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Abstract: This paper presents the UVa-NTS (University of Valladolid Neuromuscular 

Training System), a multifunction and portable Neuromuscular Training System. The  

UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped 

patients, their interactive response, and their adaptation to neuromuscular interface systems, 

such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate 

the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a 

custom signal conditioning front-end and a computer. The front-end electronics is 

described thoroughly as well as the overall features of the custom software implementation. 

The software system is composed of a set of graphical training tools and a processing core. 

The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric 

signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the 

performance of the processing core, a complete analysis has been done to classify its 

efficiency and to check that it fulfils with the real-time constraints. Tests were performed 

both with healthy and selected impaired subjects. The adaptation was achieved rapidly, 

applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary 

control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS 
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demonstrated to provide a satisfactory voluntary control when applying the myomechanic 

signals. 

Keywords: biological control systems; training; pattern classification; electromyography; 

mechanomyography; real-time systems; sensors 

 

1. Introduction 

There is a relevant background related to neuromuscular signals applied to Rehabilitation 

Technologies. Myoelectric signals (MES) have been proposed to command devices, such as robotic 

prostheses, or act as generic man-machine interfaces in many papers [1-5]. But prosthesis adaptation is 

a major drawback for the limb impaired [6]. Amputees usually believed that a neuromuscular 

prosthesis could easily and completely replace the functions of the biological limb. However, direct 

interaction with a robotic prosthesis can produce unsuccessful results, cases involving children being 

the most sensitive ones [6]. As a consequence, the acquisition of myoelectric prostheses has decreased 

drastically. Prior to its utilization by a patient, it is necessary to evaluate the user’s ability to 

accommodate the prosthesis. Hence, a training and adaptation process is required. 

MES processing techniques have been widely analyzed and they continue under research. The 

classical analog processing systems have been very reliable in rehabilitation robotics [7]. However, 

since some years ago, improvements in signal processors rely on digital processing [8-10]. But the 

embedding of robust digital processors in Rehabilitation Technologies is a recent field up till now.  

Several papers have been published analyzing the myomechanic signals (MMS), usually denoted as 

the mechanomyogram (MMG) of a muscle. These works have proven a close relationship between 

muscle voluntary activity and MMS [11-13]. From an electromagnetic point of view, the sensitivity of 

MES to electromagnetic interference (EMI) has been established [7]. In addition, it has also been stated 

that other biopotentials cause the contamination of the electromyogram (EMG) signal [14]. Due to its 

mechanical nature and the required signal conditioning, MMS offers a substantial robustness against 

EMI and biopotential contamination in comparison to MES. However, as far as we know, MMS has 

been hardly used as a man-machine interface to control a device. Hence, in this paper, we introduce an 

operative MMS sensor, designed and implemented specifically for this task. 

MES and MMS studies are frequently presented as off-line analyses, developed after the signal 

recording. The expected next stage would be the analysis in a real-time system, as Hogan did in his 

classic work with his analog processor[15,16]. But there is a significant cost in time and resources to 

prepare a real-time hardware system, e.g., a robotic arm, for analog and digital processing. 

To address the aforementioned issues, this paper introduces the University of Valladolid 

Neuromuscular Training System (UVa-NTS). The UVa-NTS is a real-time hardware and software 

multifunction platform; it is intended for research, simulation, virtual training and generic 

neuromuscular man-machine interfacing.  

The important concept in this platform is to merge the real-time paradigm with advanced signal 

processing in neuromuscular signals. Nowadays, most of the new digital signal-processing techniques 

are still being evaluated off-line [9,17,18]. The main reason could be the powerful tools available for 



Sensors 2010, 10                            

 

 

11102 

off-line analysis and processing, such as the widespread Matlab software. However the embedding into 

a real-time system is not straightforward. Then, the performance of the digital processing techniques in 

a real-time environment is still not fully demonstrated. Hence, the classical and efficient analog signal 

processing is still valid for practical purposes, as the interactivity with the user is a key factor.  

The standard procedure to analyze neuromuscular signals is to work with a bioelectric amplifier and 

record the signals. A certain protocol is defined to generate the signals from the patient. And once a set 

of signals is achieved, they are off-line processed with a signal processing tool, e.g., Matlab, to analyze 

and display the results.  

Multi-purpose proposals of interactive platforms can be found [19], but the gap between the 

advanced off-line processing and the real-time application is often left out. A vague justification related 

to the required time constraints for interactive work is offered to support the real time capabilities of 

the signal processing technique. The full integration of all the involved facts, i.e., hardware, software 

and processing is not often implemented to demonstrate the real-time performance. Hence, the 

interactive visual feedback from the user is not fully achieved in the proposed systems.  

This platform aims at reducing this gap, as the hardware and software solutions are fully integrated 

in order to optimize real-time behavior. Then, all the involved facts can be tuned-up jointly in order to 

perform interactively with the user. The platform was presented in the Virtual Rehabilitation meeting 

in Vancouver in 2008 [20], where several users successfully tested the Myo-Pong game performance in 

that meeting.  

The purpose of this paper is to explain the techniques and the underlying architecture that allows the 

interactive performance. It outlines the UVa-NTS hardware and software structure, as well as some of 

the tests carried out to evaluate its performance. A fully functional UVa-NTS prototype was 

implemented and results were obtained both statically and dynamically. These results were achieved 

with MES and MMS, and also both with healthy and impaired subjects. 

2. Description of the System 

The UVa-NTS can be divided into two different parts: the hardware signal-conditioning unit and the 

control and processing software which runs on a personal computer (PC). As shown in Figure 1, the 

power and flexibility of the system software is based on merging four key concepts: (i) isolation from 

the hardware level by means of an interface layer, (ii) a processing module, (iii) a real-time software 

core, and (iv) a set of evaluation tools. 

2.1. Hardware Module 

Figure 2 shows a picture of the custom and portable signal-conditioning unit developed for this 

system. The unit is composed of bioelectric and biomechanical amplifiers. The former are implemented 

with instrumentation amplifiers and compact 8th-order switched capacitor filters, while the latter are 

composed of pump-charge amplifiers for the MMS piezoelectric vibration sensors. Then, a 

microcontroller performs the analog-digital conversion (ADC). 
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Figure 1. Block diagram of the UVa-NTS which is composed of a hardware  

signal-conditioning unit, a software module running on a PC and a graphical user interface 

(GUI). Tools displayed on the GUI: State navigator (top left), virtual keyboard (top right), 

virtual arm (bottom left), signal viewer (bottom right). 

 

Figure 2. Assembled unit for signal-conditioning and communication with the computer. 
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The block diagram of the front stage is shown in Figure 3. This front stage is combined with digital 

signal processing in the computer. It will afford a 20 Hz to 400 Hz band-pass with a 60 dB/octave  

roll-off at 20 Hz and 22 dB/octave at 400 Hz, which constitutes a better approach than De Luca’s 

recommendations of 12 dB/octave [21]. Common Mode Rejection Ratio (CMRR) is better than 118 dB 

at 50 or 60 Hz and its gain can be selected between 74 dB and 89 dB.  

Figure 3. Signal conditioning electronics: front stage of the system. ESD: Electrostatic 

Discharge Protection. I.A.: Instrumentation Amplifier. HPF: High-Pass Filter.  

PGA: Programmable Gain Amplifier. Sw. Cap. LPF: Switched-Capacitor Low-Pass Filter. 

ADC: Analog to Digital Converter. μC: microcontroller. 

 

 

Bioelectric signal acquisition requires voltage gains between 1,000 and 10,000 [22] or, in dB, 

between 60 dB and 100 dB. Highest gains are oriented to electroencephalogram, as the surface MES 

ranges are comprised between 5 μVrms and 300 μVrms [7]. It is important to connect gain with the 

input dynamic range of the analog to digital converter (ADC), to take advantage of the digital 

resolution of the ADC. Two gains have been considered from tests in the front stage in order to detect 

efforts: 74 dB and 89 dB, related to an input dynamic range of ±2.5 V with uniform quantization. Gain 

has been divided into several stages in order to prevent saturation due to excessive gain in a single 

block, and also to compensate for voltage offsets due to direct coupling of stages, avoiding offset 

trimming. 

2.1.1. Instrumentation Amplifier 

Surface MES is acquired by means of a single differential electrode with two contacts and a 

reference. The preamplifier is implemented with an integrated instrumentation amplifier INA114 [23] 

with a fair input bias current Ibias of 2 nA. This is configured with a gain of 34 dB that yields a CMMR 

better than 115 dB at 50 Hz or 60 Hz.  

Figure 4 shows the schematic of the small circuit which can be located near the electrode to reduce 

noise and interference, such a location is significant with dry electrodes and with a poorer interface 

skin-electrode [7,21]. The selected IA incorporates an over-voltage input protection of ±40 V.  
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Since those inputs are often handled with the risk of degradation due to electrostatic discharges  

(ESD) [23-25], SA15CA bi-directional transient suppressors with 15 V clamping voltage [26] have 

been included. 

Figure 4. INA 114 instrumentation amplifier with ESD protection; gain = 34 dB, to be 

assembled near the electrode for differential electrode configuration. Label #1 at the output 

connects to the notch filter input. 

 

 

The goal is to achieve an overall gain of 74 dB or 89 dB. When IA is configured to 60 dB it yields a 

remarkable 120 dB CMRR, but the output is saturated quite often for a supply of ±15 V. A satisfactory 

behavior was achieved with a 40 dB gain working with Ag-AgCl electrodes in a previous prototype: it 

was utilized for several years and the saturation differential voltage was near 150 mV for ±15 V 

supply. Saturation levels depend heavily on the power supply voltage, input impedance imbalance and 

Ibias. Saturation phenomena increased when the front-end was operated with batteries, as supply was 

reduced to ±8.1 V. Hence, the gain was set to 34 dB to improve reliability with a saturation voltage 

near 300 mV for ±15 V supply. Under normal operational conditions, the device is supplied from 

mains with an external transformer giving a regulated 12 V DC, and a TMA1215D DC-DC converter 

from 12 V to ± 15 V that adds 1 kV of galvanic isolation [27].  

2.1.2. Notch Filter 

The ElectroMagnetic Interference (EMI) from the power line can be up to 100 dB stronger than the 

MES[7] and most of it is removed by the high CMRR of the IA. However, a certain differential voltage 

that is amplified still appears. To remove the power line EMI, digital processing is available after the 

ADC, but the whole gain is applied when the signal reaches the input of the ADC. Hence, a notch filter 

has been inserted prior to the high-pass stage and before applying the remaining 40 dB or 55 dB to both 

avoid dynamic range reduction and to achieve the total gain. The filter is a tunable twin-T stage from 

25 Hz to 100 Hz [24], as shown in Figure 5, with a set up that works with multiturn trimmer pots. As it 

can substantially modify the frequency response, its activation is optional and it can be enabled by 

means of an MAX333 electronic switch.  

2.1.3. High-Pass Filter 

As a high-pass filter (HPF), a circuit variant from other designs already described in [22,23,28,29] is 

proposed. Our circuit is an independent module, as shown in Figure 6, separated from the IA structure. 
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It is based on an inverting stage with the feedback of an integrator, yielding a 20 dB gain in the  

pass-band. This design avoids introducing new electronic components to the IA, so it can be located 

near the electrode and, in addition, it provides a new stage for gain distribution. DC-offsets from 

previous sections (IA, notch filter) are eliminated at the output by the high-pass behavior of the stage. 

Thus, the next section will have less gain requirements and this will give as a result a lower 

amplification of the residual output DC-offset of the HPF. 

Figure 5. Trimmable bootstrapped twin-T as a notch filter for 50 Hz or 60 Hz; label #1 

denotes input from the IA stage and label #2, output to the high-pass filter. 

 

Figure 6. High-pass filter with a gain of 20 dB in the passband. Label #1: from IA; #2: 

from notch filter; #3: HPF output. 

 

 

Resistors R11 and R12 must be equal to avoid excessive output DC-offset due to input bias currents 

of IC2D, and low Ibias operational amplifiers should be used, such as the four-to-a-package TL084, with 

Ibias = 30 Pa [30]. In previous tests with an LM324, an Ibias equal to 45 nA [31] was used as a starting 

point for this application [32], but it gave excessive offset when grounding the non-inverting pin.  

2.1.4. Programmable Gain Stage 

Two stages in a standard inverting configuration have been set, as shown in Figure 7. Compensation 

resistors are used to reduce errors from input bias current [24], and gain selection is commanded by 

means of a MAX333 electronic switch. 
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Figure 7. Selectable gain stage: 20 dB or 35 dB; it uses two of the four on-chip operational amplifiers. 

 

 

As the previous stage (Figure 6) has 20 dB with self-compensated DC offset, moderate gains are 

used here, i.e., 20 dB and 35 dB, in order to avoid excessive amplification of undesired DC-offset from 

the previous stage. 

2.1.5. Low-Pass Continuous-Time and Switched Capacitor Filters 

To minimize the signal distortion, special care must be taken with the band-pass in a sampled 

system. The Nyquist Sampling Theorem states that a band-limited signal is uniquely determined by its 

samples if the sampling frequency exceeds twice the upper frequency limit of the band. Otherwise, 

frequency conversion and spectral aliasing are produced, originating distortion in the reconstructed 

signal [33-35]: this can interfere with features such as the frequency displacement associated to muscle 

fatigue [21,36,37]. Attention was paid to the frequency response, both in magnitude and phase. Hence, 

bandwidth limitation has been implemented with a Bessel-Thomson configuration. In comparison with 

other configurations, the Bessel-Thomson filter maximizes phase linearity, at the expense of a 

smoother magnitude response [38]. 

A Bessel switched capacitor filter (SCF) is used in the design, but an analog continuous-time filter 

previous to the SCF is mandatory: internally, the SCF consists of a sampled system, so the Nyquist 

Sampling Theorem must be taken into account. The continuous-time filter implemented is a  

voltage-controlled voltage-source filter [24]. A second order Bessel configuration is implemented, 

consisting of IC4C, R19, R20, R21, R22, C5 and C6 as shown in Figure 8. The SCF is made up with 

an 8th-order Bessel filter MAX7401, completed with C7, C8 and C9. The remaining components of 

Figure 8 describe a 2.7 V level shifter to accommodate the symmetrical signal range to the 0 V – 5 V 

ADC input dynamic range. 

2.1.6. Analog to Digital Interface 

A PIC16F873 microcontroller with an embedded 10 bit ADC is the core of the digital interface with 

the computer. It is endorsed with a 3.6864 MHz crystal for minimum error in the baud rate  

generator [39], achieving a throughput of 57,600 baud in the serial transmission. The ADC has its own 
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timing, running independently of the crystal. It achieves a 1 kHz sampling rate per each of the two 

MES channels, being able to sample a single channel at 2 K-samples/s.  

Figure 8. Anti-aliasing low-pass Bessel filters: continuous and switched capacitor filter. 

 

 

Two additional inputs of the ADC are used to sample the level of the symmetrical power supply by 

means of an arrangement of resistors. A MAX232 is employed as a chip interface to a serial RS-232 

link to the computer, and a RS-232 to USB adapter allows switching between the two standards.  

In the prototype, the SCF and the digital stages are powered by means of a standard 7805 voltage 

regulator, so it can work with batteries or from mains. However, to complete galvanic isolation, a  

DC-DC converter TMA1205S must be used. Isolation in the computer link is achieved by means of a 

standard RS-232 optical isolator. 

2.2. Software Subsystem  

The UVa-NTS was designed to be adapted to different signal sources, as necessities appear. To 

support this philosophy, a software interface layer between the signal-conditioning unit and the core 

application was created. It permits the connection of new devices to the PC, and only minor changes 

are required in the global software application. Most of the changes will be focused on the 

aforementioned interface layer, which is developed in C++ and compiled to a shared library. 

The UVa-NTS software core and the evaluation tools were developed in C++. A formally non-strict 

(interactive) real-time application [40] was designed. Matlab was chosen as the engineering language 

to implement the processing module. It was selected due to its processing capabilities and its 

application in related works [9,17,41]. The Matlab code was compiled to C to accomplish the real-time 

response of the UVa-NTS. Subsequently, the processing module was compiled to a shared library. As a 

result, fast and complex processing algorithms can be created and distributed with no need of Matlab in 

the target computer.  

The set of the UVa-NTS evaluation tools are displayed on a graphical user interface (GUI), as 

shown in Figure 1. Nowadays, these test and training tools are: a signal viewer, a state navigator, a 



Sensors 2010, 10                            

 

 

11109 

virtual arm, a virtual keyboard and a version of the classical Pong videogame, called Myo-Pong. New 

tools can be implemented, with the support of the aforementioned C/C++ modular framework.  

2.2.1. Signal Viewer 

This tool displays the amplitude/time representation of the involved signals, e.g., the EMG for MES 

or the MMG for MMS. A calibration procedure is required to adapt the system to the user. The signal 

viewer is the starting point in this procedure: gain and electrode contacts are tested before starting with 

the rest of the tools and signal amplitude dynamic range is visually checked. 

2.2.2. State Navigator 

The state navigator is a two-signal source tool. It works with signals from two sources, commonly 

muscles. We have selected MES and MMS from two muscles in the present experiments. Horizontal 

axis represents the activity of one selected muscle, and vertical axis, the other selected one. The 

calibration procedure requires the two-channel calibration. The complexity of the calibration procedure 

depends on the processing algorithm, as two processors were developed for this system: an envelope 

detection processor and a pattern recognition processor.  

The implemented envelope processor requires two steps. The first calibration step is in a rest 

situation in order to detect background noise. The second step requires an important effort to set up the 

signal dynamic range. Maximum voluntary contraction (MVC) is not needed, but it should be 

sustainable and comfortable.  

The custom pattern recognition processor defines five or seven reference states. The number 

depends on the UVa-NTS operator ability, as state separability is reduced with the number, and  

UVa-NTS operation is more challenging. These states are related to different combinations of 

contraction levels from two muscles. The recognition processor is based on the conditional probability 

density function estimation and classification[42]. The density function estimation is obtained from 

reference patterns during the calibration procedure. Feature extraction is performed during real time 

operation. Thus, the calibration complexity is increased in comparison with the envelope detector.  

Once the state navigator is calibrated, the operator trains the muscle voluntary control by displacing 

the black pointer among the different states. These states are numbered and encircled as displayed in 

Figure 1. The recognition processor makes real-time decisions with the feature vectors, and chooses the 

most suitable state, e.g., the nearest one in distance. To improve the user adaptation, the position of 

each state can be displaced to a more comfortable one during the operation of the system. The state 

navigator is considered as the previous step before managing the virtual arm tool.  

2.2.3. Virtual Arm 

It is an anthropomorphic representation of a human arm. It is modeled with the biomechanical 

human joint restrictions. It is capable to open/close the hand, pronate/supinate it and extent/flex the 

arm. It serves as a prosthesis trainer for amputees or as an augmentative trainer for the disabled with 

reduced mobility. It is closely connected with the state navigator tool, because the encircled states, 

shown in Figure 1, act as reference positions to control the virtual arm. Then, each circle has a 
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predefined action assigned, so when the pointer is situated on circle #4, the hand closes; when it is 

displaced to #3, the hand opens, and so on to extent/flex the arm or to pronate/supinate. The action set 

depends on the selected number of states. The action speed can be adjusted, depending on the dexterity 

of the user: for an experienced user, movements can be more responsive. The virtual arm was 

implemented with the OpenGL library achieving a very efficient rendering for real-time behavior, with 

a moderate programming effort. 

2.2.4. Virtual Keyboard 

This tool works with two inputs from two muscles. Efforts from one muscle displace the pointer 

horizontally. The other muscle is employed for vertical movements. The selection is made by means of 

a quick double contraction. Selected letters are displayed on a box to compose words and sentences. 

2.2.5. Myo-Pong Game 

The last tool is the Myo-Pong (Figure 9), a table-tennis game that resembles a popular game in the 

70 s, but applied to myoelectric control. It can be played by one player or by two players. The 

MES/MMS from two muscles are used to control the game. The lack of activity in the muscle places 

the bar (paddle) at the top of the screen, while the maximum voluntary contraction, calibrated for each 

muscle, causes the bar to slide to the bottom of the window. Also, there is a training mode and a game 

mode. In the former, there is no penalty when a hit is missed: the ball bounces on the side of the 

window and the game goes on. In the latter, the game goes on in the classic way, so the missed hits are 

penalized.  

The tool allows changes in the size of the paddles and the speed of the ball and it registers the 

success and the error rate as evaluation parameters. Thus, a set of parameters to be measured was 

defined: the Success Rate, the Admissible Speed, the Precision Control and the Fatigue Time [43].  

Figure 9. Appearance of the MyoPong game tool. 
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2.2.6. The Processing Core 

The present system is capable of performing the signal processing by means of envelope detection 

and also by pattern recognition. The former gives an analog feeling to the tools while the latter permits 

discrete state detection and allows multiple actions with a reduced number of signals. The combination 

of both techniques is tested in the set of implemented training tools. 

The envelope detection processor has been widely analyzed in literature [15,16,44,45]. Thus, we 

will focus on the implemented pattern recognition system. The pattern recognition approximation has 

been analyzed in previous works by Hudgins [41], Zardoshti-Kermani [8] or Englehart [9], among 

others. The discrete analysis allows multiple functions or degrees of freedom with a reduced set of 

signals from muscles. This is worthwhile when working with upper-limb impaired patients, as the set 

of available muscles is reduced.  

Figure 10. Probability functions P(si|x) and decision thresholds (vertical dotted lines). The 

thresholds define the regions from 0 to 3, labeled on the top.  

 

The pattern recognition system is designed to distinguish among four contraction levels si (i = 0…3) 

in each muscle: rest, weak, medium and strong. The feature extraction system is based on the 

Zardoshti-Kermani [8] amplitude histogram, characterized by a low computational load. However, 

such algorithm works with uniform interval separation and it was not considered optimal. Hence, a 

new algorithm was designed and implemented for this work: the Bayesian level extractor. In this 

algorithm, the interval boundaries are defined by means of four calibration effort patterns for each 

muscle: rest, weak, medium, strong. The acquired calibration patterns are used to compute the 

conditional probability functions P(si|x), where x is the amplitude of the acquired sample. As shown in 

Figure 10, the intersections define the amplitude intervals, labeled at the top from 0 to 3. These 

intervals maximize the probability P(si|x) for each state. Thus, the interval separation is applied to 

create a four-level histogram (hence, a four-component vector) that will feature the pattern. And 

afterwards, this procedure is extended to the number of muscles under observation, i.e., for two 

muscles, the outcome will be an eight-component vector.  
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In real-time operation, the system analyzes the sampled pattern every n = 100 ms and samples are 

buffered. A sliding window technique is applied to the buffer to classify with a first-in first-out (FIFO, 

see Figure 11) policy. Thus, the analyzed patterns are longer than 100 ms, with an optimum pattern or 

window size of v = 750 ms, as it will be shown later. Hence, every 100 ms. the system processes and 

refreshes the output in order to maintain the real-time response. A Euclidean distance classifier has 

been implemented. The basis feature vectors are obtained from the calibration procedure. Thus, for two 

muscles, seven reference states are defined: both muscles at rest, and weak, medium and strong effort 

for each muscle.  

Figure 11. FIFO sliding window. 

 

3. Methods 

The development of the NTS involved the design of a test collection and the creation of an 

adaptation protocol. Tests have been carried out in two ways: statically and dynamically. 

3.1. Static Tests 

A static test is a signal recording and, afterwards, a post-processing analysis, i.e., a signal analysis 

from the recorded signals. This sort of analyses can be found in the works related to MES [9,10]. 

Hence, the classifier will be analyzed by means of cross-state graphs and classification efficiency 

tables. Furthermore, the static tests should include the verification of the real-time constraints. Thus, in 

addition to the standard classification tests, this paper includes a new analysis to evaluate the real-time 

response: the delay test. 

3.2. Dynamic or Interactive Tests 

As a second stage, the test collection analyzes the UVa-NTS behavior during the real-time 

operation. These analyses are designated as dynamic or interactive tests. Thus, once the static tests are 

considered valid, the signal processor is included in the UVa-NTS real-time framework. Then, real-

time interactive tests are performed with users. The design and application protocol for the interactive 

tests is performed in two steps: (i) the UVa-NTS is evaluated with healthy subjects at first; (ii) once a 

rapid adaptation is established, the UVa-NTS is evaluated with impaired subjects. 

The evaluation procedure is performed by means of an adaptation protocol. It starts with the basic 

signal viewer: then signal quality is checked. It continues with the state navigator, as an intermediate 

stage, and, it finishes with the virtual arm or the Myo-Pong tool, as a more complex tool to be 

commanded. This protocol is applied both to MES and to MMS.  

In order to acquire MES, round surface Ag/AgCl electrodes (1 cm diameter) will be applied, and a 

bigger Ag/AgCl electrode will be employed as the reference electrode. MMS are acquired by means of 

two custom vibration sensors built and designed from the BM15015-06HC sensor, from Low Power 

Radio Solutions, Figure 12. This custom design involved an additional hardware module, included in 

n n n n n n n n n 

v 
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the UVa-NTS to interface the signals from the vibration sensors. One sensor was placed on the biceps 

and the other one on the triceps. The UVa-NTS is small and autonomous, as both the computer and the 

signal-conditioning unit are battery powered. This portability features allow carrying the UVa-NTS to 

each disabled patient’s home, so tests can be performed in their daily living environment. 

Figure 12. Detail of the MMG electrode. 

 

 

4. Results 

4.1. Static Analysis: Classification Efficiency 

As previously stated, the envelope detection processor has been widely analyzed in literature. Thus, 

we will show the static tests performed with the pattern recognition processor. They were carried out 

with myoelectric signals and with a non-impaired subject. Two muscles were tested simultaneously: 

biceps and triceps. Seven states or effort levels were defined: rest for both muscles; weak, medium and 

strong contraction for the biceps; and weak, medium and strong contraction for the triceps. Strong 

contraction can be near MVC but, in order to get a comfortable operation, a lower and more sustainable 

non-fatiguing contraction level than MVC was preferred. Contractions were isometric at constant 

torque. The applied torque for each contraction is shown in Table 1. 

Table 1. Contraction and applied torque. 

Contraction Rest Weak Medium Strong 

Torque (N·m) 0 4.2 6 9.5 

 

From the calibration patterns, the probability functions were estimated. Figure 13 displays the cloud 

of samples that allowed the probability estimation, as described in the previous paragraphs. The lines 

show the Gaussian interpolation fitted to the samples for each state si.  

After the calibration procedure, for each state si, a couple of patterns were obtained: one for the 

biceps and one for the triceps. Each pattern is non-fatiguing and lasts 20 s. 

To test the classification efficiency a cross-state graph was plotted. The outcome from this test is 

shown in Figure 14. The lines, crossing from one state to another, represent misclassification. These 

results are also displayed in Table 2 for the optimum v = 750 ms window: the values out of the 

diagonal represent the misclassification percentile. 
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Figure 13. Estimation of the probability functions for each state si.  

 

 

Figure 14. Cross-state graph: classifier efficiency for 7 states (numbered from 0 to 6). State 

#0 is at rest; #1, #2 and #3 are related to the biceps contraction level, from weak to strong 

respectively. #4, #5 and #6 are related to the triceps contraction level. 

 

 

Six cross-state graphs and six classification efficiency tables were generated for different sliding 

window sizes. The tested sizes were 2 s, 1.5 s, 1 s, 750 ms, 500 ms and 250 ms. As expected, the 

smaller the size, the bigger the misclassification increment, as the process is not stationary enough. 
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Table 2. Classification efficiency for a 750 ms window. States are numbered from #0 to 

#6. The tested (T) input states are enumerated on the top row. Each clas1 CM sified (C) 

output state is located on the left column. 

C\T #0 #1 #2 #3 #4 #5 #6 

#0 100 0 0 0 0 0 0 

#1 0 100 0 0 0 0 0 

#2 0 0 98 2 0 0 0 

#3 0 0 6 94 0 0 0 

#4 0 0 0 0 100 0 0 

#5 0 0 0 0 2 76 22 

#6 0 0 0 0 0 6 94 

4.2. Static Analysis: Delay Test 

The sliding window technique was explained previously, but it is required to choose the proper  

size v for the window in order to achieve real-time performance. Thus, a new test was created to obtain 

the optimum window size: the delay test.  

To implement the test, a synthetic signal was composed with real MES fragments as shown in 

Figure 15: seven pattern couples (from biceps and triceps) were concatenated to precisely control the 

state transitions. Each fragment couple represents one state. Therefore the classification of the two 

composite signals generates a stair graph, as shown on the top graph of Figure 15. Each step or 

transition boundary was magnified in the computer. Then, the delay between the pattern transition and 

the classification transition has to be measured.  

Figure 15. Delay test for a 1 s window size. Top graph displays the classification of the 

synthetic signal. The two EMG graphs represent the synthetic signals for biceps and triceps. 
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For a certain window size, a mean delay value was obtained from the six transitions. The process 

was repeated for each window size, i.e., 2 s, 1.5 s, 1 s, 750 ms, 500 ms and 250 ms. The obtained 

results are displayed in Figure 16. 

Figure 16. Measured delays linked with an interpolation line. 

 

Three hundred ms will be considered as the delay limit for a real-time response [9]. The measured 

delay for the 750 ms window was 293 ms and the worst classification percentile was 76% for state #5, 

as shown in Table 2, but for all the other cases, the classification efficiency is over 94%. Classification 

efficiency can be increased at the expense of a higher delay, but the algorithm will not be suitable for a 

real-time response. 

4.3. Dynamic Analysis: Interactive Test with MES Signals 

The implemented graphic tools play an important role in the interactive test. The signal viewer and 

the virtual arm were developed first. They were tested with the students and the staff from the 

Telecommunication Engineering School/University of Valladolid, Spain. MES signals were employed 

for these tests. It was confirmed that the virtual arm was not very intuitive for an untrained healthy 

subject. It was difficult to transfer the actions from the two muscles (biceps and triceps) to a multi-state 

virtual arm. Then the state navigator was implemented as an intermediate stage in the training. With 

this tool, the actions are simpler and closely related to the muscle activity. It was established that the 

subject follows a progressive learning process: on a first approach, the operator notices the pointer 

displacements when he/she contracts. Afterwards, the operator learns to discriminate each muscle, by 

achieving horizontal and vertical pointer displacements. The subject under test realizes he/she can 

operate the UVa-NTS in a short learning time, and gets more motivated to go on. The final step is to 

navigate from one state to another and maintain the position for a while in each state. We observed that 

this procedure made the subject gain self-control for a multi-state device. So, when the virtual arm tool 

was started, the user was prepared, as most of the adaptation was previously achieved. It was just 

required to associate each state to one arm action (open/close the hand or extent/flex the arm). The 

system was tested with five states for maximum state separability. Pronation/supination requires two 

additional states and a finer control. Thus, the seven-state mode was considered for advanced training. 
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Figures 17 and 18 display two screenshots during the interactive tests. State #0, on the top left 

corner of the state navigator represents the rest position. Figure 17 shows the instant when the pointer 

in the navigator has been positioned over state #3. During the time the pointer is in that state, the hand 

opens in the virtual arm tool. The associated EMGs from biceps and triceps during the action are 

displayed on the signal viewer, located on the right side of the figure. In Figure 18 the user has 

displaced the pointer to state #1 in the state navigator. The biceps activity is increased significantly and 

thus the pointer is located far from the rest state #0. As shown in Figure 18, an increment can also be 

noticed in the triceps EMG: this is why the pointer also moves downwards, as the vertical axis is 

associated with triceps activity. 

Figure 17. Medium biceps activity and low triceps activity. EMGs from biceps and triceps 

are shown at the top and bottom graphs respectively. At this moment, pointer in the state 

navigator is over state #3. State #3 is assigned to hand opening. 

 

Figure 18. Increased biceps activity (top EMG graph). The detected state is #1, which is 

assigned to arm flexion. 
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4.4. Dynamic Analysis: Interactive Test with MMS Signals. 

We consider this test as a novelty, since interactive real-time tests with MMS have not been found 

in the literature. This test was performed on healthy subjects at the Telecommunications School. 

Figures 19 and 20 display two screenshots during tests with MMS. The subject under test exerts two 

biceps contraction levels and moves the pointer from state #1 to #2. The virtual arm then flexes  

(state #1) or extends (state #2).  

Figure 19. Medium biceps effort, triceps at rest. The signal viewer displays triceps MMG 

at the top and biceps MMG at the bottom. In this experiment, the viewer time base was 

originally adapted to EMG. State #1 is assigned to arm flexion. 

 

Figure 20. Increased biceps effort. Biceps MMG is at the bottom. State #2 is assigned to 

arm extension. 

 

 

The adaptation protocol applied to MES was also used for the MMS tests. Signal quality and 

dynamic range were checked with the signal viewer on each subject. Afterwards, the training focused 
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on the state navigator. It was observed that the adaptation to the tool was more difficult: stronger 

contraction levels were required to achieve a comparable response to MES tests. And a longer training 

time was required. However, the subjects under test achieved a satisfactory voluntary control with the 

state navigator after some minutes. Then, they were capable of managing the virtual arm as in the 

previous tests with MES. 

4.5. Interactive Tests: Impaired Patients 

The system was tested with three selected patients: (i) upper limb disabled, (ii) tetraplegic, and  

(iii) severe disabled from a cerebral infarction.  

Case (i) is shown in Figure 21. She was a 19-year-old girl sat in a wheelchair. She had muscular 

dystrophy due to a congenital disease that involved progressive muscle deterioration. The patient had 

congenital upper left limb malformation with the result of no forearm formation. She had an elbow and 

a residual forearm with certain capabilities, so she was able to hold a needle and inebriate it with the 

aid of the healthy arm.  

Figure 21. Tests at home with a patient with congenital muscle malformation. An ECG 

electrode is used as reference electrode. Smaller round Ag/AgCl electrodes (1 cm diameter) 

are used on the elbow as myoelectric transducers. 

 

 

A trained healthy subject demonstrated the UVa-NTS operation to the patient, working with MES. 

Then, the adaptation protocol was applied to the patient: first on the healthy arm and afterwards on the 

disabled arm. Biceps and triceps were employed. Control of the navigation tool was achieved in less 

than ten minutes, both with the healthy and the malformed arm. Then the virtual arm tool was easily 

commanded.  

A second test was performed with the residual muscles of the atrophic forearm. The protocol was 

applied for one signal channel. Then, the patient exerted isometric contractions and, after five minutes, 

she gained a certain control of the state navigator tool. This encouraged her to go on with the test and, 
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after ten minutes, she was still playing with the tool to improve her skill. During this test, only one 

direction of the navigator was employed, as only one signal channel was selected for the atrophic 

muscles.  

Case (ii) was a 50-year-old C4-C5 partially tetraplegic man, formerly a journalist, and sat in a 

wheelchair. The impairment was due to a car accident, 25 years before. He had muscular degeneration 

due to the loss of capabilities in the neuromotor system since the accident. He had a reduced capacity 

to manage his hand, opening and closing it slightly. So, for this test, flexor muscles of the forearm were 

selected, as shown in Figure 22. Signals were noticeably weaker than in the previous case, but after 

five minutes, a certain control of the navigation tool was achieved. The subject insisted on his exercise 

and after fifteen minutes he realized he was fatigued. In his opinion, it was a very interesting exercise 

for his atrophic muscles, as he was playing interactively with the UVa-NTS. 

Figure 22. Test at home: patient with tetraplegia during the calibration procedure. 

 

 

Case (iii) was a severely disabled patient, due to a cerebral infarction. He suffers from lock-in 

syndrome, as his mental faculties are normal and he has recently written a book with and excellent 

writing style. He cannot speak and can only move his head, his eyes and one finger in his right hand. 

He can also raise the forearm a few degrees. He spends most of his time with a computer and interacts 

with it by means of an optic system. Our navigation tool is closely related to the behavior of a mouse 

pointer. So it was suggested to the patient that the UVa-NTS could act as an alternate man-machine 

interface to command the computer. The operation of the UVa-NTS was demonstrated to the patient. 

Afterwards it was tested on his arm, placing electrodes on biceps and triceps. Less than five minutes 

were necessary to achieve the adaptation to the UVa-NTS. The subject was able to control the state 

navigator and the virtual arm with a high degree of satisfaction. 
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In addition, tests are being performed currently at the National Hospital for Paraplegics in Toledo, 

Spain. In these clinical trials the medical specialists have chosen patients with partial tetraplegia, 

actually, with C7 spinal cord level injury. The chosen patients have difficulties to move their arms but 

they have a residual capability to perform movements. In this case, the study focuses in the flexor carpi 

and the extensor carpi muscle groups. These disabled patients are testing the UVa-NTS platform tools 

for self evaluation and training, especially the state navigator and the Myo-Pong tools. A custom 

defined protocol is being applied. These tests are being supervised by a joint team composed of 

medical specialists and engineers.  

5. Discussion 

The static test allows a precise evaluation of the signal processor. The features of the custom pattern 

recognition processor have been analyzed: classification efficiency is one of the major quality factors in 

pattern recognition systems. The characteristic of a real-time platform is the fast response to stimulus, 

i.e., the real-time response. Both quality requisites have been jointly analyzed to fit the best solution. 

The classification tests show that the bigger the sliding window, the higher the classification efficiency. 

However, the delay in the response to the input stimulus is increased with the size of the sliding 

window, as it was shown in the delay test. Therefore, for a real-time platform, the best solution must fit 

these two constraints: low misclassification and low delay time. The results show that the 750 ms 

window size matches the aforementioned constraints for the designed processor.  

To make a complete analysis of the system, it is necessary to supplement the static analysis with the 

dynamic analysis. Subsequently, interactive tests were performed both with healthy and impaired 

subjects. It was determined that adaptation is decisive to interact with an aid system such as the  

UVa-NTS. Hence, a protocol with progressive adaptation was designed: it starts with the system 

demonstration and afterwards the patient continues with the UVa-NTS operation and the set of training 

tools. It was observed that a successful demonstration creates interest in the patient. Afterwards, the 

patient operates the UVa-NTS and visualizes his own raw signals (MES/MMS) with the signal viewer. 

Then, the correlation between the signal behavior and the muscle contraction makes the patient aware 

of his muscles and the underlying neuromuscular process.  

The state navigator was confirmed as an influential intermediary to improve adaptation to more 

complicated actions. Complexity and effectiveness are well balanced in this tool, so immediate results 

are obtained in a few minutes. As a consequence, there is a faster adaptation to command more 

intricate tools, such as the virtual keyboard or the multi-state virtual arm tool.  

This progressive adaptation was effective to test new signal sources for voluntary control. Thus, 

MMS signals have been successfully tested to command the set of tools. Sensitivity with MMS is 

lower in comparison with MES, as higher contraction levels are required. However, voluntary control 

has been successfully verified during these tests. Therefore, we believe that sensor technology and 

signal processing should be more profoundly analyzed, as it was previously discussed with  

MES [15,16]. 

The interactive tests have revealed that a friendly environment encourages the user to persist with 

the training procedures. The patients discover a different way to interact with an augmentative aid, as 

the residual neuromuscular activity is amplified: they realize that the reduced physical movements 
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from their impaired limbs turn into complete actions in the UVa-NTS. As a result, patient satisfaction 

is shown when rapid and successful adaptation is achieved. 

6. Conclusions 

Regarding the electronics of the front-end, it is rare to find the whole description of a MES 

conditioning system in the literature. Detailed descriptions were offered in order to analyze the troubles 

involved in the complete implementation of a front-end. On the other hand, an affordable design with a 

reduced number of components has been developed. Such a design does not require any external ADC 

card, taking advantage of a standard link to the computer and resulting in a portable configuration. 

Analog, digital and mixed solutions based on switched capacitor filters have been adopted. Hence, 

most of the signal processing load lays over the computer system. This allows flexibility to embed new 

signal processing techniques: hence, this adaptability is achieved by an embedded code from a 

mathematical tool (Matlab). This architecture increases the feasibility to apply new and more complex 

processing algorithms.  

The portability and autonomy of the UVa-NTS have been key features to move it out of the 

laboratory to perform tests. The platform has been profoundly analyzed and, as it has been stated, two 

main steps are required to demonstrate the efficacy of a real-time platform: (i) the static analysis and  

(ii) the dynamic analysis. Both tests assert the efficacy of the commanding system. Then, efficiency is 

demonstrated in terms of precision and real-time response, i.e., classification efficiency and minimum 

delay time. 

The UVa-NTS acts as a training and interface system. Progressive adaptation is a very important 

fact and it was achieved by creating the adaptation protocol. As a consequence, the designed training 

tools allow the increase in the exercise complication: from the simple signal viewer and the state 

navigator, it is possible to progress to the virtual arm, to the virtual keyboard or to the Myo-Pong game. 

As a novelty, successful dynamic tests have been performed with MMS. Response is still rough, as 

considerable contraction level is required. However, the EMI robustness and the inexistence of electric 

contacts with the body are important features for the design engineers and for EMI polluted 

environments.  

The UVa-NTS acts as an augmentative system, amplifying residual activity. Hence, its versatile 

conception makes it suitable for extended man-machine interface functions, such as domotic 

applications, wheelchair command or robotic arm control. Moreover, interfacing with wireless 

technologies can expand the UVa-NTS applications. 

It has been demonstrated that the UVa-NTS constitutes a real-time and multipurpose system, 

scalable and suitable for research, training, and design of neuromuscular control applications. In 

addition, new tools and applications can be implemented and new techniques can be demonstrated 

from the basis of this fully functional structure.  
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