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Abstract: Modeling the Stark broadening of spectral lines in plasmas is a complex problem.
The problem has a long history, since it plays a crucial role in the interpretation of
the observed spectral lines in laboratories and astrophysical plasmas. One difficulty is
the characterization of the emitter’s environment. Although several models have been
proposed over the years, there have been no systematic studies of the results, until now.
Here, calculations from stochastic models and numerical simulations are compared for the
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Lyman-α and -β lines in neutral hydrogen. Also discussed are results from the Helium-α
and -β lines of Ar XVII.

Keywords: Stark broadening; line shapes; plasmas; numerical simulations; models

1. Introduction

Line shape analysis is one of the most important tools for plasma diagnostics, as it provides
information on the underlying physical processes involved in the line formation. With the increasing
number of applications in different areas of plasma physics, the modeling of line broadening from
neutral or charged emitters has been in perpetual development and remains a keystone in plasma
spectroscopy [1].

In the formation of a line shape, Stark broadening is the most computationally challenging
contribution, since the main difficulty is to properly characterize the emitter environment. It involves
a complex combination of atomic physics, statistical mechanics and detailed plasma physics [2].
In particular, it is well known that the quasi-static ion approximation can lead to discrepancies with
experimental data near the line center. This happens whenever the electric microfields produced at the
emitter by the surrounding ions fluctuate during the inverse half-width at half-maximum (HWHM) time
scale. The first attempts to account for ion dynamics in theoretical models were done in the 1970s,
followed by experimental proof (see the historic introduction in [3] and the references therein). Since
then, several models based on stochastic or collisional approaches have been developed, together with
numerical simulations ([4] and the references therein). Necessarily, their limit of applicability, accuracy
and, thus, results differ from one another, and up to now, no systematic comparison have existed [5].

The purpose here is to present cross-comparisons of different models that account for the ion
dynamics effect. The line shape formalism is briefly recalled in Section 2, which serves to
introduce notation. The specifics of the various models and numerical simulations are also presented
in this section. We review the simulations Euler–Rodrigues (ER)-simulation [6], HSTRK [7],
HSTRK_frequency separation technique (FST) [8], SimU [9,10], Xenomorph [11] and the models
QuantST.MMM (MMM—model microfield method) [12], quasicontiguous (QC)-frequency fluctuation
model (FFM) [13], multi-electron line-shape (MELS) [14], multi-electron radiator line-shape
(MERL) [15,16], PPP [17], ST-PST [18] and UTPP [19] that have been used for the present purpose. The
ion dynamics effect on the hydrogen Lyman-α and -β lines is discussed in Section 3.1, demonstrating
the difficulty of such modeling even for these well-known lines. In Section 3.2, results on helium-α
and -β lines of Ar XVII produced by the two stochastic models (Boerker–Iglesias–Dufty (BID) [20]
and FFM [4,21]) are discussed with the help of the numerical simulation (SimU). The reliability of
such calculations is of interest in the diagnostics of inertial confinement fusion core plasma conditions.
Conclusions are given in Section 4.
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2. Theory, Models and Simulations

We recall that the line shape is given by:

I(ω) =
1

π
Re

∫ ∞

0

dt eiωtC(t) (1)

where C(t) is the autocorrelation function of the radiator dipole operator d, which can be expressed in
Liouville space as:

C(t) =≪ d†|U(t)|dρ0 ≫ (2)

where the double bra and ket vectors are defined as usual in Liouville space. Here, ρ0 is the density
operator for the emitter only at the thermodynamical equilibrium and U(t) = {Ul(t)}l∈F is the bath
averaged evolution operator of the emitter. l belongs to a measurable functional space, {F}, which
provides a statistical method for the calculation of average quantities. The main problem is to determine
U(t). One has thus:

• to find the time evolution of Ul(t) for a given microfield configuration, which means solving the
following equation:

dUl(t)

dt
= −i[L0 − d · Fl(t)] Ul(t), Ul(0) = 1 (3)

where L0 represents the Liouvillian of the unperturbed radiator and d · Fl(t) represents the Stark
effect that connects the dipole operator d to the microfield created by surrounding charged particles
Fl (including ions and electrons),

• and to average it over a statistical ensemble of the microfields { }l∈F .

In its general form, the problem cannot be treated analytically. Nevertheless, U(t) can be obtained by
numerical simulation integrating Equation (3) on simulated sampling of microfield histories. Usually,
such a calculation is split into two independent steps [3]. First, the plasma particle trajectories are
obtained by a numerical solution of Newton’s equations of motion or an alternative method. Knowing
the trajectory of each particle, the electric fields at the emitter are evaluated and stored to be used in
the second step. Then, the line shape simulation follows: a step-by-step integration of Equation (3) is
performed using these field histories. The evolution operator of the emitter is calculated, and the whole
procedure is repeated several times in order to average over a representative sample set of independent
perturbing field histories {f1, f2...fN}. As a result, C(t) is given by:

C(t) =
1

N

N∑
i=1

Ci(t) (4)

and the line shape is obtained by a Fourier transform of C(t). Although all line shape simulations are
based on the same scheme, we will see in the next section that they can differ slightly depending on the
details of the models.

Alternatively, efficient analytical models based on fundamental assumptions and approximations have
been developed [1]. In the standard theory (ST), the line shape calculation is based on the separation
between the ions and the electrons due to the radically different dynamical properties of the microfields
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they create. Indeed, the typical fluctuation rate of the electric field created by perturber species p with a
velocity relative to the center of mass vp and a density np is defined by:

νp = vp/dp (5)

where dp = (3/4πnp)
1/3 is a typical interparticle distance. Assuming equal temperature for ions and

electrons and plasma neutrality, one has [3]:

νe
νi

∼
(
µi

µe

)1/2

Z
1/3
i . (6)

Thus, the perturbation due to the electrons (with reduced mass µe) is nearly two orders of magnitude
faster than that of ions (with reduced mass µi and charge Zi). This allows for treating the electrons and
the ions in a different way. The fast electrons are assumed to perturb the emitter by means of collisions,
treated in the impact approximation, and the slow ions are assumed to be quasi-static. This results
in a quantum-emitter system perturbation operator l = −d · Fi,l + iϕe, containing a non-Hermitian
homogeneous electron-impact broadening contribution ϕe and the ion microfield interaction −d · Fi,l,
which has to be numerically averaged with a static-field probability distribution Q(Fi), or because of
isotropy, with dW (Fi) = 4πF 2

i Q(Fi)dFi. The later can be calculated numerically in the ideal gas
limit for perturbing ions [22] or using more sophisticated models that account for ion correlations [23].
Using the set of above assumptions, the quasi-static line shape is written as:

Is(ω) = − 1

π
Im ≪ d†|

∫
dFi Q(Fi) Gs(ω,Fi) |dρ0 ≫ (7)

in which the resolvent operator is given by:

Gs(ω,Fi) = (ω − L0 + d · Fi − iϕe)
−1 . (8)

Although the electrons are often well described within the impact approximation, a quasi-static
treatment of the ions can lead to large errors for plasma conditions, such as the ion microfields fluctuate
during the inverse HWHM time scale. In the next section, we briefly review the simulations and the
models that have been developed to account for the ion dynamics effect and that have been used for the
present cross-comparisons.

2.1. The Numerical Simulations

The results from four numerical simulation codes based on different models have been submitted.
They differ either in the way they model the motions of the plasma particles or in the procedure for the
integration of the Schrödinger equation.

In the ER-simulation, the simulated plasma is an electrically neutral ensemble of statistically
independent charged particles made of Ni ions and Ne electrons moving along straight line trajectories
within a spherical volume. An emitter is assumed to be placed at the center of such a box. The temporal
evolution of the whole system is measured along a discrete time axis from zero to a definite number
of times of a fixed increment. Every temporal state is given by the set of values of the positions and
velocities of the particles in the system. At every time step, the electric field produced by ions and
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electrons is calculated using Coulomb’s law or a Debye-screened field. This electric field is an input
to the Schrödinger equation that computes the emitter time evolution operator. For hydrogen and when
the no-quenching approximation is considered, the atom state is described with the Euler–Rodrigues
parameters [24].

The HSTRK and HSTRK_FST codes also use the Gigosos–Cardeñoso approach [25]. Both codes
rely on the Hegerfeld–Kesting–Seidel method of collision-time statistics [26] and compute C(t).
Depending on the appropriate option, HSTRK can do an electron only, ion only or joint simulation,
but one can also do combinations, e.g., electron simulation and quasi-static ions or impact electrons
and ion simulation. For the Fourier transform, if a long-time exponential behavior is detected for times
t > τ , then the contribution to the Fourier transform of the (τ,∞) region is computed analytically using
the detected exponential decay and added to

∫ τ

0
dtC(t)eıωt. τ is determined via start-up runs, e.g., a run

with a small number of configurations is done to obtain a rough idea of the HWHM and τ is adjusted to
cover at least a number of inverse HWHMs. The integral is done by Filon’s rule [27].

HSTRK_FST implements the frequency separation technique, which first identifies the “impact”
phase space of ion perturbers (e.g., impact parameters and velocities), which produce a width much
less (in these runs, “much less” was 10-times less) than the field fluctuation frequency. This meant:

HWHM(Ω) = 0.1 Ω (9)

where the HWHM is computed by including all ion perturbers with impact parameter ρ and velocity
v > Ωρ. Hence, the calculation is essentially the same, except that only slow ions v < Ωρ are included
in the simulation. The C(t) obtained from the simulation of these slow ions is then multiplied by
e−HWHM(Ω)t, and the Fourier transform is taken as in HSTRK. The use of a pure exponential form
for the rapidly fluctuating (impact) part is a consequence of using the complete collision assumption
for solving the impact part [28,29] and results in a C(t) that is not correct for very short times. This
is manifested in the (far) wing behavior of the HSTRK_FST profiles and can be remedied by using the
incomplete collision formulas of the above-cited analytical solutions.

SimU is a combination of two codes: a molecular dynamics (MD) simulation of variable complexity
and a solver for the evolution of an atomic system with the MD field history used as a (time-dependent)
perturbation. A technical difference from other numerical simulation methods is the way the spectrum is
calculated. Instead of employing the dipole autocorrelation function via Equation (1), SimU calculates
the Fourier transform of the dipole matrix:

d⃗(ω) =

∫ ∞

0

dt e−iωtd⃗(t) (10)

and then uses it directly instead of C(t):

Iλ(ω) ∝ 1

2π

∑
i

ρi
∑
f

ω4
fi|e⃗λ · ⟨d⃗fi(ω)⟩|2 (11)

where e⃗λ is the light polarization direction and each initial state i is assigned a population factor ρi.
Similarly to other methods, this procedure is repeated many times and averaged (cf. Equation (4)).

The recently developed code, Xenomorph, is based on the models of Gigosos and González [30],
where a straight line assumption is made. A general Schrödinger solver described in [31] is used to
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obtain the eigenvalues En(t) and eigenvectors |n(t)⟩ at every time step of the simulation. The emitter
time evolution operator is then evaluated:

Ul(t+∆t) =

{∑
n

e−iEn(t)∆t/h̄n(t)⟩⟨n(t)|

}
Ul(t) (12)

and is used to obtain the dipole matrix. The Fourier transform of the latter is computed to obtain the line
shape function, as is done in SimU (cf. Equations (10) and (11)).

2.2. The Models

The main difficulty in introducing the ion dynamics in the Stark line shape calculations is to
develop a model that provides a sufficiently accurate solution of the evolution Equation (2) assuming
an idealized stochastic process that conserves the statistical properties of the “real” interaction between
the microfields and the radiating atom.

A successful model developed for neutral emitters—the model microfield method (MMM), due
to Brissaud and Frisch [32,33]—involves stochastic fields that are constant in a given time interval
and suddenly jump from one value to the next one at random times. The amplitudes of the field
sequences are determined in order to be consistent with the static properties of the microfield, i.e.,
the static-field probability distribution Q(F). The jumping frequency ν(F) has to be chosen properly
in order to reproduce the dynamics properties of the microfields represented by their autocorrelation
function < F(t) · F(0) >. In QuantSt.MMM, MMM (for ions) is combined with a quantum-statistical
approach to calculate pressure broadening due to plasma electrons. The perturbation by electrons is
considered to second order in the potential [34,35].

MELS and MERL are based upon the BID model. The latter derives from the MMM, but its
formulation is based on statistical mechanics [36] and provides a unified description of radiative and
transport properties for charged emitters [20]. The stochastic line shape is written as:

Id(ω) = − 1

π
Im ≪ d†|

∫
dFQ(Fi)GBID(ω,Fi)

1 + iν(ω)
∫
dFQ(Fi)GBID(ω,Fi)

|dρ0 ≫ (13)

in which the resolvent is given by:

GBID(ω,Fi) = (ω − L0 + d · Fi − iν(ω))−1 (14)

The jumping frequency ν(ω) is chosen as:

ν(ω) =
ν0

1 + iωτ
. (15)

where the two parameters ν0 and τ are defined in this model by the low- and high-frequency limits of
the momentum autocorrelation function. Here, τ is assumed to be null.

Another approach is the frequency fluctuation model (FFM), on which the PPP code and, recently,
the QC-FFM code rely. The latter is a hybrid model using the quasi-contiguous approximation [37]
for H-like transitions and the FFM for modeling the microfield dynamics effect. The FFM relies on a
different idealization of the stochastic process than MMM and BID. Here, the quantum system perturbed
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by a time-dependent microfield behaves like a set of field-dressed two-level transitions (SDT) subject
to a collision-type mixing process. More precisely, the fluctuation mechanism of these SDT obeys a
stationary Markov process defined by the instantaneous probability of states pj = aj/

∑
k ak (aj being

the intensity of the SDT, j) and the transition rates between these states Wk,j = −Γjδk,j +Wk,j , where
Γk,j = νδi,j and Wk,j = νpj .

The typical fluctuation rate νFFM of the electric field, given by Equation (5), is used. Working in the
Liouville space of the dressed two-level radiators, the line shape is written as [38]:

Id(ω) =
1

π
Re

∑
j,k

i ≪ Dk|GFFM(ω)|Djpj ≫ (16)

with the resolvent:
GFFM(ω) = (ω − Lω + iW)−1 (17)

where Lω is the Liouville operator involving the transition energies of the SDT (ωi) and Di are the matrix
elements of the dipole moment for the SDT. Due to the particular form of the matrix of transition rates
W, the dynamic line shape is written as [4]:

Id(ω) =

∑
k ak
π

Re

∑
k

pk
ν+i(ω−ωk)

1− ν
∑

k
pk

ν+i(ω−ωk)

(18)

Despite the fact that the two stochastic models lead to different functional forms, it follows that
both BID and FFM recover the static limit for νBID = 0 in Equation (14) and for νFFM = 0 in
Equation (18). In the opposite limit, both models recover the fast fluctuation limit (ν → ∞) that should
approximate the “no ions” profile. However, BID recovers the impact limit in the line center whenever
ν is large, while the FFM does not (see [39] for a more detailed discussion). We note that QC-FFM uses
the FFM approximation for ions and electrons alike. For the latter, correctly approaching the impact
approximation in the fast fluctuation limit becomes especially important. To this end, a modification to
the effective fluctuation rate was introduced:

ν̃ = ν +
ν2

ν0
(19)

where ν0 is an empirically obtained constant (for details, see [13]).
Two other models based on the collisional approach have been used, too. The ST-PST model is based

on the standard theory with a number of options. Specifically, apart from the pure ST results, ST-PST
can (and by default does) also compute the results of ST with penetrating collisions correctly accounted
for analytically [18]. In addition, an FST-FFM calculation is also done [8]: first, an Ω is determined,
exactly as described above for HSTRK_FST. Next, the FFM is applied to the field that excludes the fast,
impact part. Last, the two profiles are convolved. As a result, the impact limit is correctly built in and
recovered, hence extending the FFM validity without sacrificing its speed. Note, however, that with the
current FST implementation, which uses the completed collision assumption for the impact phase space,
the far wings are not accurate, as already discussed.

The UTPP code is devoted to the calculation of hydrogen line shapes in regimes where the impact
approximation for ions is reasonably accurate. Such a regime is attained for lines with a low principal
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quantum number in magnetic fusion experiments in the absence of Doppler broadening (Doppler-free
line shape models were required for radiation transport simulations, e.g., [40]). In UTPP, a line shape is
calculated using the following formula:

I(ω) =
1

π
Re ≪ d†| 1

s+ iL0 +K(s)
|dρ0 ≫ (20)

where s = −iω and K(s) is a collision operator calculated in a framework similar to that used in
the Voslamber unified theory (Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy), but here
adapted to ions [19]. The main advance with respect to the unified theory is that the collision operator
accounts for the finite lifetime of the atom during each collision; this lifetime yields an effective range
for the action of the microfield of the order of v/γ̄, where γ̄ is a typical matrix element of the collision
operator (see the discussion in [41]). This model (and its adaptation to electrons) does not lead to
a divergent collision operator if the Debye length is assumed infinite, which is in contrast to standard
hydrogen models (see [42]); this makes it suitable for the presented cases, provided the perturbing species
under consideration is strongly dynamic.

3. Comparisons and Discussion

To test the accuracy of the different numerical codes based either on stochastic and collisional models
or numerical simulations, calculations for standardized case problems were carried out and analyzed [5].
A preselected set of transitions on a grid of electron densities (ne) and temperatures (T = Te = Ti)
have been proposed, and for each case, the atomic and plasma models have been specified. In this way,
various contributions that can affect the Stark broadened line shape, such as the influence of particle
correlations on electric microfields, the effects of external fields, the high-n merging with continuum or
the satellite broadening, have been investigated. For the present purpose, we will only focus on cases
where the ion dynamics effect was studied.

3.1. Hydrogen Lyman-α and Lyman-β Lines

The following examples consider the hydrogen Lyman-α and Lyman-β lines in an ideal plasma
consisting of protons for electron densities ne = 1017 − 1019 cm−3 and temperatures T = 1 − 100 eV.
These cases are not necessarily practical, but permit basic comparisons to assess the influence of ion
dynamics on the line profiles. Here, only pure ionic linear Stark effect is considered (∆n ̸= 0 interactions
are ignored) and the fine structure is not taken into account. The concept of ideal plasma means that
unscreened particles moving along straight path trajectories are considered in the numerical simulations,
and the Holtsmark static-field distribution function [22] is used in the models.

An overall comparison of the results is presented in Figure 1. For each subcase (determined by a
combination of (ne, T )) and for each code, ratios between the full-width at half-maximum (FWHM) and
an average of FWHM of all submitted results have been evaluated [5]:

Ri =
FWHM

< FWHM >
. (21)
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The graph is divided in two regions: the left side corresponds to results for the Lyman-α line and
the right side to the Lyman-β line. Each region is divided into three sub-regions that correspond to the
three densities chosen. Finally, in each sub-region, each set of results corresponds to the temperatures,
T = 1, 10, 100 eV, respectively. For the Lyman-α case, the results present a large dispersion, deviating
from the average by more than a factor of five in each direction. In contrast, the scatter for the Lyman-β
shows a rather good agreement between the codes. In fact, these two lines present a completely different
behavior concerning the ion dynamics effect.

Figure 1. Overall comparison of the workshop results of the ion dynamics effect on
Lyman-α and -β hydrogen lines. For each subcase, i.e., different pairs of (ne, T ), the scatter
of ratios between the different results and an average value is plotted. The different symbols
correspond to: (black dot) SimU; (red square) UTPP; (blue triangle) PPP; (blue asterisk)
Xenomorph; (cyan open triangle) HSTRK; (cyan triangle) HSTRK_FST; (red diamond)
ER-simulation; (green circle) QuantST.MMM; (black cross) QC-FFM.
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3.1.1. The Lyman-α Line

The static Stark effect of the Lyman-α line (as all the ∆n = n − n′ = 1 lines, where n and n′ are
the principal quantum number of the upper and lower states, respectively) features a strong unshifted
component that is highly sensitive to the ion dynamics effect. Thus, even though the Lyman-α line is the
simplest case from the atomic structure point of view, it presents a non-trivial Stark-broadening behavior.

In Figure 2, only results from the numerical simulations are plotted for the sake of clarity. One sees
that in the range of 1 to 100 eV, the simulations either predict that the width increases when the plasma
temperature increases (for the fixed density ne = 1019 cm−3, they present a temperature dependency
as ∼T 1/3) or predict that the width is mostly insensitive to the temperature’s rise (for the fixed density
ne = 1017 cm−3). Concerning the dependence on the plasma density, the width, which is mainly due to
the width of the central component for T = 1 eV, increases as n1/3

e . For T = 100 eV, the results show a
n
2/3
e dependence, corresponding to the quasi-static behavior of the lateral components [2]. We mention,

however, that the cutoff of the Coulomb interaction at a finite box size may not accurately reproduce an
ideal plasma [42].
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Figure 2. Lyman-α ion FWHMs as a function of (a) of T at fixed densities and (b) of ne

at fixed temperatures. The ideal, one-component plasma consisting of protons is assumed.
Only results from numerical simulations are presented: (red circle) ER-simulation; (blue
square) HSTRK; (black dot) SimU; (green asterisk) Xenomorph.
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In general, the highest temperature results in the best agreement among simulation codes, for all
densities. For lower temperature differences are more discernible, with the most discernible being the
appearance of shoulders in ER-simulation and SimU for the highest density and lowest temperature and
the lack of such shoulders in HSTRK. This is a general trend at the lowest temperature of 1 eV for all
densities, with HSTRK producing significantly larger widths than both ER-simulation and SimU.

The dispersion of the results of the various models demonstrates the difficulties in accurately treating
the ion dynamics effect (see Figure 3). In every studied case, the PPP displays a weaker ion dynamics
effect on this line, probably due to an incomplete description of this effect on the central component.
The FFM mixes the unshifted components with the Stark-shifted components with a unique fluctuation
rate. Yet, the unshifted components are not sensitive to the microfield intensity, but only to its rotation,
whereas the Stark-shifted components are sensitive to the microfield vibration [43]. A more detailed
discussion on the influence of the microfield directionality in the line shape is presented in a separate
study [44].

Concerning the description of the ion dynamics effect in terms of microfields mixing, the
QuantST.MMM results compare less favorably to the simulations, especially in the far wings.

As already discussed, the far wings of HSTRK_FST are not reliable in this version, due to the
complete collision assumption used in the computation of the impact part. This is an artifact of this
assumption rather than an inherent limitation of the method.

The UTPP code yields a line width systematically larger than the results obtained from other codes or
models and, in particular, the results from numerical simulations. If the latter give reference profiles, this
result is expected in general, because the plasma conditions are such that static effects with simultaneous
strong collisions are important. However, the application of the UTPP to the electron broadening (not
presented here) also indicates a significant discrepancy, with an overestimate of the numerical simulation
results by a factor of two. It has been suggested that this discrepancy stems from the fact that the
simulations that use a box actually miss a significant contribution to the line broadening, due to the far
perturbers, namely, those inside the v/γ̄ sphere, but outside the simulation box. It is quite difficult to test
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this argument by enlarging the simulation box up to v/γ̄, because this would imply a very large number
of particles (up to several billions). An adaptation of UTPP able to account for a plasma of finite size
has been performed and has led to a line shape in good agreement with the simulations [42]. This could
suggest that an artificial setting of an infinite Debye length in the numerical simulations able to work
with an infinite Debye length requires a careful interpretation of the results.

Figure 3. Lyman-α line shape in ideal ionic one component plasma (OCP) calculated
for (a) the more dynamical regime (ne = 1017 cm−3 and T = 100 eV) and (b) the
more static regime (ne = 1019 cm−3 and T = 1 eV): SimU (black dash); ER-simulation
(red dash); HSTRK_FST (blue dot-dash); PPP (solid cyan); QuantST.MMM (solid purple);
UTPP (solid green).
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3.1.2. The Lyman-β Line

The static profile of the Lyman-β line (as all of the ∆n = 2 lines) normally shows a dip at the line
center. One sees in Figure 4 that, due to the ion dynamics effect, the simulations fill this dip, and the
width increases with increasing temperature. This trend is seen for plasma conditions that correspond
to typical microfield fluctuation rate values (see Equation (5)) smaller than the splitting of the two Stark
components measured in the static case. Here, for ne = 1017 cm−3, the Stark splitting of the static line
shape is equal to 5.9 × 10−3 eV, and the typical fluctuation rate is equal to h̄ν = 6.8 × 10−4 eV and
h̄ν = 2.5× 10−3 eV for T = 1 eV and T = 10 eV, respectively. For T = 100 eV, h̄ν = 2.2× 10−2 eV,
i.e., three-times greater that the Stark splitting in the static case. The two components merge, leading to
a line shape that is narrower than the one calculated for T = 10 eV, as is seen in Figure 4a. Note that for
an infinite fluctuation rate, the line shape becomes the Dirac δ-function.

The agreement between the Lyman-β FWHM results of different codes is much better than that for
Lyman-α, as is shown in Figure 1. Nevertheless, the concept of FWHM is not really adequate for such a
line with a dip in the center. A better way to discuss the ion dynamics effect on a Lyman-β line would
be the measure of the relative dip given by:

Ddip =
Imax − Iω0

Imax

(22)
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where Imax and Iω0 are the maximum intensity and the intensity at the center of the line, respectively.
Table 1 shows the relative dip from the different codes for ne = 1017 cm−3, while the line shapes are
shown in Figure 5.

Obviously, the QC approximation, and, hence, the QC-FFM method, is inherently unable to reproduce
the central structure (a peak or a dip) of a low-n spectral line. However, the wings of such lines, as well
as entire profiles of higher-n transitions, show a very good agreement with numerical simulations [13].

Figure 4. The ion dynamics effect on the Lyman-β line for different values of T obtained
by SimU: (solid red T = 1 eV; (green dash) T = 10 eV and (blue dot-dash) T = 100 eV
at a fixed (a) ne = 1017 cm−3 and (b) ne = 1019 cm−3. The ideal one-component plasma
consisting of protons is assumed.
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Figure 5. Lyman-β line for ne = 1017 cm−3 and T = 10 eV: SimU (black dash);
ER-simulation (red dash); Xenomorph (blue dot-dash); PPP (solid cyan); QC-FFM (solid
orange); QuantST. MMM (solid purple); UTPP (solid green).
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Table 1. The relative dip (%) measured on the Lyman-β line from the different codes for
ne = 1017 cm−3.

T (eV) = 1 10 100

ER-simulation 75 44 10

SimU 56 19 0

Xenomorph 56 14 /

PPP 70 31 0

QuantSt.MMM 71 55 32

UTPP 0.6 0.6 0

3.2. Argon He-α and He-β Lines

The argon H- and He-like lines are observed in inertial confinement fusion implosion core plasmas
when a tracer amount of argon is added to the deuterium gas fill to diagnose the plasma conditions [45].
Such a diagnostic relies on the temperature sensitivity of the satellite line;s relative intensity to the
resonance one and the density dependence in the Stark broadening of both satellite and resonance line
profiles [46]. Moreover, they are sensitive to the ion dynamics effects and present a challenge for
theoretical models [47]. We only focus here on the He-α and He-β lines. A specific study of the effect
of satellite line shapes on the He-β line can be found elsewhere [48].

Two electron densities, ne = 5 × 1023 cm−3 and ne = 2 × 1024 cm−3, and a plasma temperature
of T = 1 keV were selected for this comparison. Plasma ions are deuterons with 0.1% Argon XVII.
The MELS and MERL (BID) and the PPP (FFM) models submitted results, and the numerical
simulation, SimU, was recently extended to describe such lines. Here, the simulation accounts for all
interactions; no artificial cutoff arises as for the ideal case conditions. We consider it as a reference.

Figure 6 displays the He-α profiles calculated with the PPP code within the quasi-static
approximation. For clarity, results from MELS are not plotted here, but the agreement between the two
codes is very good. The small differences observed between both codes are explained by the difference in
the electron broadening treatment (the impact approximation is used in PPP, while a frequency dependent
collision operator is used in MELS). The quasi-static profile is the superimposition of a strong intensity
component, which corresponds to the 1s2p 1P1 − 1s2 1S0 resonance transition, and a weak intensity
component, which corresponds to the 1s2p 3P1 − 1s2 1S0 intercombination transition. The pure electron
broadened profiles are plotted for each component for a better understanding of the ionic Stark effect on
the line shapes. Both components display a pronounced quadratic Stark effect in their “blue” wing, and
forbidden lines appear on top of their “red” wing.

Concerning the ion dynamics effect, BID and FFM show a different behavior. BID profiles present a
more pronounced deviation relative to the static calculation than the FFM. Figures 7 and 8 illustrate this
for the two densities. These discrepancies cannot be explained by the use of a different fluctuation rate
in both models. A specific study using the same fluctuation rate for both models shows that the BID and
FFM are in good agreement for varying values of this parameter for the resonance line, but not for the
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intercombination line [39]. Figure 9 shows this difference using both models with the same fluctuation
rate. The difference seen on the forbidden component of the intercombination line might be due to a
numerical inaccuracy, because of the very weak value of its intensity.

Moreover, numerical simulation results from the SimU code do not discriminate between the
stochastic models. For example, in Figure 9, both models agree with the simulation on the allowed
transitions, but not on the forbidden transitions. This might be due to a different dynamics between
strong microfields, which are emphasized by the quadratic Stark effect of the allowed transitions, and
weak microfields, which are the cause of the linear Stark effect of the forbidden transitions.

Figure 6. The He-α line calculated within the quasi-static approximation for T = 1 keV
and ne = 2 × 1024 cm−3. (Black line) the entire profile; (blue line) resonant line profile;
(red line) intercombination line profile. The pure electron-broadened profiles are plotted in
dashed lines for each component.
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Figure 7. The He-α line for T = 1 keV and ne = 5 × 1023 cm−3: static ions MELS (grey
dash); ion dynamics BID (solid red); FFM (solid blue) and SimU (black dot).
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Figure 8. The He-α line for T = 1 keV and ne = 2 × 1024 cm−3: static ions (grey dash);
ion dynamics BID (solid red); FFM (solid blue); and SimU (black dot).
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Figure 9. The He-α line for T = 1 keV and ne = 2× 1024 cm−3: (a) resonance line and (b)
intercombination line. Static ions MELS (red dash) and PPP (blue dash); ion dynamics BID
(solid red); FFM (solid blue); and SimU (black dot).
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In order to explain these differences, a specific study on the pure ion-broadened profiles was carried
out. As both resonance and intercombination lines present similar atomic systems, we will only focus
the discussion of the resonance line. Figure 10 shows FFM profiles for different fluctuation rates and
the SimU profile. It seems that different values of ν are needed to reproduce different portions of the
simulated profile. A lower fluctuation rate has to be used to fit the forbidden component, whereas a
higher ν is needed to reproduce the allowed component. This can be interpreted as weak and strong
microfields not producing the same dynamics effect on the line shape.
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Figure 10. The He-α line, the strong component for T = 1 keV and ne = 5 × 1023 cm−3:
SimU (black circles); FFM with ν = 3 eV (solid blue); ν = 5.62 eV (solid red); and
ν = 8 eV (solid black).
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Finally, the He-β line is presented in Figure 11. At the chosen plasma conditions, as the Stark splitting
of the He-β quasi-static line shape is greater than the fluctuation rate and the electron width is larger,
the ion dynamics effect is less pronounced than on the He-α. Figure 11 shows SimU, BID and FFM
in rather good agreement relative to the discrepancies of their quasi-static profiles. The measure of the
dynamics-to-static relative depth is defined by:

Dd−s =
Idyn(ω0)− Istat(ω0)

Idyn(ω0)
(23)

There is a fairly good agreement between the BID and the FFM (see Table 2).

Figure 11. The He-β line for T = 1 keV and (a) ne = 5×1023 cm−3; (b) ne = 2×1024 cm−3.
Static ions: MERL (red dot), PPP (blue dot); SimU (black dot); BID (solid red); FFM
(solid blue).
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Table 2. Dynamics-to-static relative dip (%) measured on the argon He-β line for
T = 1 keV.

Models BID FFM

Ne = 5× 1023 cm−3 58 57

Ne = 1× 1024 cm−3 50 51

Ne = 2× 1024 cm−3 47 48

4. Conclusions

Line shape calculations from different numerical codes that account for the ion dynamics effect were
presented. To test the accuracy of the different codes, standardized case problems have been chosen
and a systematic cross-comparison has been done. Results from four numerical simulations based on
different algorithms and seven models relying on either stochastic or collisional processes, have been
then submitted.

Surprisingly, the results obtained on the hydrogen Lyman-α line in an ideal OCP plasma consisting of
protons presents a large dispersion. While the numerical simulations show a relatively good agreement
between each other, the FFM and MMM models systematically display a weaker width than the averaged
results. This can be explained by an incomplete description of the ion dynamics effect on the central
component of this line. The detailed study on the influence of the microfields directionality in the line
shape presented in this volume, [44] or other methods discussed here can help improve the modeling of
lines with unshifted components. The overestimate of the UTPP code based on a collisional approach is
explained by an incomplete description of ion static effects. The results obtained on the H Lyman-β line
present a better agreement between all codes.

Concerning the ion dynamics effect on the argon He-α and -β lines, BID and FFM show a different
behavior that has been attributed, up to now, to numerical inaccuracies, due to the very weak value of the
line intensities. The recently developed numerical simulation code, SimU, could not help discriminate
between the two models, but highlighted another problem: it seems that different values of fluctuation
rates have to be used to reproduce different portions of the simulated profile. As both the linear and
quadratic Stark effect, which are linked to the weak and strong values of microfields, respectively,
are involved in producing the shape of this line, one can wonder if a frequency- (or field-) dependent
fluctuation rate is needed to give a better description of ion dynamics on this line.
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