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Highlights  13 

• A potentiometric bioET specifically dedicated to milk analysis was developed. 14 
• Enzymes were covalently linked to membranes combining Carboxilated-PVC and 15 

AuNPs.  16 
• The effective enzymatic immobilization helped to retain the enzymatic activity. 17 
• Using SVM and ensemble methods, nine physicochemical parameters can be 18 

determined simultaneously. 19 
 20 
Abstract  21 

Bioelectronic tongues (bioET) made of sensors combining enzymes and nanomaterials 22 
have been shown to be advantageous due to the specificity offered by the biosensors and 23 
the enhanced sensitivity provided by the nanomaterials. In this work, an innovative bioET 24 
for milk analysis is developed using potentiometric biosensors based on lactic 25 
dehydrogenase, galactose oxidase and urease specific for the detection of compounds of 26 
interest in milk (lactic acid, galactose and urea). The performance of the biosensors has 27 
been fostered by covalently immobilizing the enzymes on membranes of carboxylated 28 
polyvinyl chloride combined with gold nanoparticles. The design and composition of the 29 
biosensors contributes to preserving the enzymatic activity, allowing limits of detection 30 
in the range of 10-5 – 10-6 M with excellent sensitivity and reproducibility (variation 31 
coefficients ranged from 1 to 5.1 %).    32 
The three biosensors, combined in a single device and coupled to a pattern recognition 33 
software, can discriminate efficiently twelve classes of milk with different fat content 34 
(skimmed, semi-skimmed and whole milk) and nutritional characteristics (calcium 35 
enriched, lactose free and folic acid-enriched). The bioET shows an excellent 36 
classification capability with an accuracy of up to 99.7%. By applying Support Vector 37 
Machine (SVM) analysis, the BioET can perform the simultaneous assessment of eight 38 
physicochemical parameters (acidity, fat, proteins, lactose, density, urea, dry matter and 39 
nonfat dry matter) with satisfactory correlation coefficients and low residual errors. The 40 
results are further improved by implementing ensemble methodologies. The proposed 41 
strategy has been demonstrated to be useful for improving the performance of bioETs in 42 
the dairy industry.  43 
 44 
Keywords  45 
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1. Introduction 47 
 48 
In recent years, the field of electronic tongues (ETs) has driven important basic 49 
developments (Juzhong, & Jie, 2020; Aouadi et al., 2020; Rodriguez-Mendez, De Saja & 50 
González-Antón, 2016; Ha et al. 2015). Much of this progress is related to the design of 51 
new sensors which incorporate nanomaterials that improve the sensing characteristics, 52 
thanks to their high surface to volume ratio and excellent electrocatalytic properties (Li, 53 
Li, Liu, & Chen, 2019; Wang & del Valle, 2021; Sobrino-Gregorio, Bataller, Soto, & 54 
Escriche, 2018; Teodoro, Shimizu, Scagion, & Correa, 2019; Americo da Silva et al., 55 
2019). Other advances are related to new approaches to data management, including more 56 
efficient data reduction methods and improved pattern recognition algorithms and 57 
classification techniques (Tian, Chen, Pan, & Deng, 2013; Prieto et al., 2013). 58 
The emergence of bioelectronic tongues (bioETs) combining classical unspecific sensors 59 
with biosensors has been a breakthrough in the field, because these systems 60 
simultaneously provide global information about the sample (as in classical ETs) plus 61 
information about specific compounds obtained from the biosensors (Wasilewski, 62 
Kamysz, & Gebicki, 2020; Skladal, 2020; Ghasemi-Vamankhasti et al., 2012; Yhan et 63 
al., 2021; Ha et al., 2017). The performance of electrochemical biosensors can be further 64 
improved by combining enzymes or other biological bioreceptors with nanomaterials. 65 
Nanomaterials provide an effective platform for the immobilization of biomolecules, 66 
inducing unique performance characteristics in terms of sensitivity and specificity.  Some 67 
examples of voltammetric bioETs based on combinations of enzymes and nanomaterials 68 
have recently been reported. For instance, an array formed by phenol oxidases and 69 
glucose oxidase combined with nanoparticles has been successfully used to analyze 70 
grapes and musts (Garcia-Cabezón et al., 2020; Garcia-Hernandez et al., 2019). Human 71 
taste receptors combined with carbon nanotubes (CNTs) or polypyrrole nanotubes have 72 
been used to form a field effect transistor with human-tongue-like selectivity (Kim et al., 73 
2011; Song et al., 2012).  74 
Milk is a complex mixture that contains many different compounds, including 75 
carbohydrates (mainly lactose), fats, proteins (casein or whey), minerals (such as calcium) 76 
and many other miscellaneous constituents. E-tongues have been developed and applied 77 
to the dairy industry in quality control, evaluation of taste or freshness, detection of 78 
adulterations, origin recognition, etc. (Ciosek, 2016). These previous works have used 79 
different types of electrodes and materials (Winquist et al. 1998; Wei, Wang, & Jin, 2013; 80 
Pascual et al., 2018; Yu et al., 2015; Li et al., 2015; Ciosek, & Wroblewski, 2015; Tazi 81 
et al., 2018; Dias et al., 2009; Pérez-González et al., 2021; Yang et al., 2021; Hruškar et 82 
al., 2010; Collier et al. 2003; Valente et al., 2018; Scagiona et al., 2016). Only a few 83 
attempts have been made to introduce nanomaterials in ETs applied to the dairy industry. 84 
They include an array of voltammetric electrodes modified with nanostructured Layer-85 
by-Layer films (Salvo-Comino et al. 2018), a potentiometric ET using sensors modified 86 
with nanoparticles (Mercante et al., 2015) and an impedimetric ET using electrospun 87 
nanofibers (Ohlson et al., 2017).  However, due to the complexity of milk, the analysis 88 
using ETs is not a completely solved problem and new developments in the field are 89 
required.  90 
The proposal here is to take a step forward in the field of bioETs by developing novel 91 
sensors combining enzymes specific to compounds present in milk (galactose, urea and 92 
lactic acid) with nanomaterials. Galactose and its content is an important indicator of milk 93 
quality and its content can be measured with individual galactose oxidase (GaOx) 94 
biosensors (Ohlson et al., 2017; Kanyong, Krampa, Aniweh, & Awandare, 2019; Mangan 95 
et al., 2018; Nguyen et al. 2016).  Few examples can be found in the literature, where 96 
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GaOx has been combined with nanomaterials such as graphene (Çakıroğlu et al. 2019) or 97 
nanoparticles (Migliorini et al., 2018). The detection of urea is also of prime importance 98 
to assess the nutritional program of cows and can indicate underlying pathological 99 
problems. Few examples of individual nanobiosensors for the detection of urea have been 100 
reported. They are based on the combination of urease with nanoparticles (Jakhar & 101 
Pundir, 2018) or nanofibers (Jia et al. 2011). Finally, the control of lactic acid is essential 102 
to evaluate the fermentation of lactose due to lactic bacteria. Over the last few years, some 103 
examples of biosensors based on lactate dehydrogenase (LDH) combined with 104 
nanomaterials have been reported (Rahman et al. 2009).  105 
In enzyme-based biosensors, the use of an adequate method to immobilize the enzymes 106 
is crucial to preserve the enzymatic activity and avoid leakages (Nguyen, & Kim, 2017). 107 
Covalent immobilization has the advantage of high surface loading and low protein loss 108 
(Zucca, & Sanjust, 2014; Lee et al., 2017). Our proposal here is to develop an 109 
immobilization membrane using carboxylated PVC (C-PVC) -instead of the classical 110 
PVC- where enzymes can be covalently linked using a covalent reaction between 111 
carboxyl groups of the C-PVC and the amines on the protein.  112 
In the ETs, it is also important to select the best chemometric methods to process the data. 113 
Unsupervised and supervised analysis methods, such as principal component analysis 114 
(PCA), linear discrimination analysis (LDA), support vector machines (SVM) or weighed 115 
k-nearest neighbor analysis (KKNN), have been extensively applied (Skladal, 2020). One 116 
of the emerging trends in data analysis is the combined use of statistical algorithms 117 
through ensemble methodologies, where the outputs of the different algorithms are 118 
combined in a decision fusion strategy to create a single response for a given problem 119 
(Zhou, 2012). However, this strategy has barely been applied in the field of ETs, where 120 
they could represent a great advance in complex media analysis such as milk. 121 
In summary, the aim of this work was to develop a potentiometric bioET based on 122 
membranes made of carboxylate PVC modified with nanoparticles. The carboxylate PVC 123 
is used to covalently link the enzymes able to detect compounds in milks: GaOx, LDH 124 
and Ure, which have been selected for their ability to detect important components in 125 
milk. Once prepared and characterized, the sensing units are combined in a single device 126 
to obtain a bioET that is used to analyze and classify 12 classes of milk with different 127 
nutritional characteristics and to predict the eight physicochemical parameters most 128 
commonly used in the dairy industry for quality control. In this work, a first approach to 129 
an ensemble methodology routine is also proposed for the correlation of data obtained 130 
with the bioET with physicochemical parameters. 131 
 132 

2. Material and methods 133 

All the reactants were of analytical grade and were used without further purification. They 134 
were purchased form Sigma-Aldrich (St.Louis, USA). All the solutions were prepared in 135 
MilliQ deionized water (Merck, KGaA, Darmstadt, Germany). 136 
 137 
2.1 Milk samples 138 

A set of 120 milk samples corresponding to 12 types of commercial milk types (ten 139 
replicas from each milk) were included in the study. This set was formed by milks with 140 
different fat content (skimmed, semi-skimmed and whole milk) and nutritional content 141 
(lactose-free, calcium-enriched, and folic acid-enriched milk). The milks were analyzed 142 
using traditional standard chemical methods: the titratrion method for acidity (ISO 143 
22113:2012), the Hydrometer method for density (ISO 2449:1974), the Gravimetry Röse-144 
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Gottlieb method for fat content (ISO 1211:2010), the Kjeldahl method for protein content 145 
(ISO 8968-1:2014), HPLC to determine the lactose content (ISO 22662:2007), and 146 
Infrared spectroscopy for the urea content (ISO 9622:2013). Total dry matter (DM) and 147 
non-fat dry matter (NFDM) were also analyzed (ISO 6731:2010) (International 148 
Organization For Standardization, 2021). The physicochemical data are summarized in 149 
Table 1. 150 
 151 
Table 1. Milk samples and physicochemical parameters established by traditional 152 
standard methods   153 

Sample Fat content 
Nutritional 

description 

Acidity 

(ºD) 

Density 

(g/ml) 

Fat 

(%m) 

Proteins 

(%m) 

Lactose 

(%m) 

NFDM 

(%m) 

DM 

(%m) 

Urea 

(mg/ml) 

S1 Skimmed Classic 12.55 1031.55 0.31 3.3 5 9.02 9.33 387 

S2 Skimmed Calcium 15.82 1039.47 0.29 3.93 5.59 10.51 10.8 724 

S3 Skimmed Lactose Free 12.66 1033.57 0.32 3.29 0.36 9.02 9.33 <10 

S4 Skimmed Folic Acid 12.57 1033.7 0.40 3.29 4.95 9.04 9.43 586 

S5 
Semi-

Skimmed 
Classic 12.55 1031.6 1.56 3.27 4.91 8.91 10.47 355 

S6 
Semi-

Skimmed 
Calcium 16.06 1037.29 1.55 3.9 5.49 10.40 11.95 597 

S7 
Semi-

Skimmed 
Lactose Free 12.19 1032.09 1.59 3.31 0.42 8.99 10.57 <10 

S8 
Semi-

Skimmed 
Folic Acid 12.95 1032.38 1.64 3.21 4.93 8.94 10.58 638 

S9 Whole Classic 12.17 1029.38 3.56 3.21 4.85 8.78 12.33 388 

S10 Whole Calcium 15.86 1035.71 3.55 3.91 5.54 10.45 14.0 769 

S11 Whole Lactose Free 11.98 1029.4 3.59 3.23 0.31 8.82 12.41 <10 

S12 Whole Folic Acid 12.72 1030.55 3.1 3.18 4.94 8.92 12.02 792 

 154 
 155 
2.2 Sensors and biosensors 156 

Gold nanoparticles were synthetized by reduction of tetrachloroauric in the presence of 157 
trisodium citrate as the reducing agent, using the classical Turkevich method (Kimling et 158 
al., 2006). The colloid obtained was characterized by UV-Vis, showing a maximum at 159 
537 nm. The concentration of AuNPs was calculated by Beer’s law, with a particle 160 
concentration result of 5.98 x 10-11 M and a diameter of 52.1 nm (Haiss, Nguyen, 161 
Aveyard, & Fernig, 2007). 162 
 163 
Sensors were based on polymeric membranes made of carboxylated PVC [poly (vinyl 164 
chloride) carboxylate] (C-PVC) as the polymeric matrix. The C-PVC was mixed with an 165 
additive (oleyl alcohol) and a plasticizer [(bis(1-butylpentyl) adipate (named plasticizer 166 
A), tris(2-ethylhexyl) phosphate (named plasticizer B) or 2-nitrophenyl-octylether 167 
(named plastizicer C)] using tetrahydrofurane as the solvent. A second set of sensors was 168 
prepared by introducing gold nanoparticles in the membrane.  169 
The membranes described above were modified with galactose oxidase (GaOx) from 170 
Dactylium dendroides (Sigma-Aldrich, St. Louis, USA), lactate dehydrogenase (LDH) 171 
from Mus musculus (Roche diagnostics, Indianapolis, USA), and urease (Ure) from 172 
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Canavalia ensiformis (Sigma-Aldrich, St. Louis, USA). The enzymes were covalently 173 
linked to the surface of the polymeric membrane using the carbodiimide method 174 
(Kazenwadel, Wagner, Rapp, & Franzreb, 2015). The reaction was carried out in two 175 
steps. First, the carboxylic groups of the C-PVC were activated by means of EDC (1-176 
Ethyl-3-(3-dimethylaminopropyl) carbodiimide. Then, the enzyme was added and a 177 
peptide bond was formed between the carboxylic groups on the C-PVC and the superficial 178 
amino side chains of the enzyme. As a result of the combination of the six membranes 179 
with each of the three enzymes (GaOx, Ure and LDH) a set of 24 membranes were 180 
obtained (Table 2). 181 

 182 
Table 2. Composition of the sensors.  183 
 184 

Sensor C-PVC 

(w/w%) 

Additive 

(w/w %) 

Plasticizer (P) 

Type 

(w/w%) 

AuNPs 

(w/w%) 

Enzyme 

A  

32 

 

3 

 

A 

65 

- - 

A-GaOx GaOx 

A-Ure Ure 

A-LDH LDH 

B  

32 

 

3 

 

B 

65 

- - 

B-GaOx GaOx 

B-Ure Ure 

B-LDH LDH 

C  

32 

 

3 

 

C 

65 

- - 

C-GaOx GaOx 

C-Ure Ure 

C-LDH LDH 

A-AuNP  

32 

 

3 

 

A 

55 

 

10 

- 

A-AuNP-GaOx GaOx 

A-AuNP-Ure Ure 

A-AuNP-LDH LDH 

B-AuNP  

32 

 

3 

 

B 

55 

 

10 

- 

B-AuNP-GaOx GaOx 

B-AuNP-Ure Ure 

B-AuNP-LDH LDH 

C-AuNP  

32 

 

3 

 

C  

55 

 

10 

- 

C-AuNP-GaOx GaOx 

C-AuNP-Ure Ure 

C-AuNP-LDH   LDH 

 185 
 186 
The bioET was designed using a methacrylate tube, in which 24 holes (0.3 cm diameter) 187 
were drilled. The holes were half-filled with an epoxy silver resin (EPO-TEK, Billerica, 188 
USA) and the resin was covered with one of the 24 membranes. The inner part of the 189 
silver epoxy resin was connected to a data acquisition system (Agilent Data Acquisition 190 
Switch Unit 34970A). In all measurements, the Ag/AgCl electrode was used as the 191 
reference electrode. Figure 1 shows the scheme of the designed bioET system.   192 
 193 
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 194 
 195 
 196 
Figure 1. Scheme of the bioET designed in this work. A) Data Acquisition Switch; B) 197 
Reference electrode; C) Electronic tongue body; D) Enzyme covalently linked; E) C-PVC 198 
membrane; F) Silver epoxy resin and copper wire.  199 
 200 
The potentiometric measurements were carried out by immersing the sensor array in a 201 
100 ml glass cell containing the standard solutions or the milk samples. Standard solutions 202 
of compounds usually found in milk (KCl, CaCl2, galactose, urea and lactic acid) were 203 
prepared in a phosphate buffer (0.1M, pH 7) with concentrations ranging from 1 × 10−4 204 
to 1 × 10−2 M. The milks were diluted 1:1 in phosphate buffer and measured without 205 
further modification. In addition, nicotinamide adenine (NAD+) (Roche diagnostics, 206 
Indianapolis, USA) was added to the standard solutions in order to simulate the levels 207 
usually present in milk (final concentration 12 mM) (Fox, & McSweeney,1998). After 208 
immersing the electrodes in the corresponding sample, the membrane potentials were 209 
registered every three seconds. The signals were stabilized after 5 minutes (average 210 
variation of 1.6 mV/decade between each reading). 211 
The potentials obtained from the sensor array were used as the input variables for 212 
multivariate analysis. Principal Component Analysis (PCA) was used to estimate the 213 
discrimination ability of the multisensory system.  A Support Vector Machine (SVM) 214 
was applied to establish correlations with the physicochemical parameters obtained using 215 
traditional methods (Theodore, & Robin, 2006; Cortes, & Vapnik, 1995). Additionally, 216 
the SVM was applied to elaborate classification models. Finally, an approach towards 217 
ensemble methods was implemented by applying Stochastic Gradient Bosting for 218 
regression (Friedman, 2002). The statistical analysis was performed by using Matlab 219 
R2020b (The Mathworks Inc., Natick, USA), RKWard 0.7.1, and the Caret package 220 
(Kuhn, 2008).  221 
 222 

3. Results and discussion 223 
 224 
3.1 Development and optimization of the sensor array 225 

In order to obtain efficient potentiometric biosensors, the immobilization of the enzymes 226 
on the polymeric membrane was accomplished using carboxylated PVC (C-PVC) instead 227 
of the bare PVC classically used to fabricate potentiometric sensors (Tazi et al., 2018; 228 
Dias et al., 2009). Using C-PVC, the enzymes can be immobilized by establishing a 229 
covalent link between the carboxylate groups of the membrane and the amine groups of 230 

Jo
urn

al 
Pre-

pro
of



 

7 

 

the enzymes.  In addition, membranes were doped with AuNPs to further increase the 231 
intensity of the signals. As observed in Figure 2, the membrane potential increased with 232 
the content of AuNPs in the membrane. For instance, the sensitivity values obtained from 233 
the slopes of the calibration curves towards galactose were 17.23 mV for sensor A 234 
(without AuNPs), 19.13 mV for sensor A-Au containing 5% of AuNPs, and 32.22 mV 235 
for sensor A-Au containing 10% of AuNPs. Higher concentrations of AuNPs did not 236 
produce any further improvement in the sensitivity values. Based on these findings, the 237 
decision was taken to set the AuNPs content at 10%. 238 
 239 
 240 
 241 

 242 
Figure 2. Response of sensor A (without AuNPs), A-AuNPs5% and A-AuNPs10% to 243 
increasing concentrations of galactose. 244 
 245 
Once the composition of the membranes had been optimized, the enzymes GaOx, Ure 246 
and LDH were immobilized at the membrane surface and the responses of the obtained 247 
biosensors were analyzed. As observed in Figure 3, the intensity of the responses 248 
produced by a bare C-PVC membrane were lower than those obtained when the enzymes 249 
were covalently linked to the membrane. Taking the case of urea as an example, the 250 
measured voltage increased from 0.057 V in the bare C-PVC sensor (sensor A) to 0.119 251 
V in the AuNP modified sensor (A-AuNP). The enzyme addition increased the intensity 252 
of the responses (0.156 V in A-Ure); and they increased even further to 0.276 V in A-253 
AuNP-Ure when the enzyme was combined with AuNPs. Similar results were obtained 254 
for LDH or GaOx.  255 
These results indicate that the enzymes are properly immobilized at the surface of the 256 
membrane and the enzymatic activity is retained. The synergistic effect observed when 257 
C-PVC and AuNPs are combined in the support membrane is also worth noting. 258 
 259 
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 260 
 261 

Figure 3: Response of sensors (where the enzyme can be GaOx, Ure or LDH), towards 1 262 
× 10−4 M standard solutions of the corresponding target molecule (galactose, urea or lactic 263 
acid). 264 
 265 
The sensitivity and the LOD of the 24 potentiometric sensors were calculated from the 266 
calibration curves registered in standard solutions of compounds usually found in milks 267 
(i.e., KCl, CaCl2, galactose, urea and lactic acid), with concentrations ranging from 1 × 268 
10−4 to 1 × 10−2 M. When the biosensors were immersed in ionic solutions (KCl or CaCl2), 269 
LODs and sensitivities were almost constant and independent of the enzyme immobilized 270 
in the sensor, with values of 10-5 M (Table 3). However, after submerging the biosensors 271 
in solutions containing enzyme substrates, the LODs were clearly lower, confirming that 272 
the enzymes retain their functionality. In all cases, the biosensors with membranes 273 
combining C-PVC and AuNPs showed the lowest LOD (lower concentrations than those 274 
found in milk) and the highest sensitivities. For instance, the sensitivities of the class A 275 
sensors immersed in lactic acid were as follows: 24.11 mV (A) < 30.72 mV (A-AuNPs) 276 
< 37.16 mV (A-LDH) < 78.2 mV (A-AuNP-LDH) (Table 4). This can be attributed to the 277 
excellent immobilization and the synergistic effect obtained by the combination of both 278 
components. 279 
Other studies support these results. It has been shown that the use of AuNPs is capable of 280 
increasing the sensitivity of enzymatic biosensors in potentiometric sensors. Vaghela et 281 
al. developed a potentiometric biosensor based on agarose-guar urease nanoconjugate 282 
modified with AuNPs. The conjugation of urease with AuNPs showed improvements in 283 
the potentiometric response, with limit of detection at 0.5 ppm to the target analyte and a 284 
linear response in concentrations from 0.5ppm-50ppm (Vaghela et al. 2018). Similarly, 285 
AuNPs have been used as an amplification platform for high sensitivity detection of 286 
glucose biosensors. The results revealed the important role of the nanoparticles in the 287 
adsorption of the enzymes allowing lower detection limits (>50 µM) and a wide linear 288 
range after the optimization of AuNPs electrodeposition on the sensor surface (Chiang et 289 
al. 2019). 290 
The repeatability towards standard solutions was evaluated by calculating the variation 291 
coefficients of 10 consecutive measurements. The high repeatability (variation 292 
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coefficients between 0.11 and 3.9 %) of the results also confirmed that the enzymes were 293 
tightly bound to the membrane and no leakages were produced. The reproducibility was 294 
determined by comparing the responses of three identical sensors. Variation coefficients 295 
ranged from 1.1 to 6.1 %. 296 
 297 
Table 3.  Sensitivity and LOD values obtained from the slopes of the calibration curves 298 
for KCl and CaCl2.  299 
 300 
                   KCl                   CaCl2 

Membrane 
Sensitivity 

(mV·M-1) 

LOD 

(M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

A 26.35 2.11x10-5 21.65 2.57x10-5 
A-AuNPs 33.65 1.56x10-5 38.56 1.36x10-5 
A-GaOX 22.35 1.59x10-5 20.56 1.73x10-5 

A-Ure 27.69 1.64x10-5 24.68 1.84x10-5 
A-LDH 24.12 2.85x10-5 22.56 3.5x10-5 

A-AuNP-GaOX 36.23 8.99x10-6 38.56 8.46x10-6 
A-AuNP-Ure 28.98 1.48x10-5 26.54 1.61x10-5 

A-AuNP-LDH 31.26 1.47x10-5 24.68 1.86x10-5 
B 24.22 2.51x10-5 23.21 2.61x10-5 

B-AuNPs 29.87 1.43x10-5 31.23 1.37x10-5 
B-GaOX 20.59 2.45x10-5 28.65 1.76x10-5 

B-Ure 28.54 2.01x10-5 20.33 2.82x10-5 
B-LDH 27.33 1.64x10-5 21.89 2.5x10-5 

B-AuNP-GaOX 22.58 2.37x10-5 35.61 1.51x10-5 
B-AuNP-Ure 27.68 2.13x10-5 30.89 1.91x10-5 

B-AuNP-LDH 33.21 1.30x10-5 38.97 1.11x10-5 
C 31.5 1.87x10-5 28.54 2.03x10-5 

C-AuNPs 38.19 1.21x10-5 35.78 1.28x10-5 
C-GaOX 33.25 1.92x10-5 31.25 2.04x10-5 

C-Ure 28.75 2.21x10-5 28.97 2.19x10-5 
C-LDH 35.14 1.60x10-5 25.21 1.48x10-5 

C-AuNP-GaOX 37.89 1.68x10-5 30.25 2.11x10-5 
C-AuNP-Ure 39.81 1.23x10-5 39.56 1.24x10-5 

C-AuNP-LDH 32.78 1.70x10-5 31.72 1.76x10-5 
 301 

 302 
 303 
 304 
 305 
 306 
 307 
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Table 4.  Sensitivity and LOD values obtained from the slopes of the calibration curves 308 
for galactose, urea and lactic acid respectively.  309 
 310 

 Bare P-AuNPs P-GaOx P-AuNP-GaOx 
Plastifier 

(P) 
Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

A 17.36 2.18x10-5 32.22 1.63x10-5 27.26 1.44x10-5 55.78 8.79x10-6 
B 15.69 3.14x10-5 30.3 1.41x10-5 28.98 1.29x10-5 53.7 8.07x10-6 
C 21.23 2.27x10-5 35.2 1.30x10-5 28.75 1.31x10-5 56.3 5.79x10-6 

 Bare P-AuNPs P-Ure P-AuNP-Ure 
Plastifier 

(P) 
Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

A 3.56 1.06x10-4 19.6 2.68x10-5 21.1 2.15x10-5 72.35 7.73x10-6 
B 8.08 6.07x10-5 24.3 1.76x10-5 16.2 3.54x10-5 76.5 8.36x10-6 
C 8.88 5.44x10-5 25.1 1.83x10-5 29.8 2.13x10-5 64.32 8.33x10-6 

 Bare P-AuNPs P-LDH P-AuNP-LDH 
Plastifier 

(P) 
Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

Sensitivity 

(mV·M-1) 
LOD (M) 

A 24.11 1.57x10-5 30.72 1.71x10-5 37.16 1.46x10-5 78.2 7.54x10-6 
B 30.57 1.61x10-5 38.15 1.12x10-5 33.84 1.89x10-5 87.34 4.91x10-6 
C 27.29 1.77x10-5 36.81 1.24x10-5 35.21 1.48x10-5 89.56 5.13x10-6 

 311 
As observed in the results shown in the Tables, the set of 24 sensors showed a variety of 312 
responses. This variety was caused by the specificity of the enzymes to their target 313 
molecules, but also to the composition of the membrane (presence or absence of AuNPs 314 
and nature of the plastifier).   315 
The high level of cross-sensitivity validated the combination of the 24 sensors developed 316 
to form a multisensor system coupled to a pattern recognition software to obtain a bioET. 317 
As a first approach, the response of the bioET to standard solutions of KCl, CaCl2, 318 
galactose, urea and lactic acid at three concentrations (1 x 10-4, 1x 10-3 and 1 x 10-2 M in 319 
phosphate buffer 0.1M) was analyzed. Data obtained from the sensor array were used as 320 
the input for PCA. PC1 explained 59% of the covariance, PC2 23 %, and PC3 14%. The 321 
scores plot shown in Figure 4.A shows that the bioET could discriminate between the 322 
different compounds according to their chemical nature: ionic salts (KCl and CaCl2) 323 
appreared on the right side of the diagram in the positive region of  PC1 and in the 324 
negative of PC2.  Galactose appeared in the upper part, lactic acid appeared in the central 325 
region of the diagram, and  urea appeared on the left side of the diagram in the negative 326 
region of PC1 and PC2. The bioET could also separate clusters of solutions with different 327 
concentrations along the first component.   328 
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 329 
 330 
Figure 4. (A) PCA score plot and (B) loading plot obtained using an array of 24 331 
potentiometric sensors immersed in standard solutions of KCl, CaCl2, galactose, urea and 332 
lactic acid at three concentrations (1 x 10-4, 1 x 10-3 and 1 x 10-2 M). 333 
 334 
The loading plot of the PCA shown in Figure 4.B shows that sensors appear in different 335 
regions of the diagram, confirming the cross-selectivity: the biosensors appear in the 336 
negative PC1 region; whereas sensors without the enzyme, influence the positive PC1 337 
component. The most important fact is that the biosensors containing combinations of 338 
enzymes and AuNPs have large loading coefficients, indicating that they have a strong 339 
influence on the principal component and they play an important role in the discrimination 340 
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of compounds present in milk. In contrast,  several sensors did not bring relevant 341 
information to the system. For instance, the non-enzymatic sensors A, B, C showed 342 
loading coefficients close to zero, so their role in the discrimination capability of the array 343 
is negligible. In order to simplify the bioET, sensors bringing information below the 70% 344 
confidence interval were removed from the array. In addition, sensors fabricated with 345 
plasticizers A and B provided redundant information to the mathematical model, while 346 
the sensors prepared with plastifier B were removed. The final bioET was made up of 9 347 
sensors, three unspecific sensors that provide global information about the sample (A-348 
AuNp, B-AuNP, C-AuNP),  2 biosensors specific for galactose (A-AuNP-GaOx, C-349 
AuNP-GaOx), 2 for urea (A-AuNP-Ure, C-AuNP-Ure), and 2 for LDH (A-AuNP-LDH, 350 
C-AuNP-LDH). This is an important fact, as the reduction from 24 to 9 sensors simplifies 351 
the device considerably and makes it more operational. 352 
 353 

3.2 Analysis of milk with the bioET: Discrimination 354 

The simplified bioET was used to analyze milk samples with different nutritional 355 
compositions. For this purpose, the sensors were immersed in milks (dilution 1:1 in buffer 356 
phosphate 0.1M Ph7) and measured ten times. Figure 5 shows an example of the 357 
potentiometric profiles obtained when immersing the bioET in milks with different fat 358 
content (whole, semi-skimmed and skimmed). The Figure shows that the responses of the 359 
sensors depend on the composition of the milk analyzed and illustrates the cross-360 
sensitivity of the sensors included in the array. 361 
    362 
 363 

 364 
 365 
Figure 5. Potentiometric profiles of the sensors included in the bioET immersed in milks 366 
with different fat content: whole (orange), semi-skimmed (grey) and skimmed (blue).   367 
 368 

PCA was applied to evaluate the capability of the simplified bioET to discriminate milk 369 
samples according to their nutritional content. The scores plot of the PCA obtained for 370 
the twelve types of milk (Figure 6) showed well-defined and separated clusters for classic 371 
milks, lactose free milks and milks enriched in calcium or folic acid. The explained 372 
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variance was 43 % for PC1, 21 % for PC2 and 19 % for PC3. A total of 83 % was 373 
explained with the first three principal components. Classic milks were situated in the 374 
negative region of PC1 and were clearly separated from the rest of the milks. This may 375 
be due to the fact that, unlike the other milks analyzed, classic milks have not suffered 376 
any modification apart from the UHT process.  377 

Lactose-free milks (obtained by the action of the enzyme β-galactosidase, which breaks 378 
down lactose into glucose and galactose) appeared in the first quadrant, far from the other 379 
classes, thus confirming the effectiveness of the galactose biosensor. Milks enriched in 380 
calcium and folic acid appeared clearly discriminated from each other.  Bearing in mind 381 
that the addition of calcium or folic acid can modify the pH and the ionic strength, these 382 
changes have an effect on the enzymatic activity, thus facilitating discrimination.    383 

 384 

 385 

Figure 6. PCA analysis of the milks analyzed with the bioET. Milks with different fat 386 
content: whole (circle), semi-skimmed (triangle) and skimmed (square).   387 

 388 

The results presented here have a degree of novelty. Different potentiometric ETs have 389 
been previously used in the determination of milk adulteration (Dias et al. 2009), in the 390 
monitoring of fermentation processes (Tazi et al. 2018) and in the discrimination of milk 391 
samples with different fat content (Mercante et al. 2015). However, only few studies have 392 
been reported using ETs to discriminate UHT milk samples with different nutritional 393 
properties. For instance, Mercante et al. developed an ET based on nanostructured hybrid 394 
films that was capable to differentiate between milk samples with large differences in 395 
their fat content, but samples with similar fat content appeared mixed on the principal 396 
component analysis. Pérez-González et al. developed a simplified potentiometric ET 397 
capable of discriminating between commercial milk samples. with different nutritional 398 
composition as well as by fat content with higher reproducibility (Pérez-González et al. 399 
2021).  The BioET presented here can discriminate between clusters that correspond to 400 
semi-skimmed, skimmed and whole milks. These clusters are arranged across the PC2 401 
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within each group of milks according to its nutritional content. Therefore, by 402 
incorporating enzymes and AuNPs, the discrimination capacity of the system has been 403 
increased. 404 

 405 

3.3 Analysis of milk with the bioET: Classification models 406 

The milk classification analysis was based on the features from the nine sensors that make 407 
up the simplified bioET by applying the Support Vector Machine classification method 408 
(SVMC). The Support Vector Machine (SVM) is a kernel-based supervised pattern 409 
recognition technique, established by Cortes and Vapnik and based on statistical learning 410 
theory (Cortes, & Vapnik, 1995). Compared with other approaches, SVM possesses the 411 
advantages of avoiding overfitting, is capable of establishing non-linear  correlations 412 
between data sets and of dealing with high-dimensional input. 413 
The SVM classification chosen was based on the radial basis function (RBF) as a 414 
nonlinear kernel approximation, defined as 415 
 416 

𝑲(𝒙𝒊 − 𝒙𝒋) = 𝒆𝒙𝒑((−𝜸 ∥ 𝒙𝒊 − 𝒙𝒋 ∥
𝟐),𝜸 > 0 417 

where xi and xj are the training vectors of the input data, and γ is the kernel parameter. 418 
Before the validation stage, to achieve a better performance, the kernel function penalty 419 
parameter (C) and the kernel parameter γ in the SVM were optimized. To optimize these 420 
parameters, the grid search method was applied, where approaches were made using 421 
log2C and log2γ, varying from [10, 10] at one interval (Cortes, & Vapnik, 1995). The grid 422 
points of (C, γ) were confirmed through the validation accuracy in the [10, 10] grid. The 423 
results showed that the best validation accuracy was achieved when C=1 and γ=0.1. Due 424 
to the relatively small number of samples available, the leave-one-out cross-validation 425 
method was used to better evaluate the true success rate that can be reached with the 426 
SVM. 427 
The classification of the samples was carried out in two steps. Initially, a study was 428 
proposed aimed at determining whether the milk samples could be classified based on 429 
their lactose content (presence or absence of lactose), as well as folic acid and calcium 430 
content (samples with or without enrichments in calcium or folic acid). This led to the 431 
development of three different classification models. 432 
The results obtained for each of the models were the following: 98.2% calibration 433 
accuracy and 97.2% validation accuracy for milk samples with or without lactose; 96.3% 434 
calibration accuracy and 95.8% validation accuracy for samples with folic acid 435 
enrichments; and finally, 97.8% accuracy for the calibration and 97.1% in the validation 436 
was achieved in the classification model to determine which milk samples were enriched 437 
in calcium. All the classification models developed in this approach were able to establish 438 
mathematical models with high accuracy values. 439 
A second approach was taken as an attempt to classify the analyzed milk samples 440 
according to their nutritional composition and their fat content, which resulted in a total 441 
of twelve categories. By applying SVMC, the results obtained for the simplified bioET 442 
showed 99.7% accuracy in the calibration and 98.4% accuracy in the validation. These 443 
results determined that the electronic tongue developed with nine sensors was able to 444 
classify milk samples according to their nutritional content as well as for their fat content. 445 

 446 
3.4 Prediction of chemical parameters: Correlations between electronic tongue and 447 

chemical analysis 448 
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One of the main advantages of ETs is the possibility to predict the concentration of several 449 
components in a single measurement. For this purpose, mathematical models must be 450 
developed to establish correlations between data provided by the sensor array and 451 
physicochemical data measured by traditional methods. It is expected that the presence 452 
of biosensors could help to achieve good correlations with specific compounds. 453 
The simplified bioET developed here was used to predict parameters commonly used to 454 
assess the gross composition of milks, including the total amount of fats, total proteins 455 
(casein or whey), carbohydrates (lactose), urea, and total solids (dry matter and non-fat 456 
dry matter) which is the residue left when water and gases are removed. Only few 457 
attempts to use ETs to evaluate the chemical composition of milk have been reported 458 
previously (Hruskar et al. 2010; Salvo-Comino et al. 2018; Pérez-González et al. 2021). 459 
Support Vector Machine regression was used to determine the nature of the relationships 460 
between the data collected by the bioET and the physicochemical parameters. To forecast 461 
acidity, density, percentage of protein, lactose, fat, DM and NFDM, the Radial Basis 462 
Function was chosen as the core function, since it can handle non-linear interactions 463 
between the sensor inputs and the target characteristics. The regression models were 464 
created using SVM Regression (epsilon SVM, kernel type: radial basis function, C value: 465 
1, cross validation segments size: 15, and standard deviation weighting process in all 466 
cases). 467 
As observed in Table 5, the values obtained for the coefficients of correlation and errors 468 
for the calibration and the prediction reached values of R2 above 0.98 for calibration and 469 
prediction, with low errors (RMSE) between 0.101 and 0.139. These high correlation 470 
coefficients could be due to the specificity induced by the presence of the biosensors. In 471 
fact, the biosensor containing galactose oxidase provides data about galactose; LDH can 472 
give information on lactic acid, which is in turn related to the acidity of the milk; while 473 
urease can account for the levels of urea. The good correlations with acidity, density fat 474 
and dry matter can be attributed to the fact that the enzymes contained in the array are 475 
sensitive to pH. In addition, potentiometic measurements are sensitive to the percentage 476 
of water (which is inversely proportional to density) and to the fat content (directly related 477 
to the conductivity and the double layer at the electrode surface). These results show that 478 
the reduced bioET is capable of establishing good correlations with the physicochemical 479 
parameters thanks to the selection of the suitable sensors in previous steps of this work. 480 
If we compare the results of the regression with the previous work (Pérez-González et al. 481 
2021) we observe  an increase of the correlation coefficients as well a reduction in the 482 
errors (RMSE). The increase in R2 for lactose and acidity is especially remarkable. 483 
Correlation coefficients have improved from values of 0.96 and 0.90 respectively in the 484 
validation, to 0.99 in both cases. These results demonstrate the effectiveness of the use of 485 
biosensors in the composition of a ET providing specific information on compounds of 486 
interest in milk, such as lactose, without losing global information of the sample. 487 
 488 
Table 5. Correlation parameters from the SVM regression analysis. 489 

 490 

 491 
 492 

Parameters Acidity Density %Proteins %Fat %Lactose %DM %NFDM Urea 

SVM R2
C 0.9953 0.9910 0.9941 0.9956 0.9924 0.9933 0.9991 0.9915 

RMSEC 0.1177 0.1376 0.1088 0.1018 0.1093 0.1233 0.1146 0.1187 

R2
P 0.9946 0.9903 0.9944 0.9951 0.9928 0.9927 0.9982 0.9902 

RMSEP 0.1181 0.1396 0.1092 0.1055 0.1113 0.1281 0.1151 0.1193 
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3.5 Ensemble method development 493 

Although the SVM was very capable of establishing mathematical models for the correct 494 
classification of the milk samples and the prediction of the physicochemical parameters; 495 
here, we aimed to go a step further by establishing correlation models using ensemble 496 
methodologies. 497 
In the context of machine learning, ensemble methods are commonly defined as a 498 
machine learning system, designed with a set of independent models working in parallel, 499 
whose outputs are combined with a decision fusion strategy to create a single response 500 
for a given problem. Therefore, an ensemble method aims to combine several separate 501 
models to achieve a better result than each individual method in terms of consistency and 502 
accuracy (Zhou, 2012). 503 
The first step in developing an ensemble method is to select the individual methods. 504 
Different algorithms may lead to different results for the same data by imposing a specific 505 
structure for it. Moreover, there is no single algorithm able to perform consistently well 506 
for different problems and there are no clear rules to follow while selecting individual 507 
algorithms for a given problem. 508 
In principle, any individual models could be used as long as they are suitable for the 509 
dataset. In this work case, the Caret Package developed for R is used to select the 510 
individual algorithms (Kuhn, 2008). The generated models should be as different from 511 
each other as possible. A high level of diversity means that they will be able to capture 512 
different information about the data and can overcome the weaknesses of single 513 
techniques, since each technique handles the error made by the others. 514 
Starting with the SVM regression model (svmRadial), five models were selected to ensure 515 
their diversity. For this, the "max.dissim" function of the Caret Package was used, in 516 
which the Jaccard dissimilarity function was selected as the diversity criterion. The 517 
models selected were: Support Vector Machine (svmRadial), Quasi-recurrent Neural 518 
Networks (qrnn), Cubist Regression Model (cubist), Weighed k-nearest neighbor (kknn), 519 
and Bagged Earth (bagEarth).  520 
The support vector machine was chosen as the starting model due to its great performance 521 
in the previous section of this work. Furthermore, SVM is a powerful method widely used 522 
in the development of ensemble models. 523 
Once the models had been selected, the original data were split into two sets: a training 524 
set containing 75% of the original data to be used in the calibration process of each 525 
algorithm, and a testing set covering the remaining 25% of the data for validation. It is 526 
essential to verify that both sets of data are representative of all the recognized categories; 527 
consequently, the percentage of each set is computed in relation to the total data as well 528 
as the amount of data in each category. 529 
Each algorithm was executed individually, but the control parameters for all of them were 530 
established beforehand. Validation was performed using repeated 10-fold cross-531 
validation, to establish reasonable values for the tuning parameters and random search 532 
was established as the preferred method. After each individual algorithm was applied, the 533 
Stochastic Gradient Boosting (gbm) method was used to generate the ensemble through 534 
the Caret Ensemble package in R (Kuhn, 2008). 535 
Stochastic Gradient Boosting is a machine learning algorithm, able to perform 536 
classification and regression problems. Gradient Boosting is especially convenient, 537 
because of its computational efficiency and robustness to overfitting, as a simple 538 
technique to develop ensemble decision trees by creating training trees on subsamples of 539 
the training dataset (Friedman, 2002). 540 
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Table 6 shows the values obtained for the correlation and error coefficients for the 541 
calibration and prediction obtained by the ensemble. The coefficients of correlation and 542 
mean errors for the calibration and prediction reached values of R2 above 0.9992 for both 543 
calibration and prediction, with low errors (RMSE) between 0.0033 and 0.0172. 544 
 545 
Table 6: Correlation parameters from the ensemble regression analysis. 546 

 547 
Considering the high values of the correlation parameters achieved with SVM regression, 548 
it was expected that the result of the regression ensemble would reach nearly 100% 549 
precision while establishing correlations, since there is a very reduced number of errors 550 
in the original model. However, the intention in this section is not to ensure the capability 551 
of the simplified bioET to establish correlations with the studied parameters, but to 552 
demonstrate the possibility of combining the developed system with ensemble 553 
methodologies that could be applied in the study of future and more complex samples, 554 
where the settings may not be as good as they should be.  555 
 556 
 557 

4. Conclusions 558 

In this work, a bioET with improved characteristics was developed and used to predict 559 
the chemical characteristics of milk with unprecedented accuracy. The system 560 
incorporates biosensors based on membranes of carboxylated PVC (C-PVC) containing 561 
gold nanoparticles (AuNPs), where GaOx, LDH and Ure were effectively immobilized. 562 
The developed biosensors and the associated methodology have resulted in a bioET where 563 
the enzymes can work simultaneously while also preserving the enzymatic activity. 564 
Nanoparticles have proven to have a potential to amplify the electrochemical signals. 565 
The biosensors have shown excellent sensitivity and reproducibility towards standard 566 
solutions of compounds usually found in milk (CaCl2, KCl, urea, lactic acid and 567 
galactose), with excellent sensitivity and reproducibility, showing   LODs of 10-6 M. 568 
The bioET was successfully used to discriminate between milks by applying PCA based 569 
on their nutritional content. The bioET shows an excellent classification capability and 570 
can classify milk with different compositions by applying SVM with accuracies above 571 
95%. The system can predict the acidity, density, %proteins, %lactose, %fat and dry 572 
matter with low errors and high correlation coefficients. The results show that the SVM 573 
models constructed with the e-tongue and physicochemical parameters have potential for 574 
use in simultaneously assessing 8 parameters, thus reducing the time of analysis. 575 
Moreover, it has been proved that applying ensemble methodologies can further improve 576 
the correlation between the bioET data and the physicochemical parameters. 577 
Investigations into the efficiency of the prototype devices can create new application 578 
possibilities and suggest successful implementations in real applications. 579 
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