related vegetation cover [54]. Changes in vegetation due to
adverse environmental conditions have been addressed in the scientific literature from different
methodological perspectives. Tardieu et al. [76] proposed a probabilistic approach based on the genetic
variability to study the adaptive mechanisms of vegetation to uncertain climatic conditions as drought
to contribute to the tolerance of major crops to deal with them. For its part, Almeida et al. [77]
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developed a systematic methodology to study the spectral differences of vegetation, discriminate
between vegetation assemblages, and assess the phenology of plants applying a principal component
analysis to band ratios. They found significant differences in comparison to most traditional approaches
such as the NDVI. Previous studies also examined the links between vegetation activity and drought
events assessing the response of NDVI to drought using drought indices for finding links between
vegetation activity and drought events [78]. Some studies also quantified the impacts of drought on
forest growth using dendrochronological methods and multi-scalar drought indices [10], while others
assessed the relationship between NDVI and tree-ring width data [32,38,79].

However, very few studies have assessed the varying response of vegetation to various drought
indices [48,80,81], considering NDVI and tree-ring width data for different tree species, taxonomic
groups and biogeographical regions.

This study demonstrates that TRWi and NDVI metrics show different responses to multi-scalar
drought indices (Figures S4 and S5), highlighting the different relationship between wood production
and canopy greenness or activity (NPP) with drought. TRWi was more responsive to drought severity
than the NDVI metrics. Similar results have been observed by Gazol et al. [75] for Spain, as they noted
that tree growth is more sensitive to extreme climate events than the above-ground photosynthetic
biomass. They attributed this pattern to: (1) the dependence of leaf and wood formation processes
on water availability, (2) the distortion of NDVI signal as a consequence of the spatial resolution,
and (3) the effect of nearby vegetation. A similar finding was also observed by Aaltonen et al. [82] who
indicated that drought led to a decline in the growth of Scots pine seedlings due to stress. In contrast,
the photosynthetic rates did not decrease due to drought, confirming the physiological adaptations
(e.g., larger root network) to deal with water scarcity. Similarly, McDowell et al. [83] described different
mechanisms to explain mortality caused by drought and water stress. These mechanisms include
biotic stressors, hydraulic failure, and carbon starvation. Additonally, numerous studies confirmed
that—under soil moisture deficit scenarios—forests can maintain their photosynthetic capacity [84],
while dehydration associated with long periods of xylem conductivity loss inevitably can induce tree
dieback [85,86]. Thus, it is acceptable that sensitivity of secondary growth to drought is greater than that
of the photosynthetic activity. It is also important to consider that, albeit with the high dependence of
spectral measurements on the amount of leafy biomass and primary production [41], remotely-sensed
vegetation indices (e.g., NDVI) are limited, given that saturation problems can occur, especially in
regions with high biomass and strong chlorophyll absorption in the red and near-infrared bands [87,88].
This feature may add further uncertainty to the obtained results, particularly at regional scales.

Our findings on the performance of the different drought indices stress the superiority of
multi-scalar indices over the uni-scalar indices. This is clearly evident for the three vegetation indicators
considered in this study. In this context, Bhuyan et al. [80] employed a range of drought indices to
evaluate the connection between drought and tree growth of nine tree species across Europe. In their
comparison of multi-scalar drought indices (i.e., SPI and SPEI) and the self-calibrated PDSI, they found
a good agreement for F. sylvatica forests between the correlation values found for the Palmer index and
the SPEI-SPI at long time scales (>12 months). On the other hand, the SPEI and SPI captured drought
signals in the growth series of all tree species, especially in temperate and cold forests. Our results
suggest that the Z-Index and the PMDI show more significant and higher correlations with TRWi
compared with the PDSI. In this regard, Karl [89] stated that, for some agricultural and forest fires
applications, the Z-Index outperforms PDSI given its competence to respond to short-term moisture
variances. In our case, the highest correlations of the Z-Index were found for TRWi. In their global
assessment, Vicente-Serrano et al. [48] indicated that growth-drought correlations were stronger for
the SPI and SPEI indices than for the PDSI and the Z-Index. They also found that a higher percentage
of forests from different biomes across the world correlated better with the SPEI than with the SPI.
For its part, Bachmair et al. [50] assessed the relationship between meteorological indicators and
forests in Europe, suggesting slight differences between the SPEI and SPI. Nonetheless, they noted
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that—at shorter time scales—the SPEI shows a stronger response in the forests of southern Europe,
a result that is in agreement with the findings of our study.

Our findings also demonstrate that the strength of correlations and timing response to drought
vary spatially depending on the species and climatic conditions. Specifically, hardwood species under
moist climate in Northern Spain are less correlated with drought indices than the remaining species.
The deciduous species (e.g., Fagus sylvatica, Quercus petraea, Quercus pyrenaica, and Quercus robur) were,
however, more sensitive to drought at short (1–3 months) and medium time scales than most of
evergreen coniferous trees, particularly in the dry eastern IP under Mediterranean climate that
responded to longer time scales (e.g., Pinus halepensis). This entails the resilience capacity of the
species to endure with droughts. Gazol et al. [75] found that the same pine species inhabiting southern
and eastern dry regions in the IP showed a low resistance to drought and a high post-drought recovery
capacity. In semiarid areas, soil water availability is the main constraint for forest growth [72].
This dependence on moisture deficit at medium to longer temporal scales was also found by
Rimkus et al. [78] for the Baltic region and Quiring and Ganesh [90] for Texas (USA).

Overall, species growing under humid climate conditions present a weaker correlation with
drought indices. Nonetheless, these species are most sensitive to extreme or prolonged drought events,
due to the absence of resilience mechanisms to reduce the damage caused by severe water shortage [91],
although they can show high resistance to drought in terms of growth loss [75]. In these humid
regions, precipitation seems to be the main limiting factor, given the stronger response of SPI to NDVI
cumulative annual series (NDVI annual), compared to drought indices that account for precipitation as
well as atmospheric evaporative demand (i.e., SPEI) [40]. Furthermore, vegetation from humid regions
may respond in a different manner to mild droughts, as suggest by Zhang et al. [92]. This behavior
can be interpreted within a context where temperature rise and low cloudiness could increase the
incoming photosynthetically-active radiation simultaneously with increased evapotranspiration.

Interestingly, the response of species to drought differs among species belonging of the same
genus, and also between sites in the same species, indicating the relevance of local site climatic
and soil conditions. Thus, some species dominating in cold and continental mountainous areas
(e.g., Pinus sylvestris and Pinus uncinata) tend to respond to shorter temporal scales because of
their higher dependence on water availability [93]. In contrast, Pinus halepensis and Pinus nigra,
which are dominant in dry regions, are less sensitive to moisture deficit, especially during prolonged
droughts [94].

In addition, the response of forests to drought indices shows a strong seasonality. For tree-ring
growth, moisture conditions during summer, especially in July and August, are determinant of wood
formation. On the other hand, for the NDVI (max and annual), late spring months (April and May)
are more relevant. The higher sensitivity of wood formation to summer water availability is probably
related to phenological patterns of each species [95]. A similar pattern was observed over arid and
semi-arid regions of Mongolia and China [92]. Even if spring droughts may lead to severe impacts,
these impacts may be lagged to subsequent months, leading to photosynthesis reduction as well as
accelerated respiration rates in summer. All these factors together reduced the annual net carbon
uptake and, thus, wood formation [96].

5. Conclusions

To sum up, our study reflects some key findings:

1. The multi-scalar drought indices (e.g., SPEI, SPI, and SPDI) perform better than uni-scalar indices
(e.g., PDSI) to identify drought impacts on forests for different species.

2. Among the multi-scalar indices, SPEI and SPI correlate better with TRWi and NDVI than the
SPDI for most species.

3. Albeit with the few differences in the magnitude of correlations between the SPEI and SPI,
our results suggest a major role of the atmospheric evaporative demand in drought severity
across forests located in dry Mediterranean areas.
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4. Droughts are more prone to impact forest secondary growth (TRWi) during summertime,
and annual production and greenness (NDVI) during springtime.

5. The response of the forests to drought is mainly driven by short time scales (1–3 months) in
humid-temperate hardwood forests, compared to long to medium (>4 months) time scales in
warm-dry conifer forests.

6. Tree-ring growth seems a more reliable indicator of the response of forests to drought, due to its
higher association with drought indices.
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Figure S1. Box plots showing the maximum Pearson correlation coefficients computed between NDVI annual (a,f),
ring-width indices (TRWi (b,d), and NDVImax (c,e), and the multi-scalar drought indices (SPEI, SPI, and SPDI),
Figure S2. Box plots showing the maximum partial Pearson correlation coefficients found between TRWi (b,d),
NDVI max (c,e), NDVI annual (a,f), and the multi-scalar drought indices. Figure S3. Box plots showing the most
correlated time-scale found for TRWi (b,d), NDVI max (c,e), NDVI annual (a,f), and the multi-scalar drought
indices. Figure S4. Scatterplots showing the maximum Pearson correlation coefficients found for SPEI-TRWi and
SPI-NDVI annual by species. Figure S5. Scatterplots showing the maximum Pearson correlation coefficients found
for SPEI-TRWi and SPEI-NDVI max by species. Figure S6. Scatterplots showing the maximum Pearson correlation
coefficients found for SPEI-TRWi and the average annual hydro-climatic balance by species. Figure S7. Same as
Figure S6, but for SPEI-NDVI max. Figure S8. Same as Figure S6, but for SPEI-NDVI annual. Table S1. Percentage
of sampled forests per drought index and time-scale (number of months) in which the maximum correlation value
was found with ring-width indices (TRWi, a), NDVI max (b), and NDVI annual (c).

Author Contributions: Conceptualization, S.M.V.-S.; Data curation, S.M.V.-S., J.J.C., A.G., R.S.-S., E.G., M.d.L.,
G.S.-B., K.N., V.R., P.A.T., J.C.L., E.M.d.C., M.R.M., I.G.-G., F.S., A.C., M.G., J.M.O., L.A.L., A.H. and J.D.G.;
Formal analysis, M.P.-G.; Methodology, M.P.-G. and S.M.V.-S.; Supervision, S.M.V.-S., J.J.C.; Visualization, M.P.-G.;
Writing—original draft, M.P.-G.; Writing—review & editing, S.M.V.-S., J.J.C., F.D.-C., A.E.K., S.B.-P., G.S.-B., J.M.O.
and A.H.

Funding: This study was financially supported by the Spanish Ministry of Economy projects:
CGL2015-69186-C2-1-R (Fundiver), CGL2015-69985-R (CLIMED), CGL2013-48843-C2-1-R (CoMo-ReAdapt),
AGL2014-53822-C2-1-R (SATIVA), XIRONO (BFU2010-21451), CGL2014-52135-C03-01, PCIN-2015-220,
and CGL2016-81706-REDT (Ecometas Network), 1560/2015 (ECOHIPRO). The study was also funded by
IMDROFLOOD (Water Works 2014, EC) and INDECIS (European Research Areas for Climate Services)
projects. This work also benefited from funding from Xunta de Galicia (PGIDIT06PXIB502262PR, GRC GI-1809,
ROCLIGAL-10MDS291009PR), INIA (RTA200600117), and Interreg V-A POCTEFA (CANOPEE, 2014-2020-FEDER
funds) projects. Marina Peña-Gallardo was granted by the Spanish Ministry of Economy and Competitiveness.
Raúl Sánchez-Salguero and Antonio Gazol were supported by postdoctoral grants (IJCI-2015-25845 and
MINECO-FPDI 2013-16600; FEDER funds).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wilhite, D.A.; Pulwarty, R.S. Drought and Water Crises: Integrating Science, Management, and Policy; CRC Press:
Boca Raton, FL, USA, 2017; ISBN 9781138035645.

2. Bachmair, S.; Kohn, I.; Stahl, K. Exploring the link between drought indicators and impacts. Nat. Hazards
Earth Syst. Sci. 2015, 15, 1381–1397. [CrossRef]

3. Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to
enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [CrossRef]

4. Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.;
Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality
reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [CrossRef]

5. Zhang, Q.; Shao, M.; Jia, X.; Wei, X. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced
Tree Mortality. PLoS ONE 2017, 12, e0169770. [CrossRef] [PubMed]

6. Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and
competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [CrossRef]
[PubMed]

7. Greenwood, S.; Ruiz-Benito, P.; Martínez-Vilalta, J.; Lloret, F.; Kitzberger, T.; Allen, C.D.; Fensham, R.;
Laughlin, D.C.; Kattge, J.; Bönisch, G.; et al. Tree mortality across biomes is promoted by drought intensity,
lower wood density and higher specific leaf area. Ecol. Lett. 2017, 20, 539–553. [CrossRef] [PubMed]

http://www.mdpi.com/1999-4907/9/9/524/s1
http://dx.doi.org/10.5194/nhess-15-1381-2015
http://dx.doi.org/10.1007/s11269-006-9076-5
http://dx.doi.org/10.1016/j.foreco.2009.09.001
http://dx.doi.org/10.1371/journal.pone.0169770
http://www.ncbi.nlm.nih.gov/pubmed/28095437
http://dx.doi.org/10.1111/ele.12711
http://www.ncbi.nlm.nih.gov/pubmed/28000432
http://dx.doi.org/10.1111/ele.12748
http://www.ncbi.nlm.nih.gov/pubmed/28220612


Forests 2018, 9, 524 16 of 20

8. Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.;
García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of increasing
drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 44001–44009.
[CrossRef]

9. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3,
52–58. [CrossRef]

10. Pasho, E.; Camarero, J.J.; de Luis, M.; Vicente-Serrano, S.M. Impacts of drought at different time scales
on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteorol. 2011, 151,
1800–1811. [CrossRef]

11. Gazol, A.; Camarero, J.J.; Anderegg, W.R.L.; Vicente-Serrano, S.M. Impacts of droughts on the growth
resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 2017, 26, 166–176. [CrossRef]

12. Sánchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernández-Cancio, Á. Selective
drought-induced decline of pine species in southeastern Spain. Clim. Chang. 2012, 113, 767–785. [CrossRef]

13. Arzac, A.; Rozas, V.; Rozenberg, P.; Olano, J.M. Water availability controls Pinus pinaster xylem growth and
density: A multi-proxy approach along its environmental range. Agric. For. Meteorol. 2018, 250–251, 171–180.
[CrossRef]

14. Arzac, A.; García-Cervigón, A.I.; Vicente-Serrano, S.M.; Loidi, J.; Olano, J.M. Phenological shifts in climatic
response of secondary growth allow Juniperus sabina L. to cope with altitudinal and temporal climate
variability. Agric. For. Meteorol. 2016, 217, 35–45. [CrossRef]

15. Forner, A.; Valladares, F.; Bonal, D.; Granier, A.; Grossiord, C.; Aranda, I. Extreme droughts affecting
Mediterranean tree species’ growth and water-use efficiency: The importance of timing. Tree Physiol. 2018.
[CrossRef] [PubMed]

16. Peguero-Pina, J.J.; Sancho-Knapik, D.; Cochard, H.; Barredo, G.; Villarroya, D.; Gil-Pelegrin, E. Hydraulic
traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill.
and Abies pinsapo Boiss. Tree Physiol. 2011, 31, 1067–1075. [CrossRef] [PubMed]

17. Martín Vide, J.; Olcina Cantos, J. Climas y Tiempos de España; Alianza Editorial: Madrid, Spain, 2001;
ISBN 8420657778.

18. Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Cantero, A.; Sánchez-Salguero, R.; Sánchez-Miranda, A.;
Granda, E.; Serra-Maluquer, X.; Ibáñez, R. Forest Growth Responses to Drought at Short- and Long-Term
Scales in Spain: Squeezing the Stress Memory from Tree Rings. Front. Ecol. Evol. 2018, 6, 9. [CrossRef]

19. Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree mortality
in Europe. Glob. Chang. Biol. 2017, 23, 4788–4797. [CrossRef] [PubMed]

20. Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; Oliva, J.; Vicente-Serrano, S.M. To die or not to die: Early
warnings of tree dieback in response to a severe drought. J. Ecol. 2015, 103, 44–57. [CrossRef]

21. Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline,
food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl.
Acad. Sci. USA 2011, 108, 1474–1478. [CrossRef] [PubMed]

22. Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008,
320, 1444–1449. [CrossRef] [PubMed]

23. Frank, D.C.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N.E.;
Schleser, G.H.; Ahlström, A.; et al. Water-use efficiency and transpiration across European forests during the
Anthropocene. Nat. Clim. Chang. 2015, 5, 579–583. [CrossRef]

24. Zhao, M.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from
2000 Through 2009. Science 2010, 329, 940–943. [CrossRef] [PubMed]

25. Gursoy, M.; Balkan, A.; Ulukan, H. Ecophysiological Responses to Stresses in Plants: A General Approach.
Pak. J. Biol. Sci. 2012, 15, 506–516. [CrossRef] [PubMed]

26. Li, J.; Cang, Z.; Jiao, F.; Bai, X.; Zhang, D.; Zhai, R. Influence of drought stress on photosynthetic characteristics
and protective enzymes of potato at seedling stage. J. Saudi Soc. Agric. Sci. 2017, 16, 82–88. [CrossRef]

27. Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: can we make metabolic connections from
available data? J. Exp. Bot. 2011, 62, 869–882. [CrossRef] [PubMed]

28. Basu, S.; Ramegowda, V.; Kumar, A.; Pereira, A. Plant adaptation to drought stress. F1000Research 2016, 5.
[CrossRef] [PubMed]

http://dx.doi.org/10.1088/1748-9326/9/4/044001
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.1016/j.agrformet.2011.07.018
http://dx.doi.org/10.1111/geb.12526
http://dx.doi.org/10.1007/s10584-011-0372-6
http://dx.doi.org/10.1016/j.agrformet.2017.12.257
http://dx.doi.org/10.1016/j.agrformet.2015.11.011
http://dx.doi.org/10.1093/treephys/tpy022
http://www.ncbi.nlm.nih.gov/pubmed/29554342
http://dx.doi.org/10.1093/treephys/tpr092
http://www.ncbi.nlm.nih.gov/pubmed/21937669
http://dx.doi.org/10.3389/fevo.2018.00009
http://dx.doi.org/10.1111/gcb.13724
http://www.ncbi.nlm.nih.gov/pubmed/28417562
http://dx.doi.org/10.1111/1365-2745.12295
http://dx.doi.org/10.1073/pnas.1010070108
http://www.ncbi.nlm.nih.gov/pubmed/21220333
http://dx.doi.org/10.1126/science.1155121
http://www.ncbi.nlm.nih.gov/pubmed/18556546
http://dx.doi.org/10.1038/nclimate2614
http://dx.doi.org/10.1126/science.1192666
http://www.ncbi.nlm.nih.gov/pubmed/20724633
http://dx.doi.org/10.3923/pjbs.2012.506.516
http://www.ncbi.nlm.nih.gov/pubmed/24191624
http://dx.doi.org/10.1016/j.jssas.2015.03.001
http://dx.doi.org/10.1093/jxb/erq340
http://www.ncbi.nlm.nih.gov/pubmed/21172816
http://dx.doi.org/10.12688/f1000research.7678.1
http://www.ncbi.nlm.nih.gov/pubmed/27441087


Forests 2018, 9, 524 17 of 20

29. Granda, E.; Escudero, A.; Valladares, F. More than just drought: Complexity of recruitment patterns in
Mediterranean forests. Oecologia 2014, 176, 997–1007. [CrossRef] [PubMed]

30. Lloret, F.; Escudero, A.; Iriondo, J.M.; Martínez-Vilalta, J.; Valladares, F. Extreme climatic events and
vegetation: The role of stabilizing processes. Glob. Chang. Biol. 2012, 18, 797–805. [CrossRef]

31. Vidal-Macua, J.J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Pons, X. Factors affecting forest dynamics
in the Iberian Peninsula from 1987 to 2012. The role of topography and drought. For. Ecol. Manag. 2017, 406,
290–306. [CrossRef]

32. Vicente-Serrano, S.M.; Camarero, J.J.; Olano, J.M.; Martín-Hernández, N.; Peña-Gallardo, M.;
Tomás-Burguera, M.; Gazol, A.; Azorin-Molina, C.; Bhuyan, U.; El Kenawy, A. Diverse relationships between
forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens. Environ. 2016,
187, 14–29. [CrossRef]

33. Babst, F.; Poulter, B.; Trouet, V.; Tan, K.; Neuwirth, B.; Wilson, R.; Carrer, M.; Grabner, M.; Tegel, W.;
Levanic, T.; et al. Site- and species-specific responses of forest growth to climate across the European
continent. Glob. Ecol. Biogeogr. 2013, 22, 706–717. [CrossRef]

34. Fritts, H.C. Tree Rings and Climate; Academic Press: Cambridge, MA, USA, 1976; ISBN 9780122684500.
35. Gazol, A.; Sangüesa-Barreda, G.; Granda, E.; Camarero, J.J. Tracking the impact of drought on functionally

different woody plants in a Mediterranean scrubland ecosystem. Plant Ecol. 2017, 218, 1009–1020. [CrossRef]
36. Vicente-Serrano, S.M.; Martín-Hernández, N.; Camarero, J.J.; Gazol, A.; Sánchez-Salguero, R.;

Peña-Gallardo, M.; El Kenawy, A.; Domínguez-Castro, F.; Tomas-Burguera, M.; Gutiérrez, E.; et al. Spatial,
temporal and climatic determinants of the responses of tree-ring growth to satellite-derived primary growth
in multiple forest biomes. Sci. Total Environ. 2018. under review.

37. Poulter, B.; Pederson, N.; Liu, H.; Zhu, Z.; D’Arrigo, R.; Ciais, P.; Davi, N.; Frank, D.; Leland, C.; Myneni, R.;
Piao, S.; Wang, T. Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate
high sensitivity to climate change. Agric. For. Meteorol. 2013, 178–179, 31–45. [CrossRef]

38. Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central
Great Plains. Int. J. Remote Sens. 2004, 25, 3127–3138. [CrossRef]

39. Bochenek, Z.; Ziolkowski, D.; Bartold, M.; Orlowska, K.; Ochtyra, A. Monitoring forest biodiversity and the
impact of climate on forest environment using high-resolution satellite images. Eur. J. Remote Sens. 2018, 51,
166–181. [CrossRef]

40. Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.;
Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought
time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [CrossRef] [PubMed]

41. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]

42. Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416.
[CrossRef]

43. Keyantash, J.; Dracup, J.A.; Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of
Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [CrossRef]

44. Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349.
[CrossRef]

45. Shukla, S.; Steinemann, A.C.; Lettenmaier, D.P.; Shukla, S.; Steinemann, A.C.; Lettenmaier, D.P. Drought
Monitoring for Washington State: Indicators and Applications. J. Hydrometeorol. 2011, 12, 66–83. [CrossRef]

46. Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; García-Ruiz, J.M.; Cuadrat, J.M.
The impact of droughts and water management on various hydrological systems in the headwaters of the
Tagus River (central Spain). J. Hydrol. 2010, 386, 13–26. [CrossRef]

47. Peña-Gallardo, M.; Vicente-Serrano, S.M.; Domínguez-Castro, F.; Quiring, S.M.; Svoboda, M.D.;
Beguería-Portugués, S.; Hannaford, J. Effectiveness of drought indices in identifying impacts on major
crops over the USA. Clim. Res. 2018, in press. [CrossRef]

48. Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.;
Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A.; Vicente-Serrano, S.M.; et al. Performance of Drought
Indices for Ecological, Agricultural, and Hydrological Applications. Earth Int. 2012. [CrossRef]

http://dx.doi.org/10.1007/s00442-014-3064-x
http://www.ncbi.nlm.nih.gov/pubmed/25194350
http://dx.doi.org/10.1111/j.1365-2486.2011.02624.x
http://dx.doi.org/10.1016/j.foreco.2017.10.011
http://dx.doi.org/10.1016/j.rse.2016.10.001
http://dx.doi.org/10.1111/geb.12023
http://dx.doi.org/10.1007/s11258-017-0749-3
http://dx.doi.org/10.1016/j.agrformet.2012.12.006
http://dx.doi.org/10.1080/0143116032000160499
http://dx.doi.org/10.1080/22797254.2017.1414573
http://dx.doi.org/10.1073/pnas.1207068110
http://www.ncbi.nlm.nih.gov/pubmed/23248309
http://dx.doi.org/10.1016/0034-4257(79)90013-0
http://dx.doi.org/10.1080/01431168608948944
http://dx.doi.org/10.1175/1520-0477-83.8.1167
http://dx.doi.org/10.1139/a11-013
http://dx.doi.org/10.1175/2010JHM1307.1
http://dx.doi.org/10.1016/j.jhydrol.2010.01.001
http://dx.doi.org/10.3354/cr01519
http://dx.doi.org/10.1175/2012EI000434.1


Forests 2018, 9, 524 18 of 20

49. Kempes, C.P.; Myers, O.B.; Breshears, D.D.; Ebersole, J.J. Comparing response of Pinus edulis tree-ring
growth to five alternate moisture indices using historic meteorological data. J. Arid Environ. 2008, 72, 350–357.
[CrossRef]

50. Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K. How well do meteorological indicators represent
agricultural and forest drought across Europe? Environ. Res. Lett. 2018, 13, 034042. [CrossRef]

51. Vicente-Serrano, S.M.; Tomas-Burguera, M.; Beguería, S.; Reig, F.; Latorre, B.; Peña-Gallardo, M.; Luna, M.Y.;
Morata, A.; González-Hidalgo, J.C. A High Resolution Dataset of Drought Indices for Spain. Data 2017, 2, 22.
[CrossRef]

52. Allen, R.G.; Rick, G. Food and Agriculture Organization of the United Nations. In Crop Evapotranspiration:
Guidelines for Computing Crop Water Requirements; Allen, R.G., Pereira, L.S., Raes, D., smith, M., Eds.; Food and
Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195.

53. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived
NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [CrossRef]
[PubMed]

54. Vicente-Serrano, M.; Martín-Hernández, N.; Camarero, J.J.; Gazol, A.; Sánchez-Salguero, R.;
Peña-Gallardo, M.; El Kenawy, A.; Domínguez-Castro, F.; Tomás-Burquera, M.; Gutiérrez, E.; et al. Linking
tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale
matters. Sci. Total Environ. 2018. under review.

55. Nagaraja Rao, C.R.; Zhang, N.; Sullivan, J.T. Inter-calibration of meteorological satellite sensors in the visible
and near-infrared. Adv. Space Res. 2001, 28, 3–10. [CrossRef]

56. Robel, J. NOAA KLM User’s Guide—Satellite and Data Description of NOAA’s Polar-Orbiting Satellites
from NOAA-15 and Later. 2009. Available online: https://www1.ncdc.noaa.gov/pub/data/satellite/
publications/podguides/N-15%20thru%20N-19/pdf/0.0%20NOAA%20KLM%20Users%20Guide.pdf
(accessed on 28 August 2018).

57. Riano, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in landsat-TM
data for mapping vegetation types (2003). IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [CrossRef]

58. Baena-Calatrava, R. Georreferenciación Automática de Imágenes NOAA-AVHRR; University of Jaén:
Jaen, Spain, 2002.

59. Azorin-Molina, C.; Baena-Calatrava, R.; Echave-Calvo, I.; Connell, B.H.; Vicente-Serrano, S.M.;
López-Moreno, J.I. A daytime over land algorithm for computing AVHRR convective cloud climatologies
for the Iberian Peninsula and the Balearic Islands. Int. J. Climatol. 2013, 33, 2113–2128. [CrossRef]

60. Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J.
Remote Sens. 1986, 7, 1417–1434. [CrossRef]

61. Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurements. Tree-Ring Bull. 1983,
43, 69–78.

62. Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [CrossRef]
63. Palmer, W.C. Meteorological Drought; U.S. Department of Commerce: Washington, DC, USA, 1965.
64. Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Clim. Appl. Meteorol. 1984,

23, 1100–1109. [CrossRef]
65. Doesken, N.J.; Garen, D. Drought monitoring in the Western United States using a surface water supply index.

In Proceedings of the 7th Conference on Applied Climatology, Salt Lake City, UT, USA, 10–13 September 1991;
Doesken, N.J., Mckee, T.B., Kleist, J., Eds.; Colorado State University: Fort Collins, CO, USA, 1991.

66. Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc.
2002, 83, 1149–1165. [CrossRef]

67. Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales.
In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993.

68. Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological
Organization: Geneva, Swizerland, 2012.

69. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.
A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation
Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

70. Ma, M.; Ren, L.; Yuan, F.; Jiang, S.; Liu, Y.; Kong, H.; Gong, L. A new standardized Palmer drought index for
hydro-meteorological use. Hydrol. Process. 2014, 28, 5645–5661. [CrossRef]

http://dx.doi.org/10.1016/j.jaridenv.2007.07.009
http://dx.doi.org/10.1088/1748-9326/aaafda
http://dx.doi.org/10.3390/data2030022
http://dx.doi.org/10.1016/j.tree.2005.05.011
http://www.ncbi.nlm.nih.gov/pubmed/16701427
http://dx.doi.org/10.1016/S0273-1177(01)00262-9
https://www1.ncdc.noaa.gov/pub/data/satellite/publications/podguides/N-15%20thru%20N-19/pdf/0.0%20NOAA%20KLM%20Users%20Guide.pdf
https://www1.ncdc.noaa.gov/pub/data/satellite/publications/podguides/N-15%20thru%20N-19/pdf/0.0%20NOAA%20KLM%20Users%20Guide.pdf
http://dx.doi.org/10.1109/TGRS.2003.811693
http://dx.doi.org/10.1002/joc.3572
http://dx.doi.org/10.1080/01431168608948945
http://dx.doi.org/10.1016/j.dendro.2008.01.002
http://dx.doi.org/10.1175/1520-0450(1984)023&lt;1100:TPDSIL&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0477-83.8.1149
http://dx.doi.org/10.1175/2009JCLI2909.1
http://dx.doi.org/10.1002/hyp.10063


Forests 2018, 9, 524 19 of 20

71. Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.-I. Contribution
of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015,
526, 42–54. [CrossRef]

72. Vicente-Serrano, S.; Cabello, D.; Tomás-Burguera, M.; Martín-Hernández, N.; Beguería, S.; Azorin-Molina, C.;
Kenawy, A. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote
Sensing Data and Drought Indices (1982–2011). Remote Sens. 2015, 7, 4391–4423. [CrossRef]

73. Bian, J.; Li, A.; Deng, W. Estimation and analysis of net primary Productivity of Ruoergai wetland in China
for the recent 10 years based on remote sensing. Procedia Environ. Sci. 2010, 2, 288–301. [CrossRef]

74. Kuenzer, C.; Dech, S.W.; Wagner, W. Remote Sensing Time Series: Revealing Land Surface Dynamics; Springer:
Berlin, Germany, 2015; ISBN 9783319159676.

75. Gazol, A.; Camarero, J.J.; Vicente-Serrano, S.M.; Sánchez-Salguero, R.; Gutiérrez, E.; de Luis, M.;
Sangüesa-Barreda, G.; Novak, K.; Rozas, V.; Tíscar, P.A.; Linares, J.C.; et al. Forest resilience to drought varies
across biomes. Glob. Chang. Biol. 2018, 24, 2143–2158. [CrossRef] [PubMed]

76. Tardieu, F.; Simonneau, T.; Muller, B. The Physiological Basis of Drought Tolerance in Crop Plants:
A Scenario-Dependent Probabilistic Approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [CrossRef]
[PubMed]

77. Almeida, T.I.R.; Filho, D.S. Principal component analysis applied to feature-oriented band ratios of
hyperspectral data: A tool for vegetation studies. Int. J. Remote Sens. 2004, 25, 5005–5023. [CrossRef]

78. Rimkus, E.; Stonevicius, E.; Kilpys, J.; Maciulyte, V.; Valiukas, D. Drought identification in the eastern Baltic
region using NDVI. Earth Syst. Dyn. 2017, 85194, 627–637. [CrossRef]

79. He, J.; Shao, X. Relationships between tree-ring width index and NDVI of grassland in Delingha.
Chin. Sci. Bull. 2006, 51, 1106–1114. [CrossRef]

80. Bhuyan, U.; Zang, C.; Menzel, A. Different responses of multispecies tree ring growth to various drought
indices across Europe. Dendrochronologia 2017, 44, 1–8. [CrossRef]

81. Vilhar, U. Comparison of drought stress indices in beech forests: A modelling study. iForest 2016, 9, 635.
[CrossRef]

82. Aaltonen, H.; Lindén, A.; Heinonsalo, J.; Biasi, C.; Pumpanen, J. Effects of prolonged drought stress on Scots
pine seedling carbon allocation. Tree Physiol. 2016, 37, 418–427. [CrossRef] [PubMed]

83. McDowell, N.; Allen, C.D.; Anderson-Teixeira, K.; Brando, P.; Brienen, R.; Chambers, J.; Christoffersen, B.;
Davies, S.; Doughty, C.; Duque, A.; et al. Drivers and mechanisms of tree mortality in moist tropical forests.
New Phytol. 2018. [CrossRef] [PubMed]

84. Rowland, L.; Lobo-do-Vale, R.L.; Christoffersen, B.O.; Melém, E.A.; Kruijt, B.; Vasconcelos, S.S.;
Domingues, T.; Binks, O.J.; Oliveira, A.A.R.; Metcalfe, D.; et al. After more than a decade of soil
moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
Glob. Chang. Biol. 2015, 21, 4662–4672. [CrossRef] [PubMed]

85. McDowell, N.G.; Fisher, R.A.; Xu, C.; Domec, J.C.; Hölttä, T.; Mackay, D.S.; Sperry, J.S.; Boutz, A.;
Dickman, L.; Gehres, N.; et al. Evaluating theories of drought-induced vegetation mortality using a
multimodel-experiment framework. New Phytol. 2013, 200, 304–321. [CrossRef] [PubMed]

86. Rowland, L.; da Costa, A.C.L.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.R.; Pullen, A.M.;
Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S.; et al. Death from drought in tropical forests is triggered by
hydraulics not carbon starvation. Nature 2015, 528, 119. [CrossRef] [PubMed]

87. Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous
forest site. Remote Sens. Environ. 2005, 94, 244–255. [CrossRef]

88. Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass
estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [CrossRef]

89. Karl, T.R. The Sensitivity of the Palmer Drought Severity Index and Palmer’s Z-Index to their Calibration
Coefficients Including Potential Evapotranspiration. J. Clim. Appl. Meteorol. 1986, 25, 77–86. [CrossRef]

90. Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring
meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [CrossRef]

91. Jump, A.S.; Ruiz-Benito, P.; Greenwood, S.; Allen, C.D.; Kitzberger, T.; Fensham, R.; Martínez-Vilalta, J.;
Lloret, F. Structural overshoot of tree growth with climate variability and the global spectrum of
drought-induced forest dieback. Glob. Chang. Biol. 2017, 23, 3742–3757. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jhydrol.2014.11.025
http://dx.doi.org/10.3390/rs70404391
http://dx.doi.org/10.1016/j.proenv.2010.10.035
http://dx.doi.org/10.1111/gcb.14082
http://www.ncbi.nlm.nih.gov/pubmed/29488293
http://dx.doi.org/10.1146/annurev-arplant-042817-040218
http://www.ncbi.nlm.nih.gov/pubmed/29553801
http://dx.doi.org/10.1080/01431160412331270812
http://dx.doi.org/10.5194/esd-8-627-2017
http://dx.doi.org/10.1007/s11434-006-1106-4
http://dx.doi.org/10.1016/j.dendro.2017.02.002
http://dx.doi.org/10.3832/ifor1630-008
http://dx.doi.org/10.1093/treephys/tpw119
http://www.ncbi.nlm.nih.gov/pubmed/27974653
http://dx.doi.org/10.1111/nph.15027
http://www.ncbi.nlm.nih.gov/pubmed/29451313
http://dx.doi.org/10.1111/gcb.13035
http://www.ncbi.nlm.nih.gov/pubmed/26179437
http://dx.doi.org/10.1111/nph.12465
http://www.ncbi.nlm.nih.gov/pubmed/24004027
http://dx.doi.org/10.1038/nature15539
http://www.ncbi.nlm.nih.gov/pubmed/26595275
http://dx.doi.org/10.1016/j.rse.2004.10.006
http://dx.doi.org/10.1080/01431160310001654923
http://dx.doi.org/10.1175/1520-0450(1986)025&lt;0077:TSOTPD&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.agrformet.2009.11.015
http://dx.doi.org/10.1111/gcb.13636
http://www.ncbi.nlm.nih.gov/pubmed/28135022


Forests 2018, 9, 524 20 of 20

92. Zhang, L.; Xiao, J.; Zhou, Y.; Zheng, Y.; Li, J.; Xiao, H. Drought events and their effects on vegetation
productivity in China. Ecosphere 2016, 7, e01591. [CrossRef]

93. Irvine, J.; Perks, M.P.; Magnani, F.; Grace, J. The response of Pinus sylvestris to drought: stomatal control of
transpiration and hydraulic conductance. Tree Physiol. 1998, 18, 393–402. [CrossRef] [PubMed]

94. Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis.
Tree Physiol. 2011, 31, 637–648. [CrossRef] [PubMed]

95. Camarero, J.J.; Olano, J.M.; Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean
climates. New Phytol. 2010, 185, 471–480. [CrossRef] [PubMed]

96. Noormets, A.; McNulty, S.G.; DeForest, J.L.; Sun, G.; Li, Q.; Chen, J. Drought during canopy development
has lasting effect on annual carbon balance in a deciduous temperate forest. New Phytol. 2008, 179, 818–828.
[CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/ecs2.1591
http://dx.doi.org/10.1093/treephys/18.6.393
http://www.ncbi.nlm.nih.gov/pubmed/12651364
http://dx.doi.org/10.1093/treephys/tpr047
http://www.ncbi.nlm.nih.gov/pubmed/21712236
http://dx.doi.org/10.1111/j.1469-8137.2009.03073.x
http://www.ncbi.nlm.nih.gov/pubmed/19895415
http://dx.doi.org/10.1111/j.1469-8137.2008.02501.x
http://www.ncbi.nlm.nih.gov/pubmed/18537894
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methods 
	Datasets Description 
	NDVI Data 
	Tree-Ring Width Data 
	Drought Indices 
	Palmer Drought Severity Indices (PDSIs) 
	Standardized Precipitation Index (SPI) 
	Standardized Precipitation Evapotranspiration Index (SPEI) 
	Standardized Precipitation Drought Index (SPDI) 

	Statistical Methods 

	Results 
	Spatial and Temporal Responses of Tree Variables to Drought 
	Relationship between Vegetation Variables and Drought by Species 

	Discussion 
	Conclusions 
	References

