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Abstract: In this paper, we present an Android application to control and monitor the physiological
sensors from the Shimmer platform and its synchronized working with a driving simulator.
The Android app can monitor drivers and their parameters can be used to analyze the relation between
their physiological states and driving performance. The app can configure, select, receive, process,
represent graphically, and store the signals from electrocardiogram (ECG), electromyogram (EMG)
and galvanic skin response (GSR) modules and accelerometers, a magnetometer and a gyroscope.
The Android app is synchronized in two steps with a driving simulator that we previously developed
using the Unity game engine to analyze driving security and efficiency. The Android app was tested
with different sensors working simultaneously at various sampling rates and in different Android
devices. We also tested the synchronized working of the driving simulator and the Android app with
25 people and analyzed the relation between data from the ECG, EMG, GSR, and gyroscope sensors
and from the simulator. Among others, some significant correlations between a gyroscope-based
feature calculated by the Android app and vehicle data and particular traffic offences were found.
The Android app can be applied with minor adaptations to other different users such as patients with
chronic diseases or athletes.

Keywords: physiological sensor; ECG; EMG; GSR; gyroscope; Android application; driving simulator;
driver monitoring

1. Introduction

Mobile devices are increasingly present in our daily life. With the widespread use of these devices,
there is a huge demand for applications to address the need of millions of users in many fields such as
education, health, business, commerce, and entertainment. Android is the clear leader in the global
smartphone market as it is being used on 85% of smartphones all over the world [1]. Besides, Android
users are very receptive to new applications thus this platform stands out as the best option to develop
a mobile application.

Wearable sensors have gained a lot of importance in different fields such as education [2] and
health [3,4]. These sensors play a main part in ambient intelligence research on its way to revolutionize
daily human life by making people’s environments sensitive, flexible, and responsive [5]. Regarding
health, physiological sensors can be used to assess the human functional state [6]. Sensors should have
the features required for m-health (mobile health) to address its four main challenges: continuous
monitoring, full involvement, interoperability, and disappearing interaction [7]. They have to be
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lightweight and energy efficient [8]. Safety requirements are also important [8,9]. Sensors have to
obtain accurate and reliable data, as erroneous measurements may lead to a misinterpretation of
the data [10]. Keeping the costs low is a key aspect to allow sensors to be widely adopted. Most
current physiological sensors use ZigBee or Bluetooth protocols to transmit wireless packets [11].
The advantages of these two protocols are small power requirements, low electromagnetic wave
strength, and low cost [12]. Bluetooth is delivered in the 2.4 GHz band with a transmission speed of
up to 25 Mbps (Bluetooth 4.0) and is not subject to electromagnetic interference as it uses low-power
transmission. As a result, it is less harmful to the human body.

Mobile health applications interacting with physiological sensors can monitor electrocardiogram
(ECG), electromyogram (EMG), respiration rate, body temperature, and limb and body motion of
a person for a long term, without the need to be hospitalized, for prevention, early detection, and
monitoring of cardiovascular, neuro-degenerative, and other chronic diseases, elderly assistance at home,
fitness and wellness, motor rehabilitation assistance, physical activity, and gestures detection [11,13–17].

Physiological sensors from the Shimmer (an acronym for Sensing Health with Intelligence,
Modularity, Mobility and Experimental Reusability) platform (Shimmer, Dublin, Ireland) include ECG,
EMG, galvanic skin response (GSR), as well as accelerometers, a magnetometer, and a gyroscope [18].
They are small and lightweight devices that can obtain accurate data for biomedical research.
Researchers can take advantage of several features of this sensing platform, such as its integrated
peripherals, open software, modular expansion, specific power management hardware, and a library
of applications supported with platform validation. These features make Shimmer stand out over
many other medical platforms [19]. Burns et al. [20] validated the physiological signals (ECG, EMG,
and GSR) of the Shimmer platform against known commercial systems. O’Donovan et al. [21] studied
the utility of the Shimmer platform for temporal gait analysis. They concluded that Shimmer is an
ideal solution for in-home and ambulatory monitoring of temporal gait parameters. Abate et al. [22]
presented a smartphone-based system that monitors the motions of patients, recognizes a fall, and
automatically sends a request for help to the caregivers. A Shimmer sensing unit was used for the
acquisition of the motion data. Richer at al. [23] developed an Android application that calculates
the heart rate and cadence of a cyclist using the ECG and EMG sensors of the Shimmer platform.
The application can be used to monitor and analyze the cyclist’s training sessions.

A sensing system that can monitor a driver’s level of attention and alert him or her if this level is
below a threshold could prevent some road accidents. The correlation between driver physiological
signals and drowsiness has been studied by many researchers [24–26]. Steering wheel behavior has
also been used to determine driver fatigue. The recognition of the way a vehicle is steered and, if
necessary, its notification to drivers in real time would be crucial to achieve safer driving since fatal
accidents are often caused by dangerous vehicle maneuvers, such as rapid turns and fast lane changes,
or by a drowsy period in which the driver does not turn the steering wheel when he or she is about to
fall asleep. Li et al. [27] proposed a system to monitor the level of driver fatigue under real driving
conditions. It is based on the data of steering wheel angles collected from sensors mounted on the
steering lever. Liu et al. [28] presented a system to recognize dangerous vehicle steering based on
the gyroscope embedded in a smartphone. Three steering maneuvers, including turns, lane-changes,
and U-turns, were defined, and a Fast Dynamic Time Warping (FastDTW) algorithm was adopted to
recognize the vehicle steering.

In the past few years, driving simulators have been used in many research studies. With a
simulator, it is possible to assess the driver behavior in situations that cannot be replicated on real
roads [29]. The suitability of simulators to assess the driver behavior and as a tool to learn efficient and
safe driving skills has been verified. Sullman et al. [30] showed the potential of training in efficient
driving techniques using a simulator for bus drivers. Jamson et al. [31] analyzed the tradeoff between
driving efficiency and safety through the use of in-vehicle embedded systems that advise on the use of
the accelerator pedal in a simulator. They proved that these systems could improve driving efficiency.
A driving simulator can include scenarios to analyze the level of driving efficiency and safety, the
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relation between both and the results obtained as a function of them. Besides, driving simulators
enable the study of how certain factors can influence driving abilities, such as fatigue, physical and
psychological state of the driver, age, and consumption of medicines, drugs, or alcohol. Driving
simulators can easily store vehicle-based measures such as speed, rpm (revolutions per minute), or fuel
consumption. The integration of sensors in a simulator allows to obtain physiological measures. Awais
et al. [32] proposed an accurate driver drowsiness system combining EEG and ECG sensors, which
was tested in a driving simulator. Other than these two types of measures, researchers have also used
subjective measures where drivers are asked to rate their level of drowsiness either verbally or through
a questionnaire [33]. All the measures can be analyzed together to see how they correlate and their
influence on the number of driving errors and traffic offences. Samiee et al. [34] presented a drowsiness
detection approach that combines vehicle-based measures (lateral position and steering wheel angle
cues) and a physiological measure such as driver’s eye status. They achieved a reliable system robust to
the input signal loss. Krajewski et al. [35] studied the influence of fatigue in steering wheel behavior in
a driving simulator. Wang et al. [36] analyzed nineteen driving behavior variables and four eye feature
variables, together with the subjective measure of fatigue given by a questionnaire, to determine
fatigue using a multilevel ordered logit model, an ordered logit model, and an artificial neural network.
Yang et al. [32] proposed a driver fatigue recognition model based on a dynamic Bayesian network,
information fusion, and multiple contextual and physiological features. Their experiments highlighted
the significance of physiological features to infer driver fatigue.

In this paper, we present an Android health application to control the Shimmer sensors through
a Bluetooth connection, by monitoring their signals simultaneously and processing and storing them
in different files as a function of the sensors and the monitored user. These files can be sent by e-mail
or shared with other Android applications such as Dropbox or Google Drive. This application was
briefly introduced in [37]. The Android app also processes the angular speed of a gyroscope, which
can be placed on the steering wheel of a vehicle, and obtains many features of interest to analyze
driving performance, which was added from the application presented in [37]. Besides, we synchronized
the Android app with a driving simulator that we developed using the Unity game engine and C#
language. The simulator includes different urban and interurban scenarios and stores information about
the committed traffic offences. A Unity app had to be developed and installed in the Android device to
bridge between the Android app for the Shimmer sensors and the PC driving simulator. The Android app
was tested with different sensors working simultaneously at various sampling rates in different Android
devices. The synchronized working between the driving simulator and the Android app was tested
with 19 people driving in four different scenarios using automatic and manual gear shift. We analyzed
the relation between data from the gyroscope and the simulator, characteristics of the drivers and the
subjective measure of their sleepiness using three questionnaires described in the literature.

The rest of the paper is organized as follows: Section 2 first introduces the physiological
sensors from the Shimmer platform and the developed Android application. Later, it explains the
gyroscope-based processing in the Android app to extract features of interest to analyze driving
performance and the synchronization between the Android app and our driving simulator. Afterwards,
Section 3 analyzes the experimental results, beginning with the synchronized working of the sensors in
the Android app and following with the experiments carried out with the synchronized working of the
driving simulator and the Android app and the analysis of the extracted data from both applications.
Finally, Section 4 draws the main conclusions about the presented work.

2. Materials and Methods

2.1. Physiological Sensors from the Shimmer Platform

The Shimmer platform [18] provides a set of physiological sensors that can measure different
human body parameters suitable for biomedical research. The signals are transmitted through a
Bluetooth connection to a PC or a mobile device using an appropriate application. The Shimmer
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sensors are small, compact and weigh around 20 g. These features make them suitable for placement
on the human body regions required to obtain the necessary measurements. All the sensors are
controlled by an MSP430 microprocessor (Texas Instruments, Dallas, TX, USA) with a 16-bit Reduced
Instruction Set Computer (RISC) architecture, which has low power consumption, especially during
inactivity periods. The mainboard of the sensors has a 3-axis accelerometer with a range of ±2 g, ±4 g,
±8 g, or ±16 g. They have two radio modules based on the standards 802.15 (Bluetooth with Mitsumi
WML-C46N CSR design and 802.15.4). Both modules can work simultaneously and stay disconnected
in inactivity periods to reduce the power consumption. The CC2420 transceiver (Texas Instruments,
Dallas, TX, USA) is used in the 802.15.4 module. Apart from the signal of the accelerometer, each
sensor includes another module in its basic unit to extract physiological parameters such as ECG,
EMG, GSR, or nine Degrees of Freedom (9DOF).

The ECG module can obtain the electrical activity of the heart. To that aim, four electrodes
connected to the ECG module have to be placed strategically around the rib cage. Thus, the electrical
activity of the heart beats is registered. ECG is a main tool in cardiology, very important for the
diagnosis and monitoring of cardiovascular diseases. Figure 1a shows the Shimmer ECG module and
Figure 1b shows the positions where the four electrodes (RA, LA, LL, and RL) have to be placed.
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and the biomechanics of human motion. Its electrodes have to be carefully placed to obtain correct 
values. The positive and negative electrodes have to be placed in parallel to the muscle fiber. The 
reference electrode has to be placed in an electrically neutral region of the body as far as possible 
from the monitored muscle. Figure 2 shows positions where the three electrodes can be placed. The 
reference electrode is placed on the wrist in the left image of Figure 2 and the positive and negative 
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Figure 1. Shimmer electrocardiogram (ECG) sensor: (a) Shimmer ECG module; (b) Positions of the
electrodes of the ECG sensor.

The EMG module can obtain the electrical activity related to the muscular contractions. It can be
used to evaluate nerve conduction, the muscular response in an injured tissue, the activation level, and
the biomechanics of human motion. Its electrodes have to be carefully placed to obtain correct values.
The positive and negative electrodes have to be placed in parallel to the muscle fiber. The reference
electrode has to be placed in an electrically neutral region of the body as far as possible from the
monitored muscle. Figure 2 shows positions where the three electrodes can be placed. The reference
electrode is placed on the wrist in the left image of Figure 2 and the positive and negative electrodes
are placed close to one another on the biceps in the right image of Figure 2.

The GSR module can obtain the electrical signal caused by the changes in the skin resistance.
The emotional state of a person determines such changes. The two electrodes have to be placed in two
fingers of one hand as shown in Figure 3.

The 9DOF module combines a gyroscope with a magnetometer and is a powerful solution to
kinematic detection. This module, together with the accelerometer incorporated in the mainboard of
the sensors, can provide a static and dynamic orientation of inertial measurement and thus becomes a
complex motion sensor. The gyroscope obtains the speed in the changes of the orientation, measured
in degrees per second, with respect to the three axes. The accelerometer, magnetometer, and gyroscope
have to be calibrated to obtain accurate data.
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2.2. Android Application for the Shimmer Sensors

To develop the application, the Shimmer Android Instrument Driver Library (version 2.1) was
used. Furthermore, a set of classes have been developed to interact with the Shimmer sensors, with
the Bluetooth functionality, and with the storage memory to save the data in the corresponding files.
The Shimmer library allows the communication with the Shimmer sensors through the Serial Port Profile
(SPP) protocol. Android has used this protocol for Bluetooth communication since version 2.0 (API 5).

The Shimmer class in the Shimmer library provides, among other things, the interaction with the
sensors, allowing to set up the sampling rate, change the range of the accelerometer, enable or disable
some modules of the sensors, and connect several sensors simultaneously to an Android device using
several instances of the class. This class is based on the Bluetooth interface provided by Android to set
the connection with the particular sensor through the SPP. This protocol is in charge of emulating a
connection through serial cable with the wireless Bluetooth technology. Each sensor connected with
the application is represented through a Shimmer object (instance of the Shimmer class).

The application is structured in three activities: MainActivity, ManageFiles, and ManageDevices.
The first activity deals with the Bluetooth settings. It allows to check the current state of the Bluetooth
connection, change that state, search for nearby Bluetooth devices, and select them to establish a
connection. The second activity manages the previously saved files. Those files have the data stored in
past sessions organized as a function of the user. The files can be shared with other applications such
as e-mail or cloud storage. The third activity is in charge of detecting the state of the Shimmer sensors,
managing communications with the sensors, signal processing and representation, and data storage.

Depending on the sensor, the application can perform different processing tasks. With the ECG
signals, the application obtains Heart Rate Variability (HRV) data. HRV is a measure of the beat-to-beat
(R-R intervals) in the heart rate, which has been extensively used in the literature as its value depends
on the physiological state of a person [24]. The EMG and GSR samples are grouped in sets of 20 samples.
For each set, the mean and the standard deviation are calculated together with the total mean and
standard deviation considering all the samples. The gyroscope signal of the 9DOF module is computed
to obtain a large number of features of interest that will be detailed in the next subsection and analyzed
in the experimental results.
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The Graphical User Interface (GUI) of the application utilizes both the widget subclass (View
class) and the layout subclass (Viewgroup class). The widgets are objects already developed that
make programming easier and are directly included in the user interface, e.g., text fields and buttons.
The layouts allow to contain the included widgets in an organized way, i.e., provide layout architectures,
such as Linear, Tabular, and Relative. The GUI has four screens. Figure 4a shows the first screen
(Bluetooth settings). It has different sections. The first section has the title and a menu button with
only one option “Manage files”, which allows to access the activity that is in charge of the files where
the sensor data in the previous executions have been saved. The second section is a layout of the state
of the Bluetooth that allows to change that state. The third section is a button that allows to search
for nearby Bluetooth devices. The fourth section has a list of found Bluetooth devices. Finally, the
fifth section “Manage Devices” has a button to access the next activity to manage the selected devices.
Figure 4b shows the second screen (File management).

Figure 4c shows the third screen where the sensors are managed. Its first section has a menu
button to select among the following options: “Start all” to set all the sensors in the transmission
state, “Streaming” to begin the transmission of the sensors, “Disconnect all” to disconnect all the
connected sensors, and “Go home” to return to the first activity. In particular, Figure 4c shows that
all the four sensors are streaming. Figure 4d,e show the fourth screen where graphs can be seen with
the online data obtained from the ECG and EMG sensors, respectively. As the sensors that obtain
ECG and EMG, similarly to all the sensors, also includes an accelerometer, its graph is also shown in
the screens. This graph includes three curves that correspond with the acceleration in the three axes.
The acceleration in the x, y and z axes are represented in the red curve, green curve, and blue curve,
respectively. The application needs some classes to work although they do not belong to any activity
such as GraphView, DataLogging, Tools, and mySharedPrefs. Graph View creates a view corresponding to a
graph with the axes defined as a function of the signal represented in them. Its method setData receives
an array with samples of a signal and goes across them representing each sample of the corresponding
signal. DataLogging creates the files in the corresponding user folders, writes the header of the files and
then the received data. The Tools activity provides the operations that can be applied to the sensors as
a function of their state. mySharedPrefs stores the configuration of the sensors, recovers it and makes
the same operations for each property of that configuration individually.
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2.3. Gyroscope-Based Processing in the Android App

The Android app for the Shimmer sensors includes the computation and display of a large
number of features of interest to analyze driving performance. These features were previously used
in past research [34,36]. The 9DOF module is placed on the steering wheel aligned with its rotation
axis. We aimed to measure the turning patterns of the steering wheel of the drivers as a function of
their driving behavior using the gyroscope of the 9DOF module. The relevant angular speed of the
gyroscope in such position will be in the z-axis. Its graph is shown in real time in the “Signals” tab of
the app alongside with the graph of the data given by the accelerometer included in the 9DOF module,
as shown in Figure 5.

Below these graphs, there are two buttons that have two styles: one for the on-state and another
for the off-state. These styles are used to show in real time if a left or a right turn of the steering wheel
is made. The current position of the steering wheel in degrees is calculated as follows:

Present_position [degrees] = previous_position + present_angular_speed/Fs, (1)

where Fs is the sampling rate selected for the gyroscope.
When the current position reaches absolute values greater than 360º, a variable that stores the

number of complete turns is increased. With regard to this number of complete turns, its mean and
standard deviation are computed per each set of 20 values of it. For the gyroscope, a sampling rate
of 10.2 Hz is adequate, which leads to compute a mean and standard deviation almost every 2 s.
In Figure 5, the number of steering wheel complete turns, its mean and standard deviation while the
app executes, are also showed.

As proposed in [36], each value of the angular speed of the steering wheel is classified as a
function of the interval, out of 5, where it falls: larger than 10◦, between 10◦ and 7.5◦, between 7.5◦ and
5◦, between 5◦ and 2.5◦, and lower than 2.5◦. From the number of samples falling within each interval,
the percentage with respect to the total number of samples and the mean and standard deviation of
the angular speed for each interval are shown in the lower part of Figure 5.

As proposed in [34], our app also computes the number of zero-crossing points of the angular
speed and the maximum value of the absolute angular speed. Both parameters are used in [34]
because an alert driver has a larger number of zero-crossing points and a lower number of the
maximum value of the absolute angular speed than a drowsy driver. This is due to the fact that an
alert driver continuously corrects the steering wheel position to keep the vehicle within the desirable
path. Furthermore, the value of the absolute angular speed is larger in drowsy drivers as they notice a
vehicle deviation from the main path with more delay than an alert driver, which requires big sudden
changes in the angular speed of the steering wheel.

To implement a zero-crossing counter for the angular speed, a variable that stores the angular
speed in each sampling instant is used so that it can be compared to its value in the next instant and
then a sign change can be checked. Moreover, the maximum value of the absolute angular speed is
stored from the beginning of the gyroscope transmission.
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Figure 5. Graphs with the data extracted by the Nine Degreees of Freedom (9DOF) module and
calculations made by the app.

In Figure 6, two graphs from the app representing the angular speed of the steering wheel are
shown. In Figure 6a, the red circles indicate the positions where the maximum value of the absolute
angular speed is updated and its present maximum value is also shown. In Figure 6b, the red circles
indicate the positions where zero-crossing points are computed and a counter with the present number
of zero-crossing points is also shown.
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Figure 6. Graphs representing the angular speed of the steering wheel extracted by the app: (a) with
the positions where the maximum value of the absolute angular speed is updated and its present
maximum value; (b) with the positions where zero-crossing points are computed and a counter with
the present number of zero-crossing points.

2.4. Synchronization between the Android App and Our Driving Simulator

We aimed to use the Android app for the Shimmer sensors with a driving simulator that we
previously developed using the Unity game engine and C# language to analyze the driving security
and efficiency. The driving simulator includes different scenarios and traffic situations of interest.
The simulator stores, with a configurable frequency, a big amount of information about the vehicle in
each route, such as the speed, rpm, gear, and fuel consumption. Moreover, it stores the traffic offences
committed on route.

The electrodes of the ECG, EMG, and GSR sensors are placed in the proper places on the driver’s
body for the physiological monitoring. The 9DOF module, which includes the gyroscope, is placed on
the steering wheel of the driving simulator.

We configured the Android app for the Shimmer sensors and the driving simulator to be
synchronized in such a way that the beginning and end of the driving in a scenario and the beginning
and end of the sensor data storage coincide. Moreover, the end of the driving in a scenario would also
have to coincide with the transmission of the sensor data files to the PC where the simulator executes
and in the same folder where the files with the vehicle data and traffic offences are stored. With a
view to achieving this synchronization, we developed a Unity app to be installed in the Android
device (bridge app). This app bridges between the Android app for the Shimmer sensors and the PC
driving simulator.

The communication process is divided in two steps, first the communication between the two
Unity applications (PC simulator and the bridge app), and second the communication between the PC
simulator and the Android app for the Shimmer sensors.
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2.4.1. Unity-Unity Communication

The two Unity applications run in different devices that need to be connected to the same Local
Area Network (LAN) with access to the Internet. A standard Application Programming Interface (API),
which is primarily offered by Unity to develop multiplayer games, is used for the communication of
the Unity applications. The API is named Standard Unity Networking [38]. A server, which Unity
offers for the net functionalities of games for free, is also used. The communication process is shown in
Figure 7.
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First, in the Master Server we register our own server (Network.InitializeServer), which is the
bridge app, indicating the name of our game. This name (“com.ak.shimmer”) is the unique identifier.
This way, the Master Server stores the correspondence between the game name and the IP address and
port of our server (bridge app). Later, the client (PC Unity driving simulator) sends a request to the
Master Server (MasterServer.RequestHostList), which returns the IP address and port of our server to the
client. These data are named HostData in a standard way. With the HostData, the client establishes the
communication with our server changing the client-server paradigm to a peer-to-peer connection.

2.4.2. Unity-Android Communication

To establish a communication between the PC simulator and the Android app for the Shimmer
sensors, TCP sockets are used. These sockets are identified in each machine with a pair of IP addresses
that identify each one of them and a pair of port numbers that identify the corresponding process in
each machine. This communication is shown in Figure 8. Thanks to the bridge app and the Unity
Multiplayer Networking API, the PC can know the IP address of the mobile device and vice versa, thus
the socket can be established. The socket is established in the 8080 port. This port is adequate because
the Android API for sockets, due to security reasons, does not allow to establish sockets in ports
lower than 1024. These ports belong to more common protocols and the 8080 port is an alternative to
the HTTP 80 port. It does not cause problems and firewalls do not block it. Once the connection is
achieved, the bridge app can be closed or minimized and the Android app for the Shimmer sensors
can be opened. This application is the server part of the socket and begins a service that listens to the
previously mentioned 8080 port, waiting for the beginning of the connection from the PC. An Android
server is an app component that executes in the background and can do the same actions as an activity
with the only difference that the service does not provide any user interface. In the Android app for
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the Shimmer sensors, a button was included so that the user can select whether the sensors are going
to be used in synchronization with the simulator or not. If the synchronized use is chosen, after the
selection of the “Manage devices” button, a new activity opens. This activity launches a background
service to establish the socket as soon as the activity is initialized. When the service is launched, a new
thread is created. This thread will be in charge of listening to the given port and waiting for requests
to establish the socket. With this thread, critical blocks between the main thread of the service and the
application are avoided. After that, the corresponding button in the PC simulator can be clicked to
send the connection request. Next, the service of the Android app for the Shimmer sensors checks if
the IP address, where the request was completed, is the same IP address stored in the corresponding
file. If so, the connection is accepted and the command to connect the sensors is sent to the main
activity by means of a broadcast message received in a BroadcastReceiver component.Sensors 2019, 19, x FOR PEER REVIEW  13 of 28 
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From this moment forward, the main activity will keep on gathering sensor data and storing them
in the corresponding files. Meanwhile, the background Android service will keep on listening to what
can be received through the connection with the socket, similarly to the PC simulator. To implement
this continuous listening task in Unity, the function predetermined by the Unity API (Update()) is
used. This function is called in each frame as long as the program is executing. It is possible to stop
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the gathering of the sensor data by clicking the corresponding button in the PC simulator. When the
service of the Android app for the Shimmer sensors receives the chain “stopall”, a broadcast message
will be sent and will be received by the main activity of the Android app for the Shimmer sensors,
thanks to the implemented BroadcastReceiver. Thus, in the main activity, the function that stops the
synchronization of the sensors will be executed and the files with the gathered data will be closed.

Once the files are closed, the command is sent to the service to send the files through the socket.
A read buffer is opened to read from the files and a write buffer is opened to write the lines read from
the files. After finishing the sending of the files, all the buffers and the connection with the socket are
closed and the user of the Android app for the Shimmer sensors is informed that the sending of the
files has finished. In the PC simulator, all data received through the socket in the Update function are
gathered. Once the sending of the data is finished, the file and socket together with the connection will
be closed. Moreover, although not shown in Figure 8, if a pause is selected in the driving simulator, a
pause also takes place in the data gathering of the sensors until the driving simulation resumes.

3. Results and Discussion

3.1. Synchronized Working of the Sensors in the Android App

The Android application has been tested with four Android devices and with different number
of sensors, sampling rates, and signals to obtain in each sensor. The first two Android devices
were smartphones with basic features and running the version 2.3 of the Android operating system:
Samsung Galaxy SCL (i9003) (Samsung, Seoul, Korea) and the Motorola Moto G (XT1032) (Motorola,
Schaumburg, IL, USA). The former has a 1 GHz 32-bit Single Core Processor (TSMC, Hsinchu, Taiwan)
and 478 MB LPDDR RAM and the latter has a 1.2 GHz 32-bit Quad Core Processor (TSMC, Hsinchu,
Taiwan) and 1 GB LPDDR2 RAM. The third and fourth devices were a Wolder miTab ONE tablet
running version 5.1 of the Android operating system with a 1.3 GHz Quad Core Processor and 1 GB
RAM and a Samsung Galaxy J5 2017 smartphone with a Samsung Exynos 1.6 GHz 64-bit Eight Core
Processor and 2 GB RAM running version 8.1 of Android. The aim of using these four devices was to
study the constraints of the application as a function of the performance of devices not on the high end
of the market.

The first test was the simplest and consists of using the ECG, EMG, GSR, and 9DOF sensors
with a sampling rate of 10.2 Hz, 20-min duration, and synchronized transmission. The application
worked correctly in the four devices without any interruption, delay, or block. As a result, it was
proved that the application can communicate, represent, and store data from the 4 different sensors in
a synchronized way.

The second test was with the four sensors for 20 min but with a sampling rate of 50.2 Hz for the
ECG and EMG sensors and a different sampling rate of 10.2 Hz for the GSR and 9DOF sensors. While
the Galaxy SCL suffered from several blocks before closing the application abruptly, the Motorola
Moto G, Wolder miTab ONE, and Samsung Galaxy J5 were able to end the test.

The third test was also performed with the four sensors for 20 min but all of them working with a
sampling rate of 50.2 Hz in a synchronized way. Neither the Galaxy SCL nor the Motorola Moto G
worked properly. Therefore, with those two devices it is necessary to use the sampling rate of 10.2 Hz
or reduce the number of Shimmer sensors. On the contrary, both the Wolder miTab ONE tablet and the
Samsung Galaxy J5 smartphone worked correctly until the end of the test.

The fourth test was with the four sensors for 20 min, the ECG and EMG sensors at a sampling
rate of 128 Hz and the GSR and 9DOF sensors at a sampling rate of 10.2 Hz. Similarly to the previous
test, the Galaxy SCL and the Motorola Moto G did not work properly but the Wolder miTab ONE and
Samsung Galaxy J5 worked properly until the end of the test.

We tested all the sensors individually with sampling rates ranging from 10.2 Hz to 128 Hz.
All these tests were satisfactory as all the sensors worked properly without any interruption or block.
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Lastly, we used the Samsung Galaxy J5 to make a performance testing of the app using the fourth
sensors simultaneously, the ECG and EMG with a sampling rate of 128 Hz and the GSR and DOF
with a sampling rate of 10.2 Hz. These rates for ECG, EMG, and GSR are suitable to monitor the
physiological of a person. Regarding the 9DOF sensor placed on the steering wheel, the sampling rate
of 10.2 Hz is suitable to obtain features to monitor driving performance. This final test lasted 60 min.
The app starts up immediately as soon as the user taps on the app icon with no perceived delay. Once
the app is running, it uses 13.5 MB of RAM memory. During the test, the battery temperature was
below 31 ºC and the battery consumption after the 60 min was 5.5% of a full battery charge, being the
capacity of the battery 3000 mAh. The app can run in parallel with other apps without any interference.
Other apps such as WhatsApp, Gmail, and Samsung Gallery were used while our app was running
in the background and it was retrieved to the foreground remaining in the same state that it was
before bringing it to the background. While the app was running in the foreground, it was possible to
select one of the four sensors that were sending data to observe their values and graphs in real time as
described in Section 2. The selection from one sensor to another was made smoothly. Regarding the
DOF sensor, whose graphs and data cannot be seen altogether in the smartphone screen, the scrolling
of the screen to see all the information was made smoothly. Besides, all the graphs with sensor data
can be zoomed in and out smoothly by tapping on them.

When the service of the app receives the chain “stopall” from the PC simulator, the files with the
data from all the sensors were closed. The transmission of the files from the app to the PC simulator
is made through Transmission Control Protocol (TCP) socket. This socket is connection-oriented
and guarantees the reliable reception of bytes in the PC simulator in the same order that they are
transmitted from the Android app.

After the 60-min test, the files with the sensor data are quite big and it took 27 s to send the files
through the socket by writing in a write buffer the lines read from the files, which were then read by
a read buffer of the socket. That transmission time is not problematic for the application given that
the driver simulator has stopped and the sensor data are sent to the PC simulator correctly. During
the test, the Android smartphone and the PC simulator were connected to a LAN of 100 Mbps data
transfer rate. If the LAN did not provide access, as the files are stored in the smartphone, they could
be sent later as soon as the connection is recovered.

Through the simultaneous monitoring of the ECG, EMG, and GSR of a person, the application
can be applied to many different environments such as patients at their homes or in hospital or people
doing some physical work or sport, or, in general terms, while doing some activity which requires a
certain level of physical or psychological effort such as driving. This monitoring of ECG, EMG, and
GSR of a person could be completed properly with a sampling rate of 128 Hz for ECG and EMG and
of 10.2 Hz for GSR, which requires a device with features similar or higher than the Wolder mi Tab
ONE tablet. Thus, if the physical or psychological conditions are below some threshold, the user or
some clinician can be sent a warning to act accordingly.

We aimed to use the Android app for the Shimmer sensors to monitor drivers in our simulator.
The 9DOF sensor is placed on the steering wheel and a sampling rate of 10.2 Hz is appropriate.
The same sampling rate of 10.2 Hz is adequate for the GSR sensor. For the rest of sensors (ECG
and EMG), the proper sampling rate is 128 Hz. With these rates, the Wolder mi Tab ONE tablet and
Samsung Galaxy J5 smartphone have been proved to work properly

3.2. Experimental Results with the Android App and Our Driving Simulator

In this section, we show the experiments carried out with the synchronized working of the driving
simulator and the Android app for the Shimmer sensors. We made two sets of experiments. In the first
set, we focused on the data extracted from the gyroscope and the variables computed by the Android
app from these data. In the second set, we focused on the ECG, EMG, and GSR signals.

19 participants took part in the first set of experiments. From 4 out of the 19 participants, we did
not use the gyroscope in their scenario routes so only data from the simulator were stored. From the
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remaining 15 participants, both the data from the gyroscope using the Android app and from the
simulator were stored. The mean age of the participants was 26.68 years old with a standard deviation
of 6.77 years old. The mean length of time for the participants having a driving license was 7.79 years
with a standard deviation of 6.09 years. Only one of the 19 participants did not have a driving license
although he or she was preparing to get it. The participants were asked to rate themselves with a
number between 1 and 10 according to their experience in computer games and according to their
experience in computer racing games. The mean value of the first ranked experience was 6.53 with
a standard deviation of 3.43 and the mean value of the second ranked experience was 4.53 with a
standard deviation of 3.23.

Each participant drove in four different scenarios of the simulator twice, the first time using
automatic gear shift and the second time using manual gear shift. The four scenarios were developed
as varied as possible and covering the different range of roads, traffic, and situations that have to
be faced in real driving situations and require different driving skills. The first scenario was mainly
urban with an interurban section consisting in a winding road with one lane per direction. The second
scenario was interurban in a ring road in the surroundings of a big city and with a variable number of
lanes per direction. The third scenario was urban in a through road on the outskirts of a medium-sized
city. The fourth scenario was a monotonous route in a highway. The approximate time to complete the
first, third, and fourth scenarios was 10 min and the approximate time to complete the second scenario
was 20 min. As the participants completed each scenario twice, the approximate mean time to finish
with all the scenarios was 100 min for each participant.

Before driving in the simulator, the participants had to make two questionnaires to have a subjective
measure of their sleepiness at that very moment. These two questionnaires were the Karolinska
Sleepiness Scale (KSS), and the Stanford Sleepiness Scale (SSS). Moreover, the participants made the
Epword Sleepiness Scale (ESS), which evaluates the likelihood of falling asleep not at the time of making
the questionnaire but in different real situations such as watching TV or being sat in a public place.
Those questionnaires have been adopted in numerous research studies related to the clinical assessment
of fitness to drive in sleepy individuals using a driving simulator [39]. We aimed to relate the results
obtained in these questionnaires with the driving performance computed with different variables.

The steering wheel adopted in the simulator was the Logitech G27 that also includes the gear lever
and the clutch, brake, and accelerator pedals, making it possible a realistic driving experience in the
simulator. The simulator scene is projected onto a big screen of dimensions 260 × 195 cm as shown in
Figure 9.Sensors 2019, 19, x FOR PEER REVIEW  16 of 28 

 

 
Figure 9. Driving simulator. 

The simulator was configured to store the following vehicle data every second: instantaneous 
fuel consumption, speed, rpm, and position in the scenario. Moreover, the time and position in the 
scenario of all the committed traffic offences are stored. The implemented traffic offences were: 
collision with a pedestrian, collision with a vehicle, collision with a motorcycle, collision with a 
cyclist, collision with a still object, leaving the road, over-speed, under-speed, leaving a roundabout 
incorrectly, driving in a roundabout incorrectly, leaving a junction incorrectly, failing to comply 
with a stop sign, failing to comply with a yield sign, failing to comply with a traffic light signal, not 
respecting the safety distance, crossing a solid line in a road, not using the turn light in a turn, and 
not using the turn light while overtaking a car.  

In the first set of experiments, the Android app for the Shimmer sensors stored the angular 
speed obtained from the gyroscope placed on the steering wheel. The angular speed was obtained 
from the gyroscope with a sampling rate of 10.2 Hz. From this speed, many variables were 
computed by the Android app as explained in Section 2.3. For the data analysis, we used the 
software MATLAB (Natick, MA, USA), IBM SPSS (Armonk, NY, USA), and Excel (Redmond, WA, 
USA).  

We first analyzed the influence of the type of gear shift on the speed and the variables extracted 
from the angular speed of the gyroscope. We aimed to test whether the gear shift has some influence 
on the driving style as, on the one hand, not all the participants have driven a car with the automatic 
gear shift in their driving history and, on the other hand, none of them is used to drive in a 
simulator.  

We split the analysis into two parts, the first part grouping together the data from the two 
urban scenarios and the second part grouping together the data from the two interurban scenarios. 
Figure 10; Figure 11 show the mean speed of the 19 participants in the urban scenarios and in the 
interurban scenarios, respectively. 

Figure 9. Driving simulator.



Sensors 2019, 19, 399 16 of 28

The simulator was configured to store the following vehicle data every second: instantaneous fuel
consumption, speed, rpm, and position in the scenario. Moreover, the time and position in the scenario
of all the committed traffic offences are stored. The implemented traffic offences were: collision with a
pedestrian, collision with a vehicle, collision with a motorcycle, collision with a cyclist, collision with a
still object, leaving the road, over-speed, under-speed, leaving a roundabout incorrectly, driving in
a roundabout incorrectly, leaving a junction incorrectly, failing to comply with a stop sign, failing to
comply with a yield sign, failing to comply with a traffic light signal, not respecting the safety distance,
crossing a solid line in a road, not using the turn light in a turn, and not using the turn light while
overtaking a car.

In the first set of experiments, the Android app for the Shimmer sensors stored the angular speed
obtained from the gyroscope placed on the steering wheel. The angular speed was obtained from the
gyroscope with a sampling rate of 10.2 Hz. From this speed, many variables were computed by the
Android app as explained in Section 2.3. For the data analysis, we used the software MATLAB (Natick,
MA, USA), IBM SPSS (Armonk, NY, USA), and Excel (Redmond, WA, USA).

We first analyzed the influence of the type of gear shift on the speed and the variables extracted
from the angular speed of the gyroscope. We aimed to test whether the gear shift has some influence
on the driving style as, on the one hand, not all the participants have driven a car with the automatic
gear shift in their driving history and, on the other hand, none of them is used to drive in a simulator.

We split the analysis into two parts, the first part grouping together the data from the two urban
scenarios and the second part grouping together the data from the two interurban scenarios. Figure 10;
Figure 11 show the mean speed of the 19 participants in the urban scenarios and in the interurban
scenarios, respectively.Sensors 2019, 19, x FOR PEER REVIEW  17 of 28 
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In the urban scenarios, there is some influence of the type of gear shift on the speed. 14 people
drove faster with the automatic gear shift (participants #2, #3, #4, #9, #10, and #11 with more sensitive
differences). Only four participants drove faster with manual gear shift but with a small difference
with respect to automatic gear shift. Furthermore, for the interurban scenarios, the difference between
the speed with manual gear shift and automatic gear shift is small, being the number of participants
that drove faster with automatic gear shift equal to the number of participants that drove faster with
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manual gear shift. In the urban scenarios, gear shifts are more frequent so, logically, the driving
differences using the two types of gear shift is larger in those scenarios.
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We analyzed the relation between the gear shift type and the mean and the standard deviation of
the angular speed obtained from the gyroscope for the urban and interurban scenarios. Figures 12
and 13 show the mean angular speed of the steering wheel in the urban and interurban scenarios,
respectively, of the 15 participants that used the gyroscope in the simulations.
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With the exception of participant 13, the mean is quite similar with the automatic gear shift and
the manual gear shift. The number of participants with a mean larger with the automatic gear shift is
similar to the number of participants with a mean larger with the manual gear shift. The mean values
in the urban scenarios are similar to the mean values in the interurban scenarios and, only for some
participants, these values are larger in the interurban scenarios. The use of the manual gear shift did
make participant #13 increase the mean angular speed because that gear shift distracted him or her
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from driving the car and he or she had to correct the trajectory with more motions of the steering
wheel. Anyway, this lack of adaptation to the manual gear shift in the simulator was only present in
that participant.
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Figures 14 and 15 show the standard deviation of the angular speed of the steering wheel in the
urban and interurban scenarios, respectively. In general, the value of the standard deviation is not
influenced by the adopted gear shift. Whereas in the urban scenarios, eight participants have a larger
standard deviation with automatic gear shift and six participants have a larger one with manual gear
shift, in the interurban scenarios six participants have a larger standard deviation with automatic
gear shift and seven participants have a larger one with manual gear shift. The value of the standard
deviation is larger in the urban scenarios as the drivers have to make sharper turns in urban scenarios
than in interurban scenarios.
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We also analyzed the relation between the mean and the standard deviation of the angular speed
of the steering wheel in the urban and interurban scenarios and the traffic offences committed. The time
spent to finish a route varied from one participant to another as they drove at different speeds and some
participants chose the wrong exit in some junctions and drive more distance than others. Because of
this, we analyzed the number of traffic offences per second in each scenario instead of the total number
of traffic offences. In Table 1, the participants are ordered as a function of the decreasing number
of traffic offences committed per minute in the urban scenarios and with the mean and standard
deviation of the angular speed. In Table 2, the participants are ordered with the same criteria but in the
interurban scenarios.

Table 1. Participants ordered as a function of the number of traffic offences per second in urban scenarios.

Urban Scenarios

Participants Traffic Offences/s Mean Angular Speed Standard Deviation of the Angular Speed

7 0.142 1.731 27.048
14 0.109 1.880 11.016
1 0.092 1.921 31.524
2 0.085 2.080 47.617
3 0.071 2.038 28.986

10 0.063 1.760 14.505
4 0.062 2.036 23.957
8 0.055 1.724 12.906

13 0.046 1.952 12.706
5 0.045 1.945 34.903

12 0.032 1.622 17.254
15 0.030 1.798 17.292
11 0.029 1.644 13.892
6 0.027 1.940 30.543
9 0.026 1.640 20.727
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Table 2. Participants ordered as a function of the number of traffic offences per second in interurban scenarios.

Interurban Scenarios

Participants Traffic Offences/s Mean Angular Speed Standard Deviation of the Angular Speed

2 0.1023 2.085 28.251
4 0.0727 2.043 17.206
3 0.0683 2.000 20.252
6 0.0629 1.981 15.927
1 0.0570 1.966 27.092

12 0.0508 1.935 15.324
13 0.0464 2.701 10.413
9 0.0438 1.961 16.108

11 0.0428 1.952 10.051
7 0.0388 2.100 17.414

10 0.0360 2.354 14.759
15 0.0355 1.997 16.607
14 0.0326 2.157 7.986
8 0.0247 1.789 11.534
5 0.0079 1.986 21.355

It can be observed that there is no significant relation between the number of traffic offences
per second and the mean and standard deviation of the angular speed for the urban and
interurban scenarios.

Besides, we studied the percentage of mean values of the angular speed that lied within one of
the five intervals considered: larger than 10◦, between 10◦ and 7.5◦, between 7.5◦ and 5◦, between 5◦

and 2.5◦, and lower than 2.5◦. Studying these percentages for the users with larger and lower means,
we did not find any significant data that could characterize them or relate them to the total number
of traffic offences. Then, we analyzed the mean number of zero-crossing points per second in both
the urban and interurban scenarios looking for some relation between them, the traffic offences, and
the mean speed. We did not observe relations between these variables but what we did observe was
that for the most participants, the mean number of zero-crossing points per second was larger for the
urban scenarios than for the interurban scenarios, as shown in Figure 16. In the interurban scenarios,
the position of the steering wheel has to be modified less frequently than in the urban scenarios.
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We conducted a detailed statistical study for each type of traffic offence in the urban and interurban
scenarios looking for its correlation with the values of the mean and standard deviation of the angular
speed obtained from the gyroscope and the speed, rpm, and mean fuel consumption in each simulation.
In this study, first we used the Shapiro-Wilk test [40]. This test is usually employed to verify if a set of
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data follows a normal or Gaussian distribution. If at least one of the two variables that one wants to
correlate follows a normal distribution, the Pearson correlation coefficient can be used [41]. For the
Shapiro-Wilk test, the null hypothesis, which is aimed to be rejected, is that a sample x1, x2, . . . , xn

comes from a normally distributed population. Once the test has been completed, if the p-value is
larger than α (significance level is set to 0.05), the null hypothesis is not rejected concluding that the
data follow a normal distribution. Applying the Shapiro-Wilk test to the variables mean and standard
deviation of the angular speed, speed, rpm and mean fuel consumption, we obtained p-values of 0.23,
0.18, 0.45, 0.21, and 0.31, respectively. In all the cases, the values were larger than α (0.05) so that all the
variables followed a normal distribution and we could correlate them with different types of traffic
offences using the Pearson correlation coefficient.

The Pearson correlation coefficient is a measure of the linear correlation between two quantitative
random variables and is independent of their measuring range. It is calculated as follows:

ρXY =
σXY

σXσY
, (2)

where σXY is the covariance between X and Y, σX is the standard deviation of X, and σY is the standard
deviation of Y. Its values lie within the interval [−1, 1], being 1 if there is a perfect positive linear
relation between the variables, 0 if there is no linear correlation between them, and −1 if there is a
perfect negative linear relation between them.

In our statistical study, we analyzed the data from driving with both automatic and manual gear
shifts together. On the contrary, we have performed one independent analysis for the urban scenario
and another one for the interurban scenarios. We took that approach as there are traffic offences that
can only be present in the urban scenarios such as leaving a roundabout incorrectly and driving in a
roundabout incorrectly as there are no roundabouts in the interurban scenarios in our simulator.

After calculating all the Pearson correlation coefficients between each one of the five variables (two
obtained from the Android app for the Shimmer sensors and three obtained from vehicle performance
in the simulator) and each type of traffic offence differentiating urban and interurban scenarios, we
tested their statistical significance calculating the p-value. The p-value in this case is the probability of
having obtained such values of the Pearson correlation coefficients supposing that the null hypothesis
is true, that is, there is no linear correlation between the pair of variables. If the p-value is lower than α

(typically 0.05), the null hypothesis is rejected and the statistical significance of the correlation value
is verified.

Tables 3 and 4 show only the correlation coefficients that have led to p-values lower than 0.05 for
the urban and interurban scenarios, respectively. There are more significant correlations in the urban
than in the interurban driving. The only valid correlation with a variable extracted from the gyroscope
was the standard deviation of the angular speed in urban scenarios with the traffic offence of leaving
the road. Hard turns of the steering wheel, which increase the value of the standard deviation of the
angular speed and are typical of bad driving, are related to leaving the road in an urban environment.
The other three verified correlations have included the traffic offence of not using the turn light in a
turn, two cases in an urban scenario (for mean speed and mean rpm) and one case in an interurban one
(for mean fuel consumption). In the urban scenarios, as the speed or the rpm increase, the probability
of turning without using the corresponding traffic light also increases. Although it may seem that
this traffic offence is not serious, it can cause dangerous situations or even traffic accidents due to
the lack of information that the rest of the vehicles have. In the interurban scenarios, the variable
correlated with the traffic offence of not using the turn light in a turn was the mean fuel consumption.
It may seem that several variables, other than the mean fuel consumption, are more related to this
traffic offence. However, the mean fuel consumption is representative of the driving style in interurban
scenarios and was interestingly correlated with the traffic offence of not using the turn light in a turn
in our experiments.
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Table 3. Pearson correlation coefficients with p-values lower than 0.05 for the urban scenarios.

Urban Scenarios

Traffic Offence Pearson Correlation Coefficient

Standard deviation of the angular speed Leaving the road 0.46
Mean speed Not using the turn light in a turn 0.54
Mean rpm Not using the turn light in a turn 0.61

Table 4. Pearson correlation coefficients with p-value lower than 0.05 for the interurban scenarios.

Interurban Scenarios

Traffic Offence Pearson Correlation Coefficient

Mean fuel consumption Not using the turn light in a turn 0.45

Following the study, we analyzed the relation between the number of traffic offences per second
in the simulations and the length of time having a driving license, experience in computer games, and
experience in computer racing games of the participants in the experiments. First, we verified that
the number of traffic offences per second has a normal distribution with the Shapiro-Wilk test. Then,
we obtained the Pearson correlation coefficient between the traffic offences per second and the three
mentioned variables related to the driver experience. The p-value of these correlations was larger than
0.05 in the three cases so no significant correlation was found. A significant correlation between the
number of traffic offences and the experience in computer games or computer car games would have
meant a relation between this experience and the performance in the simulator. As the simulator has
been developed to be as similar as possible to real driving and not to computer games, this lack of
correlation can be considered a positive aspect of the simulator.

Next, we analyzed the relation between the subjective assessment of participants’ sleepiness
through KSS, SSS, and ESS questionnaires and a measure of low vigilance in the simulations. We used
a measure similar to the one proposed in [34]. They related a lower number of zero-crossing points
of the steering wheel to a less vigilant driver that does not make continuous direction corrections.
They also related maximum values of the absolute angular angle with a drowsy driver that has to do
particular hard turns.

From these measures, we considered a possible driving period of low attention if, in this period or
the previous one, there was no zero-crossing point and a maximum value of the absolute steer angle has
been obtained. We divided the simulations in periods of 5 s so that each period could be classified as
having or not having possible low attention driving. With a sampling rate of 10.2 Hz for the gyroscope,
there are 51 samples of zero-crossing and maximum value of the absolute angular speed in each period.
We obtained the Pearson correlation coefficient between the number of low attention periods and the
results obtained in KSS, SSS, and ESS. We also obtained the Pearson correlation coefficient between the
number of low attention periods and the age, length of time having a driving license, and experience
in computer racing games. The p-value of these correlations was larger than 0.05 for all except for the
length of time having a driving license, whose Pearson correlation coefficient was 0.5594. The more
experienced drivers had more low attention periods, which should be avoided in safe driving, in
the simulations.

Finally, we studied the correlation between the number of traffic offences in all the scenarios and
the results in the KSS, SSS, and ESS. The only Pearson correlation coefficient with a p-value lower than
0.05 was with SSS, whose value was 0.5375. SSS is a scale of seven statements related to an increasing
level of sleepiness. We found this valuable relation between a higher subjective assessment of the level
of sleepiness and a larger global number of traffic offences although we did not find this relation with
the number of low attention periods computed as in [34].

In the second set of experiments, in which we focused on the ECG, EMG, and GSR signals,
6 participants took part. The mean age of the participants was 32.83 years old with a standard
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deviation of 16.82 years old. The mean length of time for the participants having a driving license was
20.83 years with a standard deviation of 14.85 years. They were required to drive in the scenarios twice,
one time when they were rested and another time when they were tired. They were free to choose the
time and day representative of these two physical states to drive in the scenarios.

Figure 17 shows the mean value of HRV obtained from the ECG sensor when the participants
drove in the scenarios in rested state and distinguishing between the urban and interurban scenarios.
Figure 18 shows the similar information but when the participants drove in the scenarios in tired
state. Most of the participants had bigger differences in the mean HRV, as a function of the scenarios
(urban or interurban), in rested state than in tired state. For some participants, the mean HRV is
bigger in the urban scenarios than in the interurban scenarios and for others is the other way round.
That way, as there is a relation between the HRV and the physiological state, it can be asserted that in
rested state most of the participants somehow adapted their physiological states depending on the
requirements of each scenario while in the tired state the different scenarios did not make participants
modify their physiological states significantly. There are big differences between participants so that
an analysis to determine if the physiological or psychological state is suitable to drive would have to
be individually specified from the learning of the relation between the HRV and the different scenarios
and traffic states.
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The electrodes of the EMG sensor were placed on the trapezius muscle. We chose that muscle as
it is especially used while moving the steering wheel. Figure 19 shows the mean value of EMG in mV
(millivolts) for the six participants distinguishing between driving in rested state and tired state. For all
the participants, the mean EMG was bigger in tired state so that the trapezius sends electrical impulses
of bigger amplitudes as someone gets tired. The differences in the mean EMG in both states were very
irregular depending on the participant so that a personalized threshold should be established to detect
the transition from a physiological state suitable to drive to a tired state that would eventually lead to
unsafe driving based on this parameter.
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Figure 19. Mean EMG of the participants in rested and tired state.

Figure 20 shows the mean value of GSR in kOhm for the six participants distinguishing between
driving in rested state and in tired state. There are clear differences depending on the participants but
two tendencies can be observed. On the one hand, participants #2 and #6 had a quite similar mean
GSR in both states. On the other hand, the remaining participants had a clearly bigger mean GSR in
tired state. For the latter, driving in tired state made them change the emotional state and so the skin
resistance captured by the GSR sensor. Similarly to the ECG and EMG, a personalized analysis would
need to be applied to establish a threshold in the GSR value to detect the transition from safe to unsafe
driving based on this parameter.
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4. Conclusions

In this paper, we present an Android mobile application for the control of the physiological sensors
from the Shimmer platform and the processing and monitoring of their signals. The application is
compatible with version 2.3 and above of the Android operating system.

The connection with the sensors is transparent to the user. The application receives the sensor
signals, processes and represents them graphically and stores them in files for later analysis. It can use
four sensors simultaneously in a low-cost Android device, the ECG and EMG sensors at a sampling rate
of 128 Hz and the GSR and gyroscope sensors at a sampling rate of 10.2 Hz. These rates are sufficient
for proper health monitoring so the application can be applied to many interesting environments.

The Android app is synchronized with a Unity-based driving simulator and processes a large
number of features from the ECG, EMG, GSR, and gyroscope signals. Thus, the app can be used in
driving research studies in a simulator. From the analysis of the experiments carried out by 25 people
using the driving simulator and the Android app, different findings were achieved. Regarding the
ECG, EMG, and GSR signals, significant differences were found depending on the driver’s physical
state (rested or tired). Personalized analyses need to be accomplished with these signals so that
they can be used to detect if the driver’s physiological state can lead to safe driving. Regarding the
gyroscope signal, some findings were expected as the similarity between the mean angular speed of
the steering wheel in urban and interurban scenarios and the larger value of the standard deviation of
the angular speed of the steering wheel in urban than in interurban scenarios. Other findings were
unexpected as the correlation between the traffic offence of not using the turn light in a turn (instead
of others) and vehicle data such as mean speed in urban scenarios and mean fuel consumption in
interurban scenarios. Overall, in urban scenarios the driving style is more associated with some traffic
offences than in interurban scenarios. There was no relation between the experience in computer
racing games and the number of traffic offences, which somehow validates the use of the simulator for
drivers with different backgrounds. There was also a significant correlation between the number of
traffic offences and the results in the SSS questionnaire, which supports the use of such questionnaire
in research studies related with driving safety. Most of the analyzed correlations between variables
have not been significant as there is a great range of differences between habits and performance of
drivers and detailed individual analyses could be insightful.
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The Android app can be used in research studies in real routes given than the vehicle data are
obtained from its On Board Diagnostics (OBD) system. More experiments are needed with both the
driving simulator and in real routes to analyze the physical and emotional state of the driver from the
ECG, EMG, and GSR sensors, the gyroscope features and the vehicle data. From this analysis, both
joining data from all the drivers and specifying it for each driver, the Android app can be extended so
that a real-time processing of the signals would be able to alert the user as soon as some data imply
an abnormal physical or emotional state. For instance, this functionality can alert a driver when the
level of attention and drowsiness are not suitable for a safe driving. The potential benefits of mobile
applications with this functionality in our lives are great and numerous.
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