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Abstract: Transition metal oxides and chalcogenides have recently attracted great attention as the next
generation of 2-D materials due to their unique electronic and optical properties. In this study, a new
procedure for the obtaining of highly crystalline α-MoO3 is proposed as an alternative to vapor-phase
synthesis. In this approach, a first reaction between molybdate, citrate and thiourea allowed to obtain
MoS2, which—upon calcination at a temperature of 650 ◦C in the presence of g-C3N4—resulted in
MoO3 with a definite plate-like shape. The colorless (or greenish) α-MoO3 nanoplates obtained with
this procedure featured a multilayer stack structure, with a side-length of 1–2 µm and a thickness of
several nanometers viewed along the [010] direction. The nucleation-growth of the crystal can be
explained by a two-dimensional layer-by-layer mechanism favored by g-C3N4 lamellar template.
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1. Introduction

MoO3 is a versatile compound with well-recognized applications in electronics, photo- and
electrocatalysis, electrode materials for batteries and pseudocapacitors, gas sensing, superconductors,
lubricants, thermoelectric and electrochromic systems, etc., as discussed in detail in the recent review
paper by de Castro, et al. [1].

In particular, stoichiometric and intrinsic MoO3 in its α-phase is an n-type semiconductor with a
wide bandgap energy of ca. 3 eV (a range from 2.7 to 3.2 eV has been reported), an electron affinity
>6 eV and an ionization energy >9 eV [2,3]. Its high work function has led to extensive applications
as an anode interfacial layer in electronics (e.g., in solar cells, light-emitting diodes, 2-D field-effect
transistors and photodetectors) [2–5].

Orthorhombic α-MoO3 features a layered crystal structure, which offers the possibility to create
2-D morphologies. Those layers are made of atomically thin sheets featuring a thickness of ≈0.7 nm,
composed of double layers of linked and distorted MoO6 octahedra. In the vertical [010] direction,
the distorted MoO6 octahedra are held together by van der Waals’ forces, resulting in stratification,
while the internal interactions in the octahedra are dominated by strong covalent and ionic bonds [6,7].
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Sheet-like orthorhombic α-MoO3 nanostructures are usually prepared by a simple hydrothermal
method using ammonium heptamolybdate tetrahydrate and nitric acid [8,9], although both liquid-
and vapor-phase-based alternative approaches have been devised for synthesizing and depositing this
oxide. Actually, sputtering is now the most commonly used technique for industrial scale deposition
of well-defined, large-area crystalline films of molybdenum oxide [10,11].

Aforementioned approaches have some limitations: physical vapor deposition (PVD) and
chemical vapor deposition (CVD) methods have substantial energy requirements, rely on complex
equipment and need expert operation skills; on the other hand, most liquid-phase synthesis techniques
have problems in terms of relative scalability and repeatability, as well as in terms of their ability to
produce molybdenum oxides with high crystallinity, controlled stoichiometry, and morphology.

As most applications require clean and large-sized flakes, this pinpoints a clear need to keep
exploring new ways to prepare high quality single-layer transition metal oxides and chalcogenides
with high yield. In this work we describe a new procedure to obtain highly ordered multi-layer
stacks of molybdenum trioxide (α-MoO3) from a molybdate, citrate and thiourea mixture in propylene
carbonate solution upon heating at 650 ◦C, using carbon nitride (g-C3N4) as a lamellar template. The
resulting material may find application, for instance, in the field of clean energy (provided that 2-D
α-MoO3 nanosheets have recently been reported to be strong candidates for electrocatalytic hydrogen
evolution reaction [12]) or in ultrasensitive plasmonic biosensing [13].

2. Materials and Methods

2.1. Reagents and Synthesis

Ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O, CAS No. 12054-85-2, puriss,
≥99%), citric acid monohydrate (C6H8O7·H2O, CAS No. 5949-29-1, ACS reagent, ≥99.0%), thiourea
(CH4N2S, CAS No. 62-56-6, ACS reagent,≥99.0%) and propylene carbonate (C4H6O3, CAS No. 108-32-7,
anhydrous, 99.7%) were purchased from Sigma-Aldrich Química SL (Madrid, Spain), and were used
without further purification. g-C3N4 was prepared according to the procedure reported in [14].

2.1.1. Synthesis of MoS2

Firstly, ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24·4H2O) (4 mmol) was dissolved
in 100 mL of distilled water under continuous stirring, and 2 g of citric acid monohydrate
(C6H8O7·H2O) were then added to the solution, resulting in a pH of 4. Subsequently, 10 mmol
of thiourea were added to the solution mixture and the dispersion was sonicated for 60 min (with a
probe-type UIP1000hdT ultrasonicator; Hielscher, Teltow, Germany; 1000 W, 20 kHz) in 10 periods of
2 min each, keeping the temperature below 40 ◦C. The initial greenish black color changed to dark
red and, after heating at 90 ◦C for 1 h with stirring on a heating magnetic stirrer, color changed from
red to black. After centrifugation at 4000 rpm for 1 h, a precipitate was formed, which was washed
3 times with distilled water and ethanol and then dried at 60 ◦C for 24 h. 1 g of this precipitate was
introduced into a 40 mL Teflon-lined stainless steel autoclave and 30 mL of propylene carbonate
were added, followed by stirring and heating at 200 ◦C for 24 h, yielding a solution that would
contain [Mo(CH4N2S)2O3]) (or, secondarily, some [(MoO2)2O(C6H8O7)2] as a transient species).
By centrifugation of this solution, a precipitate was obtained, in which MoS2 would be the main
component [15,16]. This precipitate was dried at 150 ◦C for 24 h.

Two proposed reaction mechanisms would be:

2[Mo(CH4N2S)2O3] + 8 O2 → Mo2S + 3 SO2 ↑ + 4 CO2 ↑ + 8 H2O ↑ + 2 N2 ↑ (1)

2[(MoO2)2O(C6H8O7)2] + 2 CH4N2S + 17 O2 → 2 Mo2S + 26 CO2 ↑ + 20 H2O ↑ + 2 N2 ↑ (2)
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2.1.2. Synthesis of MoS2/g-C3N4

g-C3N4 was added to MoS2 (1:1 w/w, 300 mg of each), the mixture was dispersed in 30 mL of
propylene carbonate and stirred at 40 ◦C for 30 min, followed by sonication for 30 min in four periods
of 5 min each, without exceeding 40 ◦C. By centrifugation of this solution, a precipitate was obtained,
which was dried at 150 ◦C for 24 h to obtain a MoS2/g-C3N4 composite material similar to those
previously reported in the literature [17–19].

2.1.3. Synthesis of MoO3

Nanostructured α-MoO3 was obtained by heating 500 mg of the hydrothermally synthesized
MoS2/g-C3N4 composite in air at 650 ◦C for 30 min in a Al2O3 ceramic crucible with lid in a GVA
12/900 oven (Carbolite Gero, Hope Valley, UK; power: 5.460 kW; heating length: 900 mm; Tmax:
1200 ◦C). Thermal heating of the composite at 650 ◦C gave molybdenum trioxide crystals with a
multilayer stacked structure. Carbon nitride oxide, (g-C3N4)O, formed from g-C3N4, was released as
gaseous vapor [20].

2 Mo2S/g-C3N4 + 9 O2 → 4 MoO3 + 2 SO2 ↑ + 2
(
g-C3N4

)
O ↑ (3)

2.2. Characterization

The vibrational spectrum in the 400–4000 cm−1 spectral range was characterized using a Thermo
Scientific (Waltham, MA, USA) Nicolet iS50 Fourier-transform infrared (FT-IR) spectrometer, equipped
with an in-built diamond attenuated total reflection (ATR) system, with a 1 cm−1 spectral resolution
and 64 scans.

The X-ray powder diffraction pattern was obtained with a Bruker (Billerica, MA, USA) D8
Advance powder diffractometer in a Bragg-Brentano geometry, using a silicon crystal low background
specimen holder. Data was collected in the 2θ = 5◦–80◦ range, with increments of 0.01◦ and an
acquisition time per step of 0.5 s.

Scanning electron microscopy (SEM) analysis was carried out with a Tescan (Brno, Czech Republic)
Vega3 microscope with BSE (annular, YAG crystal, 0.1 atomic resolution) and SE (Everhart-Thornley
type, YAG crystal) detectors, and equipped with a Bruker Quantax 100 Easy energy-dispersive X-ray
analysis (EDX) system based on a Bruker Xflash 410 M Silicon Drift Detector, with a 133 eV energy
resolution (Mn Ka) @ 100 kcps. Transmission electron (TEM) micrographs and the selected area electron
diffraction (SAED) pattern were obtained in a JEM FS2200 HRP microscope (JEOL, Akishima, Tokyo,
Japan) operating at 200 kV.

The X-ray photoelectron spectroscopy (XPS) spectrum was collected using a Kratos AXIS
UltraDLD instrument (Kratos Analytical Ltd., Manchester, UK) with a monochromatic Al Kα X-ray
source (1486.6 eV). For energy calibration, XPS binding energies were referenced to the C 1s peak at
284.6 eV.

The diffuse optical reflectance spectrum (UV-Vis DR) was obtained in a CARY 500 spectrometer
(Agilent, Santa Clara, CA, USA) equipped with an integration sphere. The spectrum was recorded
in diffuse reflectance mode and transformed by the instrument software to equivalent absorption
Kubelka-Munk (K-M) units. The K-M function was plotted as a function of energy and the bandgap
value was calculated through the inflection point of this curve.

3. Results and Discussion

3.1. Vibrational Characterization

The reactions between molybdate, citrate and thiourea were tracked by ATR-FTIR spectroscopy.
As thiourea was added to molybdate-citrate under ambient conditions, a shift towards lower
wavenumbers of the C=S stretching peak (from 731 to 728 cm−1) and of the C–N stretching peak (from
1473 to 1461 cm−1) were observed. These shifts pointed at bond formation between Mo of molybdate
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and S of thiourea to yield either a molybdenum-thiourea complex or a MoS2 chalcogenide. However,
changes in shape and position of NH2 and C=O stretching peaks denoted a strong interaction between
citrate and the molybdenum-thiourea complex (NH2 stretching peaks at 2800 and 3700 cm−1 were
different from those of molybdenum-thiourea and the C=O stretching peak was shifted from 1624 to
1604 cm−1) (Figure 1, dotted line). Presence of some MoS2, even before treatment in the Parr reactor,
could be observed in the peak at 482 cm−1, which corresponded to γas (Mo–S) [21].

Upon addition of g-C3N4 (Figure 1, dashed line), the spectra showed a band at 1204 cm−1 due to
C/N networks. The peak at 806 cm−1 could be either assigned to heptazine ring, to a bending mode
of tris-s-triazine or to the Mo2–O stretching modes of MoO3. The peak at 541 cm−1 was due to νCS
vibration. Mo–S characteristic vibration was shifted to 475 cm−1.

Finally, upon treatment at 650 ◦C, MoS2 was oxidized to MoO3 (Figure 1, solid line).
The Mo=O vibration was observed at 1126 cm−1. The peak at 977 cm−1 corresponded with the
Mo–O bonds. The peak at 815 cm−1 was due to the doubly connected bridge-oxygen Mo2–O stretching
modes of doubly coordinated oxygen, caused by corner-shared oxygen atoms in common to two
MoO6 octahedra [22]. The peak at 556 cm−1 was characteristic of stretching vibrations of Mo–O.
Some remains of MoS2 were identified by the Mo–S vibration at 471 cm−1.

Figure 1. Normalized ATR-FTIR spectra of two intermediate steps of the synthesis and the final
α-MoO3 product. An offset has been added for clarity purposes.

3.2. X-Ray Powder Diffraction and Energy-Dispersive X-Ray Spectroscopy Analyses

The X-ray powder diffractogram of the end product for a treatment temperature of 650 ◦C
(Figure 2) matched well the one reported in ICDD crystallographic database for orthorhombic α-MoO3

(PDF 00-005-0508). The positions of the experimental peaks were in good agreement with the simulated
diffractogram, albeit with changes in the intensity, which may be explained by preferential orientation
resulting from the Bragg-Brentano geometry used in the data collection.

Figure 2. X-ray powder diffraction patterns for the end product upon treatment at 650 ◦C (solid line)
and for orthorhombic α-MoO3 (dotted line). Inset: Rietveld refinement results, using FullProf [23].
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The EDX analysis (Figure 3 and Table 1) resulted in a molybdenum to oxygen atomic ratio AMo:O

= 0.29, in reasonably good agreement with the theoretical 0.33 ratio. It also pointed at the presence of
aluminum impurities, tentatively ascribed to contamination from the crucible.

Figure 3. EDX analysis of the end product.

Table 1. Estimated chemical composition of the end product. Data were obtained with EDX in
semi-quantitative mode. The errors were automatically calculated by the analysis software.

Element Series [wt.%] [norm. wt.%] [norm. at.%] Error in wt.% (3σ)

Oxygen K-series 25.473 36.624 77.403 9.409
Aluminum K-series 0.070 0.100 0.126 0.089

Sulfur * K-series 0.172 0.247 0.124 0.097
Molybdenum L-series 43.839 63.029 22.210 4.732

* The percentage assigned to sulfur may be ascribed to limitations of the software in the discrimination of
molybdenum and sulfur by peak deconvolution.

3.3. Scanning and Transmission Electron Microscopy Analyses

Molybdenum trioxide obtained by the procedure reported above was a greenish-white crystalline
material. SEM micrographs revealed a multilayer stack structure built from planar crystals, either
1×1 µm or 2×2 µm in size (Figure 4a–c). The shape of the crystals was similar to those reported by
Wang, et al. [24], [25] or Vila, et al. [26], corresponding to α-MoO3, and was very different from that
obtained by calcination of commercial molybdic acid, MoO3·H2O (Figure 4d).

Figure 4. (a–c) SEM micrographs of α-MoO3 crystals with a multi-layer stack structure at different
magnifications (20,000×, 50,000× and 120,000×, respectively); (d) SEM image of MoO3 crystals
obtained by calcination of commercial molybdic acid (MoO3·H2O); (e) SEM micrograph of α-MoO3

stacking with 44 layers.
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In the SEM micrographs presented above, the number of stacked layers varied between 3 and 44.
For a stacking of 1 µm of thickness (Figure 4e), 44 layers could be discerned. The spacing between
layers derived from the cross-section SEM images (25 nm) was around 18 times the thickness of two
double-layers within a unit cell of the orthorhombic α-MoO3 crystal.

Figure 5a,b shows TEM micrographs of the α-MoO3 nanoplates, similar to those obtained, for
instance, by calcination of h-MoO3 microrods [27]. The SAED pattern (Figure 5c) was indexed
to correspond with the (002), (202), and (200) crystallographic planes, which were specified as
orthorhombic α-MoO3 [28], in accordance with the XRD analysis.

Figure 5. (a,b) TEM micrographs of the α-MoO3 nanoplates; (c) SAED pattern.

3.4. Surface Characterization

Figure 6 shows the Mo (3d) XPS spectrum of the α-MoO3 sample. The doublet at 232.88 and 235.99
eV are attributed to the binding energies of the 3d5/2 and 3d3/2 electrons of Mo6+, respectively, in good
agreement with previous reports of Mo6+ state of α-MoO3 [29,30].

Figure 6. High resolution scan of Mo 3d doublet core levels of α-MoO3.

3.5. Optical Properties

To examine the optical properties of the sample, its UV-Vis DR spectrum was recorded over the
200–800 nm wavelength range at room temperature. As shown in the inset in Figure 7, the optical band
gap was found to be ~3.1 eV, which is in good agreement with values reported in the literature [25,31].
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Figure 7. Diffuse reflectance spectrum and band gap energy (inset) of α-MoO3.

4. Conclusions

A novel method for the preparation of high quality α-MoO3 was proposed, based on the use
of g-C3N4 as a lamellar template for the calcination of MoS2 (previously obtained from molybdate,
citrate and thiourea) at 650 ◦C. The resulting orthorhombic molybdenum oxide was characterized by
X-ray powder diffraction, ATR-FTIR, SEM, TEM, EDX, XPS and UV-Vis DR. X-ray powder diffraction
data confirmed the good crystallinity of the obtained product, while the micrographs evinced the
presence of well-defined large nanoplates, comparable to those obtained by vapor-phase synthesis
techniques. The proposed procedure may thus pose an alternative to PVD and CVD methods, as it
can overcome some of their limitations of in terms of energy requirements and equipment, and to
conventional liquid-phase synthesis techniques, provided that it can result in higher crystallinity.
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