Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol

Juan C. López-Linares, Mónica Coca, Pedro E. Plaza, Susana Lucas, María Teresa García-Cubero

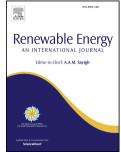
PII: S0960-1481(22)01734-7

DOI: https://doi.org/10.1016/j.renene.2022.11.093

Reference: RENE 18038

To appear in: Renewable Energy

Received Date: 21 June 2022


Revised Date: 11 October 2022

Accepted Date: 21 November 2022

Please cite this article as: López-Linares JC, Coca Mó, Plaza PE, Lucas S, García-Cubero MaríTeresa, Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol, *Renewable Energy* (2022), doi: https://doi.org/10.1016/j.renene.2022.11.093.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

CRediT author statement

Juan Carlos López-Linares: Methodology; Investigation; Writing-original draft. Mónica Coca: Conceptualization; Supervision, Writing - Review & Editing; Project administration; Funding acquisition. Pedro E. Plaza: Methodology; Investigation. M.Teresa García-Cubero: Methodology; Funding acquisition; Project administration. Susana Lucas: Conceptualization; Supervision; Writing - Review & Editing; Funding acquisition.

Journal

1	Waste-to-fuel technologies for the bioconversion of carrot discards into biobutanol
2	Juan C. López-Linares ^{a,b,*} , Mónica Coca ^{a,b} , Pedro E. Plaza ^{a,b} , Susana Lucas ^{a,b} , María
3	Teresa García-Cubero ^{a,b}
4	^a Institute of Sustainable Processes. Dr. Mergelina s/n, 47011, Valladolid,Spain
5	^b Department of Chemical Engineering and Environmental Technology, School of
6	Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid,
7	Spain
8	*Corresponding author e-mail address: juancarlos.lopez.linares@uva.es
9	ABSTRACT
10	Carrot discard was evaluated as a raw material for acetone-butanol-ethanol (ABE)
11	fermentation. Different strategies based on hydrothermal pretreatment and/or enzymatic
12	hydrolysis were compared for biobutanol production from carrot discard pulp. In
13	addition, the use of different types of enzymes and diverse enzyme mixtures were
14	evaluated. In this way, total sugar recoveries of up to 76%, and butanol and ABE
15	concentrations of 7.4 and 11.5 g/L, respectively (74 g butanol and 115 g ABE/kg carrot
16	pulp), were achieved when the carrot discard pulp was enzymatically hydrolyzed,
17	without pretreatment, using a mixture of enzymes of Cellic CTec2 and Viscozyme L at
18	a dosage of 0.1 and 0.2 g/g, respectively. When a hydrothermal pretreatment was
19	applied, a total sugar recovery of 88%, 6.9 g/L butanol and 10.1 g/L ABE (69 g butanol
20	and 101 g ABE/kg carrot pulp) were attained using the same mixture of enzymes. In
21	this way, no hydrothermal pretreatment would be necessary to produce ABE from carrot
22	discard, which is very interesting for the profitability of the process. Furthermore, the
23	carrot discard juice yielded 6.4 and 9 g/L butanol and ABE, respectively, showing that
24	all the carrot discards could be used for ABE production.

Keywords: carrot discard; hydrothermal pretreatment; enzymatic hydrolysis; biofuels;
biobutanol; *Clostridium beijerinckii*.

27

28 **1. Introduction**

One of the most important economic sectors in Spain is the agro-food industry. The 29 fruit and vegetable sector contributes 1.7% of Spain's gross domestic product (GDP) 30 31 and is responsible for up to 300,000 jobs. In addition, Spain is regarded as the first 32 country in the EU in the production of fruit and vegetables, generating up to 28 million tons per year (Mt/y) (25% of European production), while worldwide it ranks sixth [1]. 33 34 As a result of this activity, a great amount of organic residue is obtained, such as surplus, non-conformity fruit and vegetables, as well as by-products generated in the 35 processing activities [2]. These residues have in common a high content in organic 36 37 matter and a perishable character that makes their valorization difficult. Although fruit and vegetable residues can be used for animal feed, this application has some 38 39 limitations; for instance, there are some residues which cannot be taken by some 40 animals and some diseases could be transmitted due to the presence of toxic substances. The high transportation and conservation costs usually make this alternative unfeasible 41 42 [3]. On the other hand, dumping fruit and vegetable waste in landfills is associated with the production of greenhouse gases (CH4, CO2), due to the degradation of the organic 43 matter under anaerobic conditions. Methane from landfills accounts for about 800 44 million tons of CO₂-equivent and is the third largest source of methane emissions [3]. 45 46 The Directive (EU) 2018/850 aims to ensure a progressive reduction in the landfilling of 47 biodegradable waste, especially that which is suitable for recycling or recovery. Therefore, in order to improve the efficiency of the food sector and achieve a circular 48 49 economy, it is necessary to convert fruit and vegetable residues into a resource.

Due to the interesting composition of this type of residue (carbohydrates, pectin, 50 lipids, proteins, phytochemicals, and none or very low lignin content) [4–6], fruit and 51 vegetable residues could have a great potential for the production of such high value-52 added chemicals as bioactive compounds (polyphenols, polysaccharides, proteins) [7], 53 commodity chemicals, and/or biofuels [8]. 54 Biobutanol is considered a promising advanced biofuel due to its high energy 55 density, low vapor pressure, and its lower volatility, explosiveness, hygroscopicity and 56 solubility in water compared to bioethanol [9]. Moreover, biobutanol could directly 57 replace gasoline, thus also being regarded as a drop-in-fuel [10]. What is more, it can 58 59 also be used as a solvent and a chemical commodity (for instance, in varnish, lac, or in 60 the pharmaceutical and food industries, among others) [11,12]. Biobutanol production can therefore be very interesting. According to Ibrahim et al. [13], around 5 million tons 61 62 of biobutanol are generated worldwide, its price being about 0.9-1.4 USD/kg. Butanol-producing microorganisms are not able to directly ferment carbohydrates in 63 agro-industrial biomass; it must first undergo a pretreatment to improve the 64 saccharification of the complex polysaccharides to render fermentable sugars. In this 65 way, biobutanol could be produced biologically from fruit and vegetable residues 66 67 through a process which involves three main stages: pretreatment and enzymatic hydrolysis to release the fermentable sugars, and acetone-butanol-ethanol (ABE) 68 fermentation by Clostridia strains; this process being carried out anaerobically [14]. It is 69 70 worth mentioning that the pretreatment is the more expensive and one of the most important stages of the process, since it is required to disrupt the structure of the organic 71 72 waste, dividing its different components and enhancing the access of the enzymes to the 73 glucan in the subsequent enzymatic hydrolysis stage [15]. In this context, there is a 74 great variety of pretreatments, such as hydrothermal, microwave, dilute acid, alkaline,

75 organosolv or biological, among others [16,17]. Hydrothermal processing or 76 autohydrolysis is considered a sustainable and environmentally friendly process [18]. It is based on the application of water as a solvent at high temperature and pressure ranges 77 to generate hydronium ions that cause the dissolution of the hemicelluloses. The 78 advantages of autohydrolysis include the requirement of no chemicals other than water, 79 its non-corrosivity to equipment, a higher enzymatic hydrolysis rate, and milder reaction 80 conditions [19]. Hydrothermal processing has proved to be efficient as a pretreatment 81 for the production of biobutanol from potato peel [20], apple pomace [21] and tomato 82 waste [22]. 83

The carrot is one of the most widely produced vegetables in the world. Its global 84 85 annual production is estimated to be 36 Mt, of which 0.4 Mt were produced in Spain in 2020 [23]. Approximately 25-30% of carrots are discarded because they do not meet 86 87 market specifications due to physical defects [24]. Carrot discards could be valorized through recovery of cellulose (used, for example, to obtain nanofibrillated cellulose and 88 nanocrystalline cellulose, which are employed to make films), hemicellulose (mainly 89 arabinogalactans), pectins, and carotenoids [25]. Although it could be a valuable 90 91 feedstock for the production of biofuels (such as bioethanol) by fermentation of free 92 sugars and structural carbohydrates [26], to the best of our knowledge, the production of 93 butanol has not previously been reported.

The objective of this study was to analyze the production of biobutanol from carrot discard, evaluating the different alternatives for the efficient saccharification of carrot discard pulp. Diverse strategies based on hydrothermal pretreatment and/or enzymatic hydrolysis were compared to evaluate the recovery of fermentable sugars and the global butanol and ABE yields obtained after the fermentation of hydrolysates with *Clostridium beijerinckii*, selecting the most suitable strategy for valorizing carrot

discard as a feedstock for biobutanol production. The production of ABE from carrotdiscard juice was also evaluated.

102

103 2. Materials and Methods

104 2.1. Raw material

105 Carrot discards (CD) were kindly donated by Horcaol, a vegetable company located

in Olmedo (Valladolid, Spain). The particle size of carrot discards was reduced to 1-3

107 mm with a domestic grinder and stored at 4 °C before being used. The CD were

108 processed by a juice extractor (Kenwood JMP-400/WH) resulting in two fractions: a

109 liquid fraction (juice from CD, CDJ) rich in free sugars, which was directly fermented

to produce ABE; and a solid fraction (carrot discard pulp, CDP; 73% of humidity),

111 which was subjected to different process alternatives based on a hydrothermal process

and/or enzymatic hydrolysis before ABE fermentation (Figure 1). All experimental runs

113 were performed in duplicate and mean values and standard deviation were calculated.

114 2.2. Hydrothermal pretreatment

115 The hydrothermal pretreatment of the CDP was carried out in an autoclave (Model

116 MED-12, Selecta, Barcelona, Spain) at 121 °C for 15 min, using 1000 mL ISO bottles at

a CDP concentration of 10% w/w. The slurry attained after pretreatment was either

directly fed to ABE fermentation (Figure 1, Process (b)) or subjected to enzymatic

119 hydrolysis followed by ABE fermentation (Figure 1, Process (c)).

120 2.3. Enzymatic hydrolysis

121 The enzymatic hydrolysis was carried out in 100 mL Erlenmeyer flasks in an orbital

- shaker (Optic Ivymen Systems, Comecta, Spain) using CDP as substrate (Figure 1,
- 123 Process (a)) or the slurry from the CDP pretreatment (Figure 1, Process (c)). The
- enzymatic hydrolysis conditions were: substrate loading 10% (w/w), 50 °C, 150 rpm, 24

h, and pH 4.8, employing water as the solvent (the initial pH was adjusted to 4.8 when 125 necessary with NaOH 10 M or H₂SO₄ 1 M). The efficiencies for saccharification of the 126 127 three enzymes, Cellic CTec2 (C), Viscozyme L (V), and Shearzyme (S), were compared. The enzymes were added individually or combined and were kindly donated 128 129 by Novozymes A/S (Denmark). Samples were taken at 2, 4, 8 and 24 h, and centrifuged (Mini Spin, Eppendorf), and their sugar and inhibitor content were analyzed. In order to 130 131 consider the sugar content in commercial enzymes, tests were carried out with enzyme blanks. Monosaccharide recoveries in enzymatic hydrolysis were calculated regarding 132

the total monosaccharide content in CDP.

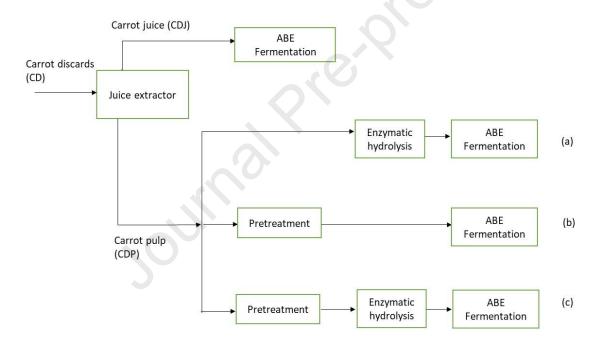


Figure 1. Configurations for the valorization of carrot discards by ABE fermentation;
(a) enzymatic hydrolysis of carrot discard pulp and fermentation; (b) hydrothermal
pretreatment of carrot discard pulp and fermentation of the slurry; (c) hydrothermal
pretreatment of carrot discard pulp, enzymatic hydrolysis of the slurry and fermentation.

139

134

140 2.4. Microorganism

The microorganism, Clostridium beijerinckii DSM 6422, was obtained from the 141 German collection of microorganisms (DSMZ, Leibniz, Germany). The strain was 142 143 maintained on Reinforced Clostridial Medium (RCM) in 100 mL serum bottles in spore form and cold stored at 4 °C under anaerobic conditions. The inoculum was grown in 144 145 100 mL serum bottles with rubber septum under anaerobic conditions, using RCM and flushed with free O₂ nitrogen. A thermal shock was performed at 80 °C for 2 min, then 146 147 at 4 °C for another 2 min and repeated twice to stimulate the germination of the spores. The inoculum was grown in an orbital shaker (Optic Ivymen Systems, Comecta, Spain) 148 at 35 °C and 135 rpm for 48 h. 149

150

151 2.5. ABE fermentation

152 The CDJ and CDP hydrolysates obtained after the different saccharification

alternatives were subjected to ABE fermentation with C. beijerinckii (Figure 1). ABE

154 fermentations were carried out in 100 mL serum bottles at 35 °C, initial pH of 5.5

155 (without pH adjustment during the fermentation process) and 50 rpm for 48 h under

anaerobic conditions (flushing O_2 free nitrogen into the serum bottles before

157 inoculation). The fermentation media were pasteurized at 90 °C for 15 min, and vitamin,

salt and acetate buffer solutions were also added under the same conditions as described

by López-Linares et al. [27]. The inoculum was also added at a concentration of 10%

160 (v/v). Samples were taken after 48 h, centrifuged (Mini Spin, Eppendorf), and the sugar

and ABE (acetone, butanol and ethanol) contents were determined.

162 2.6. Analytical methods

163 The National Renewable Energy Laboratory (NREL) analytical methodology was

applied to determine the content of extractives [28], ash [29], structural carbohydrates

165 [30], and lignin [30] in CD. High Performance Liquid Chromatography (HPLC) was the

technique employed to analyze the content of galacturonic acid, sugars (glucose,

167 galactose, fructose, and arabinose) and inhibitors (acetic and formic acids, furfural and

168 hydroxymethylfurfural (HMF)), using an Aminex HPX-87H column and a refractive

index detector (Waters 2414). 0.01 N H₂SO₄ (0.6 mL/min) was used as the mobile

170 phase, at 30 °C (solvents) or 60 °C (sugars and inhibitors). Samples were centrifuged

171 (13400 rpm, 10 min) and filtered (using $0.2 \mu m$ nylon filters) before being measured by

172 HPLC.

173

174 **3. Results and discussion**

175 *3.1. Characterization of the raw material*

The carrot discards were processed using a juice extractor, resulting in a juice and a 176 solid fraction (pulp). The carrot juice was rich in carbohydrates, with up to 33.7 g/L 177 178 total sugars (glucose, 16.6 g/L; and fructose, 17.1 g/L), thus being of great interest for butanol production by ABE fermentation. The pulp fraction presented the following 179 composition (% w/w, dry matter): glucan, 28.3; hemicellulose, 16.5 (galactan, 13.5; 180 arabinan, 3.0); extractives, 43.1 (water extractives, 33.6; ethanol extractives, 9.5; 181 182 glucose in water extractives, 1.3; galactose in water extractives, 1.3); ash, 5.0; insoluble 183 acid lignin, 1.8; soluble acid lignin, 0.1; and protein, 1.5. 184 Regarding the CDP composition, a very high extractive content (43.1%) was found compared to other agro-industrial residues, such as carrot press cake (17%) [31], apple 185 186 industry waste (3.1%) [32] and spent coffee grounds (12.4%) [33]. In addition, it is worth highlighting that a very low presence of lignin (insoluble and soluble) was 187 188 detected in the CDP, unlike other fruit and vegetable residues: for example, carrot press cake, 6.9% [31]; apple industry waste, 23.5% [32]; pea pod waste, 21.6% [34]; and 189 spent coffee grounds, 39.2% lignin [33]). So CDP may be enzymatically hydrolyzed 190

without a pretreatment process, which is very important for the profitability of the 191 192 global butanol production process from an agro-industrial residue. Moreover, CDP 193 contains a high total carbohydrate content, 47.5% (44.9 and 2.6% of structural and nonstructural carbohydrates, respectively), mainly glucose and galactose. Considering 194 195 hemicellulosic sugars in CDP, there is a high presence of galactose, which involves 81.8% of the total hemicellulosic sugars. 196 197 On the other hand, by comparing the composition of the CDP observed in this work with the composition of carrot discards previously reported in the literature [26,31,35], 198 the residue studied in this work has a similar or relatively lower carbohydrate content, a 199 200 higher extractive content and a similar ash content. Ramos-Andrés et al. [25] 201 determined the composition of CDP, reporting a much higher content of water 202 extractives (63.9% vs 33.6%) and lignin (7.8 vs 1.9%), but a lower cellulose (10.7 vs 203 28.3%) and hemicellulose (8.4 vs 16.5%) content, and a similar protein content (2.3 vs 1.5%). 204

205

206 3.2. Sugars recovery from carrot discard pulp

207 3.2.1. Configuration (a): enzymatic hydrolysis of CDP

In order to enzymatically hydrolyze pulp from carrot discard, different enzymatic

209 hydrolysis tests were carried out (Figure 1, configuration (a)), using different types of

enzymes (Cellic CTec2, Viscozyme L, and Shearzyme, at 0.15, 0.3 and 0.3 g/g

substrate, respectively) as well as diverse mixtures (g/g substrate) of Cellic CTec2 and

212 Viscozyme L enzymes (C+V (0.075+0.15), C+V (0.1+0.1), C+V (0.1+0.2), and C+V

213 (0.15+0.3)).

First of all, regarding the use of individual enzymes (C, V and S, at 0.15, 0.3 and 0.3

215 g/g substrate, respectively), as can be seen in Figure 2a, the highest monosaccharides

216	content in enzymatic hydrolysates were achieved at 24 h of enzymatic hydrolysis when
217	the Viscozyme L enzyme was used, obtaining an enzymatic hydrolysate with up to 46.3
218	g/L of total sugars (glucose, 29.0 g/L; galactose, 13.8 g/L; and arabinose, 3.5 g/L),
219	corresponding to a total sugars recovery of 72.8% (Table 1). Cellic CTec2 led to an
220	enzymatic hydrolysate with a significantly lower sugars content, 33.6 g/L (glucose, 25.2
221	g/L; galactose, 7.3 g/L; and arabinose, 1.1 g/L) (52.8% total sugars recovery, Table 1).
222	The use of Viscozyme L led to higher recoveries of glucose, galactose and arabinose
223	than Cellic CTec2. In this context, different studies have also shown a high
224	saccharification activity for Viscozyme L when applied to different lignocellulosic
225	residues, such as seaweed biomasses [36], Okara (a soybean residue from soymilk and
226	tofu manufacture) [37] and Salix viminalis cv. Q683 (a bioenergy crop) [38]. This can
227	be due to the fact that Viscozyme L is a blend of β -glucanases (which hydrolyzes the
228	$\beta(1,3)$ - and $\beta(1,4)$ -linkages in β -D-glucans), pectinases, cellulases, hemicellulases and
229	xylanases [39,40], unlike Cellic CTec2 or Shearzyme. It is, therefore, able to
230	enzymatically hydrolyze both cellulosic and hemicellulosic sugars. However, in general,
231	a much lower monosaccharides content was attained by using the Shearzyme enzyme
232	(17.6 g/L of total sugars) (Figure 2a), with only 27.7% of total sugars recovery (Table
233	1). What is more, as shown in Figure 2a, glucose was the predominant sugar in
234	enzymatic hydrolysates, involving 63% and 75% for the V and C enzymes, respectively.
235	Furthermore, no presence of arabinose was detected when the S enzyme was used. It is
236	worth highlighting that S is a xylanase that mainly releases galactose from the
237	hemicellulosic fraction (Figure 2a).
238	
239	

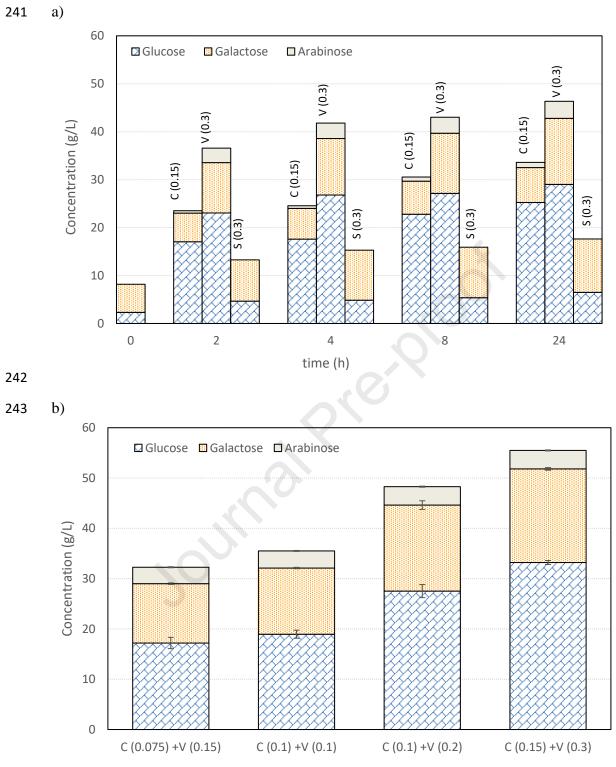


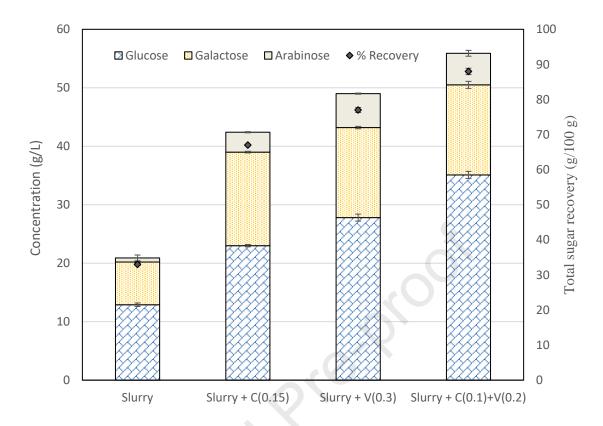
Figure 2. Concentration of monosaccharides during enzymatic hydrolysis of CDP using
(a) Cellic CTec2 (C), Viscozyme L (V) or Shearzyme (S); (b) after 24 h using mixtures
of the enzymes Cellic CTec2 and Viscozyme L. Enzyme dose in brackets (g/g DM).

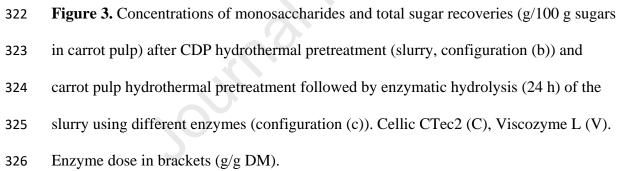
- **Table 1.** Recovery of monosaccharides (%) from carrot pulp after 24 h of enzymatic
- 250 hydrolysis. Comparison of different types and concentrations of enzymes. Cellic CTec2
- 251 (C), Viscozyme L (V), and Shearzyme (S). Enzyme dose in brackets (g/g DM).

252					
	Enzyme	Glucose	Galactose	Arabinose	Total sugars
	(g/g DM)	(%)	(%)	(%)	(%)
	C (0.15)	65.3 ± 2.8	34.4 ± 1.8	28.5 ± 6.9	52.8 ± 2.7
	V (0.3)	75.1 ± 2.9	64.9 ± 0.7	93.6 ± 0.6	72.8 ± 1.5
	S (0.3)	16.8 ± 1.3	52.5 ± 2.2	0.0 ± 0.0	27.7 ± 1.0
	C (0.075) + V (0.15)	44.5 ± 2.1	55.6 ± 0.6	86.5 ± 1.1	50.7 ± 1.0
	C(0.1) + V(0.1)	49.0 ± 3.3	62.0 ± 4.1	90.0 ± 3.1	55.8 ± 4.3
	C(0.1) + V(0.2)	71.2 ± 1.0	80.6 ± 1.2	96.6 ± 0.4	75.8 ± 1.0
	C (0.15) + V (0.3)	85.9 ± 0.1	87.7 ± 0.2	96.9 ± 1.0	87.2 ± 0.2
253					

254	Figure 2a also shows the time courses of the monosaccharides content on enzymatic
255	hydrolysates obtained using individual enzymes (C, V and S, at 0.15, 0.3 and 0.3 g/g
256	substrate, respectively). As can be seen, Viscozyme L was able to hydrolyze 90% of
257	total monosaccharides in an enzymatic hydrolysis time as short as 4 h. Cellic CTec2 and
258	Shearzyme enzymes were also able to rapidly hydrolyze the monosaccharides,
259	achieving 90.3% and 82.7%, respectively, of the total monosaccharides content at 8 h of
260	enzymatic hydrolysis. In this way, it can be said that the monosaccharides in carrot
261	discard can be quickly released in enzymatic hydrolysis, unlike other agro-industrial
262	residues, such as orange peel [41], brewer's spent grain [42], lettuce residues [43], spent
263	coffee grounds [33] or oil palm empty fruit bunch [44], where up to 48 or 72 h
264	enzymatic hydrolysis were necessary, due to the higher lignin content.
265	On the other hand, considering the use of enzyme mixtures (g/g substrate) (C+V
266	(0.075+0.15), C+V (0.1+0.1), C+V (0.1+0.2), and C+V (0.15+0.3)) in the enzymatic
267	hydrolysis process (Figure 2b), the highest sugars content in enzymatic hydrolysates
268	was achieved for the mixture C+V (0.15+0.3), obtaining a total sugar concentration as
269	high as 55.5 g/L (corresponding to a total sugars recovery of 87.2% (Table 1)).

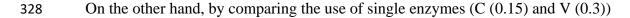
270	Moreover, it is worth mentioning that this behavior was observed for both glucose and
271	galactose sugars, while the arabinose content was similar for all the cases studied
272	(ranging between 3.3 and 3.7 g/L). In this way, the use of the C+V (0.15+0.3)) enzymes
273	mixture allows an increase of 20% and 65% to be attained in the total sugar
274	concentration compared to the use of individual V and C enzymes (using 0.3 and 0.15
275	g/g substrate, respectively) (Figure 2a). Therefore, very high sugar concentrations and
276	recoveries can be obtained by enzymatic hydrolysis from CDP without the use of any
277	pretreatment process, which is very important for the profitability of the global butanol
278	production process from agro-industrial residues (for instance, CD). Previous studies
279	have also shown that the use of a mixture of enzymes (Viscozyme L and Celluclast-1.5
280	L) is more effective than the single-enzyme treatment for the enzymatic hydrolysis of
281	red seaweed (1.2 and 8.4 U/mL, respectively) [39] and Gracilaria verrucosa (4-32
202	U/mL) [40].
282	0/IIIL) [40].
282	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without
283	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without
283 284	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45],
283 284 285	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase
283 284 285 286	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44],
283 284 285 286 287	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44], using a cocktail of Cellic CTec2 and Cellic HTec2 after 72 h enzymatic hydrolysis; and
283 284 285 286 287 288	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44], using a cocktail of Cellic CTec2 and Cellic HTec2 after 72 h enzymatic hydrolysis; and spent coffee grounds [33], using Cellic CTec2 as enzyme (15 FPU/g substrate) and 72 h
283 284 285 286 287 288 288 289	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44], using a cocktail of Cellic CTec2 and Cellic HTec2 after 72 h enzymatic hydrolysis; and spent coffee grounds [33], using Cellic CTec2 as enzyme (15 FPU/g substrate) and 72 h of enzymatic hydrolysis. Aimaretti et al. [46], employing pulp from carrot discard, were
283 284 285 286 287 288 289 290	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44], using a cocktail of Cellic CTec2 and Cellic HTec2 after 72 h enzymatic hydrolysis; and spent coffee grounds [33], using Cellic CTec2 as enzyme (15 FPU/g substrate) and 72 h of enzymatic hydrolysis. Aimaretti et al. [46], employing pulp from carrot discard, were able to attain a total sugars recovery in enzymatic hydrolysis (at 2.5 h of process) of up
283 284 285 286 287 288 289 290 291	High carbohydrate recoveries (90-100%) from enzymatic hydrolysis (without pretreatment of the raw material) were also reported from apple pulp residues [45], using Pulpzyme HC and Novozym 188 enzymes (24.7 FPU and 121.7 CbU (Cellobiase Unit)/g substrate) after 5 h enzymatic hydrolysis; oil palm empty fruit bunch fiber [44], using a cocktail of Cellic CTec2 and Cellic HTec2 after 72 h enzymatic hydrolysis; and spent coffee grounds [33], using Cellic CTec2 as enzyme (15 FPU/g substrate) and 72 h of enzymatic hydrolysis. Aimaretti et al. [46], employing pulp from carrot discard, were able to attain a total sugars recovery in enzymatic hydrolysis (at 2.5 h of process) of up to 78.5%, using the Optimase CX255L enzyme (0.05% v/v), which is a thermostable


295 3.2.2. Configurations (b) (pretreatment) and (c) (pretreatment and enzymatic


296 *hydrolysis*)

297 In addition to enzymatic hydrolysis, two different strategies to recover the carbohydrates contained in carrot discard pulp were a hydrothermal pretreatment 298 299 (Figure 1, configuration (b)) or a sequential pretreatment and enzymatic hydrolysis of pretreated CDP slurry (Figure 1, configuration (c)), in this case using different types of 300 301 single enzyme (C (0.15) and V (0.3)) as well as enzyme mixtures (C+V (0.1+0.2)). The hydrothermal pretreatment in autoclave (121 °C) employed in this work is usually used 302 303 to pretreat lignocellulosic biomass for biofuel production, such as bioethanol and 304 biobutanol. In this way, the hydrothermal pretreatment has been successfully applied to 305 sugarcane trash [48], grape marc [49], and carrot pomace [50] to produce bioethanol; as 306 well as for the production of biobutanol from potato peel [20], apple pomace [21] and 307 tomato waste [22].

308 Figure 3 shows the monosaccharide concentration achieved for both configurations ((b) and (c)). In this way, the carbohydrate concentration achieved in the pretreated 309 310 CDP slurry (configuration (b) (20.9 g/L total sugars) was much lower than those attained in configuration (c) (42.4-55.9 g/L total sugars). Moreover, the total sugars 311 312 recovery was also much higher when a sequential pretreatment and enzymatic 313 hydrolysis process of pretreated CDP slurry (configuration c) was carried out (up to 88 314 vs 33% obtained for configuration (b) (Figure 3). A low glucose yield (< 20%) was also reported for carrot peelings after dilute acid pretreatment (H₂SO₄, HNO₃, or HCl) (60 315 316 °C, 180 min and 4% acid) [35]. Procentese et al. [43] only achieved about 7 g/L of total sugars after the alkaline pretreatment (121 °C, 30 min and 200 kg/m³ NaOH) of lettuce 317 residues. These data show that an enzymatic hydrolysis is usually necessary after the 318 319 pretreatment of vegetable waste to release the fermentable sugars.



327

321

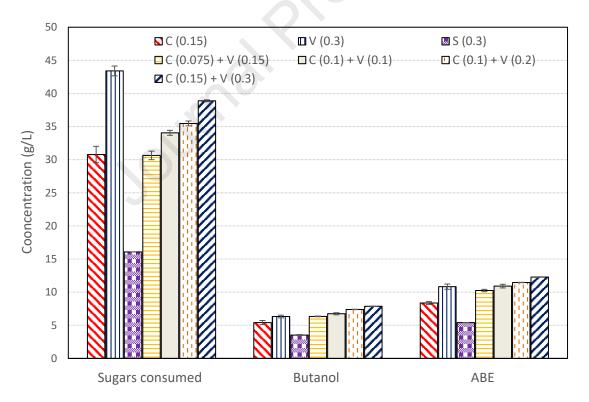
and enzyme mixtures (C+V (0.1+0.2)), as can be seen in Figure 3; the highest

330 carbohydrate concentrations were achieved when enzyme mixtures were employed

331 (55.9 g/L total sugars: 35.1 g/L glucose, 15.4 g/L galactose and 5.4 g/L arabinose). In

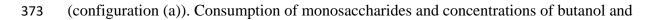
- this way, the use of enzyme mixtures (C+V (0.1+0.2)) in the enzymatic hydrolysis of
- 333 hydrothermally pretreated CDP slurry allowed the total sugars content to increase by up
- to 31.8% compared to the use of single enzymes (for example, C (0.15)). The highest

335	total sugars recovery (88%) was also obtained using enzyme mixtures (C+V (0.1+0.2)),
336	compared to the use of single enzymes (67% and 77% for C (0.15) and V (0.3),
337	respectively) (configuration c, Figure 3). Furthermore, it is worth highlighting that
338	glucose was the main sugar obtained in both configurations b and c (involving 61.7%
339	and 54.2-62.8% of total sugars, respectively). Yoon et al. [51] also reported 61.7 g total
340	sugars/100 g raw material after 24 h of enzymatic hydrolysis from NaOH and acetic
341	acid pretreated carrot pomace, using a cellulase-rich enzyme isolated from Achatina
342	<i>fulica</i> (0.25 mL/g solid).
343	Finally, by comparing the three configurations (Figure 1) studied in this work, the
344	highest total sugars concentration 55.5-55.9 g/L (87-88% total sugars recovery) was
345	obtained for configurations (a) (enzymatic hydrolysis, $C + V$ (0.15+0.3) and (c)
346	(pretreatment followed by enzymatic hydrolysis (C + V (0.1+0.2)); while only 20.9 g/L
347	(33% total sugars recovery) was attained for configuration (b) (only pretreatment).
348	Considering the presence of inhibitors, formic acid, furfural and HMF were not detected
349	in the enzymatic hydrolysates in any of the experimental runs, even when the
350	hydrothermal pretreatment was applied. The concentration of acetic acid in the
351	enzymatic hydrolysates ranged from 0.7-1 g/L, this being a beneficial compound for the
352	subsequent ABE fermentation tests. In this way, no inhibition was observed in the
353	experimental runs. Therefore, in conclusion, no hydrothermal pretreatment may be
354	necessary for the saccharification of carrot pulp. In addition, it is worth highlighting that
355	the whole slurry from carrot pulp was used in this work, which is very interesting for
356	the profitability of the process in a biorefinery context.
357	Similar results (80 and 92%, respectively) for enzymatic hydrolysis were reported


from the literature using carrot peel, but in these cases the use of a hydrothermal

pretreatment (121 °C and 60 min) [52], or sequential dilute sulfuric acid (4%, 180 min)

and steam (121°C, 15 min) pretreatment [35], was necessary. Other vegetable residues


also required the application of a pretreatment to obtain good saccharification yields.

- For instance, apple pomace (autohydrolysis, 10% solid-liquid ratio, 142.4 °C and 12
- min) [21], potato peel (autohydrolysis 10% solid-liquid ratio, 140.2 °C and 56.1 min)
- [20], and tomato pomace (hydrothermal process, 20% solid-liquid ratio, 121 °C and 20
- 365 min) [22].
- 366 3.3. Fermentation process
- 367 3.3.1. Configuration (a): enzymatic hydrolysis
- 368 The different enzymatic hydrolysates obtained in the configuration (a) were
- 369 subjected to ABE fermentation. Figure 4 shows the concentration of sugars consumed
- and the butanol and ABE concentrations produced.

372 Figure 4. ABE fermentation of the enzymatic hydrolysates obtained from CDP

ABE (g/L) after 48 h fermentation. Cellic CTec2 (C), Viscozyme L (V), Shearzyme (S).
Enzyme dose in brackets (g/g DM).

376

In this way, as can be seen, except for S (0.3), high sugar concentrations (> 30 g/L) 377 378 were used by C. beijerinckii in all cases, the sugars being consumed almost entirely in all the fermentation tests (sugar consumption 96.4-98.3%). On the other hand, also 379 380 except for the S enzyme (0.3), high butanol (5.4-7.9 g/L) and ABE (8.4-12.3 g/L) 381 concentrations were achieved for the different enzymatic hydrolysates; the highest butanol and ABE levels (7.9 and 12.3 g/L, respectively) being attained when the C+V 382 383 (0.15+0.3) enzyme mixture was employed. In addition, as can be appreciated in Table 2, in general, high butanol and ABE 384 yields (YBUT: 0.20-0.21 g/g; YABE: 0.32-0.33) and productivities (PBUT: 0.13-0.16 g/L·h; 385 386 P_{ABE} : 0.21-0.25 g/L·h) were achieved in the fermentation of the enzymatic hydrolysates obtained using mixtures of enzymes (Table 2). Therefore, it is worth highlighting that 387 up to 79 g butanol and 123 g ABE per kg carrot pulp could be achieved from CDP by 388 enzymatic hydrolysis with C+V (0.15+0.3) (Table 2). 389 390 391 Table 2. ABE fermentation of the hydrolysates obtained from carrot pulp. Butanol and 392 ABE yields (Y_{BUT} /sugars, Y_{ABE} /sugars expressed as g/g sugars consumed); butanol and

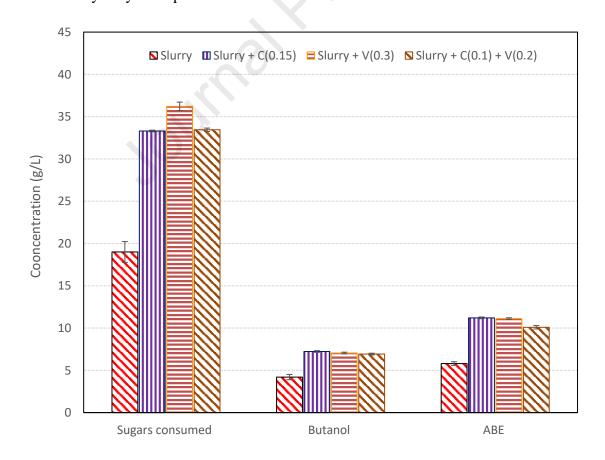
ABE productivities (expressed as $g/(L \cdot h)$ at 48 h); and butanol and ABE global yields

394 (expressed as g/kg carrot pulp (DM)). Cellic CTec2 (C), Viscozyme L (V), Shearzyme

395 (S). Enzyme dose in brackets (g/g DM).

	Y _{BUT} (g/g)	Y _{ABE} (g/g)	P_{BUT} (g/L·h)	P_{ABE} (g/L·h)	g _{BUT} /kg pulp (DM)	g _{ABE} /kg pulp (DM)
Configuration (a)						
C (0.15)	0.18	0.27	0.11	0.17	54 ± 3	84 ± 2
V (0.3)	0.15	0.25	0.13	0.22	63 ± 2	108 ± 4
S (0.3)	0.22	0.34	0.07	0.11	35 ± 1	54 ± 2

Journal Pre-proof						
C (0.075) + V (0.15)	0.21	0.33	0.13	0.21	63 ± 1	102 ± 2
C(0.1) + V(0.1)	0.20	0.32	0.14	0.23	67 ± 2	109 ± 3
C(0.1) + V(0.2)	0.21	0.32	0.15	0.24	74 ± 1	115 ± 1
C(0.15) + V(0.3)	0.20	0.32	0.16	0.25	79 ±1	123 ± 1
Configuration (b)						
Slurry	0.22	0.12	0.09	0.12	42 ± 3	58 ± 2
Configuration (c)						
Slurry $+ C (0.15)$	0.22	0.33	0.15	0.23	72 ± 2	112 ± 4
Slurry + V (0.3)	0.20	0.31	0.15	0.23	71 ± 1	111 ± 2
Slurry + C (0.1) + V (0.2)	0.21	0.30	0.14	0.21	69 ± 1	101 ± 2
200						


396

397 By comparing the results obtained in this work in the ABE fermentation of the 398 different enzymatic hydrolysates (configuration (a)) (Figure 4 and Table 2) with those 399 reported in the literature for other agro-industrial residues; López-Linares et al. [33] 400 achieved similar butanol and ABE concentrations (7.7 and 11.4 g/L, respectively), 401 yields (0.23 and 0.34 g/g, respectively) and productivities (0.160 and 0.238 g/L·h, 402 respectively) in the ABE fermentation of the enzymatic hydrolysate obtained from 403 unpretreated SCG (spent coffee grounds), using also C. beijerinckii. Therefore, no pretreatment is necessary with some agro-industrial residues (i.e., CD and SCG) in 404 405 order to obtain high butanol yields, which is an important advantage compared to the 406 conventional lignocellulosic residues. 407 3.3.2. Configurations (b) (pretreatment) and (c) (pretreatment and enzymatic 408 409 hydrolysis) 410 The slurry generated after CDP hydrothermal pretreatment (configuration (b)), as

well as the different enzymatic hydrolysates produced from sequential pretreatment and
enzymatic hydrolysis of pretreated CDP slurry (configuration (c)), were all fermented
by *C. beijerinckii*.

Figure 5 shows the concentration of sugars consumed, as well as butanol and ABE concentrations obtained during the different fermentation tests. In this way, the lowest sugar concentrations consumed (19 g/L) and the lowest butanol and ABE production

417	(4.2 and 5.8 g/L, respectively) were achieved when CDP was only hydrothermally
418	pretreated (configuration (b)) and directly fed to fermentation. Then, an ABE yield as
419	low as 0.12 g/g, and butanol and ABE productivities of only 0.09 and 0.12 g/L·h,
420	respectively, were reported in this case (Table 2). Nimbalkar et al. [34] also reported
421	butanol and ABE productions as low as 2.31 and 4.80 g/L, respectively (ABE yield =
422	0.15 g/g), from hydrothermal pretreated pea pod waste slurry (121 °C and 15 min) by C .
423	acetobutylicum B 527. On the other hand, although carrot pulp has not previously been
424	used for butanol and ABE production, Survase et al. [53] used carrot waste as a
425	supplement for ABE solvent production (9.96 g/L ABE) by C. acetobutylicum DSM
426	792, from the spent liquor of spruce wood chips, which was fractionated by SO ₂ -
427	ethanol-water, evaporation, steam stripping, liming and catalytic oxidation methods, but
428	without any enzymatic process.

430	Figure 5. ABE fermentation of the hydrolysates obtained from carrot pulp after
431	hydrothermal pretreatment (slurry, configuration (b)) and after hydrothermal
432	pretreatment and enzymatic hydrolysis of the slurry using different enzymes
433	(configuration (c)). Consumption of monosaccharides and concentrations of butanol and
434	ABE (g/L) after 48 h fermentation. Cellic CTec2 (C), Viscozyme L (V). Enzyme dose
435	in brackets (g/g DM).
436	Nevertheless, as can be seen in Figure 5, high sugar concentrations consumed (> 33.3
437	g/L) and high butanol and ABE levels (> 6.9 and 10.1 g/L, respectively) were attained
438	when CDP was both hydrothermally pretreated and enzymatically hydrolyzed
439	(configuration (c)). On the other hand, regarding the configuration (c), although the
440	highest sugar content consumed (36.2 g/L) was obtained when Viscozyme L (V (0.3))
441	was used, the butanol and ABE concentrations were similar (butanol: 6.9-7.2; and ABE:
442	10.1-11.2 g/L) for the three enzymatic hydrolysates (C (0.15), V (0.3), and C+V
443	(0.1+0.2)) (Figure 5). In this context, similar butanol and ABE yields (0.20-0.22 and
444	0.30-0.33 g/g, respectively), and butanol and ABE productivities (0.14-0.15 and 0.21-
445	0.23 g/L·h), were also observed (Table 2). In this way, considering the ABE
446	fermentation, when CDP was subjected to a pretreatment, no considerable differences
447	between the C (0.15) and V (0.3) enzymes, or even the enzyme mixtures (C+V
448	(0.1+0.2)), were appreciated (Figure 5 and Table 2).
449	By comparing the results obtained in this study for configuration (c) (sequential
450	hydrothermal pretreatment and enzymatic hydrolysis of CDP) (Figure 5 and Table 2)
451	with those reported in the literature for other agro-industrial residues, similar results
452	(about 7 g/L butanol and 10 g/L ABE) to those obtained in configuration (c) were

- 453 obtained after the autohydrolysis of potato peel (10% solid-liquid ratio, 140.2 °C and
- 454 56.1 min) [20] or tomato pomace (20% solid-liquid ratio, 121 °C and 20 min) [22],

455	enzymatic hydrolysis and fermentation using C. saccharobutylicum DSM 13864 or C.
456	beijerinckii DSM 1820, respectively. Slightly lower ABE concentrations (8.3 g/L) and
457	butanol yields (0.17 g/g) were achieved from the autohydrolysis of pretreated apple
458	pomace (10% solid-liquid ratio, 142.4 °C and 12 min) followed by the enzymatic
459	hydrolysis (15 mg Cellic CTec2/g glucan) and fermentation using C. beijerinckii CECT
460	508 [21]. Much lower butanol and ABE levels (1.1 and 1.44 g/L, respectively) were
461	obtained from lettuce residues using C. acetobutylicum DSMZ 792 [43]. Although
462	lettuce residues were pretreated under alkaline conditions and enzymatically hydrolyzed
463	by Cellic CTec2, low sugar concentrations were released, leading to considerably lower
464	butanol concentrations.
465	In short, using the configuration (c), up to 72 g butanol and 112 g ABE per kg carrot
466	pulp could be achieved from sequential hydrothermally pretreated and enzymatically
467	hydrolyzed CDP, using for instance, the Cellic CTec2 enzyme and an enzymatic
468	loading of 0.15 g/g CDP (Table 2). In this context, only 26.7 g butanol and 29.4 g ABE
469	per kg tomato pomace were obtained by C. beijerinckii DSM 6423 after hydrothermal
470	pretreatment (20% solid-liquid ratio, 121 °C and 20 min) and enzymatic hydrolysis [22].
471	López-Linares et al. [54] was also able to recover up to 81 kg butanol and 126 kg ABE
472	per ton of SCG, which was pretreated by microwave dilute sulfuric acid and
473	enzymatically hydrolyzed.
474	By comparing the three configurations analyzed in this work, it is worth highlighting
475	that the highest butanol and ABE productions (79 g butanol and 123 g ABE per kg
476	carrot pulp) were attained for the configuration (a), where CDP was only enzymatically
477	hydrolyzed (C+V (0.15+0.3)). Therefore, the results reported in this work show that no
478	hydrothermal pretreatment would be necessary for carrot pulp, unlike other agro-
479	industrial residues, such as brewer's spent grain [27], where a microwave-assisted dilute

480	acid pretreatment was required due to their higher lignin content. This fact is of great
481	interest, since it has been reported from the literature that, in general, a pretreatment
482	stage involves up to 30% of the total cost of the biofuel production process from
483	lignocellulosic residues [55].
484	Furthermore, the CDJ obtained from CD was also subjected to ABE fermentation,
485	96% of the sugars content being consumed, and resulting in 6.35 and 9.04 g/L butanol
486	and ABE, respectively. This allows the use of all the carrot discards for ABE
487	fermentation, thus proving highly interesting in a biorefinery context.
488	
489	4. Conclusions
490	Different strategies based on hydrothermal pretreatment and/or enzymatic hydrolysis
491	were evaluated for efficient biobutanol production from carrot discards by C .
492	beijerinckii. Saccharification times were considerably shorter (about 6 h) compared to
493	lignocellulosic residues with a higher lignin content. Global yields of 79 g butanol and
494	123 g ABE/kg carrot discard pulp were achieved after enzymatic hydrolysis using a
495	blend of enzymes, Cellic CTec2 and Viscozyme, at 0.15 and 0.3 g/g substrate. The
496	results demonstrate that the pretreatment step is not necessary to achieve a proper
497	saccharification of the residue, which is very interesting for the economic profitability
498	of the process. Furthermore, the carrot juice can also be used for butanol production
499	without the presence of inhibition, which is very interesting in a biorefinery context.
500	
501	Acknowledgments
502	The authors acknowledge the financial support from the Spanish Ministry of Science
503	and Innovation (project PID2020-115110RB-I00/AEI/10.13039/501100011033) and the

Junta de Castilla y León (UIC 320, VAG028G19, CLU-2017-09, CL-EI-2021-07). The

- authors would like to thank the company Horcaol (Olmedo, Spain) for supplying the
- 506 carrot discards. Juan C. López-Linares gratefully acknowledges the research grant

received from the University of Valladolid (UVa postdoctoral calls).

508

- 510 [1] MAPA, Ministry of Agriculture, Fisheries and Food (2022).
- 511 https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y-

512 hortalizas/informacion_general.aspx (accessed April 4, 2022).

- 513 [2] Probiogás (2022). http://www.probiogas.es/ (accessed April 4, 2022).
- 514 [3] I. Esparza, N. Jiménez-Moreno, F. Bimbela, C. Ancín-Azpilicueta, L.M. Gandía,
- 515 Fruit and vegetable waste management: Conventional and emerging approaches,
- 516 J. Environ. Manage. 265 (2020) 110510. doi:10.1016/j.jenvman.2020.110510.
- 517 [4] M.A. Cabas Candama, S. Duque Martinez, E.M. Cadena Chamorro, Optimization
- 518 of enzymatic pretreatments to obtain fermentable sugars from fruit and vegetable
- 519 waste, Waste and Biomass Valorization. 11 (2020) 5991–6002.
- 520 doi:10.1007/s12649-019-00821-8/tables/5.
- 521 [5] M. Güzel, Ö. Akpınar, Preparation and characterization of bacterial cellulose
- 522 produced from fruit and vegetable peels by *Komagataeibacter hansenii* GA2016,
- 523 Int. J. Biol. Macromol. 162 (2020) 1597–1604.
- 524 doi:10.1016/j.ijbiomac.2020.08.049.
- 525 [6] R. Minjares-Fuentes, A. Femenia, M.C. Garau, J.A. Meza-Velázquez, S. Simal,
- 526 C. Rosselló, Ultrasound-assisted extraction of pectins from grape pomace using
- 527 citric acid: A response surface methodology approach, Carbohydr. Polym. 106
- 528 (2014) 179–189. doi:10.1016/j.carbpol.2014.02.013.
- 529 [7] K. Kumar, S. Srivastav, V.S. Sharanagat, Ultrasound assisted extraction (UAE)

- 530 of bioactive compounds from fruit and vegetable processing by-products: A
- review, Ultrason. Sonochem. 70 (2021) 105325.
- 532 doi:10.1016/j.ultsonch.2020.105325.
- 533 [8] S. Dahiya, A.N. Kumar, J. Shanthi Sravan, S. Chatterjee, O. Sarkar, S.V. Mohan,
- 534 Food waste biorefinery: Sustainable strategy for circular bioeconomy, Bioresour.

535 Technol. 248 (2018) 2–12. doi:10.1016/j.biortech.2017.07.176.

536 [9] S.Y. Lee, J.H. Park, S.H. Jang, L.K. Nielsen, J. Kim, K.S. Jung, Fermentative

537 butanol production by clostridia, Biotechnol. Bioeng. 101 (2008) 209–228.

538 doi:10.1002/bit.22003.

- 539 [10] R. Kamusoko, R.M. Jingura, W. Parawira, Z. Chikwambi, Strategies for
- 540 valorization of crop residues into biofuels and other value-added products,
- 541 Biofuels, Bioprod. Biorefining. 15 (2021) 1950–1964. doi:10.1002/bbb.2282.
- 542 [11] P. Dürre, Fermentative production of butanol—the academic perspective, Curr.

543 Opin. Biotechnol. 22 (2011) 331–336. doi:10.1016/j.copbio.2011.04.010.

- 544 [12] B. Satari, K. Karimi, R. Kumar, Cellulose solvent-based pretreatment for
- 545 enhanced second-generation biofuel production: a review, Sustain. Energy Fuels.

546 3 (2019) 11–62. doi:10.1039/c8se00287h.

547 [13] M.F. Ibrahim, N. Ramli, E. Kamal Bahrin, S. Abd-Aziz, Cellulosic biobutanol by

548 Clostridia: Challenges and improvements, Renew. Sustain. Energy Rev. 79

- 549 (2017) 1241–1254. doi:10.1016/j.rser.2017.05.184.
- 550 [14] H. Luo, J. Zhang, H. Wang, R. Chen, Z. Shi, X. Li, J. Ding, Effectively
- 551 enhancing acetone concentration and acetone/butanol ratio in ABE fermentation
- 552 by a glucose/acetate co-substrate system incorporating with glucose limitation
- and *C. acetobutylicum/S. cerevisiae* co-culturing, Biochem. Eng. J. 118 (2017)
- 554 132–142. doi:10.1016/j.bej.2016.12.003.

- 555 [15] A. Duque, C. Álvarez, P. Doménech, P. Manzanares, A.D. Moreno, Advanced
- bioethanol production: From novel raw materials to integrated biorefineries,
- 557 Processes. 9 (2021) 1–30. doi:10.3390/pr9020206.
- 558 [16] W.Y. Cheah, R. Sankaran, P.L. Show, T.N.B.T. Ibrahim, K.W. Chew, A. Culaba,
- 559 J.S. Chang, Pretreatment methods for lignocellulosic biofuels production: Current
- advances, challenges and future prospects, Biofuel Res. J. 7 (2020) 1115–1127.
- 561 [17] B. Kumar, N. Bhardwaj, K. Agrawal, V. Chaturvedi, P. Verma, Current
- 562 perspective on pretreatment technologies using lignocellulosic biomass: An
- 563 emerging biorefinery concept, Fuel Process. Technol. 199 (2020).
- doi:10.1016/j.fuproc.2019.106244.
- 565 [18] T. Scapini, M.S.N. dos Santos, C. Bonatto, J.H.C. Wancura, J. Mulinari, A.F.
- 566 Camargo, N. Klanovicz, G.L. Zabot, M. V. Tres, G. Fongaro, H. Treichel,
- 567 Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose

568 recovery, Bioresour. Technol. 342 (2021) 126033.

- 569 doi:10.1016/j.biortech.2021.126033.
- 570 [19] R. Singh, H. Liu, J. Shanklin, V. Singh, Hydrothermal pretreatment for
- valorization of genetically engineered bioenergy crop for lipid and cellulosic

572 sugar recovery, Bioresour. Technol. 341 (2021) 125817.

- 573 doi:10.1016/j.biortech.2021.125817.
- 574 [20] M. Hijosa-Valsero, A.I. Paniagua-García, R. Díez-Antolínez, Industrial potato
 575 peel as a feedstock for biobutanol production, N. Biotechnol. 46 (2018) 54–60.
 576 doi:10.1016/j.nbt.2018.07.002.
- 577 [21] M. Hijosa-Valsero, A.I. Paniagua-García, R. Díez-Antolínez, Biobutanol
- 578 production from apple pomace: the importance of pretreatment methods on the
- 579 fermentability of lignocellulosic agro-food wastes, Appl. Microbiol. Biotechnol.

- 580 101 (2017) 8041–8052. doi:10.1007/s00253-017-8522-z/figures/2.
- 581 [22] M. Hijosa-Valsero, J. Garita-Cambronero, A.I. Paniagua-García, R. Díez-
- 582 Antolínez, Tomato Waste from Processing Industries as a Feedstock for Biofuel
- 583 Production, Bioenergy Res. 12 (2019) 1000–1011. doi:10.1007/s12155-019-
- 584 10016-7/figures/4.
- 585 [23] MAPA, Ministry of Agriculture, Fisheries and Food. "Anuario de Estadística"
- 586 (2020). https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de587 estadistica/default.aspx (accessed September 2, 2022).
- 588 [24] A.M.I. Encalada, C.D. Pérez, S.K. Flores, L. Rossetti, E.N. Fissore, A.M. Rojas,
- 589 Antioxidant pectin enriched fractions obtained from discarded carrots (*Daucus*
- 590 *carota* L.) by ultrasound-enzyme assisted extraction, Food Chem. 289 (2019)

591 453–460. doi:10.1016/j.foodchem.2019.03.078.

- 592 [25] M. Ramos-Andrés, B. Aguilera-Torre, J. García-Serna, Hydrothermal production
 593 of high-molecular weight hemicellulose-pectin, free sugars and residual cellulose
- 594 pulp from discarded carrots, J. Clean. Prod. 290 (2021) 125179.
- 595 doi:10.1016/j.jclepro.2020.125179.
- 596 [26] A. Clementz, P.A. Torresi, J.S. Molli, D. Cardell, E. Mammarella, J.C. Yori,
- 597 Novel method for valorization of by-products from carrot discards, LWT. 100
 598 (2019) 374–380. doi:10.1016/j.lwt.2018.10.085.
- 599 [27] J.C. López-Linares, M.T. García-Cubero, S. Lucas, M. Coca, Integral
- 600 valorization of cellulosic and hemicellulosic sugars for biobutanol production:
- ABE fermentation of the whole slurry from microwave pretreated brewer's spent
- 602 grain, Biomass and Bioenergy. 135 (2020) 105524.
- 603 doi:10.1016/j.biombioe.2020.105524.
- 604 [28] A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of

605		Extractives in Biomass, Golden, Color. (Jan, Rep. No. TP-510-42619). (2005).
606	[29]	A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton,
607		Determination of ash in biomass. National Renewable Energy Laboratory,
608		Golden, Color. (Jan, Rep. No. TP-510-42622). (2008).
609	[30]	A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton,
610		Determination of structural carbohydrates and lignin in biomass. National
611		Renewable Energy Laboratory, Golden, Color. (Jan, Rep. No. TP-510-42618).
612		(2011).
613	[31]	I.A. Panagiotopoulos, L.S. Karaoglanoglou, D.P. Koullas, R.R. Bakker, P.A.M.
614		Claassen, E.G. Koukios, Technical suitability mapping of feedstocks for
615		biological hydrogen production, J. Clean. Prod. 102 (2015) 521-528.
616		doi:10.1016/j.jclepro.2015.04.055.
617	[32]	S. Maiti, G. Gallastegui, G. Suresh, S.J. Sarma, S.K. Brar, P. Drogui, Y.
618		LeBihan, G. Buelna, M. Verma, C.R. Soccol, Hydrolytic pre-treatment methods
619		for enhanced biobutanol production from agro-industrial wastes, Bioresour.
620		Technol. 249 (2018) 673-683. doi:10.1016/j.biortech.2017.09.132.
621	[33]	J.C. López-Linares, M.T. García-Cubero, M. Coca, S. Lucas, Efficient biobutanol
622		production by acetone-butanol-ethanol fermentation from spent coffee grounds
623		with microwave assisted dilute sulfuric acid pretreatment, Bioresour. Technol.
624		320 (2021) 124348. doi:10.1016/j.biortech.2020.124348.
625	[34]	P.R. Nimbalkar, M.A. Khedkar, P. V. Chavan, S.B. Bankar, Biobutanol
626		production using pea pod waste as substrate: Impact of drying on saccharification
627		and fermentation, Renew. Energy. 117 (2018) 520-529.
628		doi:10.1016/j.renene.2017.10.079.
620	[25]	A. L. D. Antinen Ladialas, M. Khusishah, Disconversion of municipal calid

629 [35] A. Li, B. Antizar-Ladislao, M. Khraisheh, Bioconversion of municipal solid

630		waste to glucose for bio-ethanol production, Bioprocess Biosyst. Eng. 30 (2007)
631		189–196. doi:10.1007/S00449-007-0114-3.
632	[36]	I.Y. Sunwoo, J.E. Kwon, T.H. Nguyen, C.H. Ra, G.T. Jeong, S.K. Kim,
633		Bioethanol Production Using Waste Seaweed Obtained from Gwangalli Beach,
634		Busan, Korea by Co-culture of Yeasts with Adaptive Evolution, Appl. Biochem.
635		Biotechnol. 183 (2017) 966–979. doi:10.1007/S12010-017-2476-6.
636	[37]	W.C. Vong, X.Y. Lim, S.Q. Liu, Biotransformation with cellulase, hemicellulase
637		and Yarrowia lipolytica boosts health benefits of okara, Appl. Microbiol.
638		Biotechnol. 101 (2017) 7129-7140. doi:10.1007/S00253-017-8431-1.
639	[38]	H. Kim, H. Song, M. Jeong, S. Sim, DJ. Park, JK. Yang, SB. Yoo, JK. Yeo,
640		C. Karigar, MS. Choi, Enzymatic saccharification of Salix viminalis cv. Q683
641		biomass for bioethanol production, J. For. Environ. Sci. 27 (2011) 143-149.
642		https://doi.org/10.7747/jfs.2011.27.3.3.
643	[39]	C.H. Ra, Y.J. Kim, S.Y. Lee, G.T. Jeong, S.K. Kim, Effects of galactose
644		adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria
645		verrucosa, Bioprocess Biosyst. Eng. 38 (2015) 1715–1722. doi:10.1007/s00449-
646		015-1411-x.
647	[40]	T.H. Nguyen, C.H. Ra, I.Y. Sunwoo, G.T. Jeong, S.K. Kim, Bioethanol
648		production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted
649		to NaCl or galactose, Bioprocess Biosyst. Eng. 40 (2017) 529-536.
650		doi:10.1007/S00449-016-1718-2.
651	[41]	P.E. Alcívar-Mendoza, J.P. Muñoz-Murillo, C.A. Andrade-Díaz, A.A. Dueñas-
652		Rivadeneira, Saccharification and fermentation of the lignocellulosic residues of
653		the orange to obtain bioalcohol, Rev. La Fac. Agron. 38 (2021) 717–731.
654		doi:10.47280/revfacagron(luz).v38.n3.14.

- [42] J.A. Rojas-Chamorro, I. Romero, J.C. López-Linares, E. Castro, Brewer's spent
 grain as a source of renewable fuel through optimized dilute acid pretreatment,
- 657 Renew. Energy. 148 (2020) 81–90. doi:10.1016/j.renene.2019.12.030.
- 658 [43] A. Procentese, F. Raganati, G. Olivieri, M. Elena Russo, A. Marzocchella, Pre-
- treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-
- butanol production, Biomass and Bioenergy. 96 (2017) 172–179.
- 661 doi:10.1016/j.biombioe.2016.11.015.
- 662 [44] P.M. Abdul, J.M. Jahim, S. Harun, M. Markom, N.A. Lutpi, O. Hassan, V.
- Balan, B.E. Dale, M.T. Mohd Nor, Effects of changes in chemical and structural
- 664 characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty
- 665 fruit bunch fibre on enzymatic saccharification and fermentability for
- 666 biohydrogen, Bioresour. Technol. 211 (2016) 200–208.
- 667 doi:10.1016/j.biortech.2016.02.135.
- 668 [45] E. Varga, Z. Kádár, K.C. Schuster, J.R. Gapes, Z. Szengyel, K. Réczey, Possible
- substrates for acetone-butanol and ethanol fermentation based on organic by-
- 670 products, Hungarian J. Ind. Chem. 30 (2002) 19–25.
- 671 [46] N.R. Aimaretti, C. V. Ybalo, M.L. Rojas, F.J. Plou, J.C. Yori, Production of
- bioethanol from carrot discards, Bioresour. Technol. 123 (2012) 727–732.
- 673 doi:10.1016/j.biortech.2012.08.035.
- [47] T. De Vrije, M.A.W. Budde, S.J. Lips, R.R. Bakker, A.E. Mars, P.A.M.
- 675 Claassen, Hydrogen production from carrot pulp by the extreme thermophiles
- 676 *Caldicellulosiruptor saccharolyticus* and *Thermotoga neapolitana*, Int. J.
- 677 Hydrogen Energy. 35 (2010) 13206–13213. doi:10.1016/j.ijhydene.2010.09.014.
- 678 [48] S. Raghavi, R. Sindhu, P. Binod, E. Gnansounou, A. Pandey, Development of a
- novel sequential pretreatment strategy for the production of bioethanol from

- sugarcane trash, Bioresour. Technol. 199 (2016) 202–210.
- 681 doi:10.1016/j.biortech.2015.08.062.
- 682 [49] K.R. Corbin, Y.S.Y. Hsieh, N.S. Betts, C.S. Byrt, M. Henderson, J. Stork, S.
- 683 DeBolt, G.B. Fincher, R.A. Burton, Grape marc as a source of carbohydrates for
- bioethanol: Chemical composition, pre-treatment and saccharification, Bioresour.

685 Technol. 193 (2015) 76–83. doi:10.1016/j.biortech.2015.06.030.

- 686 [50] E. Demiray, S.E. Karatay, S. Dönmez, G. Dönmez, The usage of carrot pomace
- 687 for bioethanol production, J. Chil. Chem. Soc. 61 (2016) 2996–2998.

688 doi:10.4067/s0717-97072016000200029.

- [51] K.Y. Yoon, M. Cha, S.R. Shin, K.S. Kim, Enzymatic production of a soluble-
- 690 fibre hydrolyzate from carrot pomace and its sugar composition, Food Chem. 92
 691 (2005) 151–157. doi:10.1016/j.foodchem.2004.07.014.
- [52] N. Bansal, C. Janveja, R. Tewari, R. Soni, S.K. Soni, Highly thermostable and
- 693 pH-stable cellulases from Aspergillus niger NS-2: properties and application for
- cellulose hydrolysis, Appl. Biochem. Biotechnol. 172 (2014) 141–156.
- 695 doi:10.1007/s12010-013-0511-9.
- 696 [53] S.A. Survase, E. Sklavounos, A. van Heiningen, T. Granström, Market refused
- 697 vegetables as a supplement for improved acetone–butanol–ethanol production by
- 698 *Clostridium acetobutylicum* DSM 792, Ind. Crops Prod. 45 (2013) 349–354.
- 699 doi:10.1016/j.indcrop.2012.12.049.
- 700 [54] J.C. López-Linares, M.T. García-Cubero, M. Coca, S. Lucas, A biorefinery
- approach for the valorization of spent coffee grounds to produce antioxidant
- compounds and biobutanol, Biomass and Bioenergy. 147 (2021) 106026.
- 703 doi:10.1016/j.biombioe.2021.106026.
- 704 [55] M. Naresh Kumar, R. Ravikumar, S. Thenmozhi, M. Ranjith Kumar, M. Kirupa

- 705 Shankar, Choice of pretreatment technology for sustainable production of
- bioethanol from lignocellulosic biomass: bottle necks and recommendations,
- 707 Waste Biomass Valorization. 10 (2019) 1693–1709. doi:10.1007/s12649-017-
- 708 0177-6.
- 709

Journal Prevention

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Presson