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ABSTRACT: We report a detailed structural study of cytisine, an alkaloid used to help
with smoking cessation, looking forward to unveiling its role as a nicotinic agonist. High-
resolution rotational spectroscopy has allowed us to characterize two different conformers
exhibiting axial and equatorial arrangements of the piperidinic NH group. Unexpectedly,
the axial form has been found as the predominant configuration, in contrast to that
observed for related molecules, such as piperidine. This anomalous behavior has been
justified in terms of an intramolecular NH···N hydrogen bond. Moreover, this interaction
justifies the overstabilization of the axial conformer over the equatorial one and is crucial
for the mechanism of action of cytisine over the nicotinic receptor, further rationalizing its
behavior as a nicotinic agonist.

The brain’s chemistry is strongly controlled by receptor−
ligand interactions, a major class of intramolecular

assemblies that are at the base of all biological events in living
cells. In this process, an endogenous�or even an exogenous�
molecule can act as a ligand for a specific receptor that receives
the chemical signal and triggers the corresponding biological
response.1 In this context, nicotinic acetylcholine receptors
(NAChRs) are a well-studied family of ligand-gated ion
channels that open an ion channel when activated by their
specific ligand.2 This positive action is naturally triggered by
the endogenous ligand acetylcholine, but it can also be
triggered by the ubiquitous molecule nicotine. In addition,
cytisine, also known as cytisinicline or sophorine, is a natural
alkaloid that can produce the same response as nicotine in
human neurons, acting as a nicotinic agonist.3 Several
biomedical studies have suggested cytisine as a potent
treatment to help with smoking cessation4−6 as it has shown
superior effectiveness to nicotine7 and is similar to varenicline
but offers lower side effects.8 Thus, to activate NAChRs, an
exogenous molecule must be similar in shape, size, and
functionalities to acetylcholine. If these conditions are fulfilled,
the molecule will be capable of reaching the receptor’s active
site, further triggering its biological function.9−11

Nicotine has been investigated in condensed phases by X-ray
diffraction techniques, obtaining a single trans-configura-
tion.12,13 These studies attributed the biological activity of
this alkaloid to the existence and relative disposition of two key
centers labeled A and B. First, a cationic center (A) is
protonated under physiological conditions emulating the
quaternary amine in acetylcholine. The second center (B),
must be an electronegative atom that acts as a hydrogen bond
acceptor. The distances between the A and B atoms range from
4.4 to 5.0 Å.12 Nicotine binding to NAChRs has been

investigated using X-ray diffraction techniques,14 showing that
these two centers play a crucial role in activating the nicotinic
receptor. More recently, a microwave study of nicotine in the
isolation conditions of a supersonic expansion15 revealed the
existence of two trans configurations, both satisfying the two-
center model.
Regarding cytisine, how can we explain its behavior as a

nicotinic agonist? The answer should lie in the structural
resemblance between both molecules. Based on an X-ray
crystal study,13 this alkaloid presents three merged cycles: two
chair piperidine rings (I and II) and a third saturated
piperidone that confers cytisine a significant rigidity. Following
the proposed two-center model, it could be inferred that the
cationic center (A) might be the piperidine nitrogen, while the
carbonyl oxygen can be ascribed to the B center. However, in
contrast to nicotine, cytisine presents axial or equatorial
arrangements of the piperidine amino (NI−H) group (see
Figure 1b), which X-ray techniques can not discriminate. This
arrangement plays a crucial role in modulating cytisine’s
biological behavior in the human body since the axial form
offers the most favorable position for a proton attack in
activating cytisine to bind the receptor.16 If cytisine behaves as
piperidine, where the equatorial form is the dominant one, it
will not fully explain the role of cytisine as a nicotinic agonist.
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To unravel cytisine’s axial/equatorial equilibrium ratio and
its role as a nicotinic agonist, it is therefore mandatory to
investigate its structure using a high-resolution spectroscopic
technique. Microwave spectroscopy has proven to be the only
one capable of reaching such a wealth of detail,17 thus
discriminating between cytisine’s axial and equatorial config-

urations as reported for piperidine.18 Cytisine is a solid with a
high melting point (mp 156 °C) and low vapor pressure,
preventing its transfer to the gas phase to perform a rotational
study using conventional heating methods. To overcome this
problem, our group has developed Fourier-transform micro-
wave techniques coupled to laser ablation devices,19 used to
reveal the unbiased gas-phase structure of relevant systems [see
refs 20−23 and references therein]. We have vaporized solid
cytisine, recorded its broadband spectrum in the 3.0 to 14.0
GHz region (see Figure 2a and Figure S3), and faced the
spectrum analysis. We have modeled the axial and equatorial
conformers by DFT computations (see Supporting Informa-
tion).24 Using the predicted spectroscopic parameters collected
in the first section of Table 1 to guide our spectral search. We
anticipate that the recorded lines should present a 14N
hyperfine structure arising from the nuclear quadrupole
coupling interaction generated by the two 14NI and 14NIII
nuclei of cytisine with a nonzero quadrupole moment (I = 1).
They interact with the electric field gradient created by the rest

Figure 1. (a) Schematic structure of nicotine. The cationic
(protonated) center (A) and the electronegative center (B) are
depicted. (b) Sketch of the structure of cytisine highlighting the
suggested A and B centers. The A center can exhibit axial and
equatorial arrangements arising from the different configurations of
the piperidine ring (I).

Figure 2. (a) Section of the broadband LA-CP-FTMW spectrum from 4 to 5 GHz. Transitions assigned to rotamer I are labeled in red, while
transitions assigned to rotamer II are marked in blue; (b) Completely resolved hyperfine structure for the 40,4 ← 31,3 and 41,4 ← 31,3 rotational
transitions belonging to the axial and equatorial conformers, respectively, using the LA-MB-FTMW spectrometer. Each transition appears as a
Doppler doublet and the resonance frequency is determined by the arithmetic mean of two Doppler components. The energy levels are labeled
with the quantum numbers Ka, Kc, I, and F and the quadrupole coupling Hamiltonian was set up in the coupled basis set (I1, I2, I, J, K, and F),
where I1 + I2 = I, and I + J = F. The corresponding predicted spectra are also included at the bottom for comparison.
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of the molecule, leading to a very complex hyperfine pattern
for each rotational transition.25−27

We first removed known lines belonging to photo-
fragmentation products and managed to identify an intense
set of μa-type R-branch transitions of a first rotamer. The
analysis was completed by predictions and measurements of
other μb- and μc-type transitions. We discarded the rotational
transitions of rotamer I from the spectrum and analyzed the
remaining lines looking for a second rotamer. Hence, a weaker
progression of μa- and μb-type R-branch transitions was easily
identified. As mentioned earlier, most transitions appeared to
be broadened by the 14N hyperfine structure; our LA-CP-
FTMW broadband technique does not provide enough
resolution to resolve them thoroughly. Thus, the frequency
centers of 100 and 56 transitions measured for rotamers I and
II were submitted separately to a rigid rotor analysis, which
provided an initial set of rotational constants, collected in the
second section of Table 1.
A first comparison between the predicted and experimental

values of the rotational constants in the first two sections of
Table 1 indicates that the two detected species correspond to
the axial and equatorial forms of cytisine. However, we cannot
discern between them; the different orientation of the terminal
NI−H group does not cause a significant change in the mass
distribution and, consequently, in the rotational constants’
values. Additional information can be obtained from the trend
in the variation of the rotational constants. The observed
changes, when moving from rotamer I to II, match the
predicted differences between equatorial and axial conformers
(see Table 1). We can then tentatively assign rotamer I as the
axial form and rotamer II as the equatorial. Further support
comes from the dipole moment selection rules; the non-
observation of c-type lines for the second rotameric species

suggests that rotamer II is the equatorial form, as the dipole
moment along this axis is predicted to be very low.
In a quest to distinguish definitely between the two

conformers, we considered a dedicated experimental approach
to extract information from the 14N nuclear quadrupole
hyperfine structure. The 14NI and 14NIII nuclei introduce
hyperfine rotational probes at defined sites of cytisine and act
as a probe of the chemical environment, position, and
orientation of both quadrupolar nitrogen nuclei.28 As the
axial and equatorial forms only differ in the piperidinic amino
arrangement, the characterization of the 14NI nucleus environ-
ment is, therefore, a precious spectroscopic tool in conforma-
tional identification.29 With this aim, we took advantage of the
sub-Doppler resolution achieved with our cavity-based LA-
MB-FTMW technique30 to fully resolve the hyperfine structure
of several transitions already assigned in the broadband
spectrum (see Figure 2b). All the measured hyperfine
components, listed in Tables S4 and S5, were fitted to a
rigid-rotor Hamiltonian supplemented with a term to account
for the nuclear-quadrupole coupling contribution.31 The
resulting rotational and quadrupole coupling constants are
presented in the third section of Table 1. The excellent
matching between the theoretical and experimental values of
the diagonal elements of the nuclear quadrupole coupling
tensor (χaa, χbb, and χcc) provides an irrefutable identification of
equatorial and axial forms of cytisine. Note that the predicted
values present a drastic change in the case of the 14NI nucleus,
directly related to the different axial and equatorial arrange-
ments of the NI−H group. Thus, the experimental values of the
χaa and χcc diagonal elements of the 14NI nuclear quadrupole
coupling tensor vary from −1.023(14) to −4.632(49) and
from 1.583(19) to 2.064(89), respectively, in excellent
agreement with the predicted values shown in Table 1.

Table 1. Theoretical Prediction and Experimental Spectroscopic Parameters for Both Observed Rotamers of Cytisine

theoretical
B3LYP-GD3/aug-cc-pVTZ LA-CP-FTMW spectroscopy LA-MB-FTMW spectroscopy

parameter axial equatorial rotamer I rotamer II rotamer I rotamer II

Aa 1241.4 1253.1 1237.5720(33)i 1249.5815(98) 1237.5704(15)i 1249.6593(19)
B 647.3 645.2 648.9721(15) 647.9141(33) 648.9732(10) 647.9137(39)
C 518.8 515.8 519.42718(78) 517.3335(10) 519.42978(55) 517.3346(10)
|μa|b 2.8 4.6 yes yes yes yes
|μb| 2.9 3.3 yes yes yes yes
|μc| 1.6 0.6 yes no yes no
χaa (NIII)

c 0.9170 0.989 − − 0.949(25) 0.894(37)
χbb (NIII) 1.5594 1.563 − − 1.570(29) 1.620(41)
χcc (NIII) −2.4764 −2.552 − − −2.519(29) −2.514(41)
χaa (NI) −1.2872 −4.937 − − −1.023(14) −4.632(49)
χbb (NI) 2.7780 2.618 − − 2.606(19) 2.568(89)
χcc (NI) −1.4908 2.319 − − −1.583(19) 2.064(89)
σrms
d − − 41.5 39.8 1.5 2.9

Ne − − 100 56 17 20
ΔEf 0.00 179 − − − −
ΔEZPEg 0.00 152 − − − −
ΔGh 0.00 161 − − − −

aA, B, and C are the rotational constants (in MHz). b|μa|, |μb|, and |μc| are the absolute values of the dipole moment (in debyes). cχaa/χbb/χcc are the
14N nuclear quadrupole coupling constants (in MHz). dσrms is the root-mean-square deviation of the fit (in kHz). eN is the number of measured
frequency centers (in the CP technique) or hyperfine components (in the MB technique) included in the fit. fΔE are energies relative to the global
minimum. gΔEZPE are energies relative to the global minimum taking into account the zero-point energy (ZPE). hGibbs energies relative to the
global minimum calculated at 298 K (all energies are expressed in cm−1). iThe numbers in parentheses are the 1σ uncertainties in units of the last
decimal digit.
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We have estimated the relative abundances of the axial and
equatorial forms by comparing the intensity of rotational
transitions, correcting them by the predicted values of the
dipole moment components. The results show the axial form
as the dominating structure (see Figure 2a) with a 3 to 1 ratio,
which is in clear disagreement with piperidine, the reference
molecule.18 This deviation of the axial/equatorial ratio must be
attributed to the existence of an exotic NI−H···N intra-
molecular hydrogen bond over stabilizing the axial form. To
further understand the role of this interaction, we performed
noncovalent interactions (NCI) computations32 and a
complementary Natural Bonding Orbitals (NBOs) analysis33

(see section S2 in the Supporting Information for detailed
information). The results in Figure S2 confirm that there is a
moderately strong NI−H···N interaction in the axial con-
former, which is the driving motive stabilizing this form over
the equatorial one.
As mentioned above, the experimentally observed predom-

inance of the axial form bears significant biological
implications. It is known that cytisine acts as a base under
physiological conditions, accepting a proton and leading to the
bioactive form of the alkaloid.12,34 Thus, the axial or equatorial
arrangement of the piperidinic nitrogen atom (NI), which is
the protonation center (see Figure 3), plays a decisive role in
the protonation process. This mechanism and the protonation
energies for both conformers of cytisine were calculated in the
gas and aqueous phase using a PCM model,16 showing that the
lowest energy value is found for the protonation of the axial
conformer. This fact can be easily rationalized based on the
structures revealed for cytisine in the current work, as the steric
hindrance for the NI protonation process is lower for the axial
conformer than the equatorial arrangement (see Figure 3).
Finally, we can put our results in the context of the two-

center model. Based on the observed structures, we can
sanction the NI nitrogen atom as the A center and the carbonyl
oxygen atom as the B center, as these two atoms lead to an A−
B distance (4.96 Å for the axial conformer; see Figure 3) that
satisfies the requirement proposed for nicotinic agonists. Our
results show a notorious resemblance between the shape of
cytisine and nicotine. Both molecules present similar key
structural motifs for the docking process with NAChRs,
highlighting an almost equivalent distance between A and B
centers. It further confirms the specificity of the receptor with a
precise geometry of the ligand (i.e., cytisine) and the
requirement of particular contact points.
In summary, we have vaporized solid cytisine by laser

ablation and performed a detailed high-resolution rotational

investigation. Two different axial and equatorial structures have
been distinctly characterized in the supersonic jet. Surprisingly,
we have observed a clear predominance of the axial form over
the equatorial one. We have fully resolved the 14N hyperfine
structure attributed to the presence of two 14N nuclei in the
structure of cytisine using our cavity-based LA-MB-FTMW
technique. It further allowed us to experimentally characterize
an intramolecular NH···N hydrogen bond that overstabilizes
the axial form. Interestingly, this predominant arrangement
provides additional and valuable support to the two-center
model that explains cytisine’s positive action over nicotinic
receptors.
The marriage between laser ablation and rotational spec-

troscopy constitutes a unique tool to characterize the three-
dimensional structure of relevant biomolecules, allowing us to
scrutinize structural details not accessible to any other
technique. This approach helps us to shed light on topics of
biological relevance, such as explaining the role of cytisine as a
nicotinic agonist.
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Raúl Aguado − Grupo de Espectroscopía Molecular (GEM),
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